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Abstract Computation of normalizing constants

is a fundamental mathematical problem in various

disciplines, particularly in Bayesian model selection

problems. A sampling based technique known as the

bridge sampling (Meng and Wong, 1996) has been

found to produce accurate estimates of normalizing

constants and is shown to possess good asymptotic

properties. For small to moderate sample sizes (as

in situations with limited computational resources),

we demonstrate that the (optimal) bridge sampling

produces biased estimates. Specifically, when the

bridge density is constructed to be close to the target
density (using method of moments), our simulation

based results indicate that the correlation induced

bias through the moments-matching procedure is

non-negligible. More crucially, the bias amplifies as

the dimensionality of the problem increases. Thus, a

series of theoretical as well as empirical investigations

is carried out to identify the nature and origin of

the bias. We then examine the effect of sample size

allocation on the accuracy of bridge sampling estimates

and discovered that one possibility of reducing both

the bias and standard error with little increase in

computational effort is by using a larger sample size

from the bridge density (which we assume to be easy
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to sample from). We proceed to show how the simple

adaptive approach we termed “splitting” manages to

alleviate the correlation induced bias at the expense of

a higher standard error, irrespective of the dimension-

ality involved. We also slightly modified the strategy

suggested by Wang and Meng (2016) to address the

issue of the increase of standard error due to splitting,

which is later generalized to further improve the

efficiency. We conclude this paper by offering our

insights of the application of a combination of these

adaptive methods to improve the accuracy of bridge

sampling estimates in Bayesian applications (where

posterior samples are typically expensive to generate)

based on the preceding investigations.

Keywords Normalizing constants · Bridge sampling ·
Method of moments · Correlation induced bias ·
Bayesian applications.

1 Introduction

Estimating normalizing constants is a well-known prob-

lem, solutions of which often revolve around developing

new or modifying current numerical computational al-

gorithms to circumvent this issue that hinders subse-

quent statistical/scientific inferences. To give a few ex-

amples: likelihood inference in the presence of missing

data where computation of the observed-data likelihood

is essentially the problem of estimating the normaliz-

ing constant of the complete-data likelihood, a rather

common application in genetic linkage analysis (see Ir-

win et al., 1994, Augustine Kong et al., 1994, Jensen

and Kong, 1999 etc.); computation of free energy dif-

ferences (e.g. Frenkel, 1986 and Neal, 1993 etc.); esti-

mation of marginal likelihoods and Bayes factors within
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the Bayesian framework (e.g. Kass and Raftery, 1995,

Carlin and Louis, 2000, Sinharay and Stern, 2005 etc.).

In Bayesian computations, evaluation of the nor-

malizing constant, known as the marginal likelihood,

can initially be avoided during the parameter estima-

tion stage using Markov Chain Monte Carlo (MCMC)

sampling methods since it is not the parameter of inter-

est. However, this very quantity plays a central role in

Bayesian model comparison and model averaging. To

be exact, denoting θ as the parameter and M ∈ MS

as the model parameter, Bayes theorem stipulates that

the posterior distribution given data, X, is

fM (θ|X) =
fM (θ|X)fM (θ)

fM (X)
, (1)

where fM (θ|X) is the model likelihood and fM (θ) is

the prior distribution of θ. It is clear that the numera-

tor of Equation (1), fM (X) =
∫
fM (X|θ)fM (θ)dθ (the

marginal likelihood), does not depend on θ and is re-

garded as the normalizing constant of the posterior

distribution. The Bayes factor, defined as the ratio of

marginal likelihoods of two competing models, is the

key quantity in Bayesian model selection because it en-

codes the evidence of model preference given by the

data (Kass and Raftery, 1995). Computing Bayes fac-

tors is extremely challenging, and is the primary rea-

son why Bayesian inference was not popular (since ex-

act posterior computations are prohibited) until the

discovery of MCMC methods. Therefore, it is crucial

to be able to estimate the aforementioned quantities

to carry out a fully Bayesian computational approach.

Typically, posterior samples are very expensive to gen-

erate (mostly using MCMC methods) given the actual

computational constraints. Occasionally, the evaluation

of likelihoods can also be rather costly (e.g. in the pres-

ence of latent data/parameters). Hence, the aim in this

context is often to maximize the statistical efficiency of

the estimates produced, given a fixed number of poste-

rior samples.

A range of possible computational techniques are

available for computing marginal likelihoods/Bayes fac-

tors; see Carlin and Louis (2000) for a comprehensive

review. Simulation based (Monte Carlo) approxima-

tion is commonly used by most statisticians due to its

general applicability and their knowledge of sampling

based inference. Some examples include the importance

sampling method (e.g. Geweke, 1989), Chib’s method

(Carlin and Chib, 1995), harmonic mean estimator

(Newton and Raftery, 1994), generalized harmonic

mean estimator (Gelfand and Dey, 1994), reversible

jump MCMC method (Green, 1995), path sampling

(Gelman and Meng, 1998) etc. In this paper, we focus

on the bridge sampling method, which is a technique

originally developed by Meng and Wong (1996) to

estimate the ratio of two normalizing constants, and

can be constructed to estimate a single normalizing

constant when one of the densities is normalized. This

technique has been widely applied in various research

areas including: missing data analysis (Jensen and

Kong, 1999, Lee et al., 2003), factor analysis (Meng

and Schilling, 1996, Lopes and West, 2004), statistical

regressions (Mira and Nicholls, 2004, Bartolucci et al.,

2006, Overstall and Forster, 2010 etc.), Markov mixture

models (Frühwirth-Schnatter, 2004) etc. More recent

applications of the bridge sampling technique include

Guy et al. (2013), Tan (2013), Wong et al. (2018),

Gronau et al. (2017). The package “bridgesampling” in

R (Gronau et al., 2017) can now be used to implement

the bridge sampling estimation conveniently. We also

provide our version of R code (see Appendix) which

focuses on estimating marginal likelihoods using the

bridge sampling technique, with various algorithms

to increase efficiency (to be introduced in the paper),

given a set of posterior sample.

Bridge sampling estimates are empirically found

to be rather accurate (e.g. Sinharay and Stern, 2005,

Frühwirth-Schnatter, 2004), leading to its popularity.

While known to be asymptotically unbiased, bridge

sampling technique produces biased estimates in

practical usage for small to moderate sample sizes.

Meng and Schilling (1996) carried out an empirical

analysis of the optimal bridge sampling estimator

and illustrated that the estimator yields positive bias

that worsens with increasing distance between the two

distributions. The second type of bias arises when the

“bridge distribution” is determined from the posterior

samples using the method of moments, resulting

in a systematic underestimation of the normalizing

constant due to the correlation induced through

the moments-matching procedure, as demonstrated

by Overstall and Forster (2010). Wong (2017) also

showed how the issue of underestimation worsens in

high-dimensional problems. Additionally, Wang and

Meng (2016) pointed out a similar issue of using

the sample moments of the U-warped distribution to

construct a mixture Gaussian approximation resulting

in biased bridge sampling estimates. They proposed

a similar approach as Overstall and Forster (2010) to

eliminate the bias, and also suggested a modification

to avoid an increase in the estimates’ standard errors.

In this paper, we perform a bias analysis on the bridge

sampling estimator by breaking it down into smaller

components, providing some theoretical insights of the

origin of the two types of biases. We then focus on

the correlation induced bias. The effect of sample size

allocation on bridge sampling estimates is examined,

which lead to reduced bias and standard error when
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applied appropriately in certain scenarios. Several

alternatives capable of improving bridge sampling

estimates (either by mitigating the bias or reducing

the standard error) are then presented and explored in

detail. A series of simulation studies is conducted to

ascertain our conjecture, putting emphasis on not just

the relative mean square error as an overall measure

of efficiency, but also on a detailed analysis of the

empirical bias and standard error separately.

The rest of the paper is structured as follows. First,

we introduce the bridge sampling estimator and de-

scribe some examples to showcase the empirical bias

of bridge sampling estimates. We proceed to identify

the source of the bias by breaking down the bridge

sampling estimator into smaller components for ease

of explanation (Section 2). Secondly, we examine the

effect of different allocation of sample sizes on the be-

haviour of bridge sampling estimates (Section 3). We

then describe and extend the idea of splitting, which

alleviates the correlation induced bias, but at the same

time result in an increased standard error (Section 4).

Our investigation also reveals the optimal way of apply-

ing the partitioning based on various situations. The

approach by Wang and Meng (2016) to avoid an in-

crease in standard error due to splitting is modified

and extended (Sections 5 and 6). Finally, the paper

is concluded with some matters of consideration dur-

ing the practical implementation of the bridge sampling

method in Bayesian computations on the basis of the

preceding investigations, where the aim is to obtain the

most statistically efficient estimate given a fixed num-

ber of posterior samples (Section 7).

2 The Bridge Sampling Estimator

Suppose that pi(θ) (i = 1, 2) are two densities with pa-

rameter spaces Θi ⊂ Rd respectively, where d is the

dimension of θ, and are known up to a normalizing

constant, i.e. pi(θ) = qi(θ)
ci

, with ci as the correspond-

ing normalizing constants of the unnormalized densi-

ties, qi(θ). The fundamental usage of bridge sampling

is based on the following key identity,

r ≡ c1
c2

=
E2[q1(θ)ω(θ)]

E1[q2(θ)ω(θ)]
, (2)

where ω(θ) is the so called bridge function (de-

fined on the common support Θ1 ∩ Θ2) satisfying

0 <
∣∣∣∫Θ1∩Θ2

p1(θ)p2(θ)ω(θ)dθ
∣∣∣ < ∞, so that the ratio

in Equation (2) is well defined (Meng and Wong, 1996).

According to Meng and Wong (1996), the existence of

ω() for Equation (2) (and hence the bridge sampler

to be valid) is ensured as long as the two densities

“overlap”. Given that the above condition is satisfied,

the Monte Carlo estimator of r is simply

r̂ =
1
N2

∑N2

i=1 q1(θi2)ω(θi2)

1
N1

∑N1

i=1 q2(θi1)ω(θi1)
, (3)

where {θ1:N1
1 } ≡ {θ1

1, . . . , θ
N1
1 } and {θ1:N2

2 } ≡
{θ1

2, . . . , θ
N2
2 } are sets of random (possibly dependent)

realizations from p1(θ) and p2(θ) respectively. Under

certain regularity conditions, r̂ converges asymptoti-

cally to the true value, r (i.e. the sample averages in

Equation (3) converge to their respective population

averages).

The choice of the bridge function, ω(), is arbi-

trary, but defines the resulting estimator formed. For

instance, choosing ωI(θ) = 1/q2(θ) leads to the well

known importance sampling estimator,

r̂I =
1

N2

N2∑
i=1

q1(θi2)

q2(θi2)
. (4)

While choosing ωRI(θ) = 1/q1(θ) leads to the so-called

reciprocal importance sampling estimator (Gelfand and

Dey, 1994),

r̂RI =

[
1

N1

N1∑
i=1

q2(θi1)

q1(θi1)

]−1

. (5)

Additionally, the estimation method developed by Chib

(1995) is also a special case of the bridge sampling es-

timator (see Gelman and Meng, 1998 for more exam-

ples). Thus, the bridge sampling estimator is a gener-

alization of several algorithms that encompass a wide

range of sampling-based normalizing constants estima-

tion methods.

Meng and Wong (1996) proposed that an optimal

choice of ω(), in the sense of minimizing the asymptotic

Relative Mean Square Error (RMSE), is given by the

reciprocal of a mixture between the two densities,

ωO(θ) ∝ 1

N1q1(θ) + rN2q2(θ)
, (6)

provided draws from both distributions are indepen-

dent. Since ωO() still involves the unknown r, Meng and

Wong (1996) suggested the following iterative compu-

tational procedure:

r̂
(t+1)
O =

1
N2

∑N2

i=1

[
l(θi2)

N1l(θi2)+N2r̂
(t)
O

]
1
N1

∑N1

i=1

[
1

N1l(θi1)+N2r̂
(t)
O

] , (7)

where r̂
(t)
O is the tth iteration of the estimator and l(θ) =

q1(θ)
q2(θ) . Starting with an initial guess, r̂

(0)
O , the optimal

bridge estimate, r̂O, can be obtained by iterating (7)

until convergence.
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2.1 The Empirical Bias of Optimal Bridge Estimates

Meng and Wong (1996) only considered the asymptotic

behaviour of r̂O in terms of the RMSE. However, the

practical behaviour of r̂O computed using finite number

of samples (due to limited computational resources) is

often of significant interest too. Moreover, it is also in-

sightful to investigate the bias and standard error of r̂O
separately rather than using the RMSE as a measure of

overall efficiency, which considers the bias and standard

error altogether, where

RMSE =
E[(r̂ − r)2]

r2
=

[E(r̂)− r]2

r2
+

E[(r̂ − E(r̂))2]

r2

= (Relative Bias)2 + (Relative standard error)2.

The existence of the non-negligible bias of r̂O can be

illustrated using a toy example as described below. Sup-

pose that we are interested in evaluating the integral∫
q1(θ)dθ, given that we are able to generate a sample

of size N from q1(), {θ1:N
1 }. In order to use the optimal

bridge sampling estimator, we would choose a normal-

ized “bridge” density, q2(θ) = p2(θ), so that the answer

to the above integral is intended to be c1 (unknown).

According to Meng and Wong (1996), the efficiency of

the bridge sampling estimator will be minimized when

the area of “overlapping” (in their definition) is large.

An immediate choice of q2 for this purpose is then a

normal distribution with moments chosen to match the

sample moments of {θ1:N
1 }, or more generally, denoting

{θ1} as {θ1:N
1 }, we write q2 = q

{θ1}
2 and p2 = p

{θ1}
2 as

densities that depend on the sample from p1. Through-

out, we also use the notation p2 ← {θ1} to denote the

case when p2 is dependent on the samples from p1, while

p2 8 {θ1} indicates that p1 and p2 are independently
chosen. Making use of the information contained within

the samples from p1 to derive p2 guarantees that the

“overlapping” between p1 and p2 is large. However, as

we demonstrate in the simulation study below, this also

introduces bias to the corresponding estimate, r̂O, due

to the correlation induced between the samples from p1

and p2.

As an illustration, let p1 be the density of a univari-

ate standard normal distribution, N(0, 1) with {θ1:N
1 }

as the corresponding sample. Then let p2 be the den-

sity of N(θ̄1, σ
2
1), where θ̄1 and σ2

1 are the sample mean

and variance derived from {θ1:N
1 }, i.e. θ̄1 =

∑N
i=1 θ

i
1

N

and σ2
1 =

∑N
i=1(θi1−θ̄)

2

N−1 . A sample of size N , {θ1:N
2 }, is

then generated from p2. For simplicity, we assume that

q1 = p1 and q2 = p2 so that the true value of r is known

a priori to be one. We then evaluate Equation (7) at the

entirety of samples from p1 and p2 (whence N1 = N2 =

N), and consider the behaviour of r̂O with varying sam-

ple sizes from the set N ∈ {100, 200, . . . , 10000}. Each
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Fig. 1: Plot of the mean estimates of the ratio of normaliz-
ing constants, r, against sample size using the optimal bridge
sampling estimator, accompanied by the associated 95% in-
tervals.

computation is also replicated R = 10 000 times to learn

about the underlying distribution of r̂O for each N .

Figure 1 depicts the mean and 95% intervals (con-

structed from the sample percentiles) of r̂O, plotted

against N . Evidently, there is a systematic underesti-

mation of the value of r = 1, where the bias slowly

diminishes as N increases, confirming the assertion by

Meng and Wong (1996) that the bias term is asymp-

totically negligible. However, it is clear that for small

to moderate N , the bias is non-negligible. Even though

the magnitude of the bias appears to be non-significant

in this uni-dimensional case, the negative bias will be

further amplified as the dimension of the parameter in-

creases. To put this into perspective, performing the

bridge sampling on a 100-dimensional standard normal

distribution with a sample size of 10,000 yields an esti-

mate of r̂O ≈ 0.77, which is considerably lower than the
actual value. Therefore, it is imperative to understand

the behaviour of the bias so that we could identify the

optimal bridge estimate produced in a specific practical

application with certain level of confidence.

2.2 Investigating the Origin of the Bias of r̂O

It is challenging to derive theoretical properties of

the iteratively produced r̂O. Thus, the bias analysis

is achieved by breaking r̂O down into smaller compo-

nents, r̂I and r̂RI , the biases of which are analysed

separately. r̂I is shown to produce unbiased estimates,

and hence, the bias of r̂O can be traced from r̂RI . There

are two types of biases for r̂RI , which we attempt to

describe in two steps: first, Taylor’s expansion is used

to show that the (positive) bias of r̂O depends on the

distance between p1 and p2 when p2 8 {θ1}; second,

we demonstrate that even when p2 is constructed to

resemble p1 using samples from p1 (using method of
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Fig. 2: Plot of the mean estimates (solid lines) of the ratio of
normalizing constants against sample size using r̂O, r̂I , and
r̂RI , accompanied by the associated 95% intervals (dotted
lines).

moments), i.e. p2 ← {θ1}, the correlation induced

bias through the moments-matching procedure (as

observed in Section 2.1) is of negative magnitude and

is amplified in high-dimensional problem.

Recall from Equation (6) that ωO is essentially the

reciprocal of a mixture between the two densities, q1

and q2, which can be alternatively expressed as

ωO(θ) ∝
(

N1

ωRI(θ)
+

rN2

ωI(θ)

)−1

. (8)

In other words, r̂O is essentially formed from a com-

bination (in some way) between r̂I and r̂RI . Hence,

we expect r̂O to inherit some properties from both

r̂I and r̂RI , even though r̂O is regarded as an im-

proved version in the sense of having a smaller RMSE

than both, as proven by Meng and Wong (1996).

On a side note, this is the reason why the bridge

sampling technique is robust with respect to the tail

behaviour of q2 as compared to r̂I and r̂RI , because

the requirements of heavier-tailed and lighter-tailed

important sampling densities respectively (as explained

by Frühwirth-Schnatter, 2004) counteract each other

upon “averaging”.

As a crude indication of the above relationship be-

tween r̂O, r̂I and r̂RI , Figure 2 is created, where the

estimates of r̂I and r̂RI (computed in similar set up as

in Section 2.1) are included as a comparison. Clearly,

the estimates of r̂O lie within those of r̂I and r̂RI (in-

cluding the percentiles). Thus, it is a plausible strategy

to break down the problem of investigating the bias of

r̂O into investigating the bias of r̂I and r̂RI separately,

which is much easier.

Importance sampling estimates are known to be

unbiased (Chen et al., 2000, p. 127). Even in the

case where p2 ← {θ1}, it can be shown that the

resulting r̂I is unbiased (visibly evident in Figure

2). To see this, we note that conditional on {θ1},

p
{θ1}
2 is just an ordinary density function, then

E[r̂I ] = 1
N

∑N
i=1 Eθ1

[
Eθi2|θ1

[
q1(θi2)

q
{θ1}
2 (θi2)

]]
= c1

c2
(see

Appendix A for proof).

On the contrary, r̂RI , is notorious for producing bi-

ased estimates (e.g. Neal, 1994). r̂RI belongs to the ratio

estimator, which is known to overestimate the normal-

izing constant when p1 8 {θ1}. In particular, using

Jensen’s inequality, it can be shown that

E[r̂RI ] = E

( 1

N

N∑
i=1

q2(θi1)

q1(θi1)

)−1
 ≥ ( 1

N

N∑
i=1

E
[
q2(θi1)

q1(θi1)

])−1

=
c1
c2
.

More specifically, we can derive the approximate

magnitude of the overestimation by using a Tay-

lor’s expansion. If η̄ = 1
N

∑N
i=1

q2(θi1)

q1(θi1)
, then we have

η ≡ E[η̄] = c2
c1

when p2 8 {θ1}. Applying a Tay-

lor series expansion about η = E[η̄] gives E[r̂RI ] ≈
c1
c2

+
(
c1
c2

)3

×Var[η̄]−
(
c1
c2

)4

×E[(η̄−η)3] to the third or-

der approximation (see Appendix B). When p2 8 {θ1},
and {θ1

1, . . . , θ
N
1 } are random independent realizations

from p1, then Var[η̄] = 1
NVar

[
q2(θi1)

q1(θi1)

]
= O

(
1
N

)
and

E[(η̄ − η)3] = 1
N2E

[(
q2(θi1)

q1(θi1)
− η
)3
]

= O
(

1
N2

)
. The

term E[(η̄−η)3] typically possesses negligible value and

can be ignored. Therefore, r̂RI carries a positive bias of

magnitude
(
c1
c2

)3

× Var[η̄] (order 1/N) approximately,

which vanishes as N → ∞. Note that Var[η̄] can be

expressed as

Var[η̄] =
1

N

(
c2
c1

)2(∫
p2

2(θ)

p1(θ)
dθ − 1

)
=

1

N

(
c2
c1

)2 [
Ep2

[
p2

p1

]
− 1

]
,

where Ep2
[
p2
p1

]
resembles the Kullback-Leibler diver-

gence (Kullback and Leibler, 1951), Ep2
[
log
(
p2
p1

)]
, to

a certain degree. This implies that Var[η̄] measures the

divergence of p2 from p1, which is an indication of how

much they overlap. The smaller the overlap between p1

and p2, the larger the value of Var[η̄], and hence, the

larger the bias (see Appendix C). Of course, Ep2
[
p2
p1

]
is not always finite as p2

p1
is not always square inte-

grable with respect to p1 as pointed out by Meng and

Wong (1996), but the multiplicative factor of 1
N en-

sure that the practical bias vanishes as N increases.

This phenomenon can also be observed from Meng and

Schilling (1996), where the positive bias of r̂O in their

simulation increases as the divergence between p1 and

p2 (measured in Hellinger distance) increases.
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The above derivation does not explain the under-

estimation in Figure 2 when p2 ← {θ1}. Again, we

focus on situation where p
{θ1}
2 is constructed to be

close to p1 (using method of moments). The reason

why the bias switches sign is primarily because the

term Var[η̄] becomes smaller when p1 and p2 are

close. Hence, the supposedly positive bias of r̂RI is

dominated by another source of bias, which originates

from 1
η = 1

E[η̄] where the expectation is taken over

all random draws. Fundamentally, this is due to

the correlation between the samples from p1 and p2

through the sample moments, which then manifests

itself in the form of a systematic bias. More specifically,

η = E
θ
1:(N−1)
1

[
E
θN1 |θ

1:(N−1)
1

(
q
{θ1}
2 (θN1 )

q1(θN1 )

)]
6= c2

c1
. It is

difficult to derive a simpler expression for η here, even

in a very simple case involving normal distributions (a

sketch proof when p1 and p2 are both exponential is

provided in Appendix D). But empirically, it has been

found that η > c2
c1

, resulting in an underestimation of

the true value of r = c1
c2

, i.e. E[r̂RI ] <
c1
c2

(as observed

in Figure 2).

Using the delta method, the variance of r̂RI (to the

second order) can be expressed as

Var

[
1

η̄

]
≈ c22
N2η4c21

Var

[
N∑
i=1

p
{θ1}
2 (θi1)

p1(θi1)

]
. (9)

3 The Effect of Sample Size Allocation on the

Accuracy of r̂O

N1 and N2 appear in ωO() as the mixture proportions

of q1 and q2 respectively (see Equation (6)). Given that

ωO() plays the role to provide an optimal linkage be-

tween the two densities, it is logical that the allocation

of samples sizes directly influences the efficiency of the

resulting bridge sampling estimate. To the best of our

knowledge, the effect of relative sample sizes on the effi-

ciency of r̂O has yet to be investigated. Although Chen

et al. (2000, p. 129) vaguely stated that the optimal

choice of ω() is more vital than the optimal allocation

of sample sizes, a more thorough study on the effect of

relative sample sizes could potentially lead to ways of

improving the efficiency of r̂O.

By inspecting Equation (8), we note that the rel-

ative sizes of N1 and N2 determine the resulting be-

haviour of r̂O based on the weights given on the mix-

ture components. Allocating a larger N1 relative to N2

corresponds to prioritizing the ωRI component, imply-

ing that the resulting r̂O behaves more similarly to

r̂RI . By contrast, allocating a smaller N1 relative to N2

corresponds to prioritizing the ωI component, meaning

the behaviour of r̂O is more inclined towards r̂I . Using

N1 = N2 corresponds to the original bridge sampling

estimate recommended by Meng and Wong (1996). In

the extreme case where N1 = 0 (where none of the sam-

ples from p1 is used to evaluate the estimator), then the

bridge sampling procedure produces r̂I exactly.

Since it was discovered from Section 2.1 that r̂I is

unbiased, while r̂RI produces biased estimates, the rel-

ative values of N1 and N2 indirectly govern the bias of

r̂O. Here, we focus on a scenario where it is computa-

tionally expensive to evaluate or to simulate from p1,

while it is relatively cheaper to simulate from p2. Thus,

we investigate the possibility of using N2 > N1 = N

to improve the efficiency of r̂O with little increase in

the computational effort, under the computational con-

straint that N could not be freely increased. Generally

speaking, using a larger N2 corresponds to allocating

more weight to ωI (and hence the unbiased r̂I), which

then reduces the associated bias for r̂O since less weight

is given to the biased r̂RI when N1 is relatively small.

Moreover, using a larger N2 reduces the standard er-

ror of r̂O since the estimator is evaluated at a greater

number of samples. Therefore, in theory, we expect that

using a larger N2 not only diminishes the bias, but also

decreases the standard error of r̂O.

Returning to the simulation study in Section 2.1,

rather than only setting N2 = N , three different sample

size allocations are examined:

i. Naive approach, N2 = N .

ii. A constant multiple of N , N2 = 10N .

iii. Some relatively large number, N2 = 50 000.

r̂O is then evaluated at the entire samples from both

p1 and p2, so that N1 = N and N2 is from one of the

above.

As shown in Figure 3, a larger N2 generally leads

to better estimates by reducing both the bias and stan-

dard error as hypothesized. For N2 = 50 000 (blue),

the bias remarkably shrinks to almost zero for all N .

For N2 = 10N (red), the performance of r̂O with re-

spect to N is consistently better relative to using N2 =

N (black), overtaking that of using N2 = 50 000 at

N = 5000 (when blue and red lines cross each other),

where the red outperforms the blue by having a larger

N2. The RMSE for N2 = 10N also appears to de-

crease indefinitely as N increases, while the improve-

ment for N2 = 50 000 slowly decelerates with increasing

N (mainly because its standard error does not reduce

considerably towards the end). This indicates that the

efficiency of r̂O could be further improved by using an

even larger N2. Therefore, it is clearly possible to im-

prove the efficiency of r̂O (by reducing both the bias and

standard error) by using a larger N2 in this particular

example.
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Fig. 3: Top panel shows the mean estimates of r̂O plotted
against N for various N2, accompanied by the associated 95%
intervals (dotted lines). The bottom panel shows the corre-
sponding log RMSE.

The previous result is to be expected since using a

relatively large N2 implies that r̂O behaves more closely

to r̂I . Using a normal distribution as an important sam-

pling distribution to compute the normalizing constant

of another normal distribution is certainly going to be-

have well as they possess similar tail behaviour. It is

perhaps more interesting to consider a heavier tailed

p1 (where importance sampling procedure is known to

be less efficient) and assess if the improvement due to

a larger N2 is as apparent as it was previously. Sup-

pose now that p1 and q1 are densities of Student’s t-

distribution with three degrees of freedom (t3), using a

similar set up as before, the behaviour of r̂O in response

to N is examined (refer to Appendix E). Remarkably,

similar patterns are observed even though the improve-

ment is less substantial when compared to the previ-

ous case. The bias and standard error of r̂O are now

larger due to the difference in nature between p1 and p2

(mostly due to different tail behaviours), resulting in a

larger overall RMSE than the previous case. In conclu-

sion, it can be deduced that it is generally beneficial to

use a larger N2 given a fixed samples from p1 during the

evaluation of r̂O if p2 is the sample moments-matched

normal density, since this reduces both the bias and

standard error of r̂O with little increase in computa-

tional effort. More specifically, using a relatively larger

N2 corresponds to altering the priority between the im-

portance sampling and reciprocal importance sampling

method with which the evaluation of r̂O is based upon,

favouring the unbiased importance sampling method

more while partially retaining the good behaviour of

the reciprocal importance sampling method.

4 The Splitting Approach

The splitting approach is first introduced and applied

to r̂RI , where the results are examined as motivation

for r̂O in the next subsection. Since the negative bias

of r̂RI originates mainly from using p
{θ1}
2 through the

moments-matching procedure, the easiest method to

mitigate this issue is to compute the sample moments

using only a portion of the sample from p1, and then

evaluate the estimator at the remaining sample. More

formally, suppose k is the proportion of the samples

from p1 where the moments are computed, where we

then write ps2 = p
{θ1:kN1 }
2 as the resulting density. For ex-

ample, in our simulation study before (see Section 2.2),

ps2 is the density of N(θ̄s1, (σ
s
1)2), where θ̄s1 =

∑kN
i=1 θ

i
1

kN

and (σs1)2 =
∑kN
i=1(θi1−θ̄

s
1)2

kN−1 . Equation (5) is then appro-

priately evaluated at the remaining samples from p1 to

give r̂sRI , i.e.

r̂sRI =

[
1

(1− k)N

N∑
i=kN+1

qs2(θi1)

q1(θi1)

]−1

, (10)

where N1 = (1−k)N here and qs2 is defined analogously

as ps2. As an illustration, the splitting approach can be

represented by the diagram in Figure 4.

Compute θ̄s1 and (σs1)2︷ ︸︸ ︷ Apply Equation (10)︷ ︸︸ ︷−→ r̂sRI
θ11, . . . . . . . . . . . . . . . . . . , θ

kN
1 , θkN+1

1 , . . . . . . . . . . . . . . . . . . , θN1

Fig. 4: A summary of the splitting approach, where the first
subset of the samples from p1 is used to derive moments for
constructing p2, while the second subset is used to evaluate
the estimator.

This technique has been applied by Overstall and

Forster (2010), Wong (2017), and Wang and Meng

(2016), but the underlying mathematical principles

were not discussed in detail. To see how the split-

ting approach manages to alleviate the bias, we let

η̄s = 1
(1−k)N

∑N
i=kN+1

qs2(θi1)

q1(θi1)
. Then, it can be shown

that ηs = E[η̄s] = c2
c1

, implying that r̂sRI is unbiased to

the second order (see Appendix F for technical details).
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Unfortunately, the elimination of bias occurs at the

expense of yielding a larger standard error for the re-

sulting estimate. The primary intuition behind this is

the fact that r̂sRI is only evaluated at a shorter portion

of the original sample. More specifically, the variance of

r̂sRI can be approximated (see Appendix F) as

Var[r̂sRI ] ≈
c21

(1− k)Nc22

× Eθ1:kN1

[
VarθN1 |θ1:kN1

(
p
{θ1:kN1 }
2 (θN1 )

p1(θN1 )

)]
. (11)

It is then of interest to compare Var[r̂RI ] (in Equation

(9)) with Var[r̂sRI ] (in Equation (11)). The following

crude calculation is presented to illustrate the approx-

imate increase in the variance due to the splitting ap-

proach (exact calculation involves intractable expres-

sions). Firstly, we momentarily assume that η ≈ c2
c1

(even though we know η > c2
c1

) since the misestima-

tion is relatively small here. Secondly, for the purpose

of illustration, we assume that

Var

[
N∑
i=1

p
{θ1:N1 }
2 (θi1)

p1(θi1)

]
≈

N∑
i=1

Var

[
p
{θ1:N1 }
2 (θi1)

p1(θi1)

]

= N ·Var

[
p
{θ1:N1 }
2 (θN1 )

p1(θN1 )

]
,

i.e. the individual components within the sum-

mation are independent (which is generally not

true in practice). Expression in (9) then be-

comes Var
[

1
η̄

]
≈ c21

Nc22
Var ×

[
p
{θ1:N1 }
2 (θN1 )

p1(θN1 )

]
. Fi-

nally, we note that the terms Var

[
p
{θ1:N1 }
2 (θN1 )

p1(θN1 )

]
and

Eθ1:kN1

[
VarθN1 |θ1:kN1

(
p
{θ1:kN1 }
2 (θN1 )

p1(θN1 )

)]
carry similar

interpretation of being the average of the condi-

tional variance of p2
p1

over the samples involved in

constructing p2, and hence, we have
Var[r̂sRI ]
Var[r̂RI ] ≈

1
1−k ,

which means that the splitting approach increases

the variance of the resulting estimate by a factor

of 1
1−k approximately. Crudely speaking, the ratio

of the variances is approximately the ratio of the

proportion of samples used to evaluate the estimators

(which is what we observed empirically), e.g. when

k = 1/2, then Var[r̂sRI ] ≈ 2Var[r̂RI ]. The crude

calculation above does not hold in general due to

the unrealistic assumptions used, but nevertheless, it

provides an intuition of how the splitting approach

leads to increased standard error. Regardless, it is

evident that the splitting approach manages to correct

the bias by avoiding the use of the same samples for

moments-matching and evaluation of the estimator,

but at the same time introduces more variations to the

resulting estimates (by having a smaller sample size

to work with). Therefore, the efficacy of the splitting

approach in improving the estimator is dictated by the

trade-off between the bias and variance.

Now, consider simulation study similar to that con-

ducted in Section 2.1, except now we are interested in

investigating the empirical behaviour of r̂RI and r̂sRI .

Suppose p1 and q1 are densities of N(0, 1), with a sam-

ple of size N , {θ1:N
1 }, being made available. We assess

the following two approaches of constructing p2.

1. Approach 1 (naive): p2 is the density of N(θ̄1, σ
2
1),

where θ̄1 =
∑N
i=1 θ

i
1

N and σ2
1 =

∑N
i=1(θi1−θ̄1)2

N−1 . Hence,

the reciprocal importance sampling estimator is eval-

uated at the entire samples, {θ1:N
1 }, where N1 = N ,

producing r̂RI .

2. Approach 2 (splitting): p2 is the density of

N(θ̄s1, (σ
s
1)2), where θ̄s1 =

∑kN
i=1 θ

i
1

kN and (σs1)2 =∑kN
i=1(θi1−θ̄

s
1)2

kN−1 . Hence, the reciprocal importance

sampling estimator is evaluated at the re-

maining samples from p1, {θ(kN+1):N
1 }, whence

N1 = (1− k)N , producing r̂sRI .

Again, we set q2 = p2 so that the true value of

r is one. We consider N ∈ {100, 200, . . . , 10000},
with each computation replicated R = 10 000 times.

We also examine six different splitting proportions,

k = 1/10, 1/5, 1/3, 1/2, 4/5, 9/10.

Figure 5 illustrates how the mean estimates and the

associated 95% intervals of r̂RI and r̂sRI (for various

splitting proportions) vary against N . As expected, the

naive approach systematically underestimates the true

value, where the bias is a decreasing function of N (we

hypothesize that it is of order 1/N but this remains to

be proven). On the other hand, the splitting approach

produces unbiased estimates for all k considered. This

approach also yields comparatively wider (but symmet-

ric) intervals than the naive approach (which yields

asymmetric intervals), as consistent with our mathe-

matical derivation above. Among the different splitting

proportions, k = 1/2 appears to be the best by produc-

ing narrowest intervals. Interestingly, r̂sRI with k = 1/10

and k = 9/10 produce intervals of similar width, while

those produced with k = 1/5 and k = 4/5 are similar

too. This signifies that the variance of r̂sRI decreases as

k increases until k = 1/2, and then begin to increase

again until k = 1 in a symmetrical manner.

With reference to the bottom panel of Figure 5, r̂sRI
with k = 1/2 possesses the lowest RMSE at each N ,

but is exactly the same as r̂RI , implying that the trade-

off between the bias and variance does not particularly

favour either of them in this context. Hence, it is a

matter of preference, whether one prefers to deal with
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Fig. 5: Top panel shows the mean estimates (solid lines) of
r̂RI and r̂sRI with various k plotted against N , accompanied
by the associated 95% intervals (dotted lines). The bottom
panel shows the corresponding log RMSE.

biased estimates, or estimates with larger uncertainty.

Despite having the same RMSE, r̂sRI with k = 1/2 is

arguably better than the naive approach as it alleviates

the bias completely and has lower computational cost

since the estimator is only evaluated at a smaller por-

tion of the sample (this could be beneficial in scenario

where the evaluation of p1 is slow).

As mentioned before, the negative bias of the

naive approach worsens as dimensionality increases. To

explicitly explore the behaviour of r̂RI and r̂sRI with

respect to the dimensionality involved, we consider

the case when p1 and q1 are both densities of a 10-

dimensional standard normal distribution: N(0, I10).

A sample of size N is generated from this distribution

to form {θ1:N
1 }. Then let p2 and q2 be the densities of

normal distributions with mean and variance derived

from {θ1:N
1 } in a similar set up as described previously,

except each computation is only replicated R = 1000

times for computational feasibility (producing more

erratic curves).

According to Figure 6, similar patterns are ob-

served: that r̂RI systematically underestimates the true

r, while r̂sRI yields unbiased estimates at the expense

of larger standard errors. A closer inspection revealed

that the underestimation of r̂RI is much more apparent

than the uni-dimensional case, confirming that the

bias of r̂RI is amplified by the dimensionality involved.

The ranking performance of k is preserved, in that the

closer k is to 1/2, the better the resulting estimate.

Notice also that r̂sRI now outperforms r̂RI for all k

considered in terms of the RMSE (the bottom panel

of Figure 6). This is primarily because the splitting

approach still manages to alleviate the bias despite

the higher dimensionality, whereas the bias produced

by the naive approach scales up substantially with

increasing dimensionality. The increase in standard

errors due to the splitting approach no longer offsets

the reduction in the bias as in the uni-dimensional

case, implying that there is an overall gain in efficiency

by performing the splitting for higher dimensional

problems. This renders the idea of splitting more

valuable, since it corrects for the correlation induced

bias irrespective of the dimensionality involved.

However, one has to be cautious when N is rela-

tively small because there appears to be a threshold

before the bias elimination by r̂sRI operates for all k,

as indicated by the idiosyncratic behaviour in Figure 6

for all k (which is also discernible in Figure 5). Intu-

itively, this is because a minimum number of samples is

required to effectively learn about p1 for the estimation

procedure to work properly. Knowing that k determines

the amount of samples used to derive moments, it is

clear that the threshold sample size for the bias elimi-

nation to take effect is larger for smaller k, as evident

in Figure 6.

4.1 Applying the Idea of Splitting on r̂O

Since it was demonstrated that r̂RI is the key compo-

nent leading to the bias of r̂O, it is anticipated that im-

plementing the splitting approach also eliminates the

bias of r̂O. Motivated by the bias analysis in Section

2.2, we write r̂sO =
η̄s2
η̄s1

, where

η̄s1 =
1

N1

N∑
i=N−N1+1

qs2(θi1)

N1q1(θi1) + rN2qs2(θi1)
,

and

η̄s2 =
1

N2

N2∑
i=1

q1(θi2)

N1q1(θi2) + rN2qs2(θi2)
,

with N1 = (1−k)N and N2 = N . When draws are ran-

dom and independent, and conditional on the samples

for moments estimation, we obtain

ηs1 ≡ E
θ
(kN+1):N
1 |θ1:kN1

[η̄s1] =
c2
c1

∫
p1(θ)ps2(θ)

N1p1(θ) + rN2ps2(θ)
dθ,
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Fig. 6: Top panel shows the mean estimates (solid lines) of
r̂RI and r̂sRI with various k plotted against N , accompanied
by the associated 95% intervals (dotted lines), for the 10-
dimensional case. The bottom panel shows the corresponding
log RMSE.

and

ηs2 ≡ Eθ1:N2 |θ1:kN1
[η̄s2] =

∫
p1(θ)ps2(θ)

N1p1(θ) + rN2ps2(θ)
dθ.

Thus, it can be shown that (see Appendix G)

E[r̂sO] = Eθ1:kN1

[
E
θ
(kN+1):N
1 ,θ1:N2 |θ1:kN1

(
η̄s2
η̄s1

)]
≈ c1
c2

+
c1

c2(ηs1)2
× Eθ1:kN1

[Var(η̄s1)]. (12)

As before, the second term in Equation (12) is going

to be small when p2 is constructed to be close to p1

implying that E[r̂sO] ≈ c1
c2

.

The simulation study in Section 2.1 is revisited,

where we now set ps2 = qs2 as the density of N(θ̄s1, (σ
s
1)2)

with θ̄s1 =
∑kN
i=1 θ

i
1

kN and (σs1)2 =
∑kN
i=1(θi1−θ̄

s
1)2

kN−1 . The bridge

sampler in (7) is then evaluated at the remaining sam-

ples from p1, {θ(kN+1):N
1 }, and the entire sample from

p2, {θ1:N
2 }. The iterative formulae is now

r̂sO
(t+1) =

1
N2

∑N2

i=1

[
ls(θi2)

N1ls(θi2)+N2r̂sO
(t)

]
1
N1

∑N
i=kN+1

[
1

N1ls(θi1)+N2r̂sO
(t)

] , (13)

where r̂sO
(t) is the tth iteration of the estimate, N1 =

(1 − k)N and N2 = N , while ls(θ) = q1(θ)
qs2(θ) . Equa-

tion (13) is then iterated until convergence to yield the

estimate, r̂sO. Figure 1 is reconstructed, including r̂sO
for various k ∈ {1/10, 1/5, 1/3, 1/2, 4/5, 9/10}, forming

Figure 7. Note that a similar simulation study has been

performed by Overstall and Forster (2010), but only

k = 1/2 was considered and they focused mainly on

the bias correction. They also simulated a shorter sam-

ple size from p2 (N2 = 1
2N), which can be improved

with no substantial additional computational cost (rel-

ative to the naive approach) based on the results from

Section 3, where the increase in standard error due to

the splitting approach is slightly compensated by a re-

duction due to allocating a larger N2.

As expected, similar phenomena are observed from

Figure 7, that r̂sO alleviates the bias at the expense of

having a larger standard error for all k. In terms of the

RMSE, the performance of r̂sO with k = 1/2 is similar

to r̂O, as before. Interestingly, the ranking of the perfor-

mance of r̂sO with respect to k is altered slightly when

compared with that for r̂sRI . This is because the com-

putation of optimal bridge sampling estimates requires

samples from both p1 and p2, whereas for reciprocal im-

portance sampling estimates, samples from p1 are only

involved in the construction of p2, but not in the evalu-

ation of the associated estimator. In other words, there

is an extra influence on the overall efficiency of r̂sO by

using different k through the allocation of N1 and N2

(see Section 3). This highlights the difference between

r̂sRI and r̂sO, that both samples from p1 and p2 play a

direct role in the evaluation of the estimator for the

latter, but not for the former. It appears that the best
performing proportion is no longer k = 1/2, but rather

k = 9/10, closely followed by k = 4/5. Or more specifi-

cally, the larger the value of k, the better the resulting

estimate in this particular instance.

For the 10-dimensional case (see Appendix H), once

again, the bias of r̂O is considerably larger than the uni-

dimensional case, while r̂sO is unbiased for all values of

k. The ranking of r̂sO in terms of k is preserved, such

that the closer the value of k is to one, the better the

resulting estimates. r̂sO also outperforms r̂O for all val-

ues of k, as the former alleviates the bias irrespective

of the dimensionality involved while the latter has an

amplified bias, confirming that the splitting approach

is more advantageous in higher-dimensional problems.

4.2 The Optimal Choice of k for r̂sO

The choice of 0 < k ≤ 1 has a two-fold effect: it deter-

mines the amount of samples used for computing sam-
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Fig. 7: Top panel shows the mean estimates (solid lines) of
r̂O and r̂sO with various k plotted against N , accompanied
by the associated 95% intervals (dotted lines). The bottom
panel shows the corresponding log RMSE.

ple moments (the larger the k, then more samples are

used to estimate the moments of p1, the more the p2

constructed resembles p1, resulting in a higher accuracy

for r̂sO); and the amount used to evaluate the estima-

tor (the larger the k, the smaller the number of samples

used to evaluate r̂sO and thus a less precise estimate). An

interesting question then is whether it is more impor-

tant to obtain a more accurate estimate of the moments

(larger k), or it is more important to prioritize the eval-

uation of r̂sO (smaller k). The experiment in Section 4.1

may indicate that it is more crucial to maximize the

area of overlap between p1 and p2, than having more

samples from p1 to evaluate the estimator. However,

this may not be true in general because if the experi-

ment is repeated, but with p1 replaced by the density

of (t3), then the ranking of k is reversed, that smaller

k results in better estimates (see Appendix I).

Recall from Equation (8) that the relative sizes of

N1 and N2 determine the resulting behaviour of r̂O
(see Section 3 for a detailed description). In our exper-

iments, N2 = N is fixed so k is inversely related to N1.

For instance, using a larger k effectively means a smaller

N1 is allocated for evaluating the estimator, yielding

r̂sO that behaves more similarly to the importance sam-

pling estimate. On the contrary, using a smaller k corre-

sponds to a larger N1 for evaluating the estimator, with

N1 approaching N2 = N as k tends to 0, producing

estimates that behave like the original bridge sampler

(with increasingly poorer estimate of the moments of

p1). The boundary value of k = 1 is equivalent to set-

ting N1 = 0, which leads to r̂I using moments-matched

normal distribution.

To study the influence of k, the simulation study

in Section 4.1 is repeated, but with log RMSE plotted

against k ∈ {0.01, 0.02, . . . , 0.99}, fixing N = 1000, and

with computation at each k replicated 10 000 times. We

exclude k = 0 in our investigation because the resulting

estimates become aggressively volatile when none of the

samples from p1 is used for constructing p2, i.e. a normal

density with any parameters could be used as p2. We

have also included several cases, each with different p1

and p2:

1. Case 1: p1 is the density of N(0, 1), p2 is the sample

moments-matched normal density;

2. Case 2: p1 is the density of t3, p2 is the sample

moments-matched normal density;

3. Case 3: p1 is the density of a Laplace distribution

with location and scale parameters given as 0 and

1 respectively, i.e. p1(θ) = 1
2 exp(−|θ|), p2 is the

sample moments-matched normal density;

4. Case 4: p1 is the density of N(0, 1), while p2 is the

density of a non-standardized t3 (Johnson et al.,

1995, Chapter 28), constructed using samples of p1

through method of moments;

5. Case 5: p1 is the density of t3, while p2 is the density

of a non-standardized t3, constructed using samples

of p1 through method of moments.

According to Figure 8, the RMSE of cases 1 and 5

appear to be decreasing functions of k generally. The

reason why a larger k is beneficial in cases 1 and 5

is perhaps not so surprising since p1 and p2 belong to

the same family of distributions, and hence, prioritiz-

ing the importance sampling component due to using a

large k (see above) will not be problematic. It is then

more crucial to obtain a more accurate estimate of the

moments to maximize the overlap between p1 and p2,

which is achieved by using large k. In other words, when

p1 and p2 are from the same family of distributions, the

gain in statistical efficiency of r̂sO through maximizing

the overlap between p1 and p2 outweighs the loss due

to having less samples to evaluate the estimator. The

reverse is true for cases 2-4, where prioritizing the im-

portance sampling component is detrimental when p2 is

lighter-tailed (see Frühwirth-Schnatter, 2004 for expla-

nation), which is especially apparent when the RMSE

is observed to increase drastically as k approaches 1 for

cases 2 and 3. The same phenomenon is not observed

for case 4, as p2 is more heavy-tailed there. Notice also
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Fig. 8: Plot of the log RMSE of r̂sO against k under Case 1
(black), Case 2 (red), Case 3 (blue), Case 4 (green), and Case
5 (yellow).

that similar characteristics are observed at small k for

all cases, that the RMSE increases sharply as k ap-

proaches 0. This is an indication that there are insuffi-

cient samples to learn about p1 through the moments

estimated, prohibiting the bridge sampling procedure

from operating efficiently. Once the threshold value is

exceeded (around k = 0.05 according to Figure 8), then

the behaviour of r̂sO begin to show consistent patterns.

To conclude, the optimal value of k for r̂sO depends on

the nature of p1 and p2: if p1 and p2 belong to the same

family of distributions, then it is more favourable to pri-

oritize accurate moments estimation (large k); whereas

if p1 and p2 are from different families (which is more

common in practice), it is more crucial to have more

samples for evaluating the estimator, correspondingly

using less samples for moments estimation (small k),

provided that the minimum threshold of having suffi-

cient samples for moments estimation is surpassed.

5 The Cross-Splitting Approach

In this section, we investigate a method of further re-

ducing the RMSE of r̂sO, given a sample of size N from

p1. Notice that while computing r̂sO, the estimator in

(13) is only evaluated at a portion of the samples from

p1 because the first subset is required for constructing

p2. This results in an increased variance for r̂sO due to

having less samples to evaluate the estimator (Section

4). Wang and Meng (2016) suggested a sub-sampling

strategy, which makes full use of the entire set of sam-

ple from p1 to ensure statistical efficiency. In particular,

a proportion, k, of the samples from p1 up to the first

half (where they have 0 < k ≤ 1/2), is used to compute

sample moments, while Equation (13) is evaluated at

the remaining half of the samples, {θ(N/2+1):N
1 }, pro-

ducing r̂s1O . The above procedure is then repeated in

Derive Moments︷ ︸︸ ︷ Evaluate Eqn. (13)︷ ︸︸ ︷−→ r̂s1O
θ11, . . . , θ

kN
1 , . . . , θ

N/2
1 , θ

N/2+1
1 , . . . , θ

(1−k)N+1
1 , . . . , θN1︸ ︷︷ ︸

Evaluate Eqn. (13)

︸ ︷︷ ︸
Derive Moments

−→ r̂s2O

⇒ r̂csO

Derive Moments︷ ︸︸ ︷ Evaluate Eqn. (13)︷ ︸︸ ︷−→ r̂s1O
θ11, . . . , θ

kN
1 , θkN+1

1 , . . . , θ
N/2
1 , . . . , θ

(1−k)N+1
1 , . . . , θN1︸ ︷︷ ︸

Evaluate
︸ ︷︷ ︸

Derive Moments

−→ r̂s2O

Eqn. (13)

⇒ r̂csO

Fig. 9: A diagram to summarise and distinguish between the
two cross splitting approaches, where the approach by Wang
and Meng (2016) is presented at the top panel and our sug-
gested approach at the bottom.

the reverse direction, where sample moments are de-

rived from a portion of the second half of the sample

(of proportion k), {θ((1−k)N+1):N
1 }, while Equation (13)

is evaluated at the first half of the samples, producing

r̂s2O . The cross-splitting optimal bridge sampling esti-

mate, r̂csO , is then formed by averaging between the two,

i.e. r̂csO = 1
2 (r̂s1O + r̂s2O ). Given that Equation (13) is eval-

uated at half of the samples from p1 (i.e. N1 is fixed at

N/2) each time, it is obvious that the larger the k the

better the estimate since a larger k ensures a better esti-

mation of the underlying moments (which increases the

overlap between p1 and p2). Moreover, when k < 1/2

is implemented, part of the samples from p1 is not in-

volved during the individual calculation of r̂siO (i = 1, 2).

Even though this is no longer an issue when they are
averaged to form r̂csO , the remaining samples from p1

could have been better utilized in the calculation of

each of the r̂siO .

Therefore, we propose to use a proportion, k, of

the samples from p1 to compute the sample moments,

while Equation (13) is evaluated at all of the remain-

ing samples, yielding r̂s1O . Then, the above procedure is

repeated in the reverse direction while maintaining the

partitioning of the samples, yielding r̂s2O . See Figure 9

for a graphical summary of our approach. That way,

we ensure that the samples from p1 are fully utilized

during the cross computation, while avoiding samples

from being used twice for the evaluation of the estima-

tor. It is then of interest to investigate the impact of k

on the efficiency of r̂csO , where it is sufficient to consider

the range 0 < k ≤ 1/2 (the behaviour for 1/2 ≤ k < 1

would be identical). Note that our approach is the same

with that of Wang and Meng (2016) when k = 1/2. We

focus on our proposed approach for the remaining part

of this paper.
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It is not possible to completely nullify the correla-

tion between r̂s1O and r̂s2O since the samples used to con-

struct p2 (through moment estimation) technically still

appear in the estimator in the form of the parameters

for p2. Wang and Meng (2016) claimed that the cor-

relation between r̂s1O and r̂s2O is empirically found to be

rather small, implying that the cross-splitting approach

is capable of reducing the variance of r̂siO (i = 1, 2) by

almost half. We demonstrate that this is not always

true, especially when the two densities involved have

similar functional forms. Returning to our case study

in Section 4.1, the correlation between r̂s1O and r̂s2O is

computed for k = 1/10, 1/5, 1/3, 1/2, with varying sam-

ple sizes N ∈ {100, 200, . . . , 10000} (see Appendix J).

The estimated correlations seem to have converged to

the true underlying values for all N (subject to fluctu-

ations), where the converged values (mostly non-zero)

vary across k such that the larger the k the larger the

correlation. For example, the correlation between r̂s1O
and r̂s2O is around 0.33 at k = 1/2 (as implemented by

Wang and Meng, 2016), which is most likely due to p1

and p2 both being normal densities. However, r̂csO with

k = 1/2 also appears to result in the lowest RMSE

despite having the highest correlation.

To pin down situations where the magnitude of the

correlation between r̂s1O and r̂s2O is negligible, we repeat

the above study with various p1 and p2 under four dif-

ferent scenarios:

1. Case 1: p1 is the density of Exp(λ1), where λ1 = 0.5

and p2 is the density of Exp(λ2), where λ2 is derived

from the samples from p1 by method of moments;

2. Case 2: p1 is the density of t3, while p2 is the den-

sity of the sample moments-matched normal distri-

bution;

3. Case 3: p1 is the density of a standard normal distri-

bution, while p2 is the density of a non-standardized

t3, constructed using samples from p1 using method

of moments;

4. Case 4: p1 is the density of t3, while p2 is the density

of a non-standardized t3, constructed to possess mo-

ments that equate to those of the sample moments

from p1.

Knowing that the correlation does not vary against N ,

we fix N = 1000 as an illustration and the results are

summarized in Table 1. As consistent with Wang and

Meng (2016), there are certain situations where the cor-

relation is close to being negligible, i.e. cases 2 and 3

here for all k. This implies that the cross splitting pro-

cedure is able to yield r̂csO with half the variance of r̂siO .

We hypothesize that this is because p1 and p2 have

different tail weights due to them being densities of dif-

ferent functional forms. In case 4, the correlations are

slightly larger than zero, again, likely due to p1 and p2

both being densities of t3. It is also evident from Table

1 that r̂csO with k = 1/2 is consistently outperforming

other k across all four cases considered (which is in

agreement with Wang and Meng, 2016), despite consis-

tently having the highest correlation between r̂s1O and

r̂s2O . This could be linked to the result in Section 4.1,

where we note that r̂csO for a given k is essentially the

average of r̂sO given k and 1−k. From Table 1, we learn

that averaging between both r̂sO with k = 0.50 is bet-

ter than averaging between k = 1/10 (the worst) and

k = 9/10 (the best). Therefore, this suggests that the

cross-splitting approach not only reduces the large stan-

dard error caused by applying the splitting approach,

but also negates the need to determine the optimal

splitting proportion (as studied in Section 4.2), given

that r̂csO with k = 1/2 is the most optimal irrespective

of the nature of p1 and p2.

Even though r̂csO with k = 1/2 proved to be the

best choice from our experiments, technically, r̂csO with

any 0 < k ≤ 1/2 is guaranteed to further improve the

bridge sampling estimator in the sense of RMSE at a

cost of a slightly higher computational effort relative

to the splitting approach. This is particularly benefi-

cial in scenarios where the main concern is to optimize

the efficiency of bridge sampling estimates given a fixed

number of samples from p1, since no sample is wasted

purely for the construction of p2 and the resulting esti-

mate is unbiased with low standard error.

Table 1: The correlation between r̂s1O and r̂s2O for various
cases considered, with the corresponding log RMSE shown
in parentheses.

Case 1 Case 2 Case 3 Case 4
k = 1/10 0.1890 0.0199 -0.0047 0.0623

(-13.2204) (-9.3313) (-9.4601) (-11.2439)
k = 1/5 0.2696 0.0073 0.0072 0.0726

(-13.6600) (-9.4672) (-9.5395) (-11.5274)
k = 1/3 0.3005 -0.0058 0.0122 0.0740

(-13.8829) (-9.5771) (-9.5711) (-11.6442)
k = 1/2 0.3364 -0.0044 0.0260 0.0785

(-13.9197) (-9.5984) (-9.5693) (-11.7372)

6 Extending the Idea of Cross-Splitting

The cross-splitting approach can be extended by bor-

rowing the idea from the n-fold cross-validation (Ko-

havi, 1995). In particular, the original sample is parti-

tioned into n subsets, where a single subsample is re-

tained for moments estimation, while the next subsam-

ple is then used to evaluate the optimal bridge sampling

estimator, together with using a large N2. This process

is then repeated n times, with each of the subsamples
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used exactly once for moments estimation, producing

r̂s1O , . . . , r̂
sn
O . The resulting n-fold cross-splitting esti-

mate, r̂ncsO , can then be formed by taking the average of

the n estimates produced in each individual repetition,

i.e. r̂ncsO =
∑n
j=1 r̂

sj
O

n . A graphical example when n = 3 is

provided in Appendix K. Technically speaking, the n-

fold cross splitting approach is anticipated to improve

the bridge sampling estimate by several fold, the justifi-

cation of which can be formulated based on our previous

findings. Firstly, partitioning the samples from p1 into

multiple smaller subsets before evaluating the estima-

tor corresponds to the splitting approach with small k,

which was discovered to be more optimal (since typi-

cally p1 and p2 are of different functional forms) from

Section 4.2. Secondly, choosing N2 to be large relative

to N1 during the evaluation of each of the estimators is

generally beneficial (see Section 3). Finally, averaging

across all the estimates produced from each of the sub-

sets corresponds to a multiple application of the cross-

splitting approach. The combination of all these three

features should be capable of improving the efficiency

of r̂ncsO substantially.

As an illustration, we set n = 3 and consider a simi-

lar simulation study as in Section 5, where p1 is now the

density of t3, while p2 is the moments-matched normal

density, with moments computed from different subset

of the samples from p1. The algorithm for computing

the 3-fold cross-splitting estimate is in accordance with

that depicted in Appendix K. Computationally speak-

ing, r̂ncsO is surely going to yield better estimates than

r̂siO (for any i = 1, . . . , n) if we only simulate N2 = N

samples from p2 for each of the repetitions, since this

implies that we effectively have more samples (three

times when n = 3) from the bridge distributions to work

with collectively. To demonstrate that the improvement

of r̂ncsO is not entirely due to using a larger N2, it is also

informative to have estimates produced using the split-

ting approach with k = 1/3, setting N2 = 3N for the

evaluation of the estimator, as a comparison. Moreover,

we have included the RMSE of r̂O and r̂sO with N2 = N

for the purpose of comparison, all of which are depicted

in Figure 10. It is evident that r̂ncsO is the best estimate

out of its counterparts by a considerable margin, ex-

cept for r̂sO with k = 1/3 and N2 = 3N where the

outperformance is not substantial, but still discernible.

Thus, it can be deduced that the gain in efficiency of

the 3-fold cross-splitting approach is recognizable, and

is not entirely due to evaluating the estimator at a

larger N2. To justify why r̂ncsO is more superior than

r̂sO with N2 = 3N , we note that using a larger N2 is

suboptimal when p1 is more heavy-tailed than p2, so

repeatedly evaluating the optimal bridge sampling es-

timator separately for the individual subsamples and
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Fig. 10: Plot of the log RMSE of r̂ncsO for n = 3 (red), against
N . Also included are the log RMSE of r̂O (black), as well as
r̂sO with k = 1/3 when N2 = N (blue) and when N2 = 3N
(green).

then averaging (as in r̂ncsO ) is a way to evaluate the

estimator at a larger number of samples (for smaller

overall standard error) while avoiding using a larger N2

relative to N1 in a single computation. Nevertheless, it

is ill-advised to use a very large n in high-dimensional

problems. This is because the samples are segregated

into subsets which contain limited amount of samples,

the moments derived from each subset would then be

inadequate to summarize p1 (each p2 constructed has

small overlap with p1), resulting in poor estimates.

7 Implication of Our Results on Bayesian

Computations

As mentioned previously, marginal likelihoods and

Bayes factors are quantities of interest in Bayesian

model selection. One can use the bridge sampling

approach to estimate the marginal likelihood by

setting q1(θ) = fM (X|θ)fM (θ), with q2(θ) = p2(θ)

conveniently chosen as the moments-matched normal

distribution. Assuming that a fixed number of samples,

{θ1:N
1 }, is available from the posterior distribution, the

aim is to formulate an algorithm of computing bridge

sampling estimates with maximal statistical efficiency.

We have demonstrated that naively evaluating the

bridge sampling estimator leads to biased estimates.

Here, we describe some plausible strategies of achieving

the aim based on our preceding studies.

Our recommended algorithm for efficiently applying

the bridge sampling approach is as follows:

1. Partition the posterior samples into n (the choice of

which will be commented later) subsets:

Subset 1︷ ︸︸ ︷ Subset 2︷ ︸︸ ︷ Subset n︷ ︸︸ ︷
θ1

1, . . . , θ
N/n
1 , θ

N/n+1
1 , . . . θ

2N/n
1 , . . . . . . , θ

(n−1)N/n+1
1 , . . . , θN1 .
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2. Set j = 1.

3. Compute the mean and covariance of subset j of

the posterior samples to form the moments-matched

normal distribution, i.e. q
sj
2 = p

sj
2 is the density

of N(θ̄
sj
1 , (σ

sj
1 )2), where θ̄

sj
1 =

∑jN/n

i=(j−1)N/n+1
θi1

N/n and

(σ
sj
1 )2 =

∑jN/n

i=(j−1)N/n+1
(θi1−θ̄

sj
1 )2

N/n−1 .

4. Generate a sample of size N2 from N(θ̄
sj
1 , (σ

sj
1 )2) to

form {θ1:N2
2 }, where N2 is chosen to be moderately

large.

5. Using subset j + 1 and {θ1:N2
2 }, evaluate the opti-

mal bridge sampling estimator. Specifically, Equa-

tion (13) is modified to form

r̂
sj
O

(t+1) =

1
N2

∑N2

i=1

[
lsj (θi2)

N1l
sj (θi2)+N2r̂

sj
O

(t)

]
1
N1

∑(j+1)N/n
i=jN/n+1

[
1

N1l
sj (θi1)+N2r̂

sj
O

(t)

] ,
where N1 = N/n, N2 = N2, lsj (θ) = fM (X|θ)fM (θ)

q
sj
2 (θ)

,

and is iterated until convergence to yield r̂
sj
O .

6. Set j = j+1 and repeat steps 3-5 until j = n, where

we define subset n+ 1 as subset 1.

7. Calculate the estimate r̂ncsO =
∑n
j=1 r̂

sj
O

n .

It is desirable to use a large n. However, users should

also be warned that partitioning the posterior samples

into more subsets may not be ideal when the number

of parameters is large, as more samples are required to

estimate their moments (particularly when serially cor-

related MCMC samples are used). A general strategy

is to choose n such that it is reasonable in the context

of the problem, properly considering the sample size

relative to the dimensionality of the problem. A rule

of thumb to check if the n chosen is reasonable is to

repeat the above algorithm for n − 2 or even n/2, a

large discrepancy in their values indicates that smaller

n should be used. If it is believed that the posterior

samples are not sufficiently long, then it is still advis-

able to use n = 2, corresponding to the cross-splitting

approach with k = 1/2, which has been shown in Sec-

tion 5 to produce estimates with good properties and

is the most optimal among various k.

The use of a large N2 is recommended primarily for

the purpose of reducing the overall standard error (as

demonstrated in Section 3) and the ease with which

samples from normal distributions can be generated.

However, using an astronomically large N2 has the in-

herent risk of producing estimates that behave similarly

to the importance sampling estimates, meaning that we

do not benefit as much from the additional computa-

tion devoted, particularly when the posterior distribu-

tion has a heavy tail. In some Bayesian applications

though, especially when data size is large, this is not

a major problem since the posterior distribution is ap-

proximately normal (Gelman et al., 1995, Chapter 13).

Also note that the mixture coefficients in Equation (8)

are in fact N1 and rN2, where r (the marginal likelihood

here) also plays a role in determining the estimate’s be-

haviour. So far, we have only considered r = 1 in our

simulations for simplicity so the values of N1 and N2

directly reflect the mixture proportion used. In typical

Bayesian applications, r is numerically small, so using

N1 = N2 does not imply that an equal mixture pro-

portion is assigned as in previously, rather, rN2 would

be considerably smaller than N1 (implicitly favouring

the biased reciprocal importance sampling behaviour).

Using a larger N2 could potentially counterbalance this

effect, even though this can alternatively be circum-

vented by multiplying r with a large constant (to be

readjusted once r̂ncsO is computed). The sequence with

which the posterior subsets are used (for moments esti-

mation and evaluation of the estimators) could also be

permutated if one prefers to further minimize the effect

of the serial correlations of MCMC samples.

8 Conclusion

This paper investigates the bridge sampling estimator

developed by Meng and Wong (1996) for estimating

normalizing constants. Specifically, we highlight its po-

tential in Bayesian computation, where marginal likeli-

hoods/Bayes factor are core model selection quantities.

First, it was illustrated that naively applying the bridge

sampling estimator leads to biased estimates. Theo-

retical calculations are then presented to identify the

sources of bias. We classify the bias of bridge sampling
estimator into two categories: one originates from the

distance between p1 and p2, while another is induced

from the correlation due to the moments-matching pro-

cedure, where we proceeded to focus on the latter. The

effect of sample size allocation was discovered to have

an impact on both the bias and standard error of bridge

sampling estimator. We demonstrated how the splitting

approach (partitioning posterior samples for moments

estimation and evaluation of estimator separately) elim-

inates the correlation induced bias at the expense of a

larger standard error. The optimal way of partitioning

the posterior samples for splitting (controlled by k) was

also examined and found to be dependent on the nature

of p1 and p2. Next, the cross-splitting approach was

described as a method capable of lowering the larger

standard error due to splitting. We also shed light on

the fact that it is not crucial to determine the opti-

mal k for splitting when the cross-splitting approach

is implemented because the influence of k is dimin-

ished through averaging. The cross-splitting approach
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was then extended to form the n-fold cross-splitting to

further improve the bridge sampling estimator. Finally,

we presented an algorithm for efficiently implementing

the bridge sampling approach to estimate marginal like-

lihoods based on our findings in a Bayesian context,

where posterior samples are expensive to generate.

Appendix: Supplementary Material

Supplementary material related to this article can be found
online at [to be included if accepted].

R software: The file containing codes to perform the
bridge sampling procedures described in the article is in
“optimal bridge MCMC.R”.
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