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44 Abstract
45
46 We tested the hypothesis that perception of carbohydrate (CHO) availability augments 

47 exercise capacity in conditions of reduced CHO availability. Nine males completed a sleep-

48 low train-model comprising evening glycogen depleting cycling followed by an exhaustive 

49 cycling protocol the next morning in the fasted state (30 minutes steady-state, SS, at 95% 

50 lactate threshold followed by 1-min intervals at 80% peak power output until exhaustion).  

51 After the evening depletion protocol and prior to sleeping, subjects consumed 1) a known 

52 CHO intake of 6 g.kg-1 body mass (TRAIN HIGH), 2) a perceived comparable CHO intake 

53 but 0 g.kg-1 body mass (PERCEPTION) or a known train-low condition of 0 g.kg-1 body 

54 mass (TRAIN LOW). The TRAIN HIGH and PERCEPTION trials were conducted double 

55 blind. During SS, average blood glucose and CHO oxidation were significantly higher in 

56 TRAIN HIGH (4.01 + 0.56  mmol.L-1; 2.17 + 0.70 g.min-1) versus both PERCEPTION (3.30 

57 + 0.57 mmol.L-1; 1.69 + 0.64 g.min-1, P<0.05) and TRAIN LOW (3.41 + 0.74 mmol.L-1; 1.61 

58 + 0.59 g.min-1, P<0.05).  Exercise capacity was significantly different between all pairwise 

59 comparisons (P<0.05) where TRAIN LOW (8 + 8 min) < PERCEPTION (12 + 6 min) < 

60 TRAIN HIGH (22 + 9 min).  Data demonstrate that perception of CHO availability augments 

61 high-intensity intermittent exercise capacity under sleep-low, train-low conditions though 

62 perception does not restore exercise capacity to that of CHO consumption.  Such data have 

63 methodological implications for future research designs and may also have practical 

64 applications for athletes who deliberately practice elements of training in CHO restricted 

65 states. 

66

67 Keywords: placebo, carbohydrate, train-low, capacity
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68 Introduction 

69 In addition to its well-documented role as an energy source, it is now recognised that the 

70 glycogen granule exerts regulatory roles in modulating skeletal muscle cell signalling and 

71 transcriptional responses to acute exercise sessions (Bartlett et al., 2015; Hearris et al., 2018).  

72 Accordingly, deliberately commencing and/or recovering from training sessions with reduced 

73 CHO availability (the so-called train-low paradigm) increases markers of mitochondrial 

74 biogenesis (Hansen et al., 2005; Yeo et al., 2008; Morton et al., 2009) and both whole body 

75 and intramuscular lipid oxidation (Yeo et al., 2008; Hulston et al., 2010).   In some instances, 

76 both exercise capacity (Hansen et al., 2005) and exercise performance (Cochran et al., 2015; 

77 Marquet et al., 2016a,b) have also been augmented with short-term (i.e. 3-10 weeks) train-

78 low approaches though it is acknowledged that this is not a consistent finding amongst 

79 chronic training studies.  On this basis, it has therefore been suggested that CHO should be 

80 adjusted day-by-day and meal-by-meal in accordance with the goals of both maximising 

81 training quality (i.e. ability to sustain the desired workload) and skeletal muscle adaptations 

82 (Impey et al., 2018).

83 Whilst there are multiple research designs used to practically achieve train-low 

84 conditions (i.e. twice per day training protocols, fasted training and or withholding CHO in 

85 the recovery period from acute exercise), the ‘sleep-low, train-low’ model has emerged as a 

86 particularly potent strategy for which to prolong the period of CHO restriction (Bartlett et al., 

87 2013; Lane et al., 2015).  In this approach, participants perform an evening training session, 

88 restrict CHO during overnight recovery, and then complete a fasted training session on the 

89 following morning.  The accumulative time with reduced muscle glycogen could therefore 

90 extend to 12–14 h depending on the timing and duration of the training sessions and sleep 

91 period.  When performed chronically, Marquet et al. (2016a,b) observed that 1–3 weeks of 

92 sleep-low training in elite triathletes and cyclists improves cycling efficiency (3.1%), 20 km 
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93 cycling time-trial performance (3.2%) and 10 km running performance (2.9%) compared with 

94 traditional train-high approaches.  

95 Despite the aforementioned findings, an obvious limitation of the sleep-low, train-low 

96 model is that exercise capacity is likely to be significantly impaired during the morning 

97 training session.  Indeed, we recently observed that stepwise reductions in pre-exercise 

98 muscle glycogen concentration ~100 mmol.kg-1 dry wt (as achieved by the sleep low model) 

99 impaired morning exercise capacity at 80% peak power output (PPO) by ~20 to 50% (Hearris 

100 et al., 2019).  Nonetheless, we acknowledged that lack of blinding between conditions 

101 (subjects were aware of CHO availability given that whole foods were consumed) may have 

102 influenced subjects’ perception of their ability of complete high-intensity workloads.  Indeed, 

103 placebo effects of CHO availability have been reported in conditions of CHO feeding before 

104 (Mears et al., 2018) and during exercise (Clark et al., 2000).  To the authors’ knowledge, 

105 however, the potential placebo effect of CHO availability has not yet been examined under 

106 conditions where exercise is commenced with sub-optimal muscle glycogen concentration. 

107 With this in mind, the aim of the present study was to test the hypothesis that 

108 perception of CHO availability augments exercise capacity.  To this end, we adopted a sleep-

109 low, train-low model of CHO restriction where recreationally active males commenced an 

110 exhaustive morning training session under conditions corresponding to a known prior CHO 

111 intake of 6 g.kg-1 body mass (TRAIN-HIGH), a perceived comparable CHO intake 

112 (PERCEPTION) or a known train-low condition during which no CHO was consumed prior 

113 to sleeping (TRAIN-LOW). We specifically hypothesised that perception of CHO availability 

114 would improve morning exercise capacity compared to known train-low conditions but that 

115 perception would not restore exercise capacity to that of true train-high conditions.

116
117
118
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119 Methods
120

121 Subjects. Nine recreationally active males who regularly engaged in exercise training 

122 (running, cycling, and intermittent sport) between 3-6 times per week volunteered to 

123 participate in the study (mean ± SD: age, 25 ± 8 years; body mass, 71.6 ± 8.5 kg; height, 1.78 

124 ± 0.06 m; VO2peak, 55.3 ± 8.3 ml.kg-1.min-1; peak power output (PPO) 331 ± 41 watts). All 

125 subjects gave written and informed consent after details of the study procedures were 

126 explained. No subject had a history of smoking, cardiovascular, or metabolically related 

127 disease and none were under pharmacological treatment during the study. All subjects 

128 refrained from strenuous exercise and alcohol for at least 24 h before each trial. The study 

129 was approved by the Ethics Committee of Liverpool John Moores University.

130 Experimental Design. In a randomized, repeated measures design (and after appropriate 

131 baseline testing and familiarization), subjects performed three experimental trials consisting 

132 of a glycogen depleting protocol in the afternoon prior to the main experimental trial the 

133 subsequent morning. At the cessation of the glycogen depleting protocol, subjects consumed 

134 1) a known CHO intake of 6 g.kg-1 body mass (TRAIN-HIGH), 2) a perceived comparable 

135 CHO intake but 0 g.kg-1 body mass (PERCEPTION) or a known train-low condition of 0 

136 g.kg-1 body mass (TRAIN-LOW).  The TRAIN HIGH and PERCEPTION trials were double 

137 blind where blinding of these two solutions were performed by the corresponding author who 

138 was not present for any of the exhaustive exercise sessions on Day 2 (with the exception of 

139 the familiarisation trials).  The following morning subjects arrived at the laboratory in a 

140 fasted state where they then performed a steady-state (SS) (30 min at 95% of lactate 

141 threshold) cycling exercise protocol followed by a high-intensity intermittent (HIT) cycling 

142 protocol to exhaustion (1-min bouts at 80% PPO interspersed with 1-min bouts at 40% PPO). 

143 The primary outcome was exercise capacity during the HIT protocol. Respiratory gas 
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144 exchange, heart rate (HR), rate of perceived exertion (RPE), and fingertip capillary blood 

145 samples were also obtained at regular intervals during the SS exercise protocol and 

146 immediately following HIT protocol to assess for physiological, metabolic, and perceptual 

147 responses to exercise.  An overview of the experimental design is shown in Figure 1. The 

148 participants were informed that the aim of the study was to compare the effects of two CHO 

149 drinks (that differed in composition but not quantity of CHO) on overnight recovery and 

150 subsequent morning exercise capacity versus a known non-caloric sugar free drink.  Upon 

151 completion of the study, all subjects performed an exit interview where they were informed 

152 they had been deceived in the PERCEPTION trial. Whilst no formal questionnaires were 

153 administered, no subject reported that the drinks tasted differently though 3 subjects did 

154 report they felt hungrier in the both the TRAIN LOW and PERCEPTION trials.

155 Assessment of lactate threshold, lactate turn point, VO2peak and peak power output.  At least 

156 5-7 days prior to the familiarization (FAM) trial, subjects performed a submaximal 

157 incremental cycling protocol to determine lactate threshold (LT), lactate turn point (LTP), 

158 peak oxygen uptake (VO2peak) and peak power output (PPO) on an electronically braked 

159 cycling ergometer (Excalibur Sport; Lode, Groningen, The Netherlands). Following a 5 min 

160 warm up at 75 watts (W) at a self-selected cadence, the submaximal test commenced at 125 

161 W with 25 W increase every 4 min. Twenty μl of fingertip capillary blood samples were 

162 collected in a Biosen capillary tube (EKF Diagnostics, Barleben, Germany) at the end of each 

163 4 min stage.  LT (defined as 1 mmol.L-1 above resting levels) and LTP (defined as the second 

164 inflection point on the lactate curve) were plotted live during the test using Biosen C-Line 

165 lactate analyzer (EKF Diagnostics, Barleben, Germany). Heart Rate (HR) (Polar, F10, 

166 Finland) was monitored continuously and recorded during the final 10 seconds of each stage, 

167 along with RPE (Borg, 1973). Respiratory gas exchange was recorded during the final two 

168 minutes of each stage using an online gas analysis system (CPX Ultima, Medgraphics, 
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169 Minnesota, USA). The submaximal test ended once LTP had been confirmed. Following a 5 

170 min recovery period, VO2peak and PPO were assessed. The test to assess VO2peak and PPO 

171 commenced at 25 W below each subject’s individual LT and consisted of 1-min stages with 

172 25 W increments until volitional exhaustion. HR was monitored throughout the test. VO2peak 

173 referred to the peak value attained in any 10-second period during the last 60 seconds of data 

174 collection and was supported by verification by two or all the following end point criteria (1) 

175 heart rate with 10 b.min-1 of age predicted maximum, (2) RER > 1.1 and (3) plateau of 

176 oxygen consumption despite increasing workload. 

177 Day 1: Glycogen depletion protocol. On the afternoon of Day 1, subjects arrived at the 

178 laboratory (~1500 h) to perform an intermittent bout of cycling to volitional fatigue. Subjects 

179 were asked to record and replicate their energy intake in the 24 h period prior to commencing 

180 the glycogen depletion protocol. Following a 5 min warm up at self-selected intensity, 

181 subjects cycled for 2 min at 90% PPO, immediately followed by 2 min at 50% PPO. Once 

182 subjects could no longer maintain > 60 rpm, the interval was decreased to 90 seconds, then to 

183 1 min at 90% PPO. Subjects repeated this work to rest ratio at 80% PPO, 70% PPO, and 60% 

184 PPO and the exercise protocol was terminated once subjects could no longer maintain > 60 

185 rpm at 60% PPO for 1 min. This protocol has been used previously in our laboratory (Bartlett 

186 et al., 2013; Taylor et al., 2013; Impey et al., 2016) and is a modification of that of Kuipers et 

187 al. (1987) that induces glycogen depletion in both type I and type II fibers. Immediately 

188 following the cessation of glycogen depleting exercise (~1700 h), subjects consumed 30 g of 

189 whey protein isolate (Advanced Whey Isolate, Science in Sport, Nelson, UK) mixed with 250 

190 ml water (in accordance with practical recommendations to promote recovery from 

191 endurance exercise) before adhering to one of three dietary protocols. In the TRAIN HIGH 

192 trial, subjects consumed 1.2 g.kg-1 maltodextrin (Cargill Dry Maltodextrin, UK) mixed with 

193 500 ml water sugar free squash (Tesco, Hertfordshire, UK) per hour for 5 hours.  In the 
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194 PERCEPTION trial, subjects adhered to an identical feeding frequency and volume protocol 

195 but consumed a tasted match placebo solution where they were told contained an identical 

196 amount of CHO as that consumed (or to be consumed) in the TRAIN HIGH trial (sugar free 

197 squash, Tesco, Hertfordshire, UK).  In the TRAIN LOW trial, subjects consumed the same 

198 placebo solution as the PERCEPTION trial but were told the solution contained no CHO. All 

199 drinks were administered in visually opaque bottles and 2.75 L of fluid was consumed over 

200 the 5-hour recovery period in each trial.  Subjects remained in the laboratory to complete the 

201 first 3 h of the recovery protocol before returning to their homes to complete the last 2 h of 

202 recovery (subjects were provided with the additional 2 x 500 ml solutions to take home). 

203 Subjects also slept at their own home.

204 Day 2: Steady state (SS) and HIT exercise capacity test.  Subjects arrived at the laboratory 

205 between 0800 and 0830h the following morning after an overnight fast. Body mass (Seca, 

206 Hamburg, Germany), motivation to train (using a visual analogue scale, VAS, McCormack et 

207 al., 1988), resting blood lactate and blood glucose were initially measured. Subjects then then 

208 completed 30 min SS cycling at 95% of LT. Breath by breath gas analysis (CPX Ultima, 

209 Medgraphics, Minnesota, USA) was measured for 2 min during 8-10 min, 18-20 min, and 28-

210 30 min and substrate utilization was assessed according to Jeukendrup and Wallis (2005). 

211 Blood glucose and blood lactates samples were obtained at 15 min and 30 min. 

212 Measurements of HR (Polar, F10, Finland) and RPE (Borg, 1973) were recorded at 10 min 

213 intervals during the SS exercise. Following completion of SS exercise, subjects were 

214 provided with 3 min active recovery at 50 W and subsequently commenced the HIT exercise 

215 capacity test consisting of 1 min bouts at 80% PPO interspersed with 1 min bouts at 40% 

216 PPO until volitional exhaustion. A final capillary blood sample was collected at the 

217 termination of the HIT protocol. 
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218 Familiarization. Eight subjects completed the full experimental protocol described above 

219 while adhering to a water only (i.e. no flavoring) familiarization (FAM) condition at least 7 

220 days prior to their first experimental trial (one of the nine subjects withdrew from 

221 familiarization after several minutes of the SS exercise protocol having reported feelings of 

222 muscle soreness). Upon completion of all three experimental trials, we compared each 

223 subject’s exercise capacity during the FAM trial and the TRAIN LOW trial and observed no 

224 significant difference, as evidenced by a t-test for paired samples (FAM = 5 ± 5 min, PLA = 

225 7 ± 6 min, P=0.25). 

226 Blood analyses. Blood samples were obtained via finger prick capillary sampling using a 1.8 

227 mm sterile safety-lancet (Sarstedt AG & Co, Nümbrecht, Germany) after sterilization using a 

228 pre-injection medical swab (Medlock Medical Ltd., Oldham). A 20μl blood sample was 

229 collected in a Biosen capillary tube (EKF Diagnostics, Barleben, Germany) and analyzed 

230 using Biosen C-Line for blood glucose and lactate concentrations (EKF Diagnostics, 

231 Barleben, Germany).

232 Statistical Analysis. Data were analysed using one or two-way repeated measures general 

233 linear model (GLM) where the within factors were time and condition (TRAIN LOW, 

234 PERCEPTION and TRAIN HIGH). Where significant main effects were found, paired 

235 samples t-tests with Bonferroni adjustment for multiple comparisons were performed to 

236 identify differences. In relation to our primary outcome variable of exercise capacity, we also 

237 report uncertainty of outcomes as 95% confidence intervals (95% CI) and make probabilistic 

238 magnitude based-inferences about the true (large sample) values of outcomes by qualifying 

239 the likelihood that the true effect represents a substantial change, according to (Batterham & 

240 Hopkins, 2006). All data in text, tables and figures are expressed as means + SD with P<0.05 
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241 indicating statistical significance. Statistical analyses were performed using Statistics 

242 Package for the Social Sciences (SPSS) for Windows (version 24, SPSS Inc, Chicago, IL).

243

244 Results

245 Glycogen depletion protocol

246 There was no difference (P=0.71) in time to exhaustion during the glycogen depletion 

247 protocol between the TRAIN HIGH (79 ± 20 min), PERCEPTION (75 ± 16 min) or TRAIN 

248 LOW (79 ± 22 min) trials. 

249

250 Physiological and perceptual responses during SS exercise 

251 There was no difference (P=0.258) in subjects’ motivation to exercise prior to commencing 

252 the SS protocol (TRAIN HIGH 6.7 ± 2.7 cm; PERCEPTION 6.4 ± 1.7 cm; TRAIN LOW 

253 5.1 ± 2.1 cm).  Subjects’ HR (P=0.006) and RPE (P<0.001) increased during SS though no 

254 difference was apparent between conditions (P=0.299 and 0.273 respectively, see Table 1). 

255

256 Metabolic responses during SS exercise and HIT capacity test

257 During SS, RER (P<0.001) and CHO oxidation rate (P<0.001) decreased while fat oxidation 

258 increased (P<0.001). Average CHO oxidation was higher throughout SS in TRAIN HIGH 

259 than both PERCEPTION (P=0.019) and TRAIN LOW (P= 0.012) while fat oxidation was 

260 lower (P=0.016 and 0.023 respectively).  Blood glucose was higher throughout SS and HIT 

261 in TRAIN HIGH than in PERCEPTION (P=0.002) and TRAIN LOW (P=0.021) and also 

262 decreased during exercise (P<0.001). Blood lactate rose throughout SS and was significantly 

263 increased in TRAIN HIGH compared with both PERCEPTION (P=0.016) and TRAIN LOW 

264 (P= 0.023) after HIT (see Figure 2).

265

Page 10 of 23

Human Kinetics, 1607 N Market St, Champaign, IL 61825

International Journal of Sport Nutrition and Exercise Metabolism



For Peer Review

11

266 Exercise capacity during the HIT test

267 High-intensity intermittent exercise capacity was different between conditions (P<0.001), 

268 whereby TRAIN HIGH (22 ± 9 min; P=0.005: 95% CI for differences = 3 to 16 min, almost 

269 certainly beneficial) was greater than both PERCEPTION (12 ± 6 min) and TRAIN LOW (8 

270 ± 8 min; P=0.001: 95% CI for differences = 7 to 20 min, almost certainly beneficial).   

271 Exercise capacity was also greater in PERCEPTION compared with TRAIN LOW (P=0.025: 

272 95% CI for differences = 1 to 8 min, very likely beneficial: see Figure 3A).  Seven subjects 

273 completed more intervals in PERCEPTION than TRAIN LOW, whilst all nine subjects 

274 completed more intervals in the TRAIN HIGH compared with both non-CHO trials (see 

275 Figure 3B).  There was no trial order effect (P=0.849).

276

277 Discussion

278 Confirming our hypotheses, we provide novel data by demonstrating that perception of CHO 

279 availability augments high-intensity intermittent exercise capacity under sleep-low, train-low 

280 conditions though perception does not near restore exercise capacity to that of CHO 

281 consumption.  We therefore consider our data to have methodological implications for future 

282 sleep-low train-low research designs by clearly highlighting the requirement for placebo-

283 controlled trials.  Furthermore, when considering that perception of CHO availability can 

284 improve exercise capacity, our data may also have practical applications for those athletes 

285 who deliberately practice CHO periodization strategies in an attempt to strategically enhance 

286 oxidative adaptations of skeletal muscle.

287 To achieve our sleep low, train low model of CHO restriction, we employed a similar 

288 glycogen depletion and re-synthesis protocol to that recently studied in our laboratory 

289 (Hearris et al., 2019).  Whilst we acknowledge that we did not directly assess muscle 

290 glycogen, evaluations of substrate utilisation during the SS exercise protocol are consistent 
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291 with differences in CHO availability between the TRAIN HIGH trial and the non-CHO trials.  

292 On the basis of the fitness levels of the present subjects (i.e. VO2peak, 55.3 ± 8.3 ml.kg-1.min-1) 

293 and absolute CHO intake (i.e. 6 g.kg-1), we estimate from our previous data (Hearris et al., 

294 2019) and a recent meta-analysis (Areta & Hopkins, 2018) that muscle glycogen 

295 concentration in TRAIN HIGH was in the region of 300-350 mmol.kg-1 dw, as opposed to 

296 100-150 mmol.kg-1 dw in the PERCEPTION and TRAIN LOW trials.  

297 Consistent with the well-documented effect of muscle glycogen availability on 

298 exercise capacity (Bergstrom et al., 1967; Hawley et al., 1997; Impey et al., 2016; Hearris et 

299 al., 2019), it is unsurprising that all nine subjects were able to exercise for significantly longer 

300 during the TRAIN HIGH trial compared with the non-CHO trials.  The magnitude of 

301 improvement observed here (i.e. ~15 minutes) agrees favorably with our recent data (Hearris 

302 et al., 2019) where we observed that small differences in pre-exercise muscle glycogen 

303 concentration (~100 mmol.kg-1 dw) improves high-intensity intermittent exercise capacity at 

304 80% PPO between ~20% and 50% (8–18 min).  In our previous study, however, we 

305 acknowledged that lack of blinding between trials may have influenced subjects’ motivation 

306 and perceived ability to complete high-intensity workloads (Hearris et al., 2019). To 

307 overcome the issue of subjects being visually aware of the quantity of CHO rich foods 

308 consumed (Mears et al., 2018), we deliberately chose to blind CHO availability in the present 

309 study by using taste matched beverages delivered in opaque bottles. 

310 When comparing subjects’ exercise capacity between the TRAIN LOW and water 

311 only FAM trial, it is noteworthy that no significant differences in exercise capacity were 

312 observed.  Such data highlight that when subjects were aware that no prior CHO had been 

313 consumed (despite differences in taste between the TRAIN LOW and FAM trials), exercise 

314 capacity was not affected.   However, when subjects perceived they had consumed CHO 

315 before sleeping in the PERCEPTION trial, 7 of the 9 subjects performed significantly more 
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316 work compared with the known TRAIN LOW trial, despite reporting no significant 

317 differences in their motivation to exercise.  A placebo effect of CHO availability has been 

318 documented previously (in conditions of normal pre-exercise muscle glycogen concentration) 

319 where CHO has been fed before (Mears et al., 2018) and during (Clark et al., 2000) cycling 

320 time trials equating to durations of approximately 20 and 60 minutes, respectively.  In 

321 contrast, no placebo effect of CHO feeding is evident when exercise duration extends beyond 

322 3 hours, likely due to near glycogen depletion and that the metabolic requirement for CHO 

323 dominates over central drive (Hulston & Jeukendrup, 2009).  Nonetheless, the present data 

324 demonstrate that a placebo effect of prior CHO ingestion may also manifest in those 

325 conditions where short term-high intensity intermittent exercise is commenced with 

326 considerably reduced pre-exercise muscle glycogen concentration.  

327 Whilst we acknowledge that the magnitude of effect with perception was less than 

328 that of actual CHO consumption (~5 versus 15 minutes at 80% PPO), the present data are of 

329 practical relevance for reasons related to both research design and practical application with 

330 athletic populations. Indeed, when considering that previous studies reporting decrements in 

331 power output or exercise capacity during acute train-low training sessions (using the twice 

332 per day or sleep low models) have not blinded subjects to the “low CHO availability” 

333 condition (Hansen et al., 2005; Yeo et al., 2008, 2010; Hulston et al., 2010; Hearris et al., 

334 2019), it is possible that such impairments in performance may also be due, in part, to 

335 psychological reasons as opposed to physiological factors per se.  Similarly, given that 

336 Marquet et al. (2016b) observed that just one week of a sleep-low training intervention 

337 (incorporating only 3 train-low sessions) improved 20 km cycling time trial performance by 

338 3.2%, it is possible that such improvements were simply due to subjects beliefs that the sleep 

339 low protocol would lead to superior improvements in performance, as opposed to 

340 physiological or metabolic adaptations.   In relation to practical application, the placebo 
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341 effect of prior CHO intake may also extend the effects of caffeine (Lane et al., 2013) and 

342 CHO mouth rinse (Kasper et al., 2016) as potential tools for which to increase exercise 

343 capacity for those athletes who deliberately practice CHO restriction in an attempt to amplify 

344 training adaptations (Impey et al., 2018).

345 In summary, we provide novel data by demonstrating that perception of CHO 

346 availability augments high-intensity intermittent exercise capacity under sleep-low, train-low 

347 conditions though perception does not restore exercise capacity to that of CHO consumption.  

348 Such data have implications for future sleep-low train-low research designs by clearly 

349 highlighting the requirement for placebo-controlled trials. In addition, our data may also have 

350 practical applications for those athletes who deliberately incorporate periods of CHO 

351 restriction into their training programmes in an attempt to strategically enhance mitochondrial 

352 related adaptations of skeletal muscle. 
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463

464 Figure 1 – Overview of the experimental design. 

465

466 Figure 2 – (A) RER, (B) CHO oxidation, (C) lipid oxidation, (D) blood glucose and (E) 

467 blood lactate concentration during the SS exercise protocol (as completed on the morning of 

468 Day 2). *denotes significant difference between TRAIN HIGH and PERCEPTION and 

469 TRAIN LOW trials, P<0.05. a denotes significant difference from 10, b denotes significant 

470 difference from 20, c denotes significant difference from 0, d denotes significant difference 

471 from 15 and 30, all P<0.05. Exh, exhaustion.

472

473 Figure 3 – (A) Exercise capacity (means ± SD) and (B) individual subject’s exercise capacity 

474 during the TRAIN LOW, PERCEPTION and TRAIN HIGH trials. *denotes significant 

475 difference from TRAIN LOW, # denotes significant difference from PERCEPTION, both 

476 P<0.05.

477
478
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479 Table 1 – Heart rate, VO2 (as % of VO2peak) and RPE during the SS exercise protocol (as 
480 completed on the morning of Day 2) in the TRAIN LOW, PERCEPTION and TRAIN HIGH 
481 trials.  
482
483

Time (min)

10 20 30

HR (b.min-1)
TRAIN LOW
PERCEPTION
TRAIN HIGH

145 + 16
146 + 11
142 + 14

147 + 17
149 + 11
143 + 14

150 + 19 ab

151 + 14 ab

146 + 15 ab

% VO2peak
TRAIN LOW
PERCEPTION
TRAIN HIGH

61 + 9
63 + 8
64 + 9

63 + 7
64 + 7
61 + 9

61 + 6 
62 + 6 

63 + 6 

RPE (AU) 
TRAIN LOW
PERCEPTION
TRAIN HIGH

12 + 2
12 + 2
12 + 2

14 + 2
13 + 3
14 + 2

16 + 3 ab

15 + 3 ab

15 + 3 ab

484 a denotes significant difference from 10, b denotes significant difference from 20, both 
485 P<0.05.
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
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Figure 1 – Overview of the experimental design. 
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Figure 2 – (A) RER, (B) CHO oxidation, (C) lipid oxidation, (D) blood glucose and (E) blood lactate 
concentration during the SS exercise protocol (as completed on the morning of Day 2). *denotes significant 

difference between TRAIN HIGH and PERCEPTION and TRAIN LOW trials, P<0.05. a denotes significant 
difference from 10, b denotes significant difference from 20, c denotes significant difference from 0, d 

denotes significant difference from 15 and 30, all P<0.05. Exh, exhaustion. 
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Figure 3 – (A) Exercise capacity (means ± SD) and (B) individual subject’s exercise capacity during the 
TRAIN LOW, PERCEPTION and TRAIN HIGH trials. *denotes significant difference from TRAIN LOW, # 

denotes significant difference from PERCEPTION, both P<0.05. 
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