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ABSTRACT
Pausing by RNA polymerase is a major mechanism that regulates transcription elongation but can
cause conflicts with fellow RNA polymerases and other cellular machineries. Here, we summarize
our recent finding that misincorporation could be a major source of transcription pausing in vivo,
and discuss the role of misincorporation-induced pausing. KEYWORDS
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Elongation of transcripts by DNA-dependent RNA
polymerases (RNAP) is a temporally discontinuous
process: interactions with certain DNA (or RNA)
sequences, DNA lesions, misincorporation events, or
encounters with other DNA-bound proteins are able
to trigger programmed or accidental transcriptional
pausing.

The majority of characterized pauses are events that
branch off the main elongation pathway, and are
believed to start with an isomerization of the elonga-
tion complex (EC) into an elemental pause state that is
catalytically inactive but does not alter the transloca-
tion state of RNAP.1 Once this transient rearrange-
ment has occurred, it can be further stabilized by
subsequent events that follow distinct pathways, and
result in the formation of long-lived pauses. The stabi-
lization can occur by backtracking (when the 30 end of
the RNA disengages from the active site and extrudes
into the secondary channel, maintaining the EC in
an inactive state), by the formation of a hairpin in
the nascent RNA strand, by regulatory proteins, or by
the interaction with DNA sequences that contact the
RNAP downstream of the active site.1-3

Another type of RNAP pause, described by us rela-
tively recently, is caused by slow translocation between
the pre-translocated and post-translocated states

following NMP incorporation.4 Pre-translocated
pauses are caused by the sequence of the RNA–DNA
hybrid and surrounding DNA,4,5 and recent genome-
wide studies suggested that they are very frequent (see
below).2,6 Pre-translocated pauses can be modulated
by transcription factors,7,8 or by antibiotics, such as
tagetitoxin.9 Pre-translocated pauses may also be a
starting point for long-lived pauses,4 or serve as a pre-
requisite for the elemental pause state.

Pauses that are induced by the DNA sequence
are ubiquitous. Single molecule studies suggested,
and in vivo genome-wide studies recently showed,
that pause sites occur with an average frequency of
1 per 100 bp in the Escherichia coli genome.2,6

Sequence alignments of pause sites also revealed a
consensus sequence spanning 16 nt, whose stronger
determinants (on the non-template strand of DNA)
are G¡10 at the upstream edge of the RNA:DNA
hybrid, and Y¡1GC1, where ¡1 corresponds to the
RNA 30 end.2,6 The two studies suggested that the
consensus pause sequence induces pre-translocated
pausing, although it remains unclear whether it is
further stabilized by backtracking.2,6 Another study,
however, suggested that pausing at consensus
sequences may not be limited to the pre-translo-
cated state.10 These pauses appeared to be
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overrepresented at translation start sites, and
enriched within the first 100 nt of expressed genes.6

A distinct type of pause is caused when the s factor
fails to disengage from the core enzyme after promoter
escape, and recognizes ¡10-like promoter sequences
in the transcribed DNA (usually in the promoter
proximal regions), thus causing a pause in elonga-
tion.11-13 These pauses also appear to be stabilized by
backtracking.12,14

Regulatory roles of transcriptional pausing

Specific regulatory roles have been characterized in
detail for some individual pauses.1,15 Hairpin-
stabilized attenuator pauses indirectly couple tran-
scription with translation at many amino acid
biosynthetic operons in bacteria, allowing the modula-
tion of their expression in response to changes in
nutrient availability.16 Halting of RNAP at key
positions may also be required for the recruitment of
regulators. The bacterial ops pause (operon polarity
suppressor) allows the EC to bind RfaH, a regulator
that suppresses pausing and termination downstream
the ops site.17 Binding of the antiterminator Q of
phage lambda requires the s70-dependent promoter-
proximal pausing of the RNAP.11

Pausing may influence the folding of nascent tran-
scripts, and has been shown to be required for the cor-
rect assembly of some biologically active RNAs.18,19

A pause signal located between the upstream and
downstream portions of long-range helices is needed
to guide proper folding of the RNA component of
Ribonuclease P from E. coli, and of two other con-
served non-coding RNAs, probably by preventing the
formation of stable non-native structures.20 Pausing
affects RNA folding or ligand binding of several ribos-
witches, and therefore affects the regulation of the
downstream transcription units.19

Pausing is the first step of both intrinsic and Rho-
dependent termination,1 and may play a regulatory
role during transcription initiation: single-molecule
fluorescence studies recently revealed a long pause at
the lac promoter, occurring at the transition from
6- to 7-nt RNA, which is suggested to be conserved in
other promoters.21

In eukaryotes, RNAPII can pause between the pro-
moter and the first nucleosome, 30–60 nt downstream
of the transcription start site.22 This promoter-
proximal pausing depends on different factors, and

the escape into productive elongation is often (i.e., for
half of the active Drosophila and mammalian genes)
rate limiting, and highly regulated, thus playing a criti-
cal role in regulating metazoan gene transcription.23

Pausing by RNAPII may also facilitate polyadenyla-
tion or contribute to splice site selection in alterna-
tively spliced mRNAs.1,24

Besides the specific roles of elongation pauses in
regulating the expression of specific genes, pauses are
thought to be required to reduce the pace of transcrip-
tion elongation, and therefore allow for the coordina-
tion of transcription with translation in bacteria.1

Deleterious effects of transcriptional pausing

Bacterial RNAP and the replisome move simulta-
neously along the same template, but the former is
12–30-fold slower than the latter.25 Therefore, con-
flicts between the two machineries are inevitable, and
especially frequent in actively growing cells and in
heavily transcribed regions. The outcomes of such
events depend on the orientation of the collisions and
on the translocation state of the EC. Co-directional
collisions with actively transcribing ECs do not
impede replisome progression in vivo, and in vitro
studies showed that the replisome can readily dislocate
the RNAP and use the mRNA as a primer to continue
replicating the leading strand.26 Head-on collisions
with transcribing RNAP are more severe and have
been shown to arrest the replication forks both in vivo
and in vitro.27 Accordingly, highly-expressed, long,
and essential genes are preferentially located on the
leading strand in bacterial genomes,15 and genetic
instability following head-on collisions was reported.28

In the presence of backtracked ECs, co-directional col-
lisions are particularly detrimental and were shown to
cause double-strand breaks (DSBs) in vivo.29 A recent
study in Streptococcus pneumoniae suggested that
trailing RNAPs might queue behind the stalled one,
thereby forming RNAP “traffic jams,” having detri-
mental consequences on gene expression and forming
much more potent obstacles for the replication
machinery.30

Different factors have been shown to play a role in
removing, reactivating, or preventing backtracked ECs
(and/or RNAP queues caused by them), with their
effects normally becoming apparent only when one of
the other pathways is disrupted.15 The elongation fac-
tors GreA and GreB (in E. coli; many bacteria have
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only one Gre factor) can reactivate backtracked ECs
by promoting a transcript cleavage reaction at the
active site that generates a new 30 end.31 Mfd is a
translocase that can bind upstream of a stalled EC and
can either rescue transcription or remove the complex
by driving forward translocation, and is a key factor in
transcription-coupled repair of DNA lesions in E.
coli.32 Arrested ECs can also be released by Rho-
dependent termination.33 DksA binds the RNAP in
the secondary channel and was shown to prevent tran-
scription arrest upon ribosome stalling under amino
acid starvation.34 Trailing RNAPs themselves were
suggested to cooperate during elongation to prevent
backtracking of a leading RNAP,35 although recent
results rather supported an alternative “traffic jams”
model, as mentioned above.30

Misincorporation induces pausing

Misincorporation events cause long-lived pausing in
vitro because they induce backtracking of the EC by
1 bp (Fig. 1).36,37 Transcription can resume upon the
hydrolysis of the second phosphodiester bond of the

transcript by the active site of the RNAP, which
removes the last two nucleotides.37 In vitro, this reac-
tion is greatly stimulated by the cleavage factors Gre
in bacteria, and TFIIS for the eukaryotic RNAPII.31,38

Until recently, misincorporation-induced pauses
could not be investigated in vivo because they occur
randomly and are transient. However, based on the
small effects that the absence of cleavage factors has
on the overall error rate of RNAP, they were thought
to be very rare and, therefore, to have negligible effects
on the overall pausing of transcription.30,39

Misincorporation is a major source of
transcriptional pausing in vivo

The development of Native Elongating Transcript
sequencing (NET-seq) has made it possible to selec-
tively sequence transcripts that are bound to transcrib-
ing RNAP, and, therefore, to investigate genome-wide
pausing in vivo in different model organisms.2,6,24,40

Importantly, NET-seq is based on the sequencing of
the 30 ends of nascent transcripts and, therefore,
reports on the exact position of the ECs and can also
be used to visualize misincorporation events.

Recently, we analyzed transcriptional errors in ear-
lier NET-seq data from E. coli and S. cerevisiae, for
both wild-type and cleavage factor deficient
mutants.6,40 We found that all strains carried an unex-
pectedly high proportion of misincorporations at the
30 end position, which we quantified as 3% and 1% of
all ECs in wild-type E. coli and S. cerevisiae, respec-
tively.41 In the mutant strains lacking cleavage factors,
the misincorporated ECs were »5% and 7%, respec-
tively.41 These values are considerably higher than
expected from the overall error rate of RNAP,
10¡3–10¡6.42 A somewhat lower proportion (0.1%
and 1% for wild-type and mutant E. coli strains) of
misincorporated ECs was reported by a different
study,10 and we have discussed the possible cause of
such differences elsewhere.41 Given that misincorpo-
ration causes stable backtracking, it is likely that these
higher proportions are mainly caused by the accumu-
lation of misincorporated complexes due to their slow
resolution, even in wild-type cells. Importantly, the
misincorporated complexes are non-productive in the
formation of a mature RNA until they are resolved,
therefore, such accumulation would not affect the
error rate of final RNA products. This explains why

Figure 1. Misincorporation-induced pausing. Upon misincorpora-
tion, the elongation complex (EC; RNA is magenta, RNAP is blue,
DNA is black) is stabilized in a 1 base pair backtracked state, pos-
sibly through a frayed intermediate,54 which may then lead to
further backtracking. Misincorporated and deeply backtracked
ECs result in long-living pauses of transcription, until resolved by
intrinsic or factor-dependent cleavage. These paused ECs may
cause RNAP traffic jams and collisions with replication (repli-
somes replicating leading and lagging strands are shown in
orange).
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this high proportion of misincorporation complexes
might have been overlooked.

These results imply that misincorporation could be
a major cause of backtracked pausing in vivo, and,
consequently, a significant source of conflicts with the
replication machinery and other trailing RNAPs both
in bacteria and eukaryotes (Fig. 1). Whether the ubiq-
uitous sequence-dependent pauses involve backtrack-
ing is controversial, since deletion of gre genes did not
alter significantly the pattern of pausing in a first study
in E. coli,6 but seemed to do so in a later study.10 How-
ever, misincorporated ECs are stabilized in the back-
tracked state and must be a subject for factor-assisted
cleavage. Therefore, it appears possible that the most
significant contribution of Gre factors in vivo is the
reactivation of these stalled complexes, which reduces
conflicts with the replisome and trailing RNAPs,
rather than the improvement of transcriptional fidelity
itself. DksA might contribute to the same cause by
decreasing misincorporation events.43,44 Consistently,
E. coli double mutants lacking DksA and either of the
Gre factors show a significantly reduced growth rate
even in nutrient rich conditions, and these growth
defects become extremely severe in the triple mutant
(Fig. 2A). We also observed a significant degree of fila-
mentation and diffuse nucleoid morphology in the tri-
ple mutant (Fig. 2B), which may point to defects in
replication or chromosome segregation. Decrease of
replication fork progression was in fact observed in
the triple mutant, and the three factors are known to
prevent replication arrest during nutrient stress.45 Fur-
thermore, we observed similar morphological defects
in a DgreA mutant of S. pneumoniae, which does not
have other secondary channel binding factors.30 Of
course, the severe growth phenotypes could also be
due to the accumulation of distinct defects, and direct
evidence is still missing.

The viability of even the triple DgreA DgreB DdksA
mutant suggests that E. coli cells can still cope with the
misincorporated ECs. It is possible that other factors,
such as Mfd or Rho, which can displace paused ECs
from the template, may also contribute in overcoming
the misincorporated ECs. In addition, the replisome
itself may be able to displace some of the complexes,
since most of them will be oriented co-directionally,
and use the transcript as a primer.26 The misincorpo-
rated NMP at the 30 end of the RNA primers may be a
problem for its extension by DNA polymerase, which,
however, could be rectified by RNase H or 30

exonucleases (such as the 30 exonuclease activity of
DNA polymerase) by generating a correct 30 end of
the primer. Alternatively, the resolution of the misin-
corporated ECs in the absence of cleavage factors
could be helped by intrinsic transcript-assisted proof-
reading activity of the RNAP active center.37 Similar
mechanisms are likely involved also in eukaryotes.

Interestingly, analysis of the hotspots of misincor-
porated ECs in E. coli revealed that these hotspots are
far less abundant in protein-coding sequences com-
pared with transcribed untranslated regions (1.34 and
10.68 hotspots per 0.1 Mb, respectively), while no
such bias was seen in S. cerevisiae.41 Bacteria might
therefore have minimized sequences causing frequent

Figure 2. Growth and morphological defects caused by deletion
of greA, greB, or dksA in E. coli. (A) Growth curves of single, dou-
ble, and triple mutants in EZ Rich Defined medium at 37�C. All
strains are derivative of the wild-type strain MG1655. Scarless
deletions of the whole coding sequence of dksA and greA genes,
and the first 318 bp for greB (in order not to delete a putative
promoter for the downstream gene yhgF), were performed using
standard protocols for λ Red-mediated recombination and P1
transduction (construction details will be published elsewhere).
At least three replicates were performed and a representative
experiment is shown for each strain. (B) Microscopic analysis of
wild type, DgreA DgreB and DgreA DgreB DdksA strains grown in
EZ medium at 37�C and imaged at an O.D.600 of 1.2, 1.3, and
0.2, respectively. Fields highlighting cells with morphological
defects are shown as an overlay of FM5–95 (red) and DAPI (cyan)
channels. Cells were mounted on microscope slides coated with
a thin layer of 1.2% agarose. Images were acquired with a Nikon
Eclipse Ti microscope, equipped with a Sony Cool-Snap HQ2
cooled CCD camera, and using Metamorph imaging software
(Universal Imaging). Scale bar: 5 mm.
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misincorporation events or evolved mechanisms for
reducing or correcting misincorporation at hotspots
specifically in protein coding regions. Intriguingly,
since coupled ribosomes were shown to control elon-
gation and pausing by RNAP,46,47 translation itself
might suppress misincorporation events or, more
likely, promote extension of the misincorporated
RNA.

The pattern of 30 misincorporations that we observed
had a strong bias toward G>A (misincorporation of A
instead of G), which is consistent with previous observa-
tions.10 This earlier study suggested that, in sequence-
dependent pausing, a C¡1GC1 motifs (non-template
DNA sequence) increase the rate of G>Amisincorpora-
tion at C1 position.10 Indeed, at G>A hotspots, we also
observed a clear bias for C preceding themisincorporated
30 end, however, we did not see strong pausing at these
C¡1 positions.41 Therefore, misincorporations might
occur at those positions without the involvement of a
pause. Importantly, most of the misincorporation events
happened away from hotspots, and the sequence bias
toward C¡1 for all G>Amisincorporations was, in com-
parison to hotspots, lower in E. coli and non-present in S.
cerevisiae, suggesting that G>A misincorporation is a
quite random event.41

Misincorporation-induced backtracked pauses may
interfere with the progression of replication forks and sig-
nificantly alter the gene expression patterns, by them-
selves or by causing RNAP jams.30 It appears likely,
therefore, that some phenotypes found in human dis-
eases,48-51 splicing defects,52 or epigenetically inheritable
changes in gene expression,53 which were all linked to
transcription infidelity, are in fact caused by the deleteri-
ous effects of stalled misincorporated complexes rather
than by the correctness of the final RNA products.
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