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ARTICLE

Abrupt transitions in time series with uncertainties
Bedartha Goswami 1,2, Niklas Boers 1,3, Aljoscha Rheinwalt 1,2, Norbert Marwan 1, Jobst Heitzig1,

Sebastian F.M. Breitenbach4 & Jürgen Kurths1,5,6

Identifying abrupt transitions is a key question in various disciplines. Existing transition

detection methods, however, do not rigorously account for time series uncertainties, often

neglecting them altogether or assuming them to be independent and qualitatively similar.

Here, we introduce a novel approach suited to handle uncertainties by representing the time

series as a time-ordered sequence of probability density functions. We show how to detect

abrupt transitions in such a sequence using the community structure of networks repre-

senting probabilities of recurrence. Using our approach, we detect transitions in global stock

indices related to well-known periods of politico-economic volatility. We further uncover

transitions in the El Niño-Southern Oscillation which coincide with periods of phase locking

with the Pacific Decadal Oscillation. Finally, we provide for the first time an ‘uncertainty-

aware’ framework which validates the hypothesis that ice-rafting events in the North Atlantic

during the Holocene were synchronous with a weakened Asian summer monsoon.
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T ime series analysis is an indispensable framework that
helps us to understand dynamical systems based on tem-
porally ordered observations1, and uncertainties should, in

principle, form a crucial part of the inferences made from time
series. An important question addressed in time series analysis is
the identification of abrupt transitions—time points at which the
observable suddenly shifts from one type of behavior to another.
Transition detection approaches have relevance in a wide range of
disciplines such as (paleo)climate2,3, ecology4, and finance5.
Although there exists a vast literature on various kinds of
‘change-point detection’ methods that seek to address this ques-
tion6–10, most of these approaches tend to simplify the nature of
uncertainties in the data in exchange for analytical tractability,
thereby influencing whether or not a transition is detected in the
time series. Here, we claim that the lack of thorough uncertainty
propagation stems from the way time series are represented. We
thus put forth a new representation of time series that naturally
includes its uncertainties and show how it can be used to detect
abrupt transitions more reliably.

A ‘time series’ is typically constructed as an ordered sequence of
point-like measurements xtf gNt¼1 of an observable X. Quantitative
methods are thereafter employed to analyze xtf gNt¼1 and the pro-
pagation of uncertainties (if provided) is carried out as a separate
exercise. This makes the error analysis highly nontrivial, perceived
often merely as an addition to the core analysis and results, and also
allows investigators to ignore or postpone it. Even if an error
analysis is performed, the errors are often assumed to be inde-
pendent and (qualitatively) identical, which is inaccurate for most
real-world observables and may lead to substantial pitfalls. Here, we
introduce a framework that merges the analysis of the measure-
ments with that of their errors, and shifts the focus from knowing
the value of an observable at a given time to knowing how likely it is
that the observable had a chosen value at that time.

In contrast to the traditional time series framework, where the
time evolution of the state X of a system is encoded in a series of
point-like measurements xtf gNt¼1, we propose to represent the time
evolution of X using a sequence of probability density functions
(PDFs), ρXt

� �N
t¼1, such that ρXt ðxÞ encodes our beliefs about the

likelihood of the value X = x at time T = t. The state X is linked to
the observable X by a measurement process which may be noisy,
and the PDFs encode our partial knowledge about X , which may
occur due to measurement imprecision, or due to spatio-temporal
fluctuations. For instance, if we consider X to be the sea surface
temperature (SST) anomaly of the Niño 3.4 region in the equatorial
Pacific at a given time t, we assume, in our framework, the obser-
vation xut at grid location u to be a noisy estimate of X . We then use
the values xut from all locations u inside the Niño 3.4 box to con-
struct the probability density ρXt , which encodes our partial
knowledge about the state X of the SST anomaly of the Niño 3.4
box at time t (Fig. 1). Repeating this for different time instances
results in a sequence of PDFs ρXt

� �N
t¼1 which encode our partial

knowledge about the time evolution of X .
Using ρXt

� �N
t¼1 instead of xtf gNt¼1 to represent the temporal

evolution of the state X offers several advantages: it explicitly
shows how our knowledge of X might often be encoded by non-
Gaussian PDFs that change from one time point to the next. The
PDFs of the SST anomalies within the Niño 3.4 region during the
1997–1998 El Niño, for instance, shown in Fig. 1b, are clearly
non-normal and keep changing their shape over time. The
ρXt
� �N

t¼1 representation of the time evolution of X also reveals
implicit (and often inaccurate) assumptions. For example, the
classic Pearson’s correlation coefficient between two observables
is estimable only if we can quantify our knowledge about their
joint occurrences at each time instant, or if we can assume them
to be independent when conditioned on a given time T = t (see
Supplementary Note 1).

The PDFs ρXt
� �N

t¼1 can be estimated in different ways
depending on the system under study and the nature of the
measurements. In this paper, we present three real-world exam-
ples from considerably distinct disciplines and the PDF sequences
in each of these is constructed in a different way. Irrespective of
how the PDFs ρXt

� �N
t¼1 are obtained, the main goal of our paper is

to demonstrate that ρXt
� �N

t¼1 is a viable representation for time
series datasets, potentially useful in a wide range of real-world
applications, and to show how we can detect abrupt transitions in
time series with uncertainties with the help of the PDF sequence.

Our proposed transition detection approach correctly identifies
abrupt shifts in global stock indices that correspond to well-known
periods of political and economic volatility. We are further able to
detect transitions in the El Niño-Southern Oscillation (ENSO),
which turn out to be coincident to periods in which the ENSO is
phase locked to the Pacific Decadal Oscillation (PDO). Further-
more, in the case of paleoclimatic proxy records from Asia, we
provide a clear and principled validation of the hypothesis that
North Atlantic ice-rafting episodes during the last 13,000 years
were synchronous to periods of weakening of the Asian summer
monsoon (ASM). In contrast to most existing approaches for
detecting change points in time series, our proposed PDF
sequence representation transparently takes into account the time
series uncertainties without simplifications, and demonstrates how
the identification of transitions are impacted by these uncertain-
ties. Particularly for the paleoclimate records from the ASM
domain, inferences related to the spatio-temporal propagation of
Holocene cold events are crucially impacted by the magnitude and
nature of uncertainties contained in the time series.

Results
Detecting abrupt transitions using recurrence network com-
munities. To detect abrupt transitions, we extend the framework
of recurrence analysis11, a valuable tool to investigate features such
as memory, disorder, and synchronization from patterns encoded
in the return characteristics of the state X . Traditionally, the first
step is to estimate a binary recurrence matrix whose elements
indicate (with a 1 or a 0) if a chosen time point recurred to an
earlier state or not. Various estimates derived from the recurrence
matrix help to quantify the processes that give rise to the temporal
evolution of the observable11. Here, we use the series ρXt

� �N
t¼1 to

estimate the probability of recurrence for all pairs of time points in
a way that does not require us to assume independence, or to
quantify the dependence between the probability distributions at
two different time instances (see Methods). We construct an
estimator Â of the recurrence probabilities (Eq. 14), interpreted as
the adjacency matrix of a network whose nodes are the observa-
tion time points and whose edge weights are the recurrence
probabilities. Such a network obtained from a single time series is
referred to as a recurrence network12 (RN) and has been used to
study various complex systems13–16. Next, we use the community
structure of the RN as an indicator of abrupt transitions: com-
munities17 in a RN are time intervals with a higher similarity
within themselves than to the rest of the time series, indicating a
shift in the dynamics near the borders between different com-
munities. We demonstrate this with a synthetic example (Eqs. 1
and 2) where three different transitions are imposed on a noisy
sinusoidal signal (Fig. 2). If we consider only the mean time series,
we fail to detect the transition at T = 675 and can date the other
two only much coarser, further highlighting why we should
represent time series as ρXt

� �N
t¼1 rather than xtf gNt¼1.

We apply our method to three real-world examples with three
different sources of uncertainty (noted in parentheses): daily
financial stock index data from 2004 to 2016 (intra-day temporal
variability), monthly SST anomalies from 1881 to 2012 for the
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Niño 3.4 region (spatial variability), and paleoclimatic proxy
records from Asia covering important intervals of the Holocene
(imprecision in determining proxy ages). A ρXt

� �N
t¼1 sequence is

constructed from the data and used to detect abrupt transitions
(Methods, Supplementary Note 2, and Supplementary
Figs. 1–3). In each case, we repeat the analysis using only the
mean time series, and find that using the probability density
sequences gives more reliable and robust detection of abrupt
transitions (Supplementary Note 3, and Supplementary Figs. 4–6).

Transitions in financial stock indices. First, as a proof of concept
of the proposed approach, we consider three stock market indices:
DAX (Frankfurt), NASDAQ-100 (New York), and BSE SENSEX
(Mumbai). We identify three groups of abrupt transitions
(Fig. 3a–c) centered around the ‘mortgage crisis’, the ‘Eurozone

crisis’, and the ‘Brexit’/‘Grexit’ crises, as indicated by corre-
sponding peaks in the Google trends data (Fig. 3d). The end of
2009 marks a common period of abrupt transitions and
instabilities for all three indices during the worst part of the US
mortgage crisis, symbolized here by the bankruptcy claim of
Lehmann Brothers. Of the two queries ‘Grexit’ and ‘Brexit’, we
note that the transitions show a better correspondence with the
former. Additional events in the BSE SENSEX in 2006 and 2015
coincide with large intra-day falls in the Mumbai-based stock
index on 22 May 2006 and 24 August 2015. Abrupt shifts
detected in the BSE in May 2014 roughly coincide with the
national parliamentary elections held in India that year, in which
there was a shift from a decade-old rule by the center-left United
Progressive Alliance to the center-right National Democratic
Alliance, suggesting a volatile period for the Mumbai-based stock
exchange.
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Fig. 1 Representation of a time series as a sequence of probability density functions. The time series of PDFs ρXt
� �N

t¼1 is shown in (a) for monthly SST
anomalies from the Niño 3.4 region, from late 1870 to 2012. The densities are estimated using a kernel density estimation procedure (see Methods) which
gives a probability density of SST anomalies for each month given the spatially distributed measurements. Each vertical column in (a) is a density ρXt color
coded according to its value when evaluated for different values of the SST observable X. Darker (lighter) colors in each column thus represent higher
(lower) chances of observing the corresponding SST anomalies for that month in the Niño 3.4 region. We propose to consider such a series ρXt

� �N
t¼1 of

PDFs instead of representing them as point estimates. The ρXt
� �N

t¼1 sequence is shown in detail using a three-dmensional (3D) representation in (b) for the
SST anomalies during the 1997–1998 El Niño (black box in (a)). The color of each density in (b) denotes the average SST anomaly for that month, clearly
indicating the Niño-like conditions during the winter of 1997–1998, but we also see the non-Gaussian nature of the probability densities throughout the
period, calling into doubt the efficacy of representative point estimates such as the mean
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Transitions in the equatorial central Pacific. Our second real-
world example involves recent climate data: the Niño 3.4 index is
a standard index for estimating SST anomalies in the central-
equatorial Pacific, calculated as the spatial averages of monthly
gridded SST values in that region. Five consecutive 3-month (i.e.,
temporal) running averages of the index found above (below) a
threshold of +0.5 K (−0.5 K) indicate El Niño (La Niña) condi-
tions (Fig. 4b, d), two distinct phases of the ENSO which impact
the climate worldwide. The transitions identified by our analysis
(Fig. 4) show a relatively active period prior to 1906, after which
their frequency decreases, indicating a complex interdecadal
variability of the transitions themselves, most likely modulated by
the PDO18. Based on a statistical coincidence analysis between the
detected transitions and periods of ‘phase locking’ between the
PDO and the ENSO (Methods, Supplementary Fig. 8), we reveal
that the detected transitions are coincident with periods when the
PDO and the ENSO were phase locked (green markers in Fig. 4b,
d). This implicates the similarity of phases of the PDO and the
ENSO as a potential factor that modulates ENSO dynamics, in
addition to the phase of the PDO itself, which has been reported
earlier19 to increase the propensity for El Niño (La Niña) events
when the PDO is in its positive (negative) phase.

Transitions in the Asian summer monsoon in the Holocene.
The representation of observables as a sequence of PDFs is par-
ticularly valuable in paleoclimate time series analysis because of
the inherent chronological uncertainties that hamper the

determination of the timings of short-lived events20. Here, we
provide, for the first time, a transparent ‘uncertainty-aware’
framework to detect abrupt decadal-scale transitions in
paleoclimate proxy records while considering dating uncertain-
ties. We compare the transition detection results from speleothem
datasets from the Dongge and Tianmen caves in China, and the
Qunf Cave in Oman with the timings of well-known climatic
events21–23. We detect significant shifts scattered through the
Holocene (Fig. 5a–c) which likely correspond to weak ASM
events reported in an earlier study24 (blue squares in Fig. 5d). The
weak ASM events have been postulated to be synchronous with
ice-rafting episodes in the North Atlantic, known as Bond events
(BEs, green squares in Fig. 5d)24. Our analysis confirms this
hypothesis, allowing for the fact that the timings of the BEs
themselves are still relatively poorly determined23. The BE at 1400
yrs BP potentially has a corresponding event in the Dongge cave
record. However, this is not statistically significant when
accounting for multiple comparisons. Although all the BEs have a
potential corresponding event in the ASM records, the opposite is
not true. We detect events of weakened ASM (ca. 6400–6800
yrs BP) which do not have a corresponding BE, suggesting
additional influencing factors on ASM strength.

Our results further indicate a nontrivial spatial pattern in the
hemispherical propagation of the events: the event at 8200 yrs BP,
for example, is experienced first at Qunf, followed by Dongge, and
then at Tianmen. We note, from Fig. 5, that the weak ASM event
at 4200 yrs BP, well known as the ‘4.2k event’25, is not detected at
Qunf, primarily because the Qunf cave ρXt

� �N
t¼1 time series has
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Fig. 2 Detecting abrupt transitions with communities in networks of recurrence probabilities. The time series of PDFs ρXt
� �N

t¼1 for a synthetically generated
noisy sinusoid (color map in (a)) and its mean (d). Three transitions are imposed: (1) a sudden jump at T= 200, (2) a linear decrease between T= 400
and T= 450, and (3) a change in the PDF to bimodality at T= 675. The probability of recurrence matrix Â in (b), estimated from the densities in (a), shows
the modular structure resulting from the imposed transitions. The recurrence matrix R estimated from the mean time series (e) captures only the first two
transitions. We detect the timing of the transitions by moving a sliding window (white box in (b)) of 100 time points and estimating the p-value (c, f) for a
two-community structure under the null hypothesis of a random network. Statistically significant p-values (plus signs in (a)) are determined at a level α=
0.05, and after accounting for multiple comparisons using Holm’s method with the Dunn–Šidák correction factor (see Methods). In (f), the third transition
is not detected and the first two are much more coarsely dated than in (c)
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large dating uncertainties in the period between 3000 and 5000
yrs BP (Supplementary Note 4). These uncertainties result in large
probabilities of recurrence for all pairs of time points within this
period, such that there are no well-defined community structures
indicative of abrupt transitions (Supplementary Fig. 9). This is
not to say that the Qunf cave did not experience the 4.2k event,
but rather to highlight the fact that: given the time series
uncertainties, it is not possible to claim with statistical confidence
whether or not there was an ASM event at the Qunf cave around
3000–5000 yrs BP. We can thus unambiguously link the detection

of an abrupt ASM transition to the time series uncertainties of the
speleothem proxy record.

Discussion
To summarize, we put forward a new approach to detect abrupt
transitions in time series with uncertainties. Our approach is
based on a novel representation of time series measurements as a
sequence of PDFs ρXt

� �N
t¼1, which marks a shift from knowing

the value of an observable at a given time to knowing how likely
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was the observable to have a chosen value at that time. The PDF
representation helps to assess the impact of uncertainties in time
series estimates. We used the proposed PDF representation to
tackle the question of identifying abrupt transitions mainly by
utilizing the framework of recurrence analysis and estimating a
network of probabilities of recurrence from the PDF sequence.
Community structures in the estimated recurrence networks were
then used as indicators of transitions in the time series.

We apply our approach to identify sudden shifts in three real-
world examples chosen from diverse disciplines, viz., finance,

climatology, and paleoclimatology. The examples from finance
served as a proof of concept of our approach, where we detected
transitions in the stock exchanges from Frankfurt, New York, and
Mumbai corresponding to well-known periods of political and
economic crises. Applying our approach next to SST anomalies
from the Niño 3.4 spatial region in the equatorial Pacific, we were
able to detect abrupt transitions that were then found to be
coincident with periods of phase locking between the Niño 3.4
and PDO indices. This reveals an additional aspect to the mod-
ulation of the ENSO by the PDO. Finally, we applied our method
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interdecadal variability of the transitions themselves. A statistical coincidence analysis reveals that the timings of the detected transitions are significantly
coincident to the timings of phase-locked periods (shown here as green markers in (b, d)) between the PDO and the ENSO. This reveals a further potential
aspect of the modulation of the ENSO by the PDO
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to paleoclimatic proxies of the ASM and were able to validate for
the first time, using an ‘uncertainty-aware’ framework, the
hypothesis that sudden transitions in the ASM paleo-records are
synchronous with the ice-rafting BEs originating in the North
Atlantic.

The importance of considering the type and magnitude of the
uncertainties of an observable in time series analyses cannot be
stressed enough. By virtue of working with probability densities,
we assert that our approach is innately geared to deal with
uncertainties in measured data. This claim is well illustrated in
the example of the Qunf cave record where the well-known ‘4.2k

event’ was not detected, primarily due to the uncertainties in the
initial ρXt

� �N
t¼1 sequence around that time period. By determining

whether or not events ‘show up’ in a transition detection scheme,
these uncertainties crucially influence subsequent inferences
regarding the spatio-temporal propagation patterns of Holocene
cold events—an as yet unanswered question in Holocene paleo-
climatology. Our analysis takes a first step towards solving this
issue, by showing how to incorporate uncertainties in detecting
abrupt ASM transitions, and by helping us to clearly understand
the importance of doing so. With our framework based on
ρXt
� �N

t¼1, we hope to motivate a re-thinking of time series
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Fig. 5 Abrupt transitions in paleoclimatic datasets. We apply our method to three paleoclimatic δ18O proxy records from a Dongge, b Tianmen, and c Qunf
caves in Asia. Statistically significant events (plus signs) show a scatter of events throughout the Holocene, corresponding to periods of weakened ASM
(blue squares in (d)). The weak ASM events are postulated to be synchronous with BEs in the North Atlantic (green squares in (d)), a hypothesis that we
are able to confirm with the results from our transition detection analysis. Barring the BE at 1400 yrs BP, all other BEs have a corresponding weak ASM that
has been detected. At 1400 yrs BP, the Dongge cave record shows a potential dip in the p-value, but which is not statistically significant after accounting for
multiple comparisons. Note that in (a–c), the plus and cross signs, and the horizontal dashed lines denote the same as in Fig. 3
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approaches in terms of probabilities rather than point-like
estimates.

Methods
Datasets. We construct the synthetic dataset by considering 1000 independent
‘nodes’ of dynamics where, at each node, we have a deterministic sinusoid com-
ponent and a normally distributed stochastic component,

xu0 ðtÞ ¼ sinð2πt=50Þ þ 3ξuðtÞ: ð1Þ

Here u = 1, 2, …, 1000 represents the node index, t = 1, 2, …, 1000 denotes time,
and ξuðtÞ � N ð0; 1Þ is Gaussian white noise. This setup can be intuitively
understood as being analogous to spatially gridded data from a region of interest,
where the value of the observable at each grid location can be modeled as being
offset from a local mean state (which is the sinusoid in Eq. 1 in our case) by some
dynamic noise (ξu(t) in Eq. 1). Next, at each location u, we impose three transi-
tions, of which the first two, a sharp transition at T = 200 and a linear change
between T = 400 and T = 450, change the baseline value of the sinusoid equally for
all nodes. The third transition at T = 675, however, changes the baseline differently
for different locations. Half of the nodes have their baseline raised and the other
half have their baseline lowered. Formally, we can write the transitions as

~xu0 ðtÞ ¼

xu0 ðtÞ; 8u; 1 � t � 200

xu0 ðtÞ þ 5; 8u; 201 � t � 400

xu0 ðtÞ þ 45� 0:1t; 8u; 401 � t � 450

xu0 ðtÞ; 8u; 451 � t � 675

10xu0 ðtÞ; 1 � u � 500

�10xu0 ðtÞ; 501 � u � 1000

�
676 � t � 1000

8>>>>>>>><
>>>>>>>>:

; ð2Þ

where ~xu0 ðtÞ is the transition-imposed time series at location u. Finally, in order to
simulate noisy measurements, we take ~xu0 ðtÞ as the mean of a normal distribution
with standard deviation equal to the measurement error 1.5, such that our final
sampled time series xus ðtÞ is: xus ðtÞ � N ~xu0 ðtÞ; 1:5

� �
. The 1000 time series of length

1000 time points each, obtained in this way, are then used to construct the PDF
sequence in the next step.

The daily stock index data for the DAX (code: DAX, 30 companies from the
Frankfurt Stock Exchange), NASDAQ-100 (code: NDX, 100 companies listed on
the NASDAQ), and S&P BSE SENSEX (code: BSESN, 30 companies from the
Bombay Stock Exchange) stock indices are obtained from http://finance.yahoo.
com/ with their appropriate codes under the section ‘Historical Prices’. Google
trends data (Fig. 3d) were obtained from https://www.google.com/trends/ for the
search queries: ‘mortgage crisis’, ‘Eurozone crisis’, ‘Brexit’, and ‘Grexit’ on 2 June
2016. The data were then normalized using a min–max transform such that they
fall in the interval [0,1].

The monthly SST anomalies were obtained from the gridded SST data product
Merged Hadley-NOAA/OI Sea Surface Temperature & Sea-Ice Concentration
released by National Centers for Environmental Prediction26, and available for free
download at: http://www.esrl.noaa.gov/psd/data/gridded/data.noaa.oisst.v2.html.
The Niño 3.4 region was extracted from the global data as those grid points falling
within 5°N–5°S and 120°W–120°W. Anomalies were calculated with reference to
the average climatology of the period: 1 January 1950 to 31 December 1979. The
Niño 3.4 index data (Fig. 4b, d) was obtained from http://www.cpc.ncep.noaa.gov/
data/indices/. The NCEI PDO index series (Supplementary Figs. 5 and 7) was
obtained from https://www.ncdc.noaa.gov/teleconnections/pdo/.

The paleoclimate datasets for the Dongge24, Tianmen27, and Qunf28 caves were
obtained from the NOAA National Centers for Environmental Information
(formerly the National Climatic Data Center). They are available for free download
at: https://www.ncdc.noaa.gov/data-access/paleoclimatology-data.

Constructing ρXt
� �N

t¼1 from measurements. In the case of the synthetic example,
for a given time slice T = t, we consider the values xus ðtÞ j u ¼ 1; 2; ¼ ; 1000

� �
as

the given set of measurements for that time instant and then obtain a kernel
density estimate (using the Python scientific computing package SciPy) which
yields an estimate of the PDFs ρXt for that time instant t.

For the financial datasetes, we use the reported intra-day high xhi(t) and intra-
day low xlo(t) values of the stock indices on a given day, and we postulate that,
without any further information about the intra-day variations of the stock indices,
the observed stock index values are noisy measurements of the underlying correct
value of the index, which we assume to lie with equal probability anywhere inside
the interval between xlo(t) and xhi(t). This results in the PDF sequence ρXt ðxÞ ¼
xhi � xloð Þ�1 for x 2 xlo;xhi½ �, and 0 otherwise.
In the SST dataset, for a given month in the SST data for the Niño 3.4 region,

we take the spatially distributed SST anomaly values for that month and apply a
kernel density estimation using an optimal bandwidth for Gaussian kernels with
the Python toolkit Scikit-learn29. This results in an empirically estimated ρXt

� �N
t¼1

sequence constructed from the spatial distribution of SST values in a given month.
In the paleoclimate datasets, using the obtained proxy-depth and age-depth

data, we estimate the posterior probability of the paleoclimatic proxy at a chosen
time instant of the past using a Bayesian approach reported in an earlier study30. In

this approach, we consider the proxy, radiometric age, calendar age, and depth as
the random variables X, R, T, and Z, respectively. In these terms, our quantity of
interest is the probability ρðx j tÞ, which for a speleothem dated with U/Th
radiometric dates can be shown to be approximated by the Riemann sum

ρðx j tÞ �

PM
j¼1

bj wtðzxj Þ ρðx j zxj Þ

PM
j¼1

bj wtðzxj Þ
ð3Þ

where zxj ; j ¼ 1; 2; ¼ ;M denotes the M depth values at which the proxy
measurements are made, and where bj is the width of the depth interval
corresponding to zxj :

bj ¼ 1
2

zx2 � zx1 j ¼ 1

zxjþ1 � zxj�1 1<j<M

zxM � zxM�1 j ¼ M

8><
>: : ð4Þ

The weight term wtðzxj Þ in Eq. 3 encodes our beliefs as to how likely a chosen depth
zxj is given the calendar age T = t, i.e., wtðzxj Þ ¼

R
ρðr j tÞ ρðr j zxj Þ dr. Thus, the

probability that the proxy X = x at a chosen time T = t is expressed in terms of
estimable or measured quantities. For the application to the paleoclimate
datasets in this study, we take a regular time grid at 5-year intervals starting
(ending) at the minimum (maximum) age measurement. We refer to the paper
by Goswami et al. 30 for a more detailed discussion. For the current analysis, we
use ρXt ðxÞ :¼ ρðx j tÞ from Eq. 3.

Network of recurrence probabilities. We use the framework of recurrence ana-
lysis to analyze the chosen datasets. Typically, this is based on the construction of
a recurrence matrix R whose elements Rij are either 1 if the state X recurred
(within an ε-neighborhood) at times i and j, or 0 otherwise11. The recurrence
matrix R can be used to classify and investigate various classes of complex
dynamics. More recently, R has been shown to be interpretable as the adjacency
matrix A = R − 1 of a complex network, called the recurrence network (RN), where
the nodes are the time points of the observations and edges are placed between
those pairs of time points which recur within an ε-neighborhood12. Here, 1 is the
identity matrix of the same size as R, which is subtracted from R to give an
adjacency matrix A without self-loops.

In our case, since we consider time series with uncertainties, it is not possible to
give a precise answer to the question whether time points i and j recurred, in the
sense that we cannot answer this question with a 1 or a 0 as in a traditional
recurrence analysis. We estimate instead the probability that i and j recurred in a
chosen ε-neighborhood. A further point of difference with traditional recurrence
analysis is that, till date, there does not exist any meaningful way to ‘embed’ a time
series of probability densities, and we thus estimate the recurrence probabilities in
the following without embedding our data. Therefore, from here on, we use the
simple scalar difference between the observable at times i and j as our distance
metric in order to define a ‘recurrence’. For the sake of clarity, we define as Xi and
Xj the random variables describing the observable at time points i and j
respectively, and Zij :¼ Xi � Xj as the random variable describing the difference of
the observable at i and j. The probability of recurrence QijðεÞ :¼ Prob Zij

�� �� � ε
� �

(where | ⋅ | denotes the absolute value) is

QijðεÞ ¼
Z þ1

�1
ρXi ðxiÞ

Z xiþε

xi�ε
ρXjjiðxj j xiÞ dxi dxj ¼

Z þ1

�1

Z xiþε

xi�ε
ρXij ðxi; xjÞ dxi dxj;

ð5Þ

where the joint probability density ρXij ðxi; xjÞ is not provided and is also not
uniquely estimable from the marginal densities ρXi ðxiÞ and ρXj ðxjÞ alone. To
overcome this limitation we use the results from an earlier study by Williamson
and Down 31 who show how upper and lower bounds on the cumulative
distribution function (CDF) of Xi − Xj can be derived using only the marginal CDFs
for Xi and Xj, denoted here as PX

i and PX
j respectively. In the following, we thus first

describe the probability of recurrence Qij(ε) in terms of the CDF of Zij = Xi − Xj and
then use the bounds given by Williamson and Down 31 to derive precise bounds for
Qij(ε) itself.

The probability of recurrence Qij(ε) can be seen as the total probability that
Zij = Xi − Xj falls in the interval [−ε, ε],

QijðεÞ ¼ Prob Zij

�� �� � ε
� � ¼ Prob Zij � ε

� �� Prob Zij � �ε
� �

; ð6Þ

which implies

QijðεÞ ¼ PZ
ij ðεÞ � PZ

ij ð�εÞ; ð7Þ

where PZ
ij zij
� �

:¼ Prob Zij � zij
� �

is the CDF of Zij, and zij ∈ (−∞, ∞).
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The upper bound Mij and the lower bound mij for the CDF PZ
ij zij
� �8zij is

obtained using the results from Williamson and Down 31 as,

Mij zij
� � ¼ min inf

v
fij v; zij
� �

; 0
n o

þ 1; and ð8Þ

mij zij
� � ¼ max sup

v
fij v; zij
� �

; 0

� �
; ð9Þ

where fij(v, zij) = Pix(v) − Pjx(v − zij). These bounds ensure that, for all values of Zij =
zij, PZ

ij ðzijÞ 2 ½mijðzijÞ;MijðzijÞ� � ½0; 1�. Using these bounds and combining them
with Eq. 7, we find that the upper bound quij ϵð Þ and the lower bound qlij ϵð Þ for the
probability of recurrence Qij(ε) can be written as,

quijðεÞ ¼ min MijðεÞ �mijð�εÞ; 1� �
; and ð10Þ

qlijðεÞ ¼ max mijðεÞ �Mijð�εÞ; 0� �
: ð11Þ

Given a recurrence threshold ε, the bounds quij(ε) and qlij(ε) constrain the
probability of recurrence Qij(ε) such that Qij(ε) ∈ [qlij(ε), quij(ε)]⊆ [0, 1]. We drop ε
in the following for notational clarity and with the understanding that ε is fixed.

First, we assume the probability Qij itself to be a random variable distributed in
the obtained interval [qlij , q

u
ij], but in a way unknown to us, and define the PDF

within these bounds as ρQij ðqijÞ. Next, assuming A to be the true but not estimable
adjacency matrix of the system’s recurrence network, we write down the probability
of having a link between i and j as

Prob Aij ¼ 1
� � ¼ Z quij

qlij

ρAjQij Aij ¼ 1qij
� �

ρQij ðqijÞ dqij ¼
Z quij

qlij

qij ρ
Q
ij ðqijÞ dqij ¼ EρQij

½Qij�;

ð12Þ

where we use the notation ρAjQij ðAij ¼ 1 j qijÞ to denote the probability that Aij = 1
given Qij = qij and use the result that ρAjQij ðAij ¼ 1 j qijÞ ¼ qij . The final result of Eq.
12 shows how the total probability that Aij equals 1 is simply the expectation of Qij

evaluated with respect to ρQij ðqijÞ.
Assuming that Qij is distributed symmetrically around the mean in the interval

[qlij , q
u
ij], the total probability that the observable at i and j (from Eq. 12) is

ProbðAij ¼ 1Þ ¼ EρQij
½Qij� ¼

qlij þ quij
2

; ð13Þ

which allows us to define an estimator Â of the probabilities of recurrence of the
observable X and interpret it as the adjacency matrix of a network whose nodes are
the time points of observation and whose edge weights are defined as

ÂijðεÞ :¼
1
2 qlijðεÞ þ quijðεÞ
	 


i≠ j;

0 i ¼ j

 
: ð14Þ

Here, we put Âii ¼ 0 to avoid self-loops in the network. The elements of Âij encode
the total probability that time points i and j have recurred within an ε-
neighborhood, taking into account the uncertainties in the dataset.

In order to estimate the networks of recurrence probabilities for the
applications, we use a bisection routine to arrive at a suitable ε threshold which
results in a pre-specified link density of the RN. The link densities chosen are: (1)
synthetic example, 30%, (2) financial datasets, 24%, (3) SST dataset, 25%, and (4)
paleoclimatic datasets, 30%.

Detecting abrupt transitions using recurrence network community structure.
Block-like structures in recurrence plots have been suggested to encode the
occurrence of an abrupt transition in the dynamics of the observable under con-
sideration32. In the RN framework, such structures correspond to communities,
defined in the sense of Newman17 as those parts of a network which have a higher
link density within themselves than to the rest of the network. RN communities
represent a time period in which the states of the system are closer to each other
than to the rest and thus, they correspond to stable regimes of dynamics and their
borders are the time points at which the system transited between regimes.
However, as our interest is confined solely to the question of the existence of an
abrupt transition at the midpoint of the time period under consideration, we do not
need to do a typical ‘community detection’ by taking into account all possible
partitions of the network. Rather, for our purposes it suffices to move a sliding
window over the dataset (Fig. 2b), and after extracting the portion of Â which falls
within that window, to test whether the two halves of the network (before and after
the midpoint) form two communities that are unlikely to have occurred due to
chance. We use the within-community link fraction S as an indicator of com-
munity structure. We expect those windows with a high value of S to have very low
p-values. A low p-value, obtained at the end of statistical hypothesis testing for the
window under consideration, would imply that we fail to accept the null hypothesis
that the two-community structure observed in that window occurred by chance.

We consider the sliding window at a position k, where it covers the time period
T ∈ [t1, t2], and define the midpoint of the window as

tm ¼ t1 þ t2
2

j k
; ð15Þ

where b�c denotes the greatest integer function, which gives the largest integer less
than or equal to the given function argument. Defining Âk as the portion of the full
adjacency matrix Â which covers the interval [t1, t2], we can estimate the within-
community link fraction sk for the window at k as

sk ¼

Ptm
i; j¼t1

Âk
ij þ

Pt2
i;j¼tm

Âk
ij

Pt2
i; j¼t1

Âk
ij

: ð16Þ

The extent to which the value of S obtained from the data in a particular
window ð:¼ skobsÞ is governed by a dynamical transition and not by randomness is
quantified using the p-value ð:¼ pskobs Þ of a statistical test with the null hypothesis
H0: S is determined by the degree sequence of the given network. Here, the term
degree sequence denotes the sequence of the total weight of links for each node. To
simulate this null hypothesis, we use the Python Igraph module which allows us to
generate random networks with a prescribed degree sequence. In each window k,
we generate 1000 such random surrogate networks and obtain an ensemble sksur of
values of S, from which we can estimate pskobs using the percentile of skobs in the
distribution Sksur,

pskobs ¼ 1� FSk
surðskobsÞ
100

; ð17Þ

where FSk
surð�Þ is a percentile function, which returns the percentile of the given

argument within the distribution of the 1000 sksur values generated in the previous
step. Here, we assume that 1000 is a sufficient number of random realizations for
the following approximation to hold:

PSk
nullðskÞ �

FSk
surðskÞ
100

; ð18Þ

where PSk
null is the CDF of the within-community link fraction Sk corresponding to

the null hypothesis. Finally, to estimate the statistically significant windows for a
chosen confidence level α, we apply the Holm’s method to correct for multiple
comparisons33 along with the Dunn–Šidák correction factor34 (Figs. 2, 3 and 4).

The sizes of the sliding window were different for the different applications:
synthetic example, 100 time points; financial datasets, 60 time points
(approximately 2 months); SST data, 30 time points (2.5 years); and paleoclimatic
datasets, 100 time points (500 years). The confidence level alpha was set at α = 0.05
for all tests.

Coincidence analysis of the ENSO transitions. Here, we define phases for the
Niño 3.4 index and the PDO index (Methods: Datasets) in the sense of Maraun and
Kurths35. In this approach, a low-pass forward–backward Butterworth filter is
applied on the index time series fytgNt¼1 such that all frequencies higher than 1

12
months−1 are removed. The filtered time series ~yt is then used to obtain the
instantaneous phase ϕt (Supplementary Fig. 7),

ϕt ¼ arctan
Hð~ytÞ
~yt

� �
ð19Þ

where H(⋅) denotes the Hilbert transform. The time derivative dðΔϕt Þ
dt of the

instantaneous phase difference Δϕt ¼ ϕPDO
t � ϕENSO

t helps to identify periods of
‘phase locking’ where Δϕt ≈ 0 (Supplementary Fig. 8a). We consider the two index
time series, representing ENSO and PDO respectively, to be phase locked when
dðΔϕt Þ

dt falls between the 25th and 75th percentile of all dðΔϕt Þ
dt values (Supplementary

Fig. 8b). Next, we test whether the phase-locked time periods are significantly
coincident with the abrupt transitions detected using our current method on the
PDF series of SST anomalies from the Niño 3.4 region.

We consider a detected transition to be coincident if it occurs within 31 days of
a time point of phase locking. In total, 216 such coincidences are identified. To test
whether this could occur simply by chance, we randomize the timings of the
detected transitions 50,000 times and compute the number of coincidences each
time. This results in a null distribution of coincidences occurring purely by chance
(Supplementary Fig. 8c). At a significance level of 5%, we find that the observed
number of coincidences is significantly higher than that possible by pure random
chance, which validates the hypothesis that the detected abrupt transitions in the
Niño 3.4 region are significantly coincident with periods of phase locking between
the PDO and the ENSO.

Code availability. All numerical computation required to implement the ideas
presented in this study have been coded in Python 2. All necessary codes are
available on request from the corresponding author.
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Data availability. We have used previously released, freely available datasets in our
study. The various data sources have been listed in Methods, Datasets. In case of
any difficulty in obtaining the datasets mentioned above, the corresponding author
can provide the data used upon request.
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