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Abstract—Image segmentation plays a crucial role in many image processing and understanding 
applications. Despite the huge number of proposed image segmentation techniques, accurate 
segmentation remains a significant challenge in image analysis. This paper investigates the viability of 
using Echo State Network (ESN), a biologically inspired recurrent neural network, as features 
extractor for efficient colour image segmentation. First, an ensemble of initial pixel features is 
extracted from the original images and injected into the echo state network reservoir. Secondly, the 
internal activations of the reservoir neurons are used as new pixel features. Thirdly, the new features 
are classified using a feed forward neural network as a readout layer for the echo state network.  The 
quality of the pixel features produced by the ESN is evaluated through extensive series of experiments 
conducted on real world image datasets.  The optimal operating range of different ESN setup 
parameters for producing competitive quality features is identified. The performance of the proposed 
ESN based framework is also evaluated on a domain-specific application, namely blood vessel 
segmentation in retinal images where experiments are conducted on the widely used DRIVE (Digital 
Retinal Images for Vessel Extraction) dataset. The obtained results demonstrate that the proposed 
method outperforms state-of-the-art general segmentation techniques in terms of performance with 
an F-score of 0.92 ± 0.003 on the SED (Segmentation Evaluation Dataset) dataset. Also, the proposed 
method achieves a comparable segmentation accuracy (0.9470) comparing with reported techniques of 
segmentation of blood vessels in images of retina and outperform them in terms of processing time. 
The average time required by our technique to segment one retinal image from DRIVE dataset is 8 
seconds.  Furthermore, empirically derived guidelines are proposed for adequately setting the ESN 
parameters for effective colour image segmentation.   

Keywords—echo state network; colour image segmentation; blood vessel segmentation; retinal images; 
feature extraction; pixel classification. 

1. INTRODUCTION 
Image segmentation consists of splitting an image into several disjoint regions which contain similar pixel 
features. Image segmentation is a crucial step in image understanding and analysis systems. Recently, many 



segmentation techniques have been reported in literatures 1–4, yet accurate image segmentation remains one 
of the important challenges in image analysis. That is mainly due to the similarities between different 
objects intensities, presence of noise and poor contrast.  
In recent years, a new paradigm of recurrent neural networks, namely reservoir computing (RC), has been 
proposed. Its main purpose is to facilitate the task of recurrent neural networks training 5,6.  It has two 
models: the echo state network (ESN) proposed by Herbert Jaeger 7 and the liquid state machine (LSM) 
proposed by Maass et al. 8. The ESN model is composed of a large randomly generated untrained recurrent 
network of rate-based neurons and a readout layer. The latter represents the only trained part of the ESN.  
Linear regression algorithms are usually used to train the ESN readout layer. The LSM has a similar 
structure as the ESN model, however, it is based on spiking neuron models instead of rate-based neurons. 
Distinguished by the simplicity of its nodes and the ease of its training, the ESN has been used in many 
engineering applications 9–13. Despite its simple architecture and ease of implementation, ESN configuration 
requires some practice and insight to obtain a good performance in many applications 14. Several studies 
have been carried out to explore the ESN parameters and evaluate their performance in many engineering 
tasks 15–17. However, in spite of the application of ESN to image segmentation in previous works 12,13, to the 
best of our knowledge, a thorough investigation of its applicability to colour image segmentation is still 
lacking. In addition, most of the applications based on ESN process a temporal data 18,19. In fact, the main 
area of ESN success lies in the time series prediction 9,20,21. However, in this work the ESN is used as a 
feature extractor which transforms input features into a new space where the newly extracted features 
become more easily separable.  
In this work, we explore the viability of the ESN framework for colour image segmentation.  First, we 
extract an ensemble of pixel features from the image to be used as an input to our framework. Then, initial 
features are injected into the ESN reservoir. The reservoir acts as image feature extractor where the new 
features are represented by the reservoir internal nodes activations. Later, a simple feedforward neural 
network is used as a readout layer of the ESN to classify these new features. Extensive series of experiments 
on several real world image datasets have been conducted to thoroughly explore the ESN parameters and to 
examine the quality of image features extracted by the ESN reservoir.  As a result, the operating ranges of 
the ESN parameters for obtaining high quality colour image segmentation are then identified. Other series of 
experiments have also been conducted so as to evaluate the proposed ESN based framework in domain-
specific image segmentation, namely segmentation of blood vessels in retinal images. This kind of 
segmentation has a significant role in automatic detection of some retinal diseases like Arteriosclerotic 
Retinopathy, Diabetic Retinopathy (DR) and Hypertensive Retinopathy 22. Objective segmentation 
evaluation is used to assess the segmentation quality of the proposed ESN based framework. Resulting 
segmentations are compared against the corresponding expert manual counterparts where several evaluation 
metrics are used to compute the segmentation performance. The obtained results demonstrate the 
effectiveness of the proposed framework for the segmentation of colour images.  Another finding in this 
study is that the use of only a small subset of randomly selected neurons from the ESN reservoir outputs 
proved sufficient to produce good quality image features which result in accurate segmentation. 

The remainder of the paper is organized as follows. A review of related literature is presented in section 2.  
Section 3 presents the ESN model.  Section 4 explains the application of the proposed framework to the 
segmentation of colour images. Section 5 presents the experimental setup and describes the image datasets 
as well as the utilised simple image features, the evaluation metrics and the ESN framework setup. Section 6 
reports and discusses the obtained results. Finally, conclusions are drawn in section 7. 

2. RELATED WORK 
In this section, we review existing relevant work and discuss different categories of image segmentation 
techniques. In addition, since we have chosen the blood vessel segmentation in retinal images as a case 
study, a review of relevant supervised techniques used in this vital domain-specific image segmentation is 
presented. 

Lately, the ESN has been used as features extractors for classification and clustering tasks in several works. 
Most of them treated time signals like time series and EEG signals. In 23, authors have used ESN to 
discriminate positive and negative human emotions through the brain activities of multiple subjects. First, 



the initial vector of features extracted from EEG signals is mapped into the ESN reservoir. Then, the 
activations of the reservoir nodes are used as a new set of features. The authors have tried to extract the 
dominant features from different combinations of reservoir nodes. The final features are classified using 
several classifiers such as fuzzy C-means, K-means, K-Nearest Neighbours, Linear Discriminant Analysis, 
Support Vector Machines, Naïve Bayes and Decision Tree. In 24, Sun et al. proposed a method named FE-
ESN (Feature Extraction Based On Echo State Network ). They have used an ESN as an autoencoder to 
realize a fully data-driven EEG feature extraction from multivariate EEG signals. The Echo State 
Network (ESN) mapped the EEG signals into a set of features represented by the states of the ESN reservoir 
nodes and then decoded them to recover the original EEG signals. The activations of the ESN nodes, which 
were used as a hidden layer of the autoencoder, are now used as new features for classification and 
clustering tasks.  Experiments on real-world EEG datasets have been conducted where the 
authors demonstrated the effectiveness of FE-ESN comparing with the state-of-the-art techniques. In 25, 
authors used an ML-ESN-RAE (Multi-Layer Echo State Network Recurrent Auto Encoder ) for features 
extraction. In the proposed technique the capabilities of the ESN and those of the AE are mixed in an ESN-
RAE framework to obtain efficient feature extraction. The newly obtained features lead to an increase in the 
classification accuracy achieved when solely using the original basic features. Most works based on ESN 
have treated temporal tasks like time series and EEG signals classification. The main area of ESN success is 
the time series prediction and classification. However, in this work the ESN is used for colour images 
segmentation which is a static problem.  

Image segmentation techniques can be divided into six classes: segmentation based on thresholding, 
segmentation based on regions, segmentation based on edges, segmentation based on clustering, 
segmentation based on graphs and segmentation based on classification of pixels: 
Thresholding based segmentation is a one of the most popular image segmentation techniques and is based 
on image binarization using a threshold, hence their name 26. Usually these techniques consist of three steps. 
First, the image histogram is computed. Secondly, the histogram is analysed to extract the different modes 
and identify their valleys. Finally, appropriate thresholds are then applied to the image according to the 
identified valleys. Thresholding based segmentation techniques are relatively simple, however, in the case of 
images with unimodal or nearly unimodal histograms, they do not work well. Also, these techniques are not 
robust to noise. The presence of noisy peaks causes the appearance of fake modes which result in producing 
many ambiguous regions. In addition, thresholding is not a trivial task particularly in the case of colour 
images having a multidimensional space 27.  

Region-based segmentation consists of separating an image into homogeneous regions where each region 
pixels are considered similar according to a predefined homogeneity criterion. Region splitting and merging 
and region growing are two common types of image segmentation based on regions. The major advantages 
of region-based segmentation techniques lie in their simplicity and their robustness to noise. However, they 
remain computationally excessive and often produce unclear objects boundaries 28,29. 

Edge based segmentation techniques consist of detecting discontinuities between different image regions. 
The discontinuities or edges are the pixels corresponding to an intensity or texture abrupt change. Edge 
detection techniques suffer from high sensitivity to noise which results in detection of some fake edges and 
miss of some true ones 30.  

Clustering based image segmentation is the process of separating the image pixels into different groups 
called clusters.  This process takes into account two properties, the similarity between pixels of the same 
cluster and the dissimilarity between pixels belonging to different clusters. The most common algorithms of 
clustering are k-means 31 and fuzzy C-means 32. While being simple to implement, techniques of clustering 
require a long processing time. In addition, the number of clusters in the image must be known in advance. 
The Mean Shift algorithm 33 is also a known clustering technique where pixels spatial coordinates (spatial 
domain) and features values (range domain) are considered together.  For each pixel, the Mean Shift 
algorithm finds a stationary point by defining a window around the pixel, computing the mean of the pixels 
of this window, shifting its centre to the computed mean and repeating these steps until finding the 
stationary point that corresponds to the centre and the mean of pixels of the same window. All pixels 



corresponding to the same stationary point form a region. In this technique the prior knowledge of the 
clusters number is not required. Also, this technique uses a few parameters only. However, it requires a 
model of the data distribution and the resulting segmentation depends on the window size. 

Graph based image segmentation is based on two steps. Firstly, building a graph out of the image. Each 
pixel is considered as a vertex and its neighbouring pixels are linked by an edge weighted by the distance 
between their features also called affinity or dissimilarity. Secondly, splitting this graph into sub-graphs by 
minimizing a cost associated with the cut. A lot of methods have been proposed in this category of 
segmentation. They differ in the employed similarity measures, the cut cost functions and the optimization 
techniques 34,35. The minimum cut criterion 34 favours cutting small groups of isolated nodes due to the low 
cut cost achieved by the partition of such nodes. In 35, a new graph based image segmentation called 
‘’Normalized Cuts’’ was proposed. It considers the total dissimilarity between the different sub-graphs and 
the total similarity within the sub-graphs. Generally, the graph based techniques are computationally 
complex.  
Pixel classification based segmentation approaches the segmentation of an image as a problem of 
classification where a classifier is used to accord a label to each pixel according to its features (e.g. intensity 
and texture). The same label (i.e. the class or the group to which the pixel belongs) will be assigned to pixels 
having similar features. A region in the resulting segmentation is the ensemble of connected pixels assigned 
to the same class. Usually pixel classification uses supervised techniques which require training of a 
classifier on a subset of the image pixels. The rest of image pixels unseen during the training phase is then 
classified using the trained classifier. It is also possible to train a classifier using a group of training images 
then use the trained classifier for segmenting new unseen images. A good example of the latter case is 
medical imaging such as segmentation of blood vessels in images of the retina where each pixel is assigned 
to vessel or non-vessel (background) classes. Image segmentation by supervised techniques based pixel 
classification often results in good segmentation performance. Nevertheless, these techniques involve a 
training time and the results may depend on the classifier parameters initialisation, e.g. initial weights of a 
neural network. 

Numerous blood vessel segmentation supervised techniques have been proposed. Recent surveys of those 
techniques can be found in 36,37. In this work, we review the most common techniques that are relevant to 
our approach. Niemeijer et al. 38 used a vector of 31 pixel features. It consists of the Gaussian and its first 
and second derivatives at 5 different scales, then they used a K-nearest neighbour (KNN) technique to 
classify pixels into vessel and background classes. The main disadvantage of this technique is that it 
produces false classification of the pixels that belong to thin vessels and those which are located around the 
optic disc. Staal et al. 39 assumed that vessels have elongated structure and proposed a ridge-based vessel 
detection technique which computes 27 features for each pixel. They used a sequential forward selection 
method to select features with the best class separability and used k-NN to classify them. The limitations of 
this technique are the classification of the central part of the vessel as background, and the low accuracy in 
case of pathological images. In 40 Soares et al. used a Gaussian Mixture Model (GMM) Bayesian classifier 
to assign each pixel to a vessel or background classes. The pixel features were extracted using the Gabor 
wavelet transform which performs a multi-scale analysis of the image with different scales and orientations. 
The technique achieves a good segmentation performance. However, it results in low segmentation accuracy 
for the images with non-uniform illumination where false detections are produced in the pixels of the optic 
disc area and pixels corresponding to haemorrhages and pathologies that engender high similarity between 
vessel and background pixels. Marin et al. 41 built a vector of 7 features by combining moment-invariant 
with gray-level features. They used a multilayer feedforward neural network for classification. This 
technique resulted in a good segmentation performance on multiple image datasets even if the used classifier 
is trained on only one dataset. However, the processing time of one image is relatively high, due to the 
numerous pre-processing operations needed before feature extraction. Fraz et al. 42 applied a decision trees 
ensemble for training and classifying pixels. Features are extracted based on gradient operator, Gabor filter, 
line strength calculations and mathematical morphology operators. Random forest is a widely used classifier 
in many engineering applications 43. In 44, it has been used to classify a large pool of features containing 
heterogeneous context-aware features namely Weber’s local descriptors and stroke width transform, in 



addition to other classical local features such as intensity based features, vesselness and Gabor based 
features. The segmentation performance of this technique is comparable with other state-of-the-art 
techniques. However, the computation of such large number of features is time consuming. Deep learning 
techniques have been widely employed in the field of Machine Learning 45, 46. Several techniques of blood 
vessel segmentation in retinal images based on deep learning have been proposed in literature 22, 47, 48. 
Usually, these techniques result in an accurate segmentation. However, they require a large amount of 
training samples. Also, the required time to segment one image using these techniques is relatively long. 

The present work extends two previous works by the authors 49,50. In 49, the study of the effect of ESN 
parameters on colour image segmentation performance was limited to a reduced set of the ESN reservoir 
parameters only, which are the density of connectivity between reservoir nodes, the spectral radius and the 
reservoir size. However, this new work further extends the study of the influence of other parameters on the 
quality of the segmentation by including: the effect of the selected colour space, the order in which inputs 
are selected, the input scaling and the number of selected nodes from the ESN reservoir (See section 6.1). 
Furthermore, while the previous study 49 used only one dataset namely the SSDS dataset 51, in the present 
work we have conducted a wide range of experiments using popular datasets like the SED 52 and the DRIVE 
39datasets. In 50, the ESN based framework has been applied for segmenting blood vessels in retinal images 
using the DRIVE dataset where 13 pixel features were used (the RGB chromatic values, the mean, the 
standard deviation, the magnitude and angle gradients in addition to six Gabor features). However, in this 
study we limit the set of features to the first seven simple features where the Gabor features are discarded. 
Moreover, we propose the use of the HSV colour space instead of RGB. As shown in section 6.1.1, this 
colour space exhibits the best segmentation performance for the DRIVE dataset. These introduced changes 
result in improvements of segmentation performance in terms of accuracy and processing time.   

Despite the existence of numerous segmentation techniques, accurate image segmentation remains a 
challenge. Furthermore, most of the reported techniques in blood vessel segmentation in retinal images 
suffer from long computational time. That is usually due to the large number of extracted features and the 
applied series of pre- and post-processing operations. The proposed pixel classification-based segmentation 
technique using ESN framework uses only a few simple pixel features. We demonstrate that the proposed 
method can outperform state-of-the-art general segmentation techniques in terms of performance. Also, it 
can achieve a comparable segmentation accuracy compared with reported techniques of segmentation of 
blood vessels in images of retina and outperform them in terms of processing time.  The next section 
introduces the ESN model and discusses its parameters. 

3. ECHO STATE NETWORK – BACKGOUND 
The structure of a generic ESN, as described in 7, is shown in Fig. 1. It involves three layers: the input layer , 
the internal layer (often called dynamic reservoir) and the output layer (usually called readout layer). 
Random synaptic input connections Win connect the input layer to the ESN dynamic reservoir neurons. The 
ESN reservoir contains a large amount of neurons N. Randomly weighted connections Wint sparsely connect 
the reservoir nodes. The readout layer consists of L output neurons and is connected to the reservoir nodes 
through weighted output connections denoted by Wout.   Table I summarizes the notations used throughout 
the paper. 

 

 

 

 

Fig. 1. Architecture of a generic echo state network 

The ESN dynamics are controlled by the following two equations:  

x (n + 1) = f (Wint× x(n) + Win × u(n+1))  (1) 

Win Wint Wout 

Output layer Internal layer 
Input layer 



y (n+1) = g(Wout  x(n+1))    (2) 
 

Where x(n) and x(n+1) are, respectively, the reservoir states at time steps n and n+1. y(n+1) is the output of 
the ESN at time step n+1. The parameters f and g represent the activation functions of the reservoir neurons 
(usually a hyperbolic tangent, or any other sigmoidal function) and the output nodes (typically a linear 
function), respectively. u(n+1) = {uj(n+1) : j = 1, ..., K}) is the input data at time step n+1. Win, Wint and 
Wout are, respectively, the matrices of weights for input nodes, reservoir nodes and output nodes. The sizes 
of Win, Wint and Wout are KxN, NxN and NxL, respectively. K, N and L are the number of nodes in the input 
layer, the reservoir and the output layer, respectively. 
As mentioned early in the introduction, the ESN is distinguished mainly by its simple training procedure.  
The ESN training applies only to the reservoir-to-output connection weights Wout, whereas the weight 
matrices of the input and the reservoir, Win and Wint, are randomly initialized and are then kept fixed. After 
feeding all the training input data to the ESN and computing the corresponding reservoir outputs, Wout is 
modified using the minimisation of the mean squared error (MSE) between the current (Y) and the target 
(Yd) outputs: 

Wout=argw(min‖𝑌 − 𝑌$‖2)     (3) 
Where the symbol ‖	. ‖	indicates the Euclidean norm. Using linear regression, the readout weights matrix is 
given by 7:  

Wout= (XTX)-1XTYd     (4) 
Where X is the matrix accumulating reservoir states, XT the transpose of X and (XTX)-1is the inverse of the 
matrix (XTX). However, in the present work, instead of using a single output layer, a multi-layer perceptron 
(MLP) is used as a readout layer to classify the data collected from the reservoir states. In 5, Lukosevicius et 
al. report that the use of MLP as a readout layer of RC is theoretically more powerful in mappings from the 
reservoir state x(n) to the ESN output y(n) and appropriate for nonlinear outputs. In fact, Using MLP as RC 
readout layer dates back to the first appearance of LSM 8. 
The process of feeding of the input data u(n) into the ESN and updating of the reservoir internal state x(n) 
can be regarded as a projection of the input data (u(n)) into a higher dimensional space (x(n)). Usually, the 
original input data is not linearly separable.  However, it is highly possible that the new data x(n) can be 
easily separated if the reservoir parameters are tuned properly 14. Therefore, the ESN performance is 
strongly affected by the configuration of the reservoir parameters. The following parameters of the ESN 
reservoir are studied in this paper: 
a. Neuron connectivity: This parameter defines the density of connection between the reservoir nodes. It is 
expressed by the non-zero elements distribution in Wint. A large amount of connections between reservoir 
neurons involves an increase in the number of operations required for calculating the reservoir state. 

b. Reservoir size: Is the number of reservoir nodes. Usually big reservoirs are likely to find a linear 
combination of the signals to approximate the desired signal Yd 14. However, they increase the computational 
complexity. Consequently, in our experiments, we vary the reservoir size starting with smaller reservoirs 
then scaling up to higher dimensions. 

c. Spectral radius: One of the key principles to ensure the applicability of ESN is the exhibition of Echo 
State Property (ESP) introduced by 7. ESP means that the effect of reservoir parameters initialisation 
vanishes after a limited time, i.e. the state of the reservoir depends on the inputs and no longer on the ESN 
initial conditions.  The spectral radius is a commonly used indicator of the ESP 16. It is defined by the 
maximum absolute value of eigen values |λmax| of the matrix of the reservoir weights Wint 17. Usually the ESP 
is ensured by setting the radius to a value less than one. However, this common practice does not always 
succeed 17. Therefore, an exploration of the operating range of these parameters is required.   
In this study, the above-mentioned three parameters are explored and their effect on the segmentation 
performance is thoroughly investigated. The details of such investigation are presented in section 6.1.5. 

4. THE PROPOSED ESN-BASED COLOUR IMAGE SEGMENTATION APPROACH 
In the present work, the segmentation based on the proposed framework is regarded as a problem of pixel 
classification. Each pixel is assigned to a class according to its features. First, an ensemble of initial features 



is extracted from the original images. These initial features are then fed into the ESN whose reservoir 
outputs are considered as new features of the pixels. Finally, using the labels extracted from the ground truth 
images, an MLP is trained to assign a label to each pixel according to its features. As shown in the flowchart 
presented in Fig.2, the steps of colour image segmentation based on the proposed framework are: 

a. Generation of the ESN: an ESN having the ESP is generated as follows: 

- A matrix of the weights of connections between reservoir nodes Wint0 is randomly generated between 
-1 and +1. Wint0 should contain a number of zeros inversely proportional to the density of 
connectivity between the reservoir nodes.  

- Wint0 is normalized to Wint1 : 

  Wint1=Wint0/|λmax|   (5) 

 Where |λmax| is the maximum absolute value of eigen values of the matrix Wint0. 

- Wint1 is scaled to Wint : 

  Wint = α Wint1     (6) 

 Where α is the spectral radius of Wint. Note that the ESP is strongly related to this parameter. A study 
of the influence of the spectral radius on the segmentation performance (along with other reservoir 
parameters such as the reservoir size and the density of connectivity between the reservoir nodes) is 
presented in section 6.1.5. 

- A matrix of weights of the input connections Win is randomly generated between -1 and +1. 

b. Extraction of the initial pixel features: for each pixel of the image, we have extracted five initial basic 
features Ui= {Ri, Gi, Bi, Mi, Si}. Ri, Gi, Bi, are the three channels of the RGB colour space and Mi and Si are 
respectively the average and the standard deviation of the neighbouring pixels within a particular window. 
The window size can be chosen by trial and error. The feature extraction process is explained in more details 
in section 5.2. Note that the idea behind the choice of simple initial pixes features as inputs for our proposed 
framework is to emphasize the ability of the ESN reservoir to extract a new set of good quality image 
features which can achieve a good segmentation performance. 

c. Feeding of inputs into the ESN: Each input Ui is projected onto the ESN reservoir and the corresponding 
reservoir output Xi is computed using eq (1). i.e. a further ensemble of pixels features exhibited by the 
activations of the neurons of the ESN reservoir is generated. For each pixel, the output of the reservoir is a 
vector containing the individual outputs of all the reservoir nodes. So, Xi is a vector of N components where 
N is the reservoir size. 

d. Selection of a subset of neurons from the reservoir: It was found that the use of only a subset of neurons 
from the reservoir is sufficient to obtain good pixel features capable of achieving good segmentation 
performance (see section 6.1.2).  As mentioned in the previous step, each input Ui, corresponding to the 
initial features of a given pixel, is replaced by the corresponding reservoir output Xi. The final features of the 
pixel are X’i which is a vector of M components randomly selected from the N components of Xi. A study of 
the influence of the number of selected neurons from the ESN reservoir on the segmentation performance is 
presented in section 6.1.2.      

e. Generation of a feed forward neural network: An MLP is used as a readout layer of the ESN to classify 
the data instead of using a single output layer. Details on the MLP architecture is delivered in section 5.5. 

f. Training of the MLP: After computing the final features of each pixel of the input image X’I, a sub-set of 
pixels are selected for the MLP training. The expert manual segmentation corresponding to the input image 
is used as a target to train the MLP. During the training phase, the connection weights are updated using the 
Levenberg-Marquardt backpropagation algorithm. Section 5.6 shows further details on the training process.  



g. Test of the framework: The features of the test images pixels are extracted using the same ESN and are 
classified using the already trained MLP. A label is assigned to each pixel. The region in the segmented 
image is the ensemble of connected pixels having the same label.  

 

Fig. 2. The proposed ESN based framework for image segmentation.  
 

5. EXPERIMENTAL SETUP 
In this section, we discuss some choices related to the image segmentation based on the proposed framework 
such as the image datasets, the pixel features and the metrics used to evaluate resulting segmentations. We 
also discuss choices related to the configuration of the reservoir nodes (including their connection pattern, 
their activation functions and their connections with the input and the output layers) as well as the 
configuration of the readout layer and the training process. 

5.1 Benchmark datasets 
In order to study different ESN parameters and evaluate the performance of the image segmentation based on 
the proposed framework, we have conducted a series of experiments on two real world image datasets: the 
Semantic Segmentation Data Set (SSDS) 51 and the Segmentation Evaluation Dataset (SED) 53. In addition, 
the proposed framework is validated on a domain-specific application dataset, namely the Digital Retinal 
Images for Vessel Extraction dataset (DRIVE) 39. 

The SSDS contains 100 images of 321 × 481 pixels selected from Berkeley Segmentation Dataset 
(BSDS500) 54. The SSDS dataset has been created by Li et.al 51 to be used for semantic segmentation. In this 
dataset, the ground truth segmentations of BSDS500, having often 10 to 30 segments, are refined and 
simplified to have only 2 to 8 segments. Sample images, their original ground segmentations from the BSDS 
dataset and the refined ground truth segmentations from the SSDS dataset are presented in Fig.3. 
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Fig. 3. Sample images from the SSDS and the BSDS500 datasets.  
First column : Original images, second and third columns : expert manual segmentations from the SSDS and 

BSDS500 datasets, respectively. 

The SED dataset includes 100 images, each of them contains a single prominent object 53. The aim of the 
segmentation of this dataset images is to separate the background region from the foreground with the latter 
covering the main foreground object as accurately as possible. Examples from this dataset images and their 
corresponding expert manual segmentations are presented in Fig.4. 

 

Fig. 4. Sample images from the SED dataset with their ground truth segmentations. 

The DRIVE dataset contains forty images of retina 39. The dimension of every image is 768x584 pixels with 
a circular field of view (FOV) having a diameter of about 540 pixels. Segmentation of these images aims to 
obtain the tree of blood vessels from the retina. This dataset has been divided into two subsets of twenty 
images each, one for training and the other for testing 39. Fig.5 shows samples from the DRIVE dataset 
images along with their corresponding ground truths.  



 

Fig. 5. Sample images from the DRIVE dataset.  
Upper row: Original image. Lower row: corresponding ground truth 

Unlike the above mentioned two datasets (SSDS and SED) which contain natural scenes with different 
objects in each image, images in this dataset contain the same object (namely the retina). As a result, this 
particular property of this dataset should, in principle, make the training of our proposed framework less 
difficult than in the case of the other two datasets. We have used this dataset in order to further evaluate the 
viability of our ESN parameter design guidelines devised using the other two datasets, and to further 
compare our results with similar supervised techniques of pixel classification based segmentation. 

5.2 Image features 
In this work, a set of simple low level pixel features has been used as input of our proposed framework. 
These initial simple features have been fed into the ESN which extracts a further ensemble of features 
represented by the states of the reservoir nodes. The idea behind the choice of simple features is to 
emphasize the ability of the ESN reservoir to extract a new set of good quality image features which can 
lead to achieving a good segmentation performance. Therefore, in all our experiments conducted on the 
SSDS and SED datasets (which contains natural scenes), we have extracted five features. For each pixel, the 
three R, G and B chromatic features are extracted. Note that the RGB colour space has been chosen after 
conducting several experiments on several colour spaces as shown later in section 6.1.1. In addition, the 
standard deviation and the mean values of each pixel and its adjacent pixels are used. They are computed 
through a window of 11x11 pixels. We have chosen this window size after testing several window sizes 
based on the trial and error principle. However, in our experiments on the DRIVE dataset containing retinal 
images, we have used for each pixel seven features. We have extracted the three HSV colour space 
components as it has been found that this colour space resulted in the best segmentation performance for this 
dataset (see section 6.1.1).  The mean and the standard deviation within windows of 19x19 and 5x5 
neighbouring pixels respectively have been also extracted. Also, these windows sizes are chosen through 
trial and error.  In addition, and due to the complexity of distinguishing between vessel and background 
pixels using only the above-mentioned features, we have also used texture features based on Gradient 
operator. We have extracted the texture features only from the green channel of the RGB colour image 
without any pre-processing. As presented in Fig. 6, The green plane (third column) has been found to exhibit 
the best vessel/background contrast whereas the red (second column) and blue (fourth column) channels 
exhibit some noise 41,44. It is worth noting that even with the use of these additional features, the feature 
vector remains simpler than those usually used by the other blood vessels segmentation techniques. A 
detailed explanation of this point will be presented in the section on results discussion. 
 

 



Fig. 6. Example of the extracted features from the DRIVE dataset images  
From left to right : original image,  red channel, green channel, blue channel, Gradient magnitude and 

gradient direction. 

i. Gradient features 
The gradient of an image is a directional change in the colour or intensity in the image. It can be used to 
detect edges and extract texture features from images. The gradient at each image pixel is a 2D vector 
composed by the derivatives in the vertical and horizontal directions. An image gradient can be computed 
using the following formula: 
 
∇𝑓 = *	+,

+-. = *	/0//2
/0//3.   (7) 

 
Where:/0

/3
 and /0

/2
 are the gradients in the x and y directions, respectively. The most common practice to 

compute the gradient of an image is to calculate the convolution of the image with a kernel, such as 
the Sobel or the Prewitt operators. In our implementations, we have simply used the Prewitt operator which 
is defined as follows: 
 

𝐺3 = 	 5
−1 0 +1
−1 0 +1
−1 0 +1

9 ∗ 𝐼 And 𝐺2 = 	 5
−1 −1 −1
0 0 0
+1 +1 +1

9 ∗ 𝐼  (8) 

 
Where * denotes the operation of 2D convolution and I is the source image. For each pixel of the image, the 
gradient magnitude G and direction	Θ can be obtained by combining the vertical and horizontal gradient 
approximations: 
 
𝐺 = =𝐺3> + 𝐺2>    (9) 
Θ = 𝑎𝑟𝑐𝑡𝑔D𝐺2/𝐺3E   (10) 
 
Fig.6 (fifth column) and Fig.6 (sixth column) show an illustrative example of the gradient magnitude and 
direction respectively for an image from the DRIVE dataset.  
 
Finally, all the used features in this work are normalized between 0 and 1. Note that each extracted feature 
(e.g. mean, standard deviation, …) is normalised separately. 

5.3 Evaluation metrics 
In order to evaluate the segmentation accuracy based on the proposed framework, we have used several 
objective evaluation metrics: 
5.3.1 Accuracy, Specificity and Sensitivity 
For the experiments on the DRIVE dataset, we have evaluated the segmentation performance using the 
accuracy, sensitivity and specificity metrics as they are commonly used in this field. The retinal image 
segmentation has two classes: vessel and non-vessel (background). Four measures are obtained by 
comparing the resulting segmentations with the expert manual segmentations: the true positives (TP) which 
are vessels classified as vessels, false positives (FP) which are non-vessels classified as vessels, true 
negatives (TN) which are the non-vessels classified as non-vessels and the false negatives (FN) which are 
the vessels classified as non-vessels. The accuracy, specificity and sensitivity metrics are then computed 
using the following equations: 
 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑇K + 𝑇L)/(𝑇K + 𝐹K + 𝑇L + 𝐹L)   (11) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 𝑇L/(𝑇L + 𝐹K)     (12) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑇K/(𝑇K + 𝐹L)     (13) 
5.3.2 F-score 
It is defined as follows: 
𝐹 − 𝑠𝑐𝑜𝑟𝑒 = 2 ∗ 𝑃 ∗ 𝑅/(𝑃 + 𝑅)    (14) 



 P and R represent the precision and recall, respectively. The recall is equal to the sensitivity. The precision 
is defined by the following equation: 
 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇K/(𝑇K + 𝐹Z)      (15) 
 
The F-score values range between 0 and 1. The higher the F-score value, the better the segmentation 
performance.  

5.4 ESN Setup   
All the input and the reservoir nodes connection weights are randomly initialised between -1 and +1. 
Hyperbolic tangent function has been used as a function of activation for the reservoir nodes. As we will see 
later, in section 6.1.2, a subset of randomly selected neurons from the ESN reservoir is enough to extract 
good quality features for classification by the readout layer. Therefore, after conducting a number of 
experiments using different numbers of selected nodes from the ESN reservoir, 20 neurons have been 
chosen (see section 6.1.2). Furthermore, the input layer does not have direct connections to the readout 
layer. Also, the readout layer does not have feedback connections to the input layer or to the reservoir.    

5.5 MLP setup 
As described early in this paper, we have used an MLP as readout layer for the proposed ESN based 
framework. According to the principle of trial and error, and after testing several configurations with various 
numbers of layers and various numbers of nodes in each layer, we have adopted an MLP with two hidden 
layers having twenty neurons in each. We have used only one output neuron for the DRIVE dataset having 
only 2 classes. The desired output of this neuron is 0 when the input pixel is part of the background and is 1 
when the input pixel is a vessel. For the SED and the SSDS datasets which have two and from two to eight 
classes respectively, we have used two output neurons.  For the SED dataset, the desired outputs are {-1, -1} 
for the foreground pixels and {1, 1} for the background pixels. For the SSDS dataset, according to the 
number of classes present in the image, the desired outputs take values from the following couples: {-1, -1}, 
{1, 1}, {-1, 1}, {1, -1}, {-1, 0}, {0, -1}, {1, 0}, {0, 1} (i.e. for an image containing n classes, the first n 
couples are used as desired outputs, where n varies from 2 to 8). 

5.6 Training  
In our experiments conducted on the SSDS and the SED datasets, we have randomly selected (without 
replacing) 40% of pixels from each image to train our readout. The remaining 60% of pixels are used for 
testing. Thus, for each image we have randomly selected from 15,000 to 55,800 and 61,760 pixels for SED 
and SSDS datasets respectively. Note that the size of the SED dataset images varies from 125x300 to 
465x300 pixels. As mentioned earlier, in section 5.1, these two datasets contain natural images. Therefore, 
in all our experiments conducted on these two datasets, each image is processed separately. That is due to 
the fact that objects contained in these images vary from one image to another.  
On the other hand, the DRIVE dataset contains retinal images where all of them contain the same objects 
which are vessels and background. This dataset is divided into 20 images for training and 20 images for 
testing 39. So, we have gathered the vessel pixels (569415 pixels) and non vessel pixels (3971591 pixels) of 
all the 20 images of training. Afterwards, we have randomly selected without replacing 56941 vessel pixels, 
which is tenth of the total number of vessel pixels, and an equal number from the non vessel pixels. 
Therefore, we have used a total of 113882 pixels for training, which represents 2.51% of the total number of 
pixels in the training images. The remaining 20 testing images are used to test the segmentation performance 
based on the proposed framework. 

6 RESULTS AND DISCUSSION 
In this section, we explore the influence of different parameters of the ESN on the performance of colour 
image segmentation (Section 6.1). Such investigation will allow us to determine the operating ranges of 
these parameters which helps in achieving high segmentation accuracy. In addition, a comparison of the 
performance of the proposed approach against that of other state-of-the-art techniques is conducted (section 
6.2). 



6.1 Study of the influence of ESN parameters on colour image segmentation performance 
In this section, we explore the influence of the following factors on the segmentation performance: the 
colour space (section 6.1.1), number of selected neurons from the reservoir (section 6.1.2), pixel selection 
order (section 6.1.3), input scaling (section 6.1.4) and the global reservoir parameters covered in section 3 
(section 6.1.5). Table II shows the studied parameters with their ranges of variation. 
6.1.1 Colour space  
Colour image segmentation depends on the used colour space. In this work, several experiments are 
conducted to find the colour space that best suits the proposed framework. There exists several colour spaces 
so we focus on the four most commonly used ones, namely RGB, CIE-Lab, HSV and YCbCr. RGB is 
defined by the main colours: red (R), green (G) and blue (B). It has remained the most basic colour space 
used in image processing as the human colour perception is based on this triplet of colours. HSV has three 
components: hue (H), saturation (S), and intensity value (V). The H takes values from 0 to 1, hence the 
colours change from red to yellow, green, blue and black to red. While S takes values from 0 to 1, the hues 
change from unsaturated to fully saturated. V represents the brightness which varies from 0 (the darkest 
value) to 1 (the brightest value). The transformation between RGB and HSV is nonlinear. HIS, HLS, and 
HCI are the other similar colour spaces to HSV. YCbCr contains a gray scale information shown by the 
luminance component Y, and a colour information represented by the two chrominance components Cb and 
Cr. A linear transformation associates the RGB and YCbCr colour spaces. Other similar colour spaces to 
YCbCr are YUV and YIQ.  CIE-lab is a colour space created by the international commission on 
illumination. The three components of CIE-Lab are the lightness "l" and the colour channels "a" and "b". "l" 
varies from 0 (the black) to 100 (the white). "a" and "b" are the red/green and yellow/blue opponents, 
respectively.  The transformation between RGB and CIE-Lab spaces is highly nonlinear. An example of a 
similar colour space to CIE-Lab is the CIE-Luv 55. 
Table III shows the obtained average F-score using the selected four colour spaces. The ESN parameters are 
set as follows: the connectivity is set to 0.2, the reservoir size is set to 100 and the spectral radius is set to 
0.1.  
For the SED and the SSDS datasets, which contain natural scenes, the resulting averaged F-score using RGB 
slightly outperforms those of other colour spaces. The averaged F-score corresponding to YCbCr comes in 
second place with a value very close to that corresponding to RGB. The third place alternated between CIE-
Lab and HSV colour spaces. 
For the DRIVE dataset, which contains retinal images, the HSV colour space slightly outperforms that of 
other colour spaces. The RGB colour space has resulted in the worst segmentation performance for this 
medical imaging application dataset. In addition, it is worth noting that for each dataset, the different values 
of F-score corresponding to different colour spaces lie within a tight range.  The F-score differences between 
the best and worst cases are 0.0090, 0.0090 and 0.0183 for the SED, the SSDS and the DRIVE datasets, 
respectively. Therefore, it is fair to conclude that the colour space does not seem to have a huge impact on 
the segmentation performance. Consequently, the RGB colour space is preferable for the SED and SSDS 
datasets as it is producing the best F-score performance. However, for the DRIVE dataset, the preferred 
colour space is the HSV. 
6.1.2 Number of selected neurons from the reservoir 
Image segmentation based on the proposed framework consists in projecting pixel features onto the ESN 
which maps them into a further ensemble of features shown by the states of the reservoir. This feature 
mapping is then followed up by an MLP which realises the ESN readout function and classifies the new 
pixel features represented by the reservoir states. Usually, the whole ESN reservoir output is processed by 
the readout layer (MLP in our case), which is computationally expensive especially when the reservoir size 
is big. However, in this work only a subset of neurons is randomly selected from the reservoir rather than 
using all of the reservoir neurons. Fig.7 shows the evaluation of the effect of the number of selected neurons 
from the reservoir on the segmentation performance in terms of the F-score and the computation time. The 
connectivity between reservoir nodes is set to 0.2, the reservoir size is set to 100 and the spectral radius is set 
to 0.1. Experiments are conducted on all images of the SED, the SSDS and the DRIVE datasets. Fig.7 
illustrates the evolution of the average F-score (first row) and the average computation time (second row) 
against the number of randomly selected neurons from the reservoir. Each experiment was repeated five 
times for each number of selected neurons and the resulting standard deviations are illustrated by error bars. 
The computation time consists of training and testing times. Due to different initial conditions of the readout 
layer, the training time changes from one experiment to another even for the same number of selected nodes 



from the reservoir which is illustrated through higher error bars. For the f-score graphs, the standard 
deviation is very small for all numbers of selected neurons from the reservoir in all conducted experiments 
on different datasets. The highest standard deviation values are 0.0018 (corresponds to 5 neurons), 0.006 
(corresponds to 2 neurons) and 0.0453 (corresponds to 5 neurons) for the SED, the SSDS and the DRIVE 
datasets, respectively. These small standard deviations clearly demonstrate the robustness of the proposed 
framework against random selection of the reservoir neurons.  Also, it can be seen that the F-score increases 
when the number of selected neurons increases for all the conducted experiments on the different datasets. 
However, the interesting remark is that the performance remains almost constant once the number of 
selected neurons reaches 20 for the SED and the DRIVE datasets and 40 for the SSDS dataset. This shows 
that using only 20% (for the SED and the DRIVE datasets) or 40% (for the SSDS dataset) of the reservoir 
neurons proved to be sufficient for achieving almost the same performance when using the entire reservoir. 
This is interesting as using only a subset of the reservoir neurons leads to a dramatic decrease in 
computation time. For instance, for the DRIVE dataset using only 20 neurons required a computation time 
of 582 seconds and achieved similar performance to using the entirety of the reservoir neurons which 
requires a computation time of 1603 seconds.  That is, it is clearly possible to achieve similar segmentation 
performance by using only a subset of the reservoir neurons while at the same time reduce the computation 
time by nearly two-thirds. The experiments are conducted using MATLAB 2015a on an Intel i5-6400 CPU 
running at 2.7 GHz with 8 GB of RAM. On the basis of this finding, one can make an informed choice of 
the number of selected neurons from the reservoir that can provide a reasonable trade-off between adequate 
segmentation performance and computational time. 
 

 
Fig. 7. The effect of the number of selected neurons from the reservoir on the average F-score (upper row ) 

and  the processing time (lower row).  
Left column: the SED dataset. Middle column: the SSDS dataset. Right column: the DRIVE dataset. 

6.1.3 Order of input selection 
The ESN reservoir can be seen as a short-term memory i.e. when an input u(n) is fed into the reservoir, it is 
retained in its internal state x(n) and is used to compute its new state x(n+1) once a new input u(n+1) is fed 
(See Eq.1). In order to study the effect of the order in which pixels are selected, for each input image we 
have presented the image pixel features to the reservoir in three different orders: the standard order, which is 
line by line of the image pixels, the zigzag order and the random order where pixels are randomly selected. 
Fig.8 shows how we scan a block of 6*5 pixels according to the three orders. The connectivity is set to 0.2, 
the reservoir size is set to 100 and the spectral radius is set to 0.1. Table. IV illustrates the average F-score 
obtained across all the images of the SED, the SSDS and the DRIVE datasets for the three different pixel 
selection orders. It appears from the table that the pixel selection order does not have much influence on the 
segmentation accuracy. The standard order has a slightly better performance than the other two selection 



orders, followed by the zigzag order then the random order. Therefore, we will use the standard order in all 
our experiments as it is the simplest order in addition to resulting in the best performance.   

 
Fig. 8. Different orders of  pixel selection. 

(a) Standard order, (b) Zigzag order and (c) Random order. 

6.1.4 Input scaling 
The input scaling is another aspect to explore when designing an ESN as it determines the degree of 
nonlinearity of the reservoir dynamics. Knowing that we have used a sigmoidal activation functions (in 
particular the hyperbolic tangent) for the reservoir nodes, a very small input scaling value makes the 
reservoir behave almost like a linear medium because the reservoir nodes operate around the zero point 
where their sigmoid activations are linear. However, large input scaling values drive the neurons to the 
saturation of the sigmoid (close to their -1 and +1 limit values) 14. In this section, experiments are carried out 
to investigate the effect of the input scaling on the segmentation performance of the proposed ESN based 
framework. The spectral radius is set to 0.1, the reservoir size is set to 100 nodes, the connectivity between 
the reservoir nodes is set to 0.2, and the input scaling is set to the following values: 1e-20, 1e-15, 1e-10, 1e-
5, 1e-3, 0.01, 0.1, 1 and 10. Fig.9 shows the evolution of the average F-score in terms of the input scaling for 
the SED, the SSDS and the DRIVE datasets. For the three datasets, the averaged F-score is almost stable for 
an input scaling comprised between 1e-10 and 1. However, very small values of input scaling can result in a 
low segmentation performance as in the case of the SSDS dataset shown in the middle column of Fig 9. On 
the other hand, an input scaling greater than 1 can result in a decrease in the averaged F-score as in the case 
of the DRIVE dataset shown in the right column of Fig 9.  Note that the operating range of the input scaling 
parameter for the SED dataset is larger than those for the SSDS and DRIVE datasets. That is due to the 
simplicity of the process of segmentation of the SED dataset images comparing with the other two datasets 
images. The best performance over all input scaling values for the SED dataset (0.9158) is higher than those 
for the SSDS and DRIVE datasets (0.8651 and 0.7701 respectively). In fact, each image in the SED dataset 
contains only two objects. However, SSDS images contain 2 to 8 objects. DRIVE dataset images contain 
also two objects which are the vessels and the background, however, these objects have high overlaps 
between them. In general, the averaged F-score is almost stable and acceptable for an input scaling 
comprised between 1e-10 and 1 for the three datasets. 
 

 
Fig. 9. The effect of the input scaling on the average F-score. The logarithmic scale is used for the x-axis. 
Left column :the SED dataset, middle column: the SSDS dataset and right column: the DRIVE dataset. 

6.1.5 Reservoir parameters  
It is equally important to investigate the influence of the reservoir parameters (reservoir size, connectivity 
and spectral radius) on the segmentation performance of the proposed ESN based framework. These 
parameters are described earlier in section 3. Such investigation will allow us to find the optimal operating 
ranges of these parameters and to derive guidelines for designing ESN reservoir for colour image 
segmentation. In this section, an extensive series of experiments are carried out to study the effect of the 



three reservoir parameters on the ESN based segmentation performance. Every time we vary these three 
reservoir parameters, we evaluate the segmentation performance of the resulting ESN. For each ESN 
configuration, the readout layer is trained and tested on all images of the three datasets (SED, SSDS and 
DRIVE). The reservoir parameters are varied as follows: the spectral radius is set to 0.001, 0.01, 0.1, 0.2, 
0.4, 0.6, 0.8 and 1; the density of connectivity between reservoir nodes is varied from 0.2 to 1 with a step of 
0.2; and the reservoir size is set to 50, 100, 200, 300 and 500. Each experiment corresponding to a triplet of 
the three ESN reservoir parameters is repeated five times and the mean F-score is computed. For the SED 
and the SSDS datasets, each of which containing 100 images, we have conducted 100000 experiments on 
each dataset. That is the number of possible triplets of the reservoir parameters values (5*8*5=200) by the 
number of dataset images (100) by the number of repetition of each experiment (5). For the DRIVE dataset, 
we have conducted 1000 experiments. For each ESN configuration, we have trained our framework using 
twenty training images and tested its performance using the remaining twenty testing images. Each 
experiment is repeated five times. Therefore, the total number of conducted experiments on all datasets is 
201000. Usually, cloud computing and HPC (high performance computing) platforms are used for running 
such computationally intensive tasks 56. In our work, we have used a high performance computing cluster 
which consists of 32 x Dell R410s, each comprising of 2 x 6 core CPUs and 24GB of RAM. Giving a total 
of 384 Cores and 768GB of RAM. It operates on Windows Server 2008 R2 HPC Edition and uses Matlab 
2013a. 

Columns (a), (b) and (c) of Fig.10 show the mean F-score in function of the reservoir parameters values 
using the SED, the SSDS and the DRIVE datasets, respectively. Each panel presents the mean F-score in 
terms of the spectral radius and the reservoir size for a given value of the connectivity density. Fig.10 shows 
that the overall performance results are comparable across all panels of each dataset regardless of the 
connectivity density value. Therefore, the density of connectivity does not seem to highly affect the 
performance of segmentation. However, ESN reservoirs with sparse connections between neurons are less 
complex than those fully connected ones. Thus, small density of connectivity values is preferable. It can also 
be seen from Fig 10 that increasing the spectral radius value up to 0.2 for SED and SSDS datasets (and up to 
0.01 for DRIVE dataset) seems to give the best segmentation performances. However, increasing the 
spectral radius beyond these limits starts to cause a decrease in the segmentation performance. This decrease 
is more pronounced when the reservoir dimension and density connectivity are increased. The operating 
ranges of reservoir parameters for the SED and SSDS datasets are larger than those for the DRIVE dataset. 
That is due to the complexity of distinguishing between vessels and background pixels because of the high 
overlaps between them. This statement is also supported by the small best performance over all ESN 
reservoir parameters values for the DRIVE dataset comparing with those of the SED and SSDS datasets. 
These performances are 0.9159, 0.8687 and 0.7650 for SED, SSDS and DRIVE datasets, respectively. 

In summary, based on the above extensive experimental evaluation conducted on the three image datasets 
(SED, SSDS and DRIVE), the best design choice of the proposed framework parameters for colour image 
segmentation can be summarised as follows:  

- a use of the RGB colour space for natural images and the HSV colour space for retinal images 
- a selection of only 20% of nodes from the reservoir can be used to extract good quality pixel features 
- a selection of input image pixels in standard order is sufficient 
- an input scaling comprised between 1e-10 and 1 
- a reservoir with a spectral radius less than or equal to 0.2 for natural images and up to 0.01 for retinal 

images, a density of connectivity of 0.2 and a reservoir size between 50 and 100 nodes.  

Consequently, these experimentally derived guidelines are used to compare the proposed system with other 
state-of-the-art image segmentation techniques in the following section. 



 
Fig. 10. The average F-score as a function of the spectral radius and the reservoir size for different values of the 

connectivity density. From left to right columns : SED, SSDS and DRIVE datasets; from upper to lower 
rows connectivity: 0.2, 0.4, 0.6, 0.8 and 1. 

6.2 Comparison against state-of-the-art techniques 
In this section, we compare the results of segmentation based on the proposed framework against state-of-
the-art techniques. First, a comparison against general segmentation techniques using natural scenes is 
presented in section 6.2.1. Then a comparison against supervised techniques using retinal images is 
presented in section 6.2.2.  

6.2.1 Comparison using natural scenes 
In this section, we conduct a comparison of the ESN based colour image segmentation performance with 

some state-of-the-art image segmentation techniques including the well known Mean Shift and Normalized 
cuts techniques 33,35,53,57,58. All the techniques are evaluated on the SED dataset images. The obtained F-scores 
by the other techniques and the SED dataset images are available online 59. Table V reports the averaged F-
score and the standard deviation.  Based on the results presented in the past sub-sections, the ESN reservoir 
parameters are set as follows: the density of connectivity between the reservoir nodes is set to 0.2, the input 
scaling is set to 1, the spectral radius is set to 0.1 and the reservoir size is set to 100 nodes. In addition, we 
have randomly selected 20 reservoir nodes based on the results presented in Section 6.1.2.  It is known that 
the quality of pixel features has a major influence on the segmentation performance. Using the found 
operating range of the ESN parameters, the proposed framework has allowed us to obtain good pixel features. 



These features, represented by the ESN reservoir outputs, facilitate the task of separation between the 
foreground object and the background. As a result, the proposed ESN-based segmentation approach 
outperformed the other state-of-the-art techniques as presented in Table V. 

In addition, Fig.11 shows sample segmentations from the SED dataset using the proposed ESN-based 
framework and those of state-of-the-art techniques. It can be clearly seen that the proposed technique, unlike 
other techniques, results in a segmentation that is very close to the expert manual segmentations. However, 
false detections can be produced in pixels that have different characteristics compared to their neighbouring 
pixels. Thus, our framework is not robust to outlier pixels. For example, in our segmentation of the image 
containing the pigeon (second column and third row) a number of separated small regions appears on the 
pigeon body. In the corresponding ground truth segmentation, those regions are part of the object (the 
pigeon), however in our result they are part of the background. This is because the proposed approach is a 
pixel classification based technique, where each pixel is assigned to a class according to their features 
regardless of the label of their neighbouring pixels. If the image is noisy, the number of outlier pixels rises 
and the performance of the segmentation decreases. Such problem can be addressed through the suppression 
of small areas at the end of the segmentation process. Also, image pre-processing such as denoising should 
help decrease the number of outlier pixels and consequently increase the segmentation performance. Note 
that our segmentation framework does not involve any pre- or post-processing of the input image. Another 
solution to prevent this is to segment the image based on the classification of the blocks of pixels instead of 
single ones. i.e. features should be extracted for each block of pixels and the entire block of pixels is then 
assigned to the same class.  

 

Fig. 11. Qualitative comparison of the proposed framework segmentation against that of other state-of-the-art 
techniques using the SED dataset. From upper to lower rows : Original images, Expert manual 

segmentations, Segmentations using ESN based framework, Segmentations using Normalized cuts 35, 
Segmentations using Mean shift 33, respectively. 

 



Another advantage of our framework is the small number of extracted features from the images. In fact, for 
each pixel, we have used only five features (the three colour channels in addition to the mean and the 
standard deviation of each pixel with their neighbours). Furthermore, it is also worth noting that the proposed 
ESN based framework is a supervised technique. The technique proposed in 57 is an interactive segmentation 
technique and all the remaining techniques used in this comparison are unsupervised techniques. A 
comparison of our proposed framework with other supervised techniques is presented in the following sub-
section. 

6.2.2 Comparison using retinal images 
This section shows the results of comparison of the proposed ESN based vessels segmentation in retinal 
images with the following supervised techniques: 22,39–42,44 presented early in section 2. The ESN reservoir 
parameters are set as follows:  the spectral radius is set to 0.01, the connectivity density is set to 0.2 and the 
reservoir size is set to 100 nodes. We have plotted the Received Operating Characteristic (ROC) curve as 
shown in Fig.12 and have reported the corresponding area under the ROC curve (AUC) in Table VI. 

 

Fig. 12. The ROC curve of the proposed framework for the DRIVE dataset 

Table VI shows the sensitivity (Se), the specificity (Sp), the accuracy (Acc) and the area under curve (AUC) 
of the different techniques as reported by their authors. Note that the values of Se and Sp correspond to the 
optimal threshold which gives the maximum Acc. In general, the proposed framework achieves comparable 
performance with state-of-the-art techniques. For example, the accuracy (Acc) value achieved by the 
proposed framework (0.9470) is slightly higher than those of 38–41 algorithms which achieved 0.9416, 
0.9452, 0.9461 and 0.9441 respectively. However, it is slightly lower than those of 42,44 which achieved 
0.9474 and 0.9480, respectively. It can be seen that Li et al. technique 22 outperformed all the other 
techniques with an accuracy of 0.9527. Considering the AUC measure, the proposed framework scored a 
value of 0.9555 which is higher than 38,39 techniques which achieved 0.9294 and 0.9520 respectively and 
lower than 22,40–42,44 techniques which achieved 0.9648, 0.9747, 0.9738, 0.9588 and 0.9614 respectively. The 
differences between the accuracy of our technique and those of other reported techniques sorted from the 
best to the worst are -0.0570 (-0.57%), -0.001 (-0.1%), -0.0004 (-0.04%), 0.0009 (0.09%), 0.0018 (0.18%), 
0.0029 (0.29%) and 0.0054 (0.54%).  The negative values are corresponding to the techniques which give 
better accuracies than the accuracy of the proposed technique and vice versa.  The differences between the 
accuracy of our technique and those of other techniques lie within a tight range. Therefore, using the 
proposed framework we have obtained comparable segmentation results with other state-of-the-art 
techniques.  

Also, the simplicity of the used features by the proposed technique should be highlighted. Table VII shows 
the features used by different techniques of blood vessel segmentation in retinal images. The dimension of 
feature space used by our proposed technique is lower comparing with the other techniques. In fact, we have 
used only seven low level features (the three chromatic channels, the mean, the standard deviation and the 
gradient filter represented by its magnitude and direction) as we discussed in section 5.2. In 44 Cheng et al. 
have used a large pool of features containing more than fifty components. It includes heterogeneous context-
aware features represented by the SWT and WLD in addition to classical local features such as intensity 



based features, vesselness and Gabor based features. Niemeijer et al. 38 used a 31-components feature vector 
that consists of the Gaussian and its first and second derivatives at 5 different scales. Staal et al. 39 proposed 
a ridge-based vessel detection approach which computes 27 features for each pixel. In 42, Fraz et al. have 
used a feature space with a dimension of 9 components only. It includes gradient based features, 
morphological features, line based features and Gabor filter based features. Also, the dimension of features 
used by Soares et al. [40] is low. They have used a green channel component and Gabor filter responses. 
However, the computation of the responses of Gabor filter for different scales and orientations is time 
consuming which increases the computational complexity of these techniques. Therefore, achieving 
comparable results with other state-of-the-art techniques while using rather simpler features confirms once 
again the good quality of the final features extracted by the ESN reservoir.   

Moreover, samples of the resulting segmentations by the proposed ESN-based approach are shown in Fig. 
13. The figure shows that the segmentations obtained by the proposed framework are close to the ground 
truths. However, the segmented images shows that our proposed technique reveals a weakness in the 
detection of thin vessels. Also, a problem of over segmentation is found around the optic disk area which 
appears clearly in the segmentations of the first and the fourth images of fig. 13. A separate segmentation of 
the optic disk can help remedy this problem.  

 

Fig. 13. Segmentation results of the proposed ESN based framework on the DRIVE dataset.  
Upper row: original image. Middle row: expert manual segmentation. Lower row: the proposed ESN-based 

framework segmentation. 

The percentage of samples used to train our framework is only 2.51 % of the training set pixels. However, in 
Li 22 and Soares 40 techniques 30% and over 20 % of pixels have been used for training, respectively. Marin 
et al. 41 used only 0.65% of the training set. They have produced their own training set by hand i.e. they have 
carefully selected the training samples in such a way that all possible patterns (vessel, background, noise) 
are covered. This strategy is time consuming, requires experience and skills and might need to be repeated 
should further training using new images be necessary. The average time required to train our framework is 
approximately 10 minutes. It has been implemented using MATLAB 2015a on an Intel i5-6400 CPU 
running at 2.7 GHz with 8 GB of RAM. In comparison, the GMM classifier used by Soares 40 and the deep 
neural network used by Li 22 are trained in approximately 8 and 7 hours respectively. 
Processing time is an important criterion in the assessing of the performance of any image or video 
processing techniques 60–62. Table VIII shows the average time required by different techniques to segment 
one retinal image.  All the processing times of the other cited techniques are taken from 22. The processing 
time of our framework for an input image requires approximately 8 seconds. It consists of the time required 
to perform the following three steps: the extraction of initial features (which takes about 1.5 seconds), the 



collection of the ESN reservoir outputs (which takes about 6 seconds) and the classification using the 
already trained MLP (which takes about 0.5 seconds). The approach is implemented using MATLAB 2015a 
on an Intel i5-6400 CPU running at 2.7 GHz with 8 GB of RAM. A further efficient implementation could 
speed up the proposed technique. It appears clearly from Table VIII that our framework is much faster than 
all other techniques. This is partly attributed to the absence of any pre or post processing of images in our 
method. Most of the cited techniques require pre and post processing times. For instance, In order to 
eliminate the high contrast difference between the area of field of view and the area outside the aperture, 
Soares et al. 40 have proposed a technique that grows iteratively the region of interest (ROI), which is 
initially defined by the aperture of the camera. At first, they locate the pixels that are directly adjacent to the 
ROI. Then, a new intensity value of each of these pixels is obtained which is the mean of intensities of its 
neighbouring pixels within the initial ROI. Consequently, the initial ROI is growing by adding these 
modified pixels. And the same process continues until a ROI with the desired size is obtained. Marin et al. 41 
have used three pre-processing operations: removal of the reflex of the vessel central light, homogenization 
of the image background and enhancement of the segmented vessel areas. These kinds of processing, in 
addition to being time consuming, can change the vessel structure and especially risk removing thin vessels. 
Another key factor contributing to the efficiency of our proposed framework is the use of simple low level 
pixel features as shown by Table VII and discussed early in this section. Regarding the speed, the simplicity 
and the fact of achieving comparable results comparing with state-of-the-art, our proposed automatic blood 
vessel segmentation technique could be a good candidate to be used in complete systems of ophthalmic 
clinical applications.  

7  CONCLUSION 
In this work, we have proposed and evaluated an ESN based framework for colour image segmentation. 
Low level simple features have been extracted from the input images then the ability of the ESN reservoir 
dynamics to produce novel pixel features suitable for colour image segmentation was investigated. A series 
of experiments were conducted on several real world image datasets to examine the viability of the proposed 
approach and thoroughly assess the influence of different ESN parameters on the performance of the 
segmentation. As a result, the optimal operating ranges of the ESN parameters were identified. It was found 
that a reservoir with a small density of connectivity between neurons (0.2), a small spectral radius (less than 
or equal to 0.2) and a small reservoir dimension (50 to 100 neurons) can result in good quality pixel features 
and help obtain competitive segmentation performance in comparison with state-of-the-art image 
segmentation techniques.  
The current study can also be considered as a practical guideline for adequate tuning of the ESN parameters 
for future works on colour image segmentation. Extensive experiments were also conducted on a domain-
specific real world dataset which consists of segmentation of blood vessels in retinal images to further 
validate the proposed framework and the identified operating ranges of the ESN parameters. The use of this 
domain-specific dataset has proved the competitiveness of the proposed ESN based framework for colour 
image segmentation in terms of segmentation quality and computation speed. Another interesting finding of 
this work is the ability of a small subset of arbitrarily chosen neurons from the ESN reservoir to produce 
good quality pixels features which result in accurate segmentation. 

Future work aims to investigate the use of LSM which is based on more biologically plausible spiking 
neuron models instead of the rate-based counterparts used in ESN.  Another interesting future direction 
would be to investigate the use of deep ESNs for feature extraction and their potential in further enhancing 
the segmentation quality.   
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TABLE I LIST OF NOTATIONS 

Notation Significance or description 
Win weights of input connections 

Wint 
Weights of reservoir nodes 
connections 

Wout Weights of output connections 
N Number of reservoir nodes 
L Number of output nodes 
K Number of input nodes 
x(n) Reservoir states at time step n 
y(n) Output of the ESN at time step n 
u(n) Input of the ESN at time step n 
n Time step 

f 
Activation function of the 
reservoir neurons 

g 
Activation function of the output 
nodes 

Yd Target output vector 

X 
Matrix accumulating reservoir 
states 

XT Transpose of X 
‖	. ‖ Euclidean norm 
(XTX)-1 Inverse of the matrix (XTX) 
Ri Red channel value of the ith pixel 
Gi, Green channel value of the ith pixel 
Bi Blue channel value of the ith pixel 
Mi Average value of the ith pixel 
Si Standard deviation of the ith pixel 
∇f Gradient of a function f 
g] Gradient in the x direction 
g^ Gradient in the y direction 

∂f/ ∂x 
Partial derivative of f with respect 
to x 

∂f/ ∂y 
Partial derivative of f with respect 
to y 

G Gradient magnitude 
Θ Gradient direction 
arctg Arctangent function 
P Precision 
R Recall 
TP True positives 
TN True negatives 
FP False positives 
FN False negatives 

|λmax| 
Maximum absolute value of eigen 
values 

α Spectral radius 
 
 
  



TABLE II RANGE OF VARIATION OF DIFFERENT SIMULATION PARAMETERS.  

Parameter Variation range 
Colour space RGB, HSV, YCbCr and CIE-Lab. 
Number of selected neurons from the 
reservoir 

2, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90 
and 100. 

Order of input selection Standard order, Zigzag order and 
Random order. 

Input scaling 1e-20, 1e-15, 1e-10, 1e-5, 1e-3, 0.01, 
0.1, 1 and 10. 

Spectral radius 0.001, 0.01, 0.1, 0.2, 0.4, 0.6, 0.8 and 1. 
Density of connectivity between 
reservoir nodes 

Varied from 0.2 to 1 with a step of 0.2. 

Reservoir size 50, 100, 200, 300 and 500. 
 

  



TABLE III Averaged F-score of the proposed ESN-based approach for different colour spaces. 

Colour space Averaged F-score 
SED dataset SSDS dataset DRIVE dataset 

RGB 0.9125 ± 0.0013 0.8687 ± 0.0038 0.7418 ± 0.0049 
HSV 0.9035 ± 0.0018 0.8658 ± 0.0043 0.7601 ± 0.0028 
YCbCr 0.9110 ± 0.0032 0.8685 ± 0.0035 0.7578 ± 0.0047 
CIE-Lab 0.9099 ± 0.0025 0.8597 ± 0.0046 0.7522 ± 0.0064 

 
  



TABLE IV Averaged f-score of the proposed ESN-based approach for different orders of input pixel 
selection. 

Order type Averaged F-score 
SED dataset SSDS dataset DRIVE dataset 

Standard order 0.9159 ± 0.0012 0.8604 ± 0.0041 0.7611 ± 0.0032 
Random order 0.9071 ± 0.0025 0.8308 ± 0.0034 0.7592 ± 0.0061 
Zigzag order 0.9117 ± 0.0028 0.8501 ± 0.0054 0.7429  ± 0.0072 

 
  



TABLE V.  Comparison of the proposed ESN based framework segmentation against other state-of-the-
art techniques in terms of the mean F-score using the SED dataset. 

Technique Mean F-
measure 

ESN 0.92 ± 0.003 

Scheme 57 0.87 ± 0.010 

Scheme 53 0.86 ± 0.012 

SWA 58 0.83 ± 0.016 

Normalized Cuts 35 0.72 ± 0.018 

Mean Shift 33 0.57 ± 0.023 

 
  



TABLE VI. Comparison of the ESN based framework segmentation against other state-of-the-art techniques 
using the DRIVE dataset. 

Technique Se Sp Acc AUC 
Li 22 0.7569 0.9816 0.9527 0.9738 
Fraz 42 0.7406 0.9807 0.9480 0.9747 
Cheng 44 0.7252 0.9798 0.9474 0.9648 
The proposed framework (ESN) 0.7158 0.9791 0.9470 0.9555 
Soares 40 0.7332 0.9782 0.9461 0.9614 
Marin 41 0.7067 0.9801 0.9452 0.9588 
Staal 39 N.A N.A 0.9441 0.9520 
Niemeijer 38 N.A N.A 0.9416 0.9294 

 
  



TABLE VII  Image Features used by different techniques for blood vessel segmentation in retinal images. 
Features mentioned by (*) are computed between each pixel and its neighbours within a given window.  

Technique Features 
Features vector 
dimension 

Cheng 44 Stroke width transform, Weber’s local descriptors, pixel intensity, 
Vesselness and Gabor responses. 

More than 50 

Niemeijer 38 Green channel component, Gaussian filter and its derivatives up to 
order 2 at different scales. 

31 

Staal 39 Ridge-based vessel detection 27 

Fraz 42 gradient vector field, morphological transformation, line feature 
and Gabor responses. 

9 

Our framework HSV colour space components, mean*, standard deviation*, 
Gradient magnitude and direction. 

7 

Soares 40 Green channel component, Gabor responses.   

Marin 41 
Grey level features (pixel intensity, min of intensities*, max of 
intensities*, mean*, standard deviation*, first and second moment 
invariant. 

7 

 

  



TABLE VIII. Average processing time for segmenting one retinal image by different segmentation 
techniques. 
 Technique Processing time 

Li 22 1.2 min 
Fraz 42 2 min 
Soares 40 3 min 
Marin 41 1.5 min 
Staal 39 15 min 
Cheng 44 Less than 1 min 
The proposed framework (ESN) 8 seconds 


