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Abstract: 

 
A Love mode surface acoustic wave (SAW) humidity sensor based on bacterial cellulose (BC) 

coated ST-cut quartz was developed in this study. The BC film is composed of ultrafine interwoven 

fibers to form a highly porous network, and its surface contains a large amount of hydroxyl groups, 

which significantly improve the adsorption capability of SAW sensing layer for water molecules. 

This results in significant mass loading effects and enhanced responsivity of the SAW sensor. The 



resonant frequency of the sensor changes linearly with RH at lower relative humidity (RH) values 

(e.g., RH30%), but when RH80%, an exponential increase in frequency shift as a function of RH 

is obtained due to the enhanced mass loading effect. A frequency shift of 89.8 kHz was measured 

using a sensor with a BC film with a thickness of 148 nm thick when the RH was increased from 

30% to 93%. The frequency of the sensor can be fully shifted back to the original reading when the 

RH was returned back to 30%, with the response and recovery times of 12 s and 5 s, respectively. 

The SAW sensor also exhibits good short-term repeatability and long-term stability for humidity 

sensing. 
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1. Introduction 

 
Precise and quantitative monitoring of humidity is critical for various industries including 

manufacturing, agricultural production, environmental testing and aerospace technology, which 

demand humidity sensors with high precision, fast response, and good stability [1-4]. In recent years, 

humidity sensors based on various transduction principles have been developed, mainly including 

resistive, capacitive, ultrasonic, and surface acoustic wave (SAW) sensors [5-8]. The SAW humidity 

sensor has advantages of high precision, small size and good stability. Meanwhile, it is suitable for 
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wireless operation, which is especially important for the detection of humidity in harsh environments 

[9]. 

SAW devices fabricated on different piezoelectric substrates have been reported for humidity 

sensing. For example, Le et al. [10] demonstrated a SAW humidity sensor on an AlN/Si substrate and 

Liu et al. [11] reported a SAW humidity sensor on a LiNbO3 substrate. However, these sensors are 

highly temperature dependent and have a low thermal stability. Temperature coefficient of frequency 

(TCF) determines the frequency stability with temperature, and lower TCF values are required for 

improved performance of the SAW sensors. Otherwise, variations in temperature may result in 

significant frequency shifts, which will interfere with the those due to the changes in humidity. 

Among different candidates for the SAW substrates, the ST-cut quartz is ideal for humidity sensing 

owing to its nearly zero TCF. For example, Tang et al. [12] reported a SAW humidity sensor on the 

ST-cut quartz substrate, exhibiting both good thermal stability and sensitivity. 

Bacterial cellulose (BC) is one of the emerging functional nanomaterials with important 

applications in biotechnology and materials science [13-16]. It is a filamentous and fibrous by-

product secreted by microorganisms such as acetobacters and agrobacteria [17,18]. Synthesis rate of 

BC is generally much higher than that of photo-synthesis of cellulose in plants, thus BC has 

advantages of being low cost and environmentally friendly [19]. By adjusting the conditions of the 

growth culture or metabolic pathways of microorganisms, it is possible to synthesize BCs with 

specific morphologies, thereby modifying functional properties of BC-based nanomaterials for the 

targeted applications [20]. BC has excellent water retention capabilities as its surface contains a large 

number of hydrophilic groups, which can absorb water molecules. In addition, BC films have 

excellent thermal stability and relatively higher Young's moduli compared to those of polymers 



[21,22]. For example, Hu et al. [23] developed a BC humidity sensor based on a quartz crystal 

microbalance. 

A major research for SAW humidity sensor is the development of new sensing layer materials 

with improved sensitivity and selectivity [24,25]. Various materials, such as polymers, metals, and 

metal oxides have been reported as coating layers on SAW sensors for the detection of humidity and 

gasses [9,26]. Yet, a BC sensing layer has never been reported in SAW sensor as far as we know. In 

this paper, a SAW humidity sensor based on BC coated ST-cut quartz substrate is developed, which 

shows a significant mass loading effect and significantly enhanced performance. 

 

 
2. Experimental details 

 
2.1 SAW resonator and BC sensing layer 

 
SAW resonator based humidity sensors, as shown in Fig. 1(a), were fabricated on ST-cut (42o75’) 

quartz substrate (12 mm × 3 mm × 0.5 mm) and consists of periodic aluminum interdigital 

transducers (IDTs, 30 pairs), reflective gratings (100 pairs), and a sensing layer coated between the 

IDTs. The IDTs have a finger width of 4 µm and an aperture of 3 mm. The center frequency of the 

designed SAW resonator is 200 MHz. The transmission spectrum (S21) of the SAW resonator, 

measured between the ports of IDTs, is shown in Fig. 1(b), revealing a low insertion loss of -8.486 

dB. 

The sensing layer of the SAW device is prepared from the cultured BC using a sol-gel and spin 

coating method. Acetobacter xylinum was placed in a medium containing 2% glucose and 2% corn 

syrup. The oxygen-enriched air was introduced into the solution. The pH value of the medium was 

adjusted to 5.5, and the temperature was controlled at 28oC. The BC crude product was extracted 



after a static culture duration of 8 days. After washed with distilled water, 0.1 mol/L NaOH was 

added inside the above solution and the solution was kept at 80oC for 30 minutes to obtain a purified 

content of 0.65 wt.% BC. The BC with a volume of 46.2 ml and 0.65 wt.% was diluted in 150 ml of 

deionized water at room temperature of 25oC. The mixture was mechanically stirred for 2 hrs and 

aged for 24 hrs to prepare a BC hydrogel with a BC content of 2‰. The prepared BC hydrogel was 

spin-coated onto the SAW device at 6000 rpm for 30 seconds, and dried at 60oC for 8 minutes to 

obtain a uniform BC film. BC films with different thicknesses were prepared by multiple spin 

coating processes (e.g., one layer, three layers, five layers, and seven layers, with the corresponding 

device names of Layer-1, Layer-3, Layer-5, and Layer-7). Finally, the SAW resonator coated with a 

BC film was connected to an oscillator circuit to constitute a SAW sensor. 

 

 
2.2 Characterization and humidity sensing 

 
Surface morphology of the BC was characterized using a field emission scanning electron 

microscope (FE-SEM, FEI Inspect F50). Surface functional groups of the BC were characterized 

using Fourier transform infrared spectroscopy (FTIR, Nicolet IS 10, ThermoFisher Scientific). The 

specific surface area and porosity of the BC was measured using a Brunauer-Emmett-Teller surface 

and a nitrogen adsorption analyzer (Micromeritics ASAP 2020). The electrical conductivity of the 

BC-based sensing membrane was measured using a four-point probe and a digital source meter 

(Keithley 2400, Tektronix). A vector network analyzer (Hewlett-Packard 8714C) was used to obtain 

the electrical parameters of the SAW device. Temperature and humidity of the testing chamber were 

measured using a hygrothermometer (LH-331BL). 

Figure 2 shows experimental setup for the humidity sensing. Temperature and relative humidity 



(RH) of the experimental environment were controlled to be 25oC and 30%, respectively. Five 

different saturated salt solutions were filled into five testing chambers with a fixed volume of 20 L to 

control the RH according to the international standard for RH control [27]. Experiments were 

performed by rapidly inserting the BC SAW humidity sensor into the closed chambers with different 

RH values, and by quickly taking the sensor out from the chamber. A frequency counter (Agilent 

53210A) was used to measure the SAW frequency. For each RH value, the sensor was repeatedly 

tested for three times, and the averaged reading was obtained. 

 

 
3. Results and discussions 

 
3.1 Characterization of BC films 

 
Fig. 3 shows the SEM images of the deposited BC films, which reveal ultra-fine reticular fiber 

structures comprised of interwoven ribbons with diameters of 40-60 nm. The measured thicknesses 

of the Layer-1, Layer-3, Layer-5, and Layer-7 BC films are about 61, 84, 112, 148 nm, respectively. 

Large numbers of nanopores are present within the cellulose ribbons of the film. 

Fig. 4(a) shows the analysis results of functional groups of the BC materials using FTIR. The 

peaks at 3332 cm-1 and 1314 cm-1 are related to the tensile vibration modes of O-H and C-OH bonds, 

respectively. The peaks at 2896, 1590, and 1029 cm-1 are due to C-H antisymmetric stretching 

vibration, H-C-H deformation vibration and C-N stretching vibration, respectively. Among these, 

only those of O-H and C-OH bonds strongly influence the humidity sensing capability as reported in 

Ref. [28]. Analysis results clearly show that the surface of the BC contains a large amount of 

hydroxyl groups. The BET analysis results of the BC materials are shown in Fig. 4(b). The specific 

surface area of BC was measured to be 103 m2/g with average pore diameter of 35.4 nm and the 
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meso-porosity of 63.1%. 

 
Based on these analysis, Fig. 5 depicts a conceptual drawing for the response of these BC 

membranes when exposed to water molecules. Water molecules easily penetrate these three-

dimensional network structures of the BC film with a large number of pores. A large number of 

hydroxyl groups on the surface of the BC strongly enhance the adsorption water molecules, and then 

form hydrogen bonds, thus providing a good water retention capacity. 

 

 
3.2 Sensing measurement results and mechanisms 

 
The measured shift in resonant frequency of the SAW devices is mainly due to the changes in 

wave propagation velocity, which is strongly influenced by the environmental factors such as 

humidity and temperature. The working mechanisms of a SAW device generally include mass 

loading effect, electrical loading effect and viscoelastic loading effect [29-31]. During the 

experiments, we precisely controlled the temperature and atmospheric pressure, and only changed 

the RH value. The adsorption of water molecules in the BC layer does not make it significantly 

stiffer or softer, therefore, the viscoelastic loading is not significant. 

Electrical loading effect of a film refers to the phenomenon that the change in the conductivity of 

the film causes a change in the SAW velocity and thus the resonant frequency. The relationship 

between the change in the resonant frequency (Δf) and the conductivity of the film surface (σs) can be 

described as [32]: 
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where f0=200 MHz is the natural resonant frequency of the SAW device; k2=0.11% is the 

electromechanical coupling coefficient of the quartz crystal; v0=3158 m/s is the undisturbed surface 

wave velocity of the quartz crystal; cs=0.5 pF/cm is the sum of dielectric constants of substrate and 

environment. 

Fig. 6(a) shows the acousto-electrical parameters (ξ=σs /(v0·cs) of the SAW sensing layer as a 

function of the center frequency. The BC film is insulating. The conductivity values of the film 

measured by the four-probe method in 30% RH and 93% RH are 8.5×10-11 and 5.2×10-10 Sm-1, 

respectively. As it is well-known, sensitivity of electrical loading effect of the film depends on the 

slope of the test point in Fig. 6. Only when the ξ value of the test point is at large slope (high 

sensitivity) region of 0.1-10, the electrical loading of the film will have a significant effect. Since the 

conductivity of the BC is extremely low, the frequency shift caused by the acoustoelectric effect was 

calculated to be only ~1.16 Hz when the RH value was changed from 30% to 93%. The resistance 

value of R0 at 30% RH shown in Fig. 6(b) is comparable to that at 93% RH, which further verifies 

that there is no significant change in the resistance value of the sensing film. Therefore, the 

significant change in the resonant frequency of the SAW device as a response to RH change is not 

caused by the electrical loading effect. 

Therefore, the mass loading effect due to the adsorption of water molecules into the BC film 

might be the main reason for the significant changes in the resonant frequencies of the SAW 

humidity sensor. The relationship between the change in the center frequency (Δf) and the change in 

the mass of the sensing film (Δm) can be described as follows [33]: 

Δf=(κ1+κ2)f0
2Δm (2) 

 
where f0 is the center frequency of the SAW sensor, which is ~200 MHz in this study, κ1=-8.7×10-8

 



m2skg-1 and κ2=-3.9×10-8 m2skg-1 are the matrix constants of the ST-cut quartz. Since both the values 

of κ1 and κ2 are negative, the increased mass loading of the BC film due to the adsorption of water 

molecules results in a negative frequency shift. 

Fig. 7(a) shows the resonant frequency shifts of the SAW devices with different thicknesses of 

the BC layer when the RH is increased from 30% to 93%. Results show that all the SAW sensors 

exhibit negative frequency shifts as the humidity is increased. However, the frequency shift without 

the BC film was measured to be ~2.3 kHz, which is much lower than that of the sensor coated with 

the BC film. The frequency shift increases significantly with the thickness of the BC film (Fig. 7b). 

For the SAW resonators coated with 1 layer, 3 layers, 5 layers, and 7 layers of the BC, the insertion 

loss values were measured to be -16.3 dB, -19.4 dB, -24.2 dB, -28.7 dB, respectively. When the 

number of layers of BC exceeds 7 layers, the insertion loss of the resonator exceeds -30 dB, and the 

quality of the vibration signal becomes very poor. Therefore, the SAW sensor coated with 7 layers of 

the BC was used in the further studies as it has the largest frequency shift. 

Fig. 8(a) shows the average values of dynamic responses of 7-layer BC SAW sensors (obtained 

from three same batch of devices) at different RH levels. When the RH was increased from 30% to 

43%, 56%, 68%, 84%, and 93%, the average frequency shifts of the sensors were recorded as 10.0, 

22.7, 36.2, 58.8, and 89.8 kHz, respectively. In addition, when the RH was changed back to 30% 

after each test, the resonant frequency was quickly recovered to its initial value. 

Fig. 8(b) shows the frequency shift as a function of RH for three groups of 7-layer BC SAW 

sensors, fabricated in the same batch process. The frequency shift increases nonlinearly with the RH 

with repeatable results observed among different devices. When the RH is higher than 80%, 

significant changes in frequency shift were obtained. This may be attributed to the fact that 



significant water condensation occurs at higher RH values, which leads to significant mass loading 

effects as widely reported in literature [34]. 

The detection performance of seven-layer BC SAW humidity sensor was further studied in the 

low RH range (5% - 25% RH) because of its importance for food and pharmaceutical manufacturing. 

In this study, the low humidity environment was realized by introducing dry N2 into the enclosed 

chamber. As shown in Fig. 8 (c), the frequency shift of the sensor has a good linear relationship with 

the RH value when the value is below 25%. This further proves that the frequency shift of the sensor 

at a lower RH value is due to only the mass loading effect caused by water molecules adsorbed on 

the BC film. Whereas at higher RH levels, the frequency shift is not only due to the mass loading 

effect, but also due to the additive effect of water condensation. 

 

 
3.3 Performances of BC SAW humidity sensor 

 
Fast response and recovery are critical in practical humidity sensing applications. The dynamic 

frequency shifts of the 7-layer BC SAW device obtained during the response and recovery processes 

are shown in Figs. 9(a) and 9(b), respectively. A gradual increase in the response time was observed 

with increasing RH levels, because not only water molecules are adsorbed on the surface of the BC 

film at higher humidity levels, but also significant condensation of water molecules occurs. It is 

relatively difficult to release the condensed water molecules, thus causing the increased response and 

recovery times. For the humidity sensor in this work, the durations to reach 90% of the response 

levels were measured to be 3 s, 5 s, 7 s, 8 s, and 12 s when the RH values were increased from 30% 

to 43%, 56%, 68%, 84%, and 93%, respectively. When the humidity was returned to 30%, the 

durations for the frequency signals to return back to 10% of their original values were measured to 



be 3 s, 3 s, 4 s, 4 s, 5 s, respectively. 

 
In order to compare with the performance of other sensors reported in the literature, we detected 

the humidity sensing with RH values increased from 10% to 93% and then restored to 10% 

afterwards. The response time was found to increase only by one second and the recovery time 

increased by only two seconds.Table 1 lists the response and recovery times of the BC based SAW 

sensor with those of the humidity sensors reported in the literature. Among the reported SAW 

humidity sensors, the recovery time of our sensor is significantly shorter than the others reported in 

literature. Moreover, compared with the performance of different types of humidity sensors available 

in the commercial market, the response time and recovery time of our sensors are shorter or 

comparable as listed in Table 2 [35]. 

In the environment with an RH value of 30%, temperature sensitivity of the humidity sensor was 

characterized within a temperature range from 25 to 60oC. Fig. 10 shows a slight decrease in 

resonant frequency of the sensor with temperature, with a very good linearity. TCF is often used to 

describe the effect of temperature changes on sensor response, and the TCF is defined as 

TCF = 
Δf 

f0 • ΔT 
(3) 

 

where f0 is 200 MHz in this study, Δf and ΔT are the changes of resonant frequency and 

temperature. A very small TCF value of -0.12 ppm/oC was extracted for the 7-layer BC SAW 

humidity sensor based on the results presented in Fig 10, indicating the insensitivity of the sensor to 

the minor changes in temperature. Compared to the other SAW devices listed in Table 3, the BC 

humidity sensor has significant advantages in terms of thermal stability. 

In order to study, the selectivity, we further tested the frequency shift of the BC SAW humidity 

sensor at two humidity levels of 43% RH and 93% RH by introducing different gases such as NH3, 



H2, CO, HCl and C2H5OH. Results showed that when these testing gas concentration was 500 ppm, 

the frequency shift of the BC SAW humidity sensor due to adding the other types of gases are 

insignificant compared with those due to the humidity changes, as shown in Fig. 11. This indicates 

that the influences of introduction of other types of gases does not show significant influence on the 

humidity sensing. However, it should be noted that this SAW humidity sensor has a slightly higher 

responses to ammonia at a very high humidity level, although at a low humidity level, the ammonia 

response is not significantly different from other gases. The response to ammonia at a higher 

humidity level can be attributed to the adsorption of ammonia gas at a high humidity level on the 

surface of the BC where water molecules are condensed to form a moisture layer. Strong adsorption 

of NH3 in moisture or water layer has been widely reported [36]. 

The repeatability of the Layer-7 BC SAW humidity sensor was further studied by cycling the RH 

value between 30% to 93% and then repeated for five cycles. The results are shown in Fig. 12(a).  

The variation in the frequency shift was less than 5% during the measurement cycles, indicating a 

good short-term repeatability. The sensor was also tested repeatedly for its long-term stability by 

keeping it in a chamber with 30%, 43%, 56%, 68%, 84%, and 93% RH for one-month intervals. As 

shown in Fig. 12(b), the BC SAW humidity sensor exhibited a fluctuation value less than 2% at a 

lower RH of 43%. Even at a high RH of 93%, the fluctuation in resonant frequency was less than 5%. 

These experiments revealed that the BC SAW humidity sensor has a good long-term stability. 

 

 
4. Conclusions 

 
We fabricated BC SAW humidity sensors on ST-cut quartz substrates in this study. The three-

dimensional network structure of the BC film and large numbers of pores contribute to the 



water adsorption within the membrane. The hydrogen bonding of the surface functional group 

hydroxyl groups with water molecules enables the BC membrane to effectively adsorb water 

molecules. This study reveals the mass loading effect as the fundamental mechanism for the 

frequency shift of SAW sensors as compared to the acoustoelectric effects. The frequency shift of the 

sensor at a low RH value of less than 30% exhibits a better linear relationship with humidity. 

Whereas the frequency shift of the BC film increases exponentially with increasing humidity when 

the RH value exceeds 80%. In addition, a thicker BC layer has more hydrophilic hydroxyl groups, 

providing more adsorption sites for water molecules. However, excessive increase in the layer 

thickness also causes an increase in insertion loss, thus deteriorating the frequency signal. The SAW 

humidity sensor coated with a BC layer on a quartz substrate has achieved with fast response and 

recovery performance, as well as thermal stability, good short-term and long-term repeatability. 
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Table 1. Comparisons of response time and recovery time of different humidity sensors. 
 
 

Sensor Structure Sensing material RH range tres/trec (s) Reference 

Capacitive Textile substrate polydimethylsiloxane 

and CaCl2 

30%-60% 120/- [5] 

Resistance Ag-Pd electrode TiO2/graphene oxide 

nanocomposites 

11%-93% 129/59 [6] 

SAW AlN Graphene oxide (210 

nm) 

15%-80% 10/9 [37] 

QCM Quartz crystal 

microbalance 

Bacterial cellulose 60%-97% 102/57 [23] 

SAW ST-cut quartz Bacterial cellulose 10%-93% 13/7 This work 

 
Table 2. Performance comparisons of the newly developed SAW sensor with typical commercial 

humidity sensors. 

Sensors Principle Response time (s) Recovery time (s) 

SHT15 Polymer Capacitive 8 8 

DHT11 Resistance 10 10 

HMT330 Electronic 20 50 

This work SAW 12 5 

*The mainstream humidity sensor data on the market shown above were obtained from reference [35]. 

 
Table 3. Comparison of TCF values for SAW devices with different substrate material. 

 Substrate material TCF(ppm/oC) Reference 

 128o Y-cut LiNbO3 -75 [40] 

 AIN/Si -22.1 [10] 

 X-112Y LiTaO3 -18 [41] 

 ZnO -15 [42] 

 42o75’ ST-cut -0.12 This work 
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(b) 

 
Fig.1. (a) Schematic illustration of SAW sensor based on an ST-cut quartz 

substrate; (b) S-parameter detection diagram of SAW resonator. 



 
 

Fig.2. Experimental set-up for SAW humidity sensing and illustration of 

humidity control method using the saturated salt solution. 



 

 

Fig.3. SEM images of surface and cross-section morphologies of the BC films 

coated with different layers, (a) 1 layer; (b) 3 layers; (c) 5 layers; (d) 7 layers 

(scale bars on the large image are 3 µm,  the scale bars of the upper right image 

is 1 µm), (e) and (f) are enlarged surface and cross-section views of the 7 layer 

film (scale bars are 500 nm). 



 

(a) 

(b) 

Fig.4. (a) FTIR spectra of BC materials showing that the surface group has 

only hydroxyl groups; (b) pore size distribution map of BC material; (c) a partial 

enlarged view of (b). 



 

 

Fig. 5. Schematic illustrations of adsorption of water molecules on the BC 

layer of the SAW device. 



 

(a) 

(b) 

Fig. 6. (a) Plot of frequency changes of SAW sensor versus acoustoelectric 

parameter ξ=σs/(v0Cs); (b) Resistance responses of BC sensing film (R=Rh/R0) 

when humidity is changed between 30% and 93% RH. 



 
 

(a) 

(b) 

Fig.7. (a) Frequency shift of SAW device with the BC layers with different thicknesses 

when relative humidity is increased from 30% to 93%; (b) frequency shift of the SAW device 

as a function of the thickness of BC. 



 

(a) 

(b) 



 

(c) 

Fig. 8. (a) Dynamic response of the 7-Layer BC SAW sensor at different 

relative humidity values; (b) frequency shift of three sensors with the same 

configurations as a function of RH value; (c) sensing performance of the SAW 

sensor in low humidity range (5%-25%RH). 



 

(a) 

(b) 

Fig. 9. (a) Freqeuncy shifts vs Time taken by the Layer-7 BC humidity SAW 

sensor when the RH value is increased from 30% to 43%, 56%, 68%, 84%, and 

93% to reach 90% response; (b) Changes of the resonant signals as a function of 

time when the RH values was changed from the specific value to 30%. 



 

 

Fig. 10. Variations of the resonant frequencies of the Layer-7 BC humidity 

sensor versus environment temperatures. 



 
 

Fig. 11. Effect of different types of gases on sensor humidity detection under 

conditions of 43% RH and high humidity 93% RH. 



 

(a) 

(b) 

Fig. 12. (a) Frequency shifts of SAW humidity sensors based on Layer-7 BC 

film for five humidity cycling tests with the RH values changed between 30% to 

93%; (b) the resonant frequency of the SAW humidity sensors tested within one 

month at different RH values. 
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