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Abstract 

Extremely large-amplitude nonlinear dynamics of a cantilever with a mass at the tip under 

coupled base excitations is examined for the first time. An exact model of the centreline 

rotation of the cantilever is developed capable of accurately predicting the cantilever 

dynamic response even at extremely large amplitudes; a nonlinear static finite element 

analysis is conducted to verify the accuracy of the proposed model at very large deflection 

amplitudes. The proposed model is based on the theory of Euler-Bernoulli and the internal 

damping model of Kelvin-Voigt; the centreline of the cantilever is assumed to remain 

inextensible. The proposed model for the cantilever centreline rotation is discretised via the 

Galerkin modal decomposition method while keeping all terms exact. Extensive numerical 

simulations are conducted to examine the primary and parametric resonance of the 

cantilever due to transverse and axial base excitations, respectively. It is shown that under 

the same axial and transverse amplitudes of excitation, the parametric resonance is much 

stronger than the primary resonance.  

Keywords: Extremely large-amplitude dynamics; Cantilever; Coupled base excitation; Primary 

and parametric resonances; Kelvin-Voigt 
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1. Introduction 

Beams and plates are present in various engineering systems and applications 

ranging from macro to micro scales (AkhavanAlavi et al., 2019; Ashoori Movassagh and 

Mahmoodi, 2013; Basutkar et al., 2019; Ghayesh et al., 2017; Gusella et al., 2019; Li et al., 

2019; Mirsalehi et al., 2017; Mitchell and Gau, 2019; Nampally et al., 2019; Reddy et al., 

2016; Rokni et al., 2015; Ruzziconi et al., 2013; Sadeghmanesh et al., 2019; Talimian and 

Béda, 2018; Wang et al., 2011; Xu and Deng, 2016; Zhang et al., 2013). Cantilevered beams 

are commonly subject to base excitations in axial, transverse, or both directions. Cantilevers 

can be found, for instance, in scanning probe microscopy, micro/nano resonators, mass 

sensors, vibration-based energy harvesters, and micro/nano-electromechanical systems 

(Farokhi et al., 2013; Friswell et al., 2012; Ghayesh et al., 2013b; Ghayesh and Farokhi, 

2015a, b; Ghayesh et al., 2016; Ghayesh et al., 2013c, 2014; Gholipour et al., 2015; Kumar et 

al., 2011; Liu et al., 2012; Mahmoodi and Jalili, 2007). One of the unique features of 

cantilevers is that they can undergo deformations/vibrations (Ghayesh, 2012; Ghayesh and 

Moradian, 2011; Ghayesh et al., 2010; Karimi, 2006; Palacios-Quiñonero et al., 2012; Si et 

al., 2014) of extremely large amplitude due to having one end free. The other feature of 

cantilevers, resulting again from having one free end, is that the axial strain developed in 

the midplane of the cantilever is almost zero, allowing for application of a realistic 

assumption known as the centreline inextensibility. This is significantly important as it 

allows for describing the transverse and axial motions of the cantilever in terms of the 

midplane rotation; this will be explained in more detail in Section 2. One of the major 

difficulties associated with modelling and analysis of cantilevers undergoing large-amplitude 

motions is the presence of various sources of nonlinearity, namely geometric nonlinearities 
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due to large rotations, inertial-type nonlinearities, and damping nonlinearities. But the most 

difficult challenge in analysing cantilevers is capturing very large-amplitude responses when 

the tip angle grows larger than 90°. Such challenges in modelling and analysis of cantilevers 

have motivated a large amount of research on this topic. In what follows, a summarised 

review of the literature is presented. 

Cantilevers statics and dynamics have been the topic of investigation over the past 

few decades. Early studies on this topic were conducted by Crespo da Silva and Glynn 

(Crespo da Silva and Glynn, 1978a, b), who obtained the equations of motion of beams 

based on inextensibility assumption; they accounted for both geometric and inertial 

nonlinearities and employed the method of multiple scales to study the cantilever response. 

Soon after, they (Crespo da Silva and Glynn, 1979) continued the investigations by studying 

the effect of asymmetries in the support of cantilevers on the vibrating modes nonlinear 

resonance coupling. The investigations were continued by Nayfeh and Pai (Nayfeh and Pai, 

1989), who studied the nonlinear in-plane and out-of-plane oscillations of a cantilever 

subject to axial base excitation; they derived the cubic nonlinear equations of motion for 

transverse and lateral motions taking advantage of the inextensibility condition and solved 

is via the method of multiple scales. In another effort, Pai and Nayfeh (Pai and Nayfeh, 

1990) studied the nonlinear in-plane and out-of-plane vibrations of a cantilever under 

lateral base excitation using the method of multiple scales.  Hsieh et al. (Hsieh et al., 1994) 

obtained the nonlinear normal modes for large-amplitude response of a cantilever making 

use of an invariant manifold approach taking into account geometric and inertial 

nonlinearities; they found that the linear vibration mode shapes of a cantilever are very 

similar to the nonlinear mode shapes.  
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The investigations on this topic were continued by Oh and Nayfeh (Oh and Nayfeh, 

1996), who performed an experimental investigation on composite cantilever plates under 

lateral harmonic excitation to study the presence of combination resonances. Hamdan and 

Dado (Hamdan and Dado, 1997) studied the transverse nonlinear free vibrations of a 

cantilever carrying a point mass utilising the inextensibility assumption and accounting for 

longitudinal inertia and nonlinear curvature. More studies on nonlinear vibration of 

cantilevers under parametric excitation were conducted by Anderson et al. (Anderson et al., 

1996) and Arafat et al. (Arafat et al., 1998). 

Further investigations on nonlinear dynamics of cantilevers were conducted by 

Herişanu and Marinca (Herişanu and Marinca, 2010) who derived an analytical 

approximation for the nonlinear free oscillations of a cantilever in the transverse direction 

through use the inextensibility assumption. The effect of feedback time delays on the 

nonlinear control of parametrically excited cantilevers was studied by Alhazza et al. (Alhazza 

et al., 2008), who used the multiple scales method to examine the time delay effects on the 

stability of the system. The vibration of a cantilever under base motion in a viscous fluid was 

examined by Phan et al. (Phan et al., 2013), who modelled the fluid-structure interactions 

using a hydrodynamic function accounting for the added mass of the fluid.  

Furthermore, cantilevers have been widely used for mass sensing and vibration-

based energy harvesting applications (Friswell et al., 2012; Ghazavi et al., 2010; Kumar et al., 

2011; Leadenham and Erturk, 2015; Liu et al., 2012; Mahmoodi and Jalili, 2007). Cantilevers 

under piezoelectric actuation were studied, for instance, by Mahmoodi and Jalili (Mahmoodi 

and Jalili, 2007), who used an inextensible beam model to study the nonlinear oscillations of 

a piezoelectrically actuated microcantilever. Kumar et al. (Kumar et al., 2011) proposed a 
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bifurcation-based mass sensing approach, using saddle-node type bifurcations, making use 

of piezoelectrically actuated microcantilevers. Further investigations have been conducted 

to study the applications of cantilevers in energy harvesting. Liu et al. (Liu et al., 2012) 

incorporated a stopper in a piezoelectric energy harvesting cantilever system to widen the 

frequency bandwidth. Leadenham and Erturk (Leadenham and Erturk, 2015) investigated 

the nonlinear dynamical characteristics of a cantilever-piezoelectric system for energy 

harvesting, sensing, and actuation applications. The investigations were continued by Staaf 

et al. (Staaf et al., 2019), who showed the significance of asymmetry in conjoined cantilevers 

employing a piezoelectric self-tuning energy harvester. 

The major limitation of the inextensible model of the cantilever for 

transverse/lateral motion, when discretised using a modal decomposition technique, is that 

it can predict displacements only up to the point when the tip angle magnitude is less than 

90. More specifically, to derive the transverse equation of motion of a cantilever under the 

inextensibility assumption, the cantilever centreline rotation φ is expressed as 

( ) −=  1sin w x , where w is the transverse displacement; this expression is then expanded 

via Taylor’s series expansion, under the assumption that the centreline angle varies 

between 90. This means that the transverse equation of motion of a cantilever, if 

discretised using modal decomposition techniques, is not capable of predicting the response 

when the tip angle becomes larger than 90. In this study, the main reason for deriving the 

cantilever equation of motion for centreline rotation is to overcome this limitation. 

However, it should be highlighted again that the cantilever centreline equation of motion 

works accurately only if all the terms are kept exact.  
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 This study examines, for the first time, the nonlinear primary and parametric 

resonances of a cantilever subject to coupled base motions undergoing extremely large 

oscillations. An exact model is proposed based on the cantilever centreline rotation allowing 

for examining the cantilever response at any amplitude. The word “exact” or “geometrically 

exact” used throughout the text implies that the all the terms are kept intact/exact in the 

derivation procedure as well as in the discretisation procedure and numerical simulations. 

The proposed model’s accuracy is verified via comparison to a nonlinear finite element 

model for a static case. The nonlinear dynamic response of the cantilever in primary and 

parametric resonance regions due to coupled base motions is examined.  

 

2. Centreline-rotation-based exact cantilever model 

An exact cantilever model is developed in this section while treating the centreline 

rotation as the independent motion of the system. To this end, the beam theory of Euler-

Bernoulli is utilised while assuming the centreline remains inextensible. The inertial and 

curvilinear coordinate systems are shown by XZ and xz in Fig. 1. One important outcome of 

the assumption of inextensibility of centreline is that the strain in an element of the 

centreline remains zero after deformation, i.e. the length of an element before deformation 

(dX) is the same as that after deformation (dx). As depicted in Fig. 1, the cantilever is under 

coupled base excitation. More specifically, a base excitation of u0sin(ω0t) is exerted in the 

axial direction, X, while another base excitation of w0sin(ω0t) is applied in the transverse 

direction, Z. It is assumed that both base excitations have the same frequency ω0, but 

different amplitudes u0 and w0. 
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The exact equation of motion of the centreline rotation of the cantilever is obtained 

analytically in the following. As explained in the introduction section, the main advantage of 

deriving the equation of motion for centreline rotation rather than the transverse 

displacement is in its capability in predicting the cantilever response when the tip angle 

grows larger than 90. To this end, the strain energy, motion energy, and Kelvin-Voigt 

internal damping work are formulated and then inserted into Hamilton’s principle.  

Utilising the inextensibility assumption, the only strain component developed in the 

beam axial direction is obtained as 

( ), , ( , ),t x z z t x
x

 


= −


  (1) 

in which φ denotes the centreline rotation angle and t represents time. Based on such axial 

strain formulation and employing Kelvin-Voigt material damping model, the stress 

developed in the beam is derived as 

( )   
 

= − −
  

2

, , ( , ) ( , ),t x z Ez t x z t x
x t x

 (2) 

in which η and E represent the material viscosity and Young’s modulus, respectively. Hence, 

the variation of the elastic strain energy of the cantilever can be formulated as  

( )


 
  

=    

0

( , )
( , ) d ,

L
t x

EI t x x
x x

  (3) 

in which only the elastic part of the axial stress is included; δ denotes the variational 

operator, L stands for the length of the cantilever, and I represents the second moment of 

the beam cross-sectional area. 
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The internal energy dissipation source is the viscous part of the axial stress; the virtual work 

of this dissipative source is given by 

( )


  
  

= −  
   


2

0

( , )
( , ) d .

L

vis

t x
W I t x x

x x t
  (4) 

In order to derive the kinetic energy formulation in terms of the centreline rotation 

and base motions, the transverse displacement relative to the base, w(t,x), and the axial 

displacement relative to the base, u(t,x), must be formulated in terms of the centreline 

rotation. The centreline inextensibility gives 

 

 ( )

0

0

( , ) sin ( , ) d ,

( , ) cos ( , ) 1 d .

x

x

w t x t s s

u t x t s s





=

= −





  (5) 

Using Eq. (5) and accounting for base motions, the kinetic energy of the cantilever is derived 

as 

( )( ) ( ) ( )

( )( ) ( ) ( )

2

0

2

0 0 0

0 0

2

0 0 0

0 0

1 ( , )
d

2

1 ( , )
cos sin ( , ) d d

2

1 ( , )
cos cos ( , ) d d ,

2

L

L x

R

L x

R

t x
KE I x

t

t s
M x L A u t t s s x

t

t s
M x L A w t t s s x

t





    


    

 
=  

 

  
 + − + − 
   

  
 + − + + 
   



 

 

  (6) 

in which ρ, A, and M represent the mass density, area of the cross-section, and tip mass, 

respectively; additionally, δR stands for the Dirac delta function. 

The exact equation of motion for cantilever centreline rotation can then be derived utilising 

generalised Hamilton’s principle as  
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( )( ) ( )

( )( ) ( )

22
2

0 0 0 2

0

22
2

0 0 0 2

0

2 3 2

2 2 2

cos sin cos sin d d

sin sin sin cos d d

0.

x x

R

L

x x

R

L

M x L A w t x x
t t

M x L A u t x x
t t

I I EI
t x t x

 
      

 
      

  
 

      
 − + + − +           

     
− − + + +   

      

  
+ − − =

   

 

    (7) 

The dimensionless form of the equation of motion can be obtained as 

( )( ) ( )

( )( ) ( )

 
    

 

 
    

 

 


  

      
 − +   + − +           

     
− − +   + +   

      

  
+ − −

  

 

 

22
2

0 0 0 2

1 0

22
2

0 0 0 2

1 0

2 3 2

2 2

cos 1 1 sin cos sin d d

sin 1 1 sin sin cos d d

1

d d

d d

x x

R d d d

x x

R d d d

d

d

x W x x

x U x x

x


=

 2
0,

dx

  (8) 

in which the following dimensionless quantities are used 


  

 


=  = = =

= = = =

0 0

2
0 0

0 0

, , , ,

, , , ,

d d

t x
T x

T ET L

u wM AL
U W

AL L L I

  (9) 

where = 2 ( )T L A EI .  

The exact equation of centreline rotational motion of the cantilever is obtained in Eq. 

(8). Being exact, this model is capable of predicting very large-amplitude motions as will be 

discussed in detail later. To ensure the accuracy of the developed model, it is essential to 

keep all terms exact while performing the Galerkin discretisation technique. Based on the 

Galerkin modal decomposition method, the centreline rotation is defined as a finite series 

expansion consisting of spatial shape functions  ( )k dx  multiplied by generalised 
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coordinates ( )kr . To ensure fast convergence, the following hyperbolic function is used as 

the shape function 

( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )

     

    
−

 = + + −

= + +
1

( ) sin cos sinh cosh ,

sinh sin cosh cos ,

k d k d k k d k d k k d

k k k k k

x x x x x

  (10) 

where μk is the kth root of the equation ( ) ( )  + =cos cosh 1 0 . The hyperbolic function in 

Eq. (10) is obtained as 
( )1

( ) d
k d

k d

x
x

x


 =


, where ( )dx  is the eigenfunction for the 

transverse motion of a cantilever. The rotational discretised equations of motion of the 

cantilever can be obtained, via Galerkin’s method (Ghayesh et al., 2013a; Kazemirad et al., 

2013), as  

( )( )

( )

1 2

2
1 1 10 1 0

2

2
0 0 0

1 1

cos ( ) ( ) 1 1 ( ) ( ) cos ( ) ( )

( ) ( ) sin ( ) ( ) d sin d

d dx xM M M

j k k d R d k k d k k d
k k k

M M

k k d k k d d d
k k

r x x r x r x

r x r x x W x

   


  


= = =

= =

        
  − + −               

   
+ +

          
        

    

 

( )( )

( )

1 2

2
1 1 10 1 0

2

2
0 0 0

1 1

d

sin ( ) ( ) 1 1 ( ) ( ) sin ( ) ( )

( ) ( ) cos ( ) ( ) d sin d

d d

d

x xM M M

j k k d R d k k d k k d
k k k

M M

k k d k k d d d
k k

x

r x x r x r x

r x r x x U x

   


  


= = =

= =



        
−   − +               

     
+               

+



    

 

1 1 1

1 1 10 0 0

d

1
d d d 0,

1,2,..., .

d

M M M

j k d k d j k d k j k d k
k k k

x

x r x r x r

j M


 = = =






     
 +   −   −   =     

     

=

    

 

 (11) 

It is noted that in Eq. (11), all sin and cos terms are kept intact; this is absolutely 

necessary to ensure accurate results when the cantilever undergoes extreme deformations. 

In other words, the sin and cos terms should not be approximated using Taylor’s expansion 
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and must be kept intact to guarantee accurate results. The main challenge encountered 

while doing so is that the integrations cannot be performed in closed form due to presence 

of time-dependent terms in the arguments of sin and cos terms. Hence, numerical 

integration is utilised for these terms while retaining sufficient number of terms to 

guarantee accurate results. This is a challenging task which yields extremely large-size 

equations of motion; solving such large equations requires high computational costs. 

Additionally, to ensure convergence, six generalised coordinates are retained in Galerkin 

discretisation resulting in six nonlinearly coupled second-order ordinary differential 

equations. The resultant set of equations is solved via developing well-optimised codes 

based on a continuation technique. Once the discretised equations are solved, the 

transverse and axial displacements are calculated using the expressions given in Eq. (5). 

Apart from the dimensionless quantities defined in Eq. (9), the following dimensionless 

quantities are used as well in the reported numerical results 

 = = = = =1 1, , , , ,d d d d

u w X Z
u w X Z T

L L L L
  (12) 

in which ω1 is the first dimensionless transverse natural frequency of the cantilever. 

 

3. Nonlinear large-amplitude static analysis 

A nonlinear static investigation is conducted in this section using a cantilever model 

based on the centreline rotation as well as a three-dimensional (3D) nonlinear finite 

element (FE) model. A specific tip load configuration is assumed as shown in Fig. 2(a) to 

force the cantilever to undergo extremely large deformations. The exact model of the 

cantilever shown in Fig. 2(a) based on the centreline rotation can be derived as 
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( ) ( )       



 
− + − − −       

  


− =


 
1 1

2

2

cos ( 1) sin cos d sin ( 1) cos sin d

0,

d dx x

d R d d R d d

d

p x x x x

x

  (13) 

in which = 2 ( )dp pL EI , where p is the tip load magnitude in both axial and transverse 

directions as shown in Fig. 2(a). Equation (13) is discretised using the same procedure 

defined in Section 2, retaining 6 vibration modes. A 3D nonlinear FE model is developed as 

well through use of Abaqus employing continuum shell elements, i.e. an 8-node 

quadrilateral element with reduced integration. A mesh size of 1 mm is used to ensure 

converged results. For this comparison, a cantilever of length 140 mm, thickness 0.8 mm, 

and width 4 mm is used for both models. 

The nonlinear extremely large static deflection of the cantilever under various tip 

load magnitudes is illustrated in Fig. 2(b); the results obtained via the proposed exact model 

are shown by solid lines while the FE results are indicated by solid circles. It is interesting to 

note that the proposed centreline-rotation-based cantilever model predicts almost the 

same responses as the nonlinear 3D FE model even at extreme deformations. In fact, for the 

case with pd=9.0, the tip of the cantilever has completely bent backwards, and yet the 

proposed model has no problem in capturing the response accurately. This comparison 

shows the robustness and reliability of the proposed exact model in predicting the 

cantilever response even at extreme deformations. Figure 3 shows the cantilever deformed 

configurations obtained via the nonlinear FE model for pd=3.0, 5.0, and 9.0 through sub-

figures (a)-(c), respectively; the contour plots show the transverse displacement in mm. 
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4. Primary and parametric resonances due to coupled based motions 

Extensive numerical simulations are conducted in this section in order to examine 

the nonlinear primary and parametric resonances of the cantilever subject to coupled axial-

transverse base motions. All the results presented in this section are dimensionless so that 

they can be used for benchmark analysis. The dimensionless material viscosity ηd is set to 

0.003 for all the cases examined in this section. The only parameter whose value requires 

defining dimensional parameters is β. Recalling from Section 2, β=AL2/I, which for a 

rectangular cross section of thickness h reduces to 12(L/h)2. In other words, the value of β 

depends on the slenderness ratio of the beam. In this study, β is set to 120000, 

corresponding to L/h =100; however, for cantilevers with L/h>50, β has a negligible effect on 

resonance response since it will be large enough so that the term 1/β will be negligible. In all 

the frequency-amplitude diagrams presented in this section, the line style indicates the 

stability with the solid style representing stable response and the dashed style showing the 

unstable one. The word “stability” in this study implies “structural stability” which refers to 

the effect of small perturbations on the behaviour of the dynamical system trajectories. 

In what follows, the primary and parametric resonance responses of the cantilever 

are studied in detail. The transverse base motion is responsible for the primary resonance 

response while the axial base motion is responsible for emergence of another resonance 

region in the vicinity of twice the first natural frequency, namely the parametric resonance 

region. Figure 4 shows the resonance responses of the cantilever under coupled base 

motions of the same amplitudes; more specifically, W0=U0=0.012. At first glance, it is seen 

that the cantilever undergoes very large-amplitude oscillations with transverse amplitudes 

reaching almost 90% of the length and the tip angle reaching almost 180 degrees; these 



14 
 

extreme amplitudes are discussed in more detail later. It is interesting to note that although 

the base motion amplitude is the same in both axial and transverse directions, the 

parametric resonance oscillation amplitudes are much larger than those in the primary 

resonance region, mainly due to larger frequency of excitation. Figure 4(a) shows the 

maximum transverse displacement of the cantilever; as seen in this figure, as the excitation 

frequency is increased from values smaller than ω1, the oscillation amplitude increases 

gradually with increasing frequency in the primary resonance region until reaching a peak 

amplitude. At this point (Ω0/ω1=1.0256), a saddle-node type bifurcation occurs and the 

cantilever jumps to a smaller-amplitude branch. In fact, there are two saddle-node 

bifurcations in the primary resonance region, with the second one occurring at 

Ω0/ω1=1.01908. Then, in the vicinity of 2ω1, two period-doubling bifurcations occur at 

Ω0/ω1= 1.9640 and 2.0364, rendering the trivial solution branch unstable and giving rise to 

two nontrivial solution branches, one being stable and the other one unstable. The two 

motion branches coincide at the point shown on the curve in which yet another saddle-

point bifurcation occurs (Ω0/ω1= 2.0824). Figure 4(b) shows the tip transverse displacement 

corresponding to maximum tip rotation. The goal of this figure is to better highlight extreme 

oscillations of the cantilever when the tip of the cantilever bends backwards. As seen in Fig. 

4(b), the tip w motion corresponding to maximum tip rotation in the parametric resonance 

region reaches a maximum and the decreases with increasing frequency. In fact, the 

maximum value corresponds to a tip rotation of 106°; this means that for larger tip angles, 

the transverse amplitude of the tip of the cantilever first reaches a maximum and then 

decreases as the cantilever reaches its limiting states. This is better illustrated in Fig. 5, 

through plotting the oscillation of the cantilever in (a) peak amplitude of primary resonance 

and (b) peak amplitude of parametric resonance. As seen in Fig. 5(b), the cantilever tip 
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bends completely backward during the oscillation. Such an extreme response can only be 

captured using the exact model developed in this study. To better show the vibration 

characteristics of the system, Figs. 6 and 7 are constructed showing the phase-plane plots 

and time traces of the transverse, rotational, and axial motions at Ω0/ω1=1.0256 and 

2.0779, respectively. A closer look at Fig. 7(b) and (d) shows that the tip transverse 

displacement reaches a local minimum as the tip rotation reaches its maximum during one 

period of oscillation. 

Figure 8 shows the frequency-amplitude curves of the cantilever in primary and 

parametric resonance regions for various base motion amplitudes; the base motion 

amplitude is denoted on the curves noting that W0=U0 for all cases. It is interesting to note 

that a primary resonance region appear for all four cases while the parametric resonance 

region appear only for three base motion amplitudes. More specifically, for the case with 

base motion amplitude of 0.003, no parametric resonance occurs. Hence, although when 

W0=U0 the parametric resonance amplitude is larger than the primary resonance one, at 

small enough base motion amplitudes, no parametric resonance appears. 

The effect of the parameter χ, i.e. the tip mass ratio, on resonance responses of the 

cantilever when W0=U0=0.009 is depicted in Fig. 9. As seen in sub-figure (c) and (d), as the 

tip mass ratio is increased, the peak tip rotation and axial displacement increases 

accordingly; however, the tip maximum transverse displacement is not affected much by 

increasing tip mass ratio, as seen in Fig. 9(a). Additionally, it is seen that due to increased tip 

mass ratio, both resonance regions shift to smaller base motion frequencies. As seen, the 

shift in the parametric resonance region is more pronounced compared to the primary 

resonance region. The figure also shows that the shift in the frequency becomes less as the 
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tip mass ratio increases; more specifically, a larger shift is seen as χ is increased from 0 to 

0.04 compared to the case when it is increased from 0.12 to 0.16. 

For the next case, i.e. Fig. 10, the axial base motion amplitude, U0, is set to 0.007 

while the transverse base motion amplitude, W0, is set to 0.028, i.e. W0=4U0. As seen in Fig. 

10, setting W0=4U0 results in very similar peak oscillation amplitudes in primary and 

parametric resonance regions, with two saddle-node bifurcations appearing in the primary 

resonance region at Ω0/ω1=1.0351 and 1.0307 and another one in the parametric resonance 

region Ω0/ω1=2.0686; the period-doubling bifurcations occur at Ω0/ω1= 1.9759 and 2.0144. 

The cantilever behaviour in the two regions, on the other hand, is very different. The 

primary resonance region is very wide and the increase in the amplitude is gradual while the 

parametric resonance region is very narrow and the increase in the amplitude is very sharp. 

The number of saddle-node and period-doubling bifurcation points remain unchanged 

compared to the case of Fig. 4. The oscillations of the cantilever at peak primary and 

parametric resonances are shown in Fig. 11. 

The effect the tip mass ratio on resonance responses of the cantilever when 

W0=0.020 and U0=0.006 is illustrated in Fig. 12. As seen, the added tip mass effect is similar 

to the case of Fig. 10; however, in this case due to larger amplitude of the base motion in 

the transverse direction, the primary and secondary resonance responses are of similar 

amplitudes. 
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5. Conclusions 

In this study, an exact model was developed for the centreline rotation of a 

cantilever under coupled axial-transverse base motions. More specifically, the equation of 

motion of the cantilever was derived for the centreline rotation assuming inextensibility 

condition and all the terms were kept intact in the derivation procedure. The Galerkin 

technique was used to discretise the equation of motion using hyperbolic shape functions 

for fast convergence; all terms were kept exact in discretisation process.  

First, a nonlinear static analysis was conducted to examine extremely large 

deformations of the cantilever. The results obtained via the proposed model were 

compared to those of 3D nonlinear FE analysis, showing excellent agreement between the 

two. The verified exact cantilever model was then utilised to study the resonance response 

of a cantilever subject to coupled axial-transverse base motions. The frequency-amplitude 

diagram showed that the cantilever displays a primary resonance response as well as a 

parametric one when the excitation frequency is twice the fundamental transverse natural 

frequency. The exact cantilever model predicted a weakly hardening nonlinear behaviour in 

both primary and parametric resonance regions. The results showed that the cantilever 

could undergo vibrations of extreme amplitude with the tip angle growing larger than 180°, 

i.e. with the tip bending completely backward.   

Examining the effect of base motion amplitudes revealed that the parametric 

resonance region exists only when the axial base motion amplitude is sufficiently large. It 

was shown when the axial and transverse base motion amplitudes are the same, the peak 

oscillation amplitude in parametric resonance region is much larger than that in the primary 

resonance region. Examining the effect of an added tip mass on resonance response 
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characteristics of the cantilever showed that a shift to smaller base motion frequencies 

occurs in both primary and parametric resonance regions. It was shown that the shift in the 

frequency becomes smaller at larger tip mass ratios.  
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Fig. 1. Schematic of a cantilever with a tip mass subject to coupled axial-transverse base motions. 
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(a) 

 
 
 
(b) 

 
Fig.2. (a) Cantilever under static tip load; (b) extreme static deformations of the cantilever under various tip 
loads (values of pd denoted on the diagrams); solid line shows the results obtained by the proposed exact 
model while solid circles show those calculated via 3D nonlinear FE analysis. 
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(a) 

 

(b) 

 
(c) 

 
Fig. 3. Transverse displacement contour plots of the cantilever of Fig. 3 (in mm) for (a-c) pd = 3.0, 5.0, and 9.0, 

respectively. 
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(c) 

 
(d) 

 
Fig.4. Large-amplitude oscillations of the cantilever under coupled base motions in primary and parametric 
resonance regions; (a) maximum transverse displacement at tip; (b) tip transverse displacement at the time of 
maximum tip rotation; (c) maximum rotation at tip; (d) maximum axial displacement at tip. W0=U0=0.012. 
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(a) 

 

(b) 

 
Fig.5. Oscillations of the cantilever of Fig. 4; (a) primary resonance response at Ω0/ω1=1.0256 and (b) 
parametric resonance response at Ω0/ω1=2.0779. 
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 (a) 

 

(b) 

 
(c) 

 

(d) 

 
(e) 

 

(f) 

 
Fig.6. Dynamics of the cantilever of Fig. 4 in primary resonance when Ω0/ω1=1.0256; (a, b) phase-plane and 
time trace of w at tip, respectively; (c, d) those of φ at tip, respectively; (e, f) those of u at tip, respectively. τn : 
normalised time relative to the oscillation period. 
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(a) 

 

(b) 

 
(c) 

 

(d) 

 
(e) 

 

(f) 

 
Fig.7. Dynamics of the cantilever of Fig. 4 in parametric resonance when Ω0/ω1=2.0779; (a, b) phase-plane and 
time trace of w at tip, respectively; (c, d) those of φ at tip, respectively; (e, f) those of u at tip, respectively. τn : 
normalised time relative to the oscillation period. 
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(c) 

 
(d) 

 
Fig.8. Large-amplitude oscillations of the cantilever under various coupled base motion amplitudes in primary 
and parametric resonance regions; (a) maximum transverse displacement at tip; (b) tip transverse 
displacement at the time of maximum tip rotation; (c) maximum rotation at tip; (d) maximum axial 
displacement at tip. The base motion amplitude is denoted on the curves noting that W0=U0 for all cases.  
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(c) 

 
(d) 

 
Fig.9. Tip mass ratio (χ) effect on oscillations of the cantilever under coupled base motions in primary and 
parametric resonance regions; (a) maximum transverse displacement at tip; (b) tip transverse displacement at 
the time of maximum tip rotation; (c) maximum rotation at tip; (d) maximum axial displacement at tip. 
W0=U0=0.009 for all cases. 


0



2 3 4 5 6 7

0

0.5

1

1.5

2

2.5

3 0
0.16 0.12 0.08 0.04


0

u
d

2 3 4 5 6 7

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

00.16 0.12 0.08 0.04



37 
 

(a) 

 
(b) 

 
 
 
 
 
 
 


0
/

1

w
d

0.8 1 1.2 1.4 1.6 1.8 2 2.2
0

0.2

0.4

0.6

0.8

Period-doubling

Saddle-node Saddle-node

 


0
/

1

w
d

0.8 1 1.2 1.4 1.6 1.8 2 2.2

0

0.2

0.4

0.6

0.8



38 
 

(c) 

 
(d) 

 
Fig.10. Large-amplitude oscillations of the cantilever under coupled base motions in primary and parametric 
resonance regions; (a) maximum transverse displacement at tip; (b) tip transverse displacement at the time of 
maximum tip rotation; (c) maximum rotation at tip; (d) maximum axial displacement at tip. W0=0.028 and 
U0=0.007. 
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(a) 

 

(b) 

 
Fig.11. Oscillations of the cantilever of Fig. 10; (a) primary resonance response at Ω0/ω1=1.0351 and (b) 
parametric resonance response at Ω0/ω1=2.0667. 
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(c) 

 
(d) 

 
Fig.12. Tip mass ratio (χ) effect on oscillations of the cantilever under coupled base motions in primary and 
parametric resonance regions; (a) maximum transverse displacement at tip; (b) tip transverse displacement at 
the time of maximum tip rotation; (c) maximum rotation at tip; (d) maximum axial displacement at tip. 
W0=0.020 and U0=0.006 for all cases. 
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