
Northumbria Research Link

Citation:  Ghayesh,  Mergen  H.  and  Farokhi,  Hamed (2020)  Nonlinear  broadband  performance of 
energy harvesters. International Journal of Engineering Science, 147. p. 103202. 

Published by: Elsevier

URL: https://doi.org/10.1016/j.ijengsci.2019.103202 <https://doi.org/10.1016/j.ijengsci.2019.103202>

This  version  was  downloaded  from  Northumbria  Research  Link: 
http://nrl.northumbria.ac.uk/id/eprint/42079/

Northumbria University has developed Northumbria Research Link (NRL) to enable users to access 
the University’s research output. Copyright © and moral rights for items on NRL are retained by the 
individual author(s) and/or other copyright owners.  Single copies of full items can be reproduced, 
displayed or performed, and given to third parties in any format or medium for personal research or 
study, educational, or not-for-profit purposes without prior permission or charge, provided the authors, 
title and full bibliographic details are given, as well as a hyperlink and/or URL to the original metadata 
page. The content must not be changed in any way. Full items must not be sold commercially in any  
format or medium without formal permission of the copyright holder.  The full policy is available online: 
http://nrl.northumbria.ac.uk/pol  i  cies.html  

This  document  may differ  from the  final,  published version of  the research  and has been made 
available online in accordance with publisher policies. To read and/or cite from the published version 
of the research, please visit the publisher’s website (a subscription may be required.)

                        

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Northumbria Research Link

https://core.ac.uk/display/287613387?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://nrl.northumbria.ac.uk/policies.html


1 
 

Nonlinear broadband performance of energy harvesters 
 

Mergen H. Ghayesh a,*, Hamed Farokhi b 

a School of Mechanical Engineering, University of Adelaide, South Australia 5005, Australia 
 b Department of Mechanical and Construction Engineering, Northumbria University, Newcastle upon Tyne NE1 8ST, UK 

*Corresponding author: mergen.ghayesh@adelaide.edu.au 

Email: (H Farokhi): hamed.farokhi@northumbria.ac.uk 

 

 

Abstract 

Broadband nonlinear energy harvesting capabilities of a parametrically excited bimorph 

piezoelectric energy harvester is investigated for the first time. The performance of the 

energy harvester is significantly enhanced via use of stoppers and an added tip mass in 

conjunction with parametric excitation. A fully nonlinear electromechanical model of the 

energy harvester was developed using beam theory of Euler-Bernoulli and the coupled 

constitutive equations for piezoelectric materials, with the motion constraints modelled as 

nonlinear springs. A multi-modal discretisation was conducted utilising the Galerkin scheme; 

the resultant set of equations was examined numerically through use of continuation 

technique. It is shown that a resonance bandwidth of 46% (normalised with respect to 

parametric resonance frequency) is achieved which is almost 10 times the resonance 

bandwidth of the system without any constraints.  

Keywords: Energy harvester; Wide resonance bandwidth; Nonlinear; Parametric excitation 
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1. Introduction 

Vibration-based energy harvesters are devices which capture random environmental 

vibrations and harvest this otherwise wasted energy [1-7]. The harvested energy can be 

effectively utilised to power wireless electronics/sensors in an attempt to make these 

electronics devices self-powered. One of the main concerns about the efficiency of the 

vibration based energy harvesters is that they work efficiently only for a very narrow band 

of frequency, which in turn makes these devices unusable if the environmental vibration 

frequency does not lie within that band. A lot of research has been conducted on improving 

this limitation of the vibration based energy harvesters; vibration characteristics of the core 

elements of these systems (i.e. structures in macro/micro/nano scales [8-28]) affect the 

performance substantially--size effects [29-40] are also important when these structures are 

at micro/nano scales [41-46]. Nonlinearity of both geometric/material types [47-49] also 

highly influence the system performance. The literature review is briefed in the following; 

for more detailed reviews of the state of vibration based energy harvesters, the readers are 

referred to Refs. [50-54]. 

A micro electromagnetic power generator design was proposed by Beeby et al. [55], 

targeting low ambient vibrations through use of discrete components. Design consideration 

for piezoelectric energy harvesters for micro sensors were presented by Dutoit et al. [56]. 

Soliman et al. [57] proposed an electromagnetic energy harvester design by using a 

piecewise-linear oscillator and conducted theoretical and experimental investigations. The 

analysis and design of a an energy harvester working based on magnetic levitation were 

conducted by Mann and Sims [58], who utilised a single-mode duffing-type model to study 

the response of the system and compare to experimental observations. The steady state 
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solutions of a linear single mode model of a bimorph piezoelectric energy harvester were 

derived by Erturk and Inman [59]; they conducted experiments and compared the 

theoretical findings with experimental observations and reported acceptable agreement 

between the two. Kim et al. [60] utilised a single-mode linear model to examine the effects 

of an added tip mass on performance of an energy harvester.  

The investigations were continued by Nguyen and Halvorsen [61], who analysed the 

effect of softening springs on performance of a micro vibration energy harvester; they 

concluded that the performance is enhanced when the input frequency is in the range of 

the softening response frequency. Ju et al. [62] developed an energy harvester utilising a 

magnetoelectric composite and an added tip mass made of permanent magnet. Further 

investigations were conducted by Firoozy et al. [63], who utilised one DOF nonlinear model 

to examine the energy harvesting characteristics of a piezoelectric energy harvester with a 

tip magnet under harmonic base excitation, and Zhao and Yang [64], who proposed an 

energy harvester for capturing energy from both wind flows and base vibrations using a 

mechanical constraint. 

This study proposes, for the first time, a model for a parametrically excited 

broadband energy harvester subject to motion constraints taking into account all 

nonlinearities associated with geometry and inertia while using a multi-modal discretised 

model. The voltage and power outputs of the proposed designs of the energy harvester are 

reported for various cases. The numerical results show that a significant enhancement in the 

resonance bandwidth is achieved via use of motion constraints for the parametrically 

excited energy harvester. Additionally, it is shown that it is absolutely essential to retain all 
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nonlinear terms arising from geometry and inertia so as to obtain the energy harvester 

behaviour accurately. 

  

2. Energy harvester nonlinear electromechanical model 

The nonlinear electromechanical coupled model of the parametrically excited bimorph 

energy harvester is developed in this section. The nonlinear beam theory of Euler-Bernoulli 

[65, 66] is utilised while assuming an inextensible centreline for the cantilever, taking into 

account nonlinearities arising from geometry and inertia. The piezoelectric constitutive 

equations are used as well to obtain the coupled electromechanical equations of the 

bimorph piezoelectric cantilever. The schematic of the energy harvester subject to motions 

constraints is shown in Fig. 1. To develop a general model, it is assumed that PZT (lead 

zirconate titanate) layers partially cover the substrate. As seen, the width of substrate and 

piezoelectric layers are the same, and denoted by b. The substrate length is shown by L 

while PZT layers are of length ( ) ( )
2 1

p p−l l . The system is under a base motion in the form of 

xbsin(ωbt) in the axial direction x. For a bimorph piezoelectric cantilever with same PZT 

layers’ thickness and material, the neutral axil of the layered cantilever beam is not 

changed. This allows for writing the axial strain developed in substrate and PZT layers, using 

the inextensibility condition, as  

22 2

1 2 2

1
,

2

w w w
z

x x x


       
= − +     

        
   (1) 

in which w represents the displacement in the transverse direction, z, and subscript 1 

indicates the x direction. Using Eq. (1), the substrate axial stress can be formulated as 
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1s sE = , with Es denoting substrate’s Young’s modulus. The constitutive equations for the 

two PZT layers are given by  

( ) ( ) ( ) ( ) ( )
11 1 31 3

( ) ( ) ( ) ( ) ( )
3 31 1 33 3

,

1,2,

,

n n n n n
p

n n n n n

c h D

n

E h D

 

 

 = −


=


= − +

  (2) 

where the top and bottom piezoelectric layers equations are obtained by setting n equal to 

1 and 2, respectively; the subscripts 1 and 3 indicate the x and z directions, respectively. ( )
11
nc  

is the PZT elastic stiffness, ( )
33

n  is the impermittivity constant, and ( )
31

nh  is another PZT 

constant which will be obtained later. 
( )n
p  is the axial stress developed in PZT layers while  

D3
(n) and E3

(n) are the electric displacement and the electric field in the z direction, 

respectively. It should be noted that for both PZT layers, the poling direction for both is 

assumed to be in the positive z direction. Voltages (1)V  and (2)V  are generated on the PZT 

layers on top and bottom surfaces, respectively, due to base excitation. The virtual electrical 

work of these voltages is expressed as 

( )( ) ( )( )(2) (2) (1) (1)
3 3

0

, , d .
L

elW b V x t D V x t D x   = −
                        (3) 

The total kinetic energy of the layered cantilever under base excitation xbsin(ωbt) is given by  

( )

( ) ( ) ( )

2
2 2

0 0

0

1
sin( ) d d ,

2

2 ,

L x

e b b

s s p p D

w w
K m x x t x x

t x t

m x A G x A x L M



  

         
= − +                 

= + + −

 
 (4) 

in which p  and ρs denote the mass density of the PZT layers and substrate, respectively, 

while Ap and As represent the cross-sectional area of the PZT layers and substrate, 
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respectively. δD stands for the Dirac delta function and M0 denotes the tip mass. 

Additionally, ( ) ( ) ( )( ) ( )
1 2 ,p pG x H x H x= − − −l l  with H denoting the Heaviside function. 

The variation of the substrate strain energy is formulated as 

2 22 2

1 1 2 2

0 0

1 1
d d 1 1 d ,

2 2
s

L L

s s s s

A

w w w w
E A x E I x

x x x x
   

            
= = + +                       
    (5) 

in which Is represents the second moment area of the substrate cross-section. The 

variations of the PZT layers’ strain energies are formulated as 

( )

( )

( ) ( )
2 2

( ) (1) ( )
1 1

( )
2

( )
1

(1) (1) (1) (1) (1) (1)
1 3 3 33 3 3

2 22 2 2 2
(1) (1)

31 3 32 2 2 2

d d d

1 1 1
d

2 2 2

p p

p p
p

p

p

p p p

A

s p p

E D A x A D D x

w w w w w w
t t h A D D x

x x x x x x

      

 

 = + = 

             
+ + + + +       

                

+

  



l l

l l

l

l

( ) ( )
( )
2

( )
1

2 2 22 2 2 2
3 2

11 2 2 2 2

1 1 1
3 3 d

3 2 2 2 2

p

p

s s
p p p

t t w w w w w w
c b t t t x

x x x x x x


                    
+ + + +              

                        


l

l

                                                                                                                                                                 (6) 

( )

( ) ( )
2 2

( ) (2) ( )
1 1

( )
2

( )
1

(2) (2) (2) (2) (2) (2)
1 3 3 33 3 3

2 22 2 2 2
(2) (2)

31 3 32 2 2 2

d d d

1 1 1
d

2 2 2

p p

p p
p

p

p

p p p

A

s p p

E D A x A D D x

w w w w w w
t t h A D D x

x x x x x x

     

 

 = + = 

             
− + + + + +       

                

  



l l

l l

l

l

( ) ( )
( )
1

( )
1

2 2 22 2 2 2
3 2

11 2 2 2 2

1 1 1
3 3 d

3 2 2 2 2

p

p

s s
p p p

t t w w w w w w
c b t t t x

x x x x x x


                  
+ + + +             

                       


l

l

(7) 

 

Using generalised Hamilton’s principle, the following coupled equations are obtained 
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( ) ( )

( ) ( )

22 3 2
2

2 2

0

2 22 2 2

2 2 2

sin( ) d d

1 1

2 2

x x

b b b

L

w w w w w
m x m x x t x x

t x x x t x x t

w w w w w
C x C x

x x x x x x x x

x x

 
          

  + + +                

                
+ + +                          

 
+
 

 

( ) ( )( )
2

(1) (2)
3 3

1
1 0

2

w
h x D h x D

x

   
− + =        

 (8) 

( ) ( ) ( )
22 2

(1) (1)
3 2 2

1
, 0,

2

w w w
x D h x bV x t

x x x


    
+ + + =       

 (9) 

( ) ( ) ( )
22 2

(2) (2)
3 2 2

1
, 0,

2

w w w
x D h x bV x t

x x x


    
− + − =       

  (10) 

in which 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2
3 2

11

31 33

(1) (1) (2) (2)

1
2 3 3

3 2 2

1
,      

2

, ,                     , .

s s
s s p p p

p s p p

t t
C x E I G x c b t t t

h x h A t t G x x A G x

V x t V t G x V x t V t G x

 

      
= + + +     

       

 
= + = 

 

= =

 (11) 

The force exerted to the cantilever beam by the motion constraints, modelled as 

nonlinear springs, can be formulated as  

( ) ( ) ( ) ( ) ( )( )3

0 1 0 3 0sgn ,c DF x L H w g w k w g k w g= − − − + −   (12) 

in which g0 denotes the gap width, and H and sgn represent the Heaviside and sign 

functions, respectively. 
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Combining Eqs. (8)-(10), denoting the base acceleration by ax, and taking into account the 

contact force of the constraints yields 

( ) ( )

( )
( )( )
( )

( )
( )( )

22 3 2

2 2

0

22 2

2

222 2

2 2

sin( ) d d

21

2

21

2

x x

x b

L

w w w w w
m x m x a t x x

t x x x t x x t

h xw w
C x

x x x x x

h xw w w
C x

x x x x







          
  + + +                

            + −   
           

     
+ + −        

 

( )

( )

( )
( ) ( )( )

( ) ( ) ( ) ( ) ( )( )

2

(1)

3

0 1 0 3

(

0

2)1
1 , ,

2

0sgn .D x L H w g

x

bh xw
V x t V x t

w k w g k

x x x x

w g



  
   

     

        
− + +          

+ − − − + −

 

=

 (13) 

To obtain the power output, an electrical circuit equation is needed to couple the 

motion of the bimorph system to changes in the generated voltage. The generated electric 

current in each PZT layer can be obtained as 

( )
( )

( ) . d , 1,2,
n

e

n

A

i A n
t

 
= = 
   

 D n   (14) 

in which D represents the vector of electric displacement; n represents the unit vector 

(normal to the electrode surface area Ae). The current generated in each PZT layer can be 

obtained through substitution of Eqs. (9) and (10) into Eq. (14). Assuming that the 

electrodes cover the full surfaces of the top and bottom PZT layers, the following relations 

can be obtained for parallel connection of PZT layers 

( ) ( ) ( )
( )(1) (2) (1) (2), ,p

p

l

V t
V t V t V t i i

R
= = + =  (15) 
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in which Rl is the load resistance in the electrical circuit. Using Eq. (15), the equation of 

motion, i.e. Eq. (13) can be rewritten as 

( ) ( )

( )
( )( )
( )

( )
( )( )

22 3 2

2 2

0

22 2

2

222 2

2 2

sin( ) d d

21

2

21

2

x x

x b

L

w w w w w
m x m x a t x x

t x x x t x x t

h xw w
C x

x x x x x

h xw w w
C x

x x x x







          
  + + +                

            + −   
           

     
+ + −        

 

( )

( )

( )
( )

( ) ( ) ( ) ( ) ( )( )1

2

3

0 0 3 0s

2

g

1
2

0.n

1
p

D

x

bh xw
V t

x x

x L H w g w k w g k

x
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 (16) 

Utilising Eqs. (9) and (10) along with Eqs. (14) and (15), one can obtain the electrical circuit 

equation of the bimorph cantilever energy harvester with PZT layers connected in parallel as 

( )
( )

( ) ( )
( )
2

( )
1

22 2
3133

2 2( ) ( )
332 1

d 1
d 0.

d 22

p

p

s pp p

p p p

b t t ht V t w w w
V t x

t R t x x xb





  +     
+ + + =       −     


l

l l
l l

 (17) 

Equations (16) and (17) represent the coupled nonlinear electromechanical 

continuous model of the bimorph energy harvester. In what follows, the Galerkin 

discretisation technique is employed to reduce the model partial differential equations into 

ordinary differential ones. First, the transverse displacement is defined as series expansion 

consisting of spatial trial functions ( )n x  multiplied by generalised coordinates pn(t) as 

( ) ( ) ( )
1

, ,
N

n n
n

w x t x p t
=

=    (18) 

in which 
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( )

( ) ( )   ( ) ( ) 
1

cosh sinh cos sin ,

sin sinh cos cosh ,

n n n n
n n n

n n n n n

x x x x
x

L L L L

   
 

    
−

          
 = − − −          

          

= + +

 (19) 

in which n  is the nth root the equation 1 cos cosh 0 + = . Setting N=6, and applying the 

Galerkin method [67-70] to Eq. (16) yields a set of 7 nonlinearly coupled equations. It should 

be noted that in this study, a modal damping mechanism is used to model the energy 

dissipation in the system. This modal damping is added to the discretised equations while 

assuming each mode’s damping to be proportional to its natural frequency. The final 

discretised model consists of various sources of nonlinearity; a continuation code is 

developed, capable of handling all these nonlinearities, to examine the response of the 

energy harvester near parametric resonance.  

 

3. Broadband energy harvesting 

The energy harvesting capability of the parametrically excited bimorph piezoelectric 

cantilever energy harvester is studied in this section.  The dimensions and mechanical 

properties of the energy harvester examined in this study are detailed in Table 1, which 

allows for calculating the following piezoelectric constants 

( )

( )

( )

12
11 11 31 33

1

31 31 11 33 31

12
33 33 31 11

579.76 

69

MV/m,

3

.81 GPa,

8.03 Mm/F.

c s d

h d s d

d s





 

−

−

−

= − =

= − − = −

= − =

  (20)  

Throughout this section, it is assumed that 𝑙1
(𝑝)

=0 and 𝑙2
(𝑝)

=L, and that the base 

acceleration is 9.81 m/s2. Additionally, a nondimensional quantity is defined as 
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( )0 2 ,s s p pM A L A L  = + representing the ratio of the tip mass to the total mass of both the 

layered beam. The following two subsections examine the behaviour of two energy 

harvester designs with different tip masses.  

 

3.1 Constrained bimorph system with γ=2.0 

This section examines the parametric response of an energy harvester with γ=2.0 

and dimensions and properties given in Table 1. For such a harvester, the short-circuit 

natural frequency is obtained as 4.7564 Hz. Given that the system is under axial base 

excitation, parametric resonance is expected to occur for frequencies around twice the 

natural frequency, i.e. 9.5128 Hz. Figure 2 illustrates the nonlinear parametric response of 

the constrained bimorph energy harvester. As seen, two nontrivial branches bifurcate from 

the zero-amplitude trivial branch as the base motion frequency is varied around twice the 

natural frequency. Period-doubling (PD) bifurcations occur at these points rendering the 

trivial configuration unstable. One of the interesting features of the proposed design is the 

presence of motion constraints at both sides of the cantilever beam, as demonstrated in Fig. 

1. For the case examined here, g0 is set to 42 mm. As seen, in Fig. 2(a), the transverse 

motion amplitude almost stops growing as it reaches 42 mm, signalling contact with the 

motion constraints; additionally, it is seen that the width of the parametric resonance band 

is increased significantly as a result of the impact between the cantilever and the 

constraints. More specifically, the resonance band is increased from 0.2068 Hz to 1.8521 Hz, 

i.e. an increase of almost 800%. Hence, the energy harvester displays a normalised 

resonance bandwidth of 20%; the normalised resonance bandwidth is the ratio between the 

resonance bandwidth and resonance frequency, with the latter being twice the first natural 
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frequency for parametric resonance. The points shown by TR and SD denote the torus and 

saddle-node bifurcations. The dotted line between TR points represents quasiperiodic 

motion while the dashed lines indicate unstable response. The power output for this 

broadband energy harvester is shown in Fig. 2(c). It is seen that, as the contact is initiated, 

the maximum power output is around 18 mW. The power output increases throughout the 

wide resonance band as the base frequency is increased reaching a maximum of around 27 

mW. The detailed responses of the energy harvester at ωb=10.0458 Hz and 11.2666 Hz in 

one periodic of oscillation are shown in Figs. 4 and 5, respectively. 

The effect of the load resistance on the voltage and power outputs of the system is 

highlighted in Fig. 3. The widest resonance band is achieved when Rl = 1kΩ, which is almost 

two times the bandwidth of the case Rl = 5kΩ. Increasing the load resistance results in 

decreased bandwidth, but increases the power output level. Hence, choosing the load 

resistance magnitude is a critical task in the design of a constrained parametrically excited 

energy harvester. In particular, the choice of the resonance load is a trade-off between 

resonance band and power output level. The optimum value of the load resistance depends 

on the type of energy harvester and its usage as well as the environmental vibration range.  

The gap width effect on resonance response of the bimorph energy harvester is 

depicted in Fig. 6. As seen, the resonance bandwidth of the voltage and power outputs 

decreases slightly with increasing gap width; however, the voltage and power output levels 

increase with increasing gap width. Hence, theoretically, a larger gap width is beneficial as it 

results is larger power output levels while not sacrificing the resonance bandwidth much.  

Figure 7 shows a comparison between the voltage and power outputs of a bimorph 

energy harvester constrained from both sides to those of the same harvester constrained 
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from one side (i.e. the top). As seen, the resonance bandwidth is much larger for the case 

constrained from both sides. Hence, the conclusion may be drawn that a double-sided 

constrained energy harvester has better efficiency compared to a one-sided constrained 

energy harvester. 

 

3.2 Constrained bimorph system with γ=3.0 

The performance of a parametrically excited energy harvester with γ=3.0 is 

examined in this section; the rest of the system parameters remain unchanged compared to 

Section 3.1. Due to increased tip mass ratio, short-circuit natural frequency decreases to 

3.9541 Hz compared to 4.7564 Hz of the system of Section 3.1. As a result, the parametric 

resonance occurs in the vicinity of base frequency of 7.9081 Hz.  Figure 8 shows the 

parametric resonance responses of the constrained energy harvester for tip transverse 

displacement, voltage output, and hence the power output. The energy harvester 

performance is enhanced significantly through widened resonance bandwidth due to 

presence of motion constraints. To put it into numbers, the presence of motion constraints 

increases the bandwidth from 0.3642 Hz to 3.6302 Hz, i.e. an increase of almost 900%. The 

normalised resonance bandwidth for this case is obtained as 46%. Additionally, compared to 

the case of the system of Fig. 2 with γ=2.0 and a resonance bandwidth of 1.8521 Hz, a 96% 

increase in the bandwidth is achieved. Additionally, it is seen that the power output levels 

vary in the range 23 mW to almost 40 mW which is higher than the power output level of 

the system of Section 3.1. Another change that can be observed compared to the case of 

the previous section is the increased number of regions showing quasiperiodic motion. The 

energy harvester displacement, voltage and power outputs in one period of oscillation at 
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ωb=8.3700 Hz and 11.3634 are depicted in Figs. 9 and 10. The impact behaviour of the 

system is very visible in Fig. 10. 

The effect of the load resistance on the voltage/power outputs of the bimorph 

piezoelectric energy harvester is illustrate in Fig. 11. The figure shows that as the load 

resistance is increased from 5 kΩ to 8 kΩ, the voltage and power outputs increase 

accordingly while the resonance bandwidth decreases slightly. As the load resistance is 

further increased from 8 kΩ to 11 kΩ, a similar increase in the power output is observed but 

at the cost of reduced bandwidth; a similar behaviour is observed by increasing the load 

resistance further to 15 kΩ. Hence, the resonance bandwidth and the power output level 

are competing objectives; the optimum load resistance can be obtained by giving 

appropriate weights to resonance bandwidth and power output level and then maximising 

the weighted summation of both. 

The effect of the gap width on voltage and power outputs of the parametrically 

excited constrained energy harvester is depicted in Fig. 12. Similar to the case of the 

previous section, it is seen that increasing the gap width has almost no effect on the 

resonance bandwidth; however, the power output is significantly increased as the gap width 

is increased from 27 mm to 45 mm. Hence from theoretical point of view, for the current 

energy harvester design, the performance can be enhanced by increasing the gap width. 

A comparison between an energy harvester constrained from both sides to another 

harvester constrained from one side is shown in Fig. 13. As seen, the resonance bandwidth 

is reduced almost 50% as the number of constraints is reduced from two to one. Hence, the 

figure clearly shows that an energy harvester design with constraints at both sides displays 
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superior efficiency in capturing the energy of a wider range of environmental vibration 

compared to an energy harvester constrained from only one side. 

 

4. Conclusions 

The performance of nonlinear constrained bimorph piezoelectric energy harvester 

under parametric excitation was studied in detail. To ensure the accuracy of the proposed 

theoretical model, all the nonlinear terms arising from geometry, inertia, and contact with 

motion constraints were retained while deriving the coupled electromechanical equations. 

Two designs were proposed for an energy harvester capturing the energy of base 

parametric motions. To enhance the efficiency of the energy harvesters, motion constraints 

were placed at both sides of the bimorph piezoelectric cantilever. It was shown that the 

performance of both energy harvesters were enhanced significantly through widened 

resonance bandwidth. More specifically, the first design with γ=2.0 achieved a normalised 

resonance bandwidth of 20% while this value was increased to 46% for the second design 

with γ=3.0. Compared to the cases without any constraints, the addition of motion 

constraints increased the resonance bandwidth by 800% for the first design and almost 

900% for the second design.  

The effect of various parameters on energy harvester performance and efficiency 

was examined and the following conclusions were drawn: (i) increasing the load resistance 

magnitude results in increased power output levels but decreases the resonance 

bandwidth; (ii) as the gap width is increased, the power output increases as well while the 

resonance bandwidth remains almost the same; (iii) removing one of the constraints, i.e. 
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constraining the system from only one side, results in significantly reduced bandwidth, i.e. 

almost 50%. 

 

Appendix A. Effect of sources of nonlinearity 

Figure 14 depicts the nonlinear frequency curve of the tip transverse displacement 

of the bimorph cantilever based on various models, namely a complete nonlinear model (i.e. 

the one used in this study), a nonlinear model retaining only geometric nonlinearities, a 

nonlinear model retaining only inertial nonlinearities, and a linear model. It is seen that 

geometric nonlinear terms tend to have a hardening effect on frequency response of the 

system while inertial nonlinear terms have a softening effect on the system’s resonance 

response. In is interesting to note that a linear model is incapable of anticipating the system 

behaviour beyond the trivial zero-amplitude solution branch. This shows the significant 

importance of employing a fully nonlinear model when examining the response of a 

bimorph piezoelectric cantilever energy harvester under parametric excitations.  
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Table 1. Properties and dimensions of the substrate and piezoelectric layers of the bimoprph 

cantilever energy harvester 

Properties and 
dimensions 

Substrate (brass) 
Properties and 
dimensions 

Each PZT layer (PZT-
5H) 

ts (mm) 0.3 tp (mm) 0.2 

b (mm) 20 b (mm) 20 

L (mm) 150 L (mm) 150 

ρs (kg/m3) 8490 ρp (kg/m3) 7400 

Es (GPa) 106 s11 (pm2/N) 16.4 

  ξ33/ξ0  (ξ0 = 8.8542 pF/m) 3400 

  d31 (pm/V) -250 
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Fig.1. Schematic of the constrained bimorph piezoelectric cantilever energy harvester. 
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(c) 

 
Fig.2. Frequency responses of the parametrically excited constrained bimorph cantilever energy harvester: (a) 
maximum tip transverse displacement; (b, c) maximum voltage and power outputs, respectively. Rl=5.0 kΩ, 
γ=2.0, g0=42.0 mm, and ax=9.81 m/s2. 
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(a) 

 
(b) 

 
(c) 

 
Fig.3. Response of the system of Fig. 2 at ωb=10.0458 Hz; (a-c) tip transverse displacement, voltage output, and 
power output in one period of oscillation, respectively. tn: normalised time. 
 

t
n

w
[m

m
]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-60

-40

-20

0

20

40

60

t
n

V
o
lt
ag

e
[V

]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-10

-5

0

5

10

t
n

P
o
w

er
[m

W
]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

5

10

15

20

25



26 
 

(a) 

 
(b) 

 
(c) 

 
Fig.4. Response of the system of Fig. 2 at ωb=11.2666 Hz; (a-c) tip transverse displacement, voltage output, and 
power output in one period of oscillation, respectively. tn: normalised time. 
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(a) 

 
(b) 

 
Fig.5. Load resistance effect on frequency responses of the parametrically excited constrained bimorph 
cantilever energy harvester: (a, b) maximum voltage and power outputs, respectively. γ=2.0, g0=42.0 mm, and 
ax=9.81 m/s2. 
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(a) 

 
(b) 

 
Fig.6. Gap effect on frequency responses of the parametrically excited constrained bimorph cantilever energy 
harvester: (a, b) maximum voltage and power outputs, respectively. Rl=5.0 kΩ, γ=2.0, and ax=9.81 m/s2. 
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(a) 

 
(b) 

 
Fig.7. Frequency responses of the parametrically excited bimorph cantilever energy harvester constrained 
from both sides versus those constrained from one side; (a, b) maximum voltage and power outputs, 
respectively. Rl=5.0 kΩ, γ=2.0, g0=42.0 mm, and ax=9.81 m/s2. 
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(c) 

 
Fig.8. Frequency responses of the parametrically excited constrained bimorph cantilever energy harvester: (a) 
maximum tip transverse displacement; (b, c) maximum voltage and power outputs, respectively. Rl=8.0 kΩ, 
γ=3.0, g0=45.0 mm, and ax=9.81 m/s2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


b

[Hz]

P
o
w

er
m

ax
[m

W
]

7.5 8 8.5 9 9.5 10 10.5 11 11.5

0

6

12

18

24

30

36

42



32 
 

(a) 

 
(b) 

 
(c) 

 
Fig.9. Response of the system of Fig. 8 at ωb=8.3700 Hz; (a-c) tip transverse displacement, voltage output, and 
power output in one period of oscillation, respectively. tn: normalised time. 
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(a) 

 
(b) 

 
(c) 

 
Fig.10. Response of the system of Fig. 8 at ωb=11.3634 Hz; (a-c) tip transverse displacement, voltage output, 
and power output in one period of oscillation, respectively. tn: normalised time. 
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(a) 

 
(b) 

 
Fig.11. Load resistance effect on frequency responses of the parametrically excited constrained bimorph 
cantilever energy harvester: (a, b) maximum voltage and power outputs, respectively. γ=3.0, g0=45.0 mm, and 
ax=9.81 m/s2. 
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(a) 

 
(b) 

 
Fig.12. Gap effect on frequency responses of the parametrically excited constrained bimorph cantilever energy 
harvester: (a, b) maximum voltage and power outputs, respectively. Rl=8.0 kΩ, γ=3.0, and ax=9.81 m/s2. 
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(a) 

 
(b) 

 
Fig.13. Frequency responses of the parametrically excited bimorph cantilever energy harvester constrained 
from both sides versus those constrained from one side; (a, b) maximum voltage and power outputs, 
respectively. Rl=8.0 kΩ, γ=3.0, g0=45.0 mm, and ax=9.81 m/s2. 
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Fig.14. Frequency responses of the parametrically excited bimorph cantilever energy harvester obtained via 
different models. 
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