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Abstract 

Naturally existing functional surfaces with micro-structure arose 

competing interests due to their potential application in engineering filed such 

as wetting control, optical control, micro-fluidic, tissue scaffolds, marine 

engineering, oil field, etc al. A patterned surface with stimuli responsive 

properties attracts considerable interest for its importance in advanced 

engineering, partly due to its reversibility, easy design and control, good 

compatibility and responsive behaviour to external stimuli. In this work, we 

have investigated various surface instabilities that enable a convenient strategy 

of micro-engineered structure impart reversible patterned feature to an elastic 

surface. We focus on the classic bi-layer system contains a stiff layer on a soft 

substrate that produces parallel harmonic wrinkles at uniaxial compression 

and ultimately develop into deep creases and fold. By introducing the micro-

scale planar Bravais lattice holes, we guided these instabilities into various 

patterns to achieve an anisotropic manipulation of single liquid droplet by 

initialize localized surface morphologies. The Finite Element Analysis 

provided the fundamental theory on the surface instabilities evolution and 

development. The finding demonstrates considerable control over the 

threshold of a surface elastic instability and bi-axial switching of droplet shape 

that relevant to many novel applications including wearable electronic devices, 

bio-medical systems, micro-fluidics and optical devices.  
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MEMS                     microelectron mechanical system 

CA                            contact angle 

PDMS                      polydimethylsiloxane 

DI water                 deionized water 

CA                            contact angle 

FEA                          finite element analysis 

 

 

  



VI 
 

Contents 

 
Abstract........................................................................................................  I 
Acknowledgement ...................................................................................  II 
Declaration ..............................................................................................  IV 
Abbreviations ............................................................................................  V 
Achievement ........................................................................................................  IX 

 
Chapter 1 Introduction 

1.1 Background of Functional Surfaces and Hierarchical Structure ............. 1 
1.2 Objectives .............................................................................................  2 
1.3 Outline of Thesis ...................................................................................  5 

 

Chapter 2 Literature Review 
2.1  Bio-inspired Surfaces ...........................................................................  7 
2.2  Surface Instabilities .............................................................................  9 

2.2.1 Wrinkle .......................................................................................  11 
2.2.2 Crease ......................................................................................... 13 
2.2.3 Fold and Ridge ...........................................................................  16 

2.3  Studies on Switchable Surface Wettability .........................................  20 
2.3.1 Contact Angle .............................................................................  20 
2.3.2 Contact Angle Hysteresis............................................................. 21 
2.3.3 Anisotropic Droplet Shaping ......................................................  23 

2.4  Theoretical Understanding on Analytical Method ..............................  24 
2.5  Summary ...........................................................................................  27 

 

Chapter 3 Experimental Methods 
3.1 Fabrication Method ............................................................................  28 
3.2 Characterization Method ....................................................................  29 
3.3 Numerical Simulations ........................................................................ 31 

 

 



VII 
 

Chapter 4 Spatially Configuring Wrinkle Pattern and Multiscale 
Surface Evolution with Structural Confinement 

4.1 Introduction .......................................................................................  34 
4.2 Results and Discussion .......................................................................  37 

4.2.1 Formation of Surface Instabilities with Confinement .................  37 
4.2.2 Numerical Analysis of Surface Instabilities ................................  41 
4.2.3 Surface Modulus Measurement with AFM .................................  46 
4.2.4 Analysis of Surface Morphology Development ...........................  47 
4.2.5 Lattice Pattern Effects on Instabilities Development ...................  51 

4.3 Summary ............................................................................................  55 
 

Chapter 5 Bi-axially Switching Droplet Shape by Initiating 
Localized Wrinkle Pattern Transformation upon Elastic Surface 

5.1 Introduction .......................................................................................  57 
5.2 Results and Discussion .......................................................................  59 

5.2.1 Droplet Shaping by Localized Wrinkle Pattern ...........................  59 
5.2.2 Anisotropic Wetting on Developed Topographical Surface .........  62 
5.2.3 Droplet Shape Control on Different Surface Pattern ..................  68 

5.3 Summary .............................................................................................  71 
 

Chapter 6 Theoretical Investigation on Configuring the Elastic 
Instability in Soft Surface 

6.1  Introduction.......................................................................................  72 
6.2  Single Block Linear and Non-linear Simulation .................................  76 

6.2.1 Linear Specification  .................................................................... 76 
6.2.2 Results - Linear Setting ..............................................................  79 
6.2.3 Non-linear Specification.............................................................  80 

6.3 Thin Film Non-linear Simulation ........................................................  83 
6.3.1 Non-linear Specification.............................................................  83 
6.3.2 Results .......................................................................................  85 

6.4  Summary ...........................................................................................  89 
 

 

 



VIII 
 

Chapter 7 Conclusion and Future Possibilities 
7.1 Overall Conclusion..............................................................................  90 
7.2 Future Possibilities .............................................................................  92 

 

Bibliography ............................................................................................  95 
 

Appendix .................................................................................................  110 
 

 

  



IX 
 

Achievement  

Journal paper: 

1. Ansu Sun, Ding Wang, Honghao Zhou, Yifan Li, Chris Connor, Jie Kong, 

Jining Sun, Ben B. Xu, Spatially Engraving Topological Structure on 

Polymeric Surface by Ion Beam Milling, Polymer, 2019, 11, 1229 

2. Peng Miao, Kaiyang Cheng, Hongqiang Li, Junwei Gu, Kaijie Chen, Steven 

Wang, Ding Wang, Terence X. Liu, Ben B. Xu and Jie Kong, 

Poly(dimethylsilylene)diacetylenes-Guided ZIF-Basedf Heterostructures 

for Full Ku-Band Electromagnetic Wave Absorption, ACS Applied 

Materials Interface, 2019, 11, 17706-17713 

3. Xingyi Dai, Yuzhang Du, Jiye Yang, Ding Wang, Junwei Gu, Yifan Li, 

Steven Wang, Ben B. Xu and Jie Kong, Recoverable and Self-healing 

Electromagnetic Wave Absorbing Nanocomposites, Composites Science 

and Technology, 2019, 174, 27-32 (TOP 5% journal in MATERIALS 

SCIENCE, COMPOSITES) 

4. Nicolas Cabezudo, Jining Sun, Behnam Andi, Fei Ding, Ding Wang, 

Wenlong Chang, Xichun Luo and Ben B. Xu, Enhancement of Surface 

Wettability via Micro and Nanostructures by single point diamond turning, 

Nanotechnology and Precision Engineering, 2019, 2, 8-14 

5. Ding Wang, Nontawit Cheewaruangroj, Yifan Li, Glen McHale, Yinzhu 

Jiang, David Wood, John Simeon Biggins, Ben Bin Xu, Spatially 

Configuring Wrinkle Pattern and Multiscale Surface Evolution with 

Structural Confinement, Advanced Functional Materials, 2018, 28, 

1704228. (TOP 5% journal in MATERIALS SCIENCE, cover paper) 

 



X 
 

6. Yifan Li, Ding Wang, Jack Richardson and Ben B. Xu, Responsive 

Hydrogels Based Lens Structure with Configurable Focal Length for 

Intraocular Lens (IOLs) Application, Macromolular Symposia, 2017, 

372, 127–131. (2016 Young Investigator Award paper from PNG for Dr Ben 

Xu) 

7. A Flexible Tpop-Optical Sensing Technology with Ultra-high Contrast, 

Nature Communications, October 2019, under review. 

  



XI 
 

Conference & Seminar: 

1. UK Fluid Networks (UKFN) – Multiscale Modelling of Wetting 

Phenomena, 12 -13 SEP 2018, Durham, UK (Poster) 

2. The 25th Joint Annual Conference of CSCST-SCI, 6 - 7 SEP 2018, University 

of Manchester, UK (Poster) 

3. UK Fluids Conference 2018, 4 – 6 SEP 2018, University of Manchester, UK 

(Oral Presentation) 

4. EE PGR Conference 2018 – Research for a Better Tomorrow, 21 June 2018, 

Northumbria University, Newcastle upon Tyne (Oral Presentation) 

5. UKFN SIG mini-symposium: Structural surfaces and liquid/surface 

interactions, 20 April 2018, Heriot-Watt University, Edinburgh (Video 

Presentation) 

6. UK Fluids Networks (UKFN) – Early Career Researcher Event, 21 March 

2018, Northumbria University, Newcastle upon Tyne (Poster) 

7. 2017 Materials Research Society Fall Meeting & exhibit, 26 NOV – 01 DEC 

2017, Boston, Massachusetts (Poster)  

8. Cong Wang, Ding Wang, Valery Kozhevnikov, Ben Bin Xu, Yifan Li, 

Elastic Instability Induced Mechano-Responsive Luminescence for Super-

Flexible Strain Sensing, 2017 IEEE SENSORS, Glasgow, UK, DOI: 10.1109. 

ICSENS. 2017.8234210 (Conference Paper) 

9. Bruker SPM Conference & Users Meeting, 10-11 October 2017, Leeds 

10. The 24th Joint Annual Conference of UKFN SIG and CSCST-SCI, 23 – 24 

June 2017, Newcastle upon Tyne (Oral Presentation) 

11. EE PGR Conference 2017 – Research Connects, 15 June 2017, Northumbria 

University, Newcastle upon Tyne (Oral Presentation) 



XII 
 

12. 15th European Mechanics of Materials Conference, 07-09 September 2016, 

Brussels (Oral Presentation) 

13. The 23rd Joint Annual Conference of CSCST and SCI, 03 September 2016, 

Nottingham (Oral Presentation) 

14. EE PGR Conference 2016, 20 June 2016, Northumbria University, 

Newcastle upon Tyne (Oral Presentation) 

15. The 22nd Joint Annual Conference of CSCST and SCI, 19 September 2015, 

Birmingham (Poster) 

16.  Northumbria Research Conference – Showcasing Research, 20 May 2015, 

Northumbria University, Newcastle upon Tyne (Poster) 

 

Award and certificated workshop: 

1. First Prize in Poster Presentation, The 25th Joint Annual Conference of 

CSCST-SCI, 6-7 SEP 2018, University of Manchester  

2. Third Prize in Oral Presentation, The 24th Joint Annual Conference of 

UKFN SIG and CSCST-SCI, 23-24 June 2017, Newcastle upon Tyne 

3. Third Prize in Eureka & Discovery category, EPSRC National 

Photography Competition 2017, media presses in EPSRC, Guardian, 

NECONNECTED,THE GLOBAL AND MAIL. 

4. Advanced Biomedical Modeling Workshop – From Image to Simulation, 
SYNOPSYS, 20 October 2016, Reading 

 

 

 

 

 

https://www.theguardian.com/science/gallery/2017/apr/03/from-eureka-to-equipment-images-that-show-another-side-of-science-in-pictures-epsrc-photo-competition-2017
http://neconnected.co.uk/northumbria-scientists-win-national-photography-prize/
https://www.theglobeandmail.com/news/world/in-photos-photography-contest-showcases-thebeauty-of-science-and-engineering/article34613545/


1 
 

Chapter 1  

Introduction 

The aim of work presented in this thesis was to investigate the 

properties of micro-engineered elastic topographical surface and hence to 

manipulate micro-droplets anisotropically on these smart surfaces. The main 

objective is to design and fabricate the functional smart surfaces with 

micro/nano-structures, to create hierarchical structure, and hence to 

understand the mechanism on how it achieves the anisotropic droplet shaping 

with the effects of micro/nano-structures with corresponding physical, 

mechanical and chemical properties.  

1.1 Background of Functional Surfaces and 

Hierarchical Structure 

Functional surfaces with micro-structures are naturally existed, such as 

butterfly wings, lotus leaves and claw skin of gecko, with multi-scale and 

hierarchical patterns that enable enhancement on specific function, i.e. 

structural colour [1], wettability [2], or dry adhesion [3]. These bio-inspired smart 

properties have arisen a growing interest for their potential engineering 

applications, including wetting control [2], optical control [4], micro-fluidic [5], 

tissue scaffolds [6], marine engineering [7], oil field [8]. Recently, researchers 

have attempted various approaches to bring these applications to advance 
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engineering level by emulating different hierarchical structures, especially, on 

cross-disciplinary area with developing responsive structure on soft matter 

under various external stimuli such as light [9], temperature [10], electric field 

[11], magnetic field [12], etc. This project will focus on developing responsive 

structure that is capable to deliver fundamental surface physical and chemical 

transitions such as mechanic-geometrically surface re-shaping (wrinkling, 

creasing), swollen/shrank, hydrophilic/hydrophobic, etc. 

Up to date, micro-topographical responsive surfaces are becoming 

more commonly used in industrial and commercial areas. Bio-mimetics can be 

defined as the investigation of structures and designs of biological materials 

which are found in nature, these materials inspire the possible designs of new 

materials which could be used in industry.  Examples of micro-topographical 

surfaces can be found in many different areas of nature with varying purposes 

such as a Mosquito’s eye which provides antifogging capabilities or a lotus leaf 

which has super hydrophobicity properties.  

1.2 Objectives 

The overall aim of the project is to design and fabricate the micro-

engineered smart structure capable of behaving fundamental surface 

physical/chemical transition/switches, which meet the requirements for 

potential application in geometrically surface re-shaping (wrinkling, creasing), 

swollen/shrank, hydrophilic/hydrophobic, etc, and understand the 
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mechanism on how it responses to external stimuli. The project involves a 

range of advanced chemical, physical and mechanical testing techniques, since 

the related structure fabrication through chemical/physical reactions and the 

characterizations demand extensive physical structure-properties knowledge.  

The approach was to use self-designed commercial mask as a template, 

and then to fabricate micro-structure systematically using appropriate 

lithographic method and in-lab chemical synthesis of polydimethylsiloxane 

(PDMS). Specific consideration was given to the control of structure thickness, 

especially on the surface chemical property for multi-level structure generation. 

The fabricated micro-structures were characterised at microscopic scales and 

their overall performance were assessed. 

Mechanical property was evaluated using a self-designed mechanical 

device which gives the strain value related to corresponding physical 

properties. Physical properties were characterized using a combination of 

optical microscopy, atom force microscopy (AFM) and laser scanning confocal 

microscopy (LSCM). Optical microscopy gives the first visual site of micro-

structure and how it changes with corresponding strain value, whereas AFM 

offered a range of in-plane properties allowing measurement down to nano-

level. LSCM was used to provide further information for structure out-of-plane 

property. Other tests, such as droplet shape analyser (DSA) was used to 

provide surface wetting information directly to support the development of 

surface structure. Droplet shape manipulate demonstration were carried out 

to define the micro-structure anisotropic wetting effect. Finally, simulation 
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method was also used to provide micro-structure information for the specific 

materials.  

The primary aim of this project is to fabricate the micro-structural 

materials and investigate the responsive behaviour to the external stimuli with 

different hierarchically patterning. It was anticipated that a novel micro-

structure would be identified in this work, alongside the establishment of a 

dynamic method for property evaluation. Analysis of the experiment data was 

expected to result in the understanding of functional structure surfaces.  

The objectives of this report are listed as follows: 

a. Design and develop the micro-fabrication techniques for structures 

on different length-scale based on the existing techniques (photo-lithography, 

electro-spinning, 3D-printing, etc). 

b. Experimentally investigate the mechanics of surface micro-structure 

and the evolution process with the defined boundary conditions. 

c. Analys the anisotropic droplet shape manipulation based on 

nano/micro-structure.  

c. Understand and theoretically model the mechanism of the surface 

micro-structure and the evolution of morphology with the defined boundary 

conditions.   
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1.3 Outline of Thesis 

Chapter 1: Introduction. A description of how the present project was inspired 

and its contributions to the novel structure materials. 

Chapter 2: Literature review. The origins of the micro-structure phenomenon 

and the history are introduced. Classifications of micro-structure are explained 

in detail. The smart material concept is provided, with a brief introduction on 

the theoretical simulation methods.  

Chapter 3: Experimental methods. The in-lab techniques that put effect in 

sample fabrication with surface instabilities and demanded characterization 

methods including Optical Microscopy (OM), Atom Force Microscopy (AFM), 

Laser Scanning Confocal Microscopy (LSCM), Scanning Electron Microscopy 

(SEM), etc. In addition, the mathematical simulation method to helped us in 

specific surface morphology understanding. 

Chapter 4: Spatially configuring wrinkle pattern and multiscale surface 

evolution with structural confinement. Primary finding on novel surface 

instabilities shape with designed spatial lattice hole pattern in elastic surface 

with famous bi-layer system. 

Chapter 5: Bi-axially Switching Droplet Shape by Initiating Localized Wrinkle 

Pattern Transformation upon Elastic Surface. In-lab investigation on droplet 
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shape manipulation based on the wrinkle pattern that induced the surface 

morphology change and roughness variation.  

Chapter 6: Theoretical understanding on configuring the elastic instability on 

soft surface. Finite element analysis on surface pattern deformation simulation 

and wrinkle phenomenon investigation on three-dimensional thin film plane.  

Chapter 7: Conclusion and future prospective. Overall summary on current 

research work based on primary findings of lattice hole guided surface 

instabilities and corresponding surface wetting phenomenon of single droplet. 

In addition to the Finite Element Analysis conclusion, future work is outlined 

here as well.    
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Chapter 2  

Literature Review 

This chapter presents a general overview of the typical concept of smart 

micro-engineered structure: surface mechanical instability. This review will 

begin with a summary of nature-existing bio-inspired surfaces. It will then 

describe the basic concept of mechanical instability, including the mechanism 

which drives instability formation, historic development on theoretical 

prediction, experimental observation and possible applications, followed by 

fundamental theory for surface wettability on structure surface, and also the 

simulation concept understanding on material selection.  

2.1 Bio-inspired Surfaces 

Generally, biological responsive system is a complicated system to be 

imitated. It is a hybrid composite material which presents organic or inorganic 

properties and responds to external stimuli [13]. However, some less complex 

special features of surface in biology have received intense attention. Many 

examples can be found in nature to represent the micro-topographical surface 

such as hydrophobic leaf (Figure 2.1a) [14], antifogging Mosquito’s eye 

(Figure 2.1b) [15], highly adhesive gecko’s feet (Figure 2.1c) [16] and periodic 

micro-structure of beetle wing cases (Figure 2.1d) [17].  
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 One particular feature of smart surfaces is to react to special 

environmental stimuli and have the ability to drive mechanical reversible 

instabilities [18].  It is attractive to have buckling instabilities designed for 

stimuli responsive material system where the deformation remains elastic.  

Examples of instability deformation of stimuli-responsive smart materials 

include wrinkling, tuneable optics, stretchable electronics, microfluidics, 

controlled wetting, adjustable adhesives, and creasing. Furthermore, elastic 

instabilities of smart surfaces may provide new approaches for large-scale 

surface pattern fabrication [18].  

 

Figure 2.1 (a) Hydrophobic leaf [14] (b) Antifogging Mosquito’s eye [15] (c) Gecko’s 

highly adhesive feet [16] (d) Beetle wing cases [17] 
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2.2 Surface Instabilities 

Surface morphologies such as wrinkles, creases, folds, ridges, crinkles, 

and crumples on solid surfaces are commonly referred to as surface 

instabilities. Surface instabilities are ubiquitous in everyday life and nature [19]–

[22] (Figure 2.2). Work on surface instabilities are important to a range of 

applications including flexible electric devices [23], hydrophobic materials [24], 

adhesion devices [25], self-assembled patterns [26], brain subject [27]–[29]. Surface 

instabilities on elastic material are triggered with specific external conditions 

and reflect themselves by various surface morphologies changes. Here the 

elastic material system was defined by their surface pattern formation process, 

two types can be considered, one is deformation surface instabilities, and 

another is growth induced surface instabilities [30]. The formation of 

instabilities is due to various external forces, such as mechanical excitation. 

The material surface remains unaltered if the external force is small, but it will 

lose stability if a critical value is reached. Growth induced instabilities exhibit 

surface pattern mainly caused by material deposition procedure and it is 

usually observed in plants morphology [31]–[38] and bio-system [39]–[44], for 

example the morphogenesis in brain system [28],[45],[46], formation on 

fingerprint [47], folding of mucus [48]–[51] and development of gut [52]–[55]. 
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Figure 2.2: (a) The cortex structure of Einstein’s brain (discover magazine) [56]; (b) 

Wavy edges in nature (Sticta limbate) [19] (c) Creases of rising dough [57] 

In structure engineering, mechanical instabilities were considered as a 

mode of failure as they can cause structure fracture, such as buckling of pipes 

[58], crack in Microelectron Mechanical System (MEMS) [59] and composite 

materials [60]. However, scientists have been transforming these unwanted 

phenomena into useful technologies and have achieved significant progresses 

by advancing the understandings on the mechanics of mechanical instabilities 

[18],[61]–[65]; especially the elastic property on soft materials that enable the 

state-switch between smooth and instability in a repeated cycle. The 

instabilities were used to measure material properties [66]–[71], fabricate 

stretchable electronics [71]–[76], align cells [77],[78], and work on applications for 

surface chemistry [79], reversibly adhesion [80]–[82], wettability [83]–[86] and 

microfluidics devices [87]–[89].    

Different types of mechanical instability in soft materials are studied in 

this thesis: wrinkles [90], crease [91] and folds [92]. It is highly possible to access 

to new model of instabilities because soft material is usually more stretchable 
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than stiff material, and they have also highly nonlinear properties which are 

identified in the past several years [93]–[95].The following sections describe the 

different types of instabilities.  

2.2.1 Wrinkle 

When an applied in-plane compressive stress is beyond a critical value 

on a stiff thin layer, strain change leads to the occurrence of an elastic 

instability and causes out-of-plane buckling film [18]. However, the stiff layer 

would form a periodic pattern of buckles if this stiff thin plate is coupled on a 

thick soft elastic substrate. This phenomenon is referred to as wrinkles 

(Figure 2.3) while its critical condition can be determined by a classical linear 

perturbation analysis [92],[96],[97]. A critical wavelength [98] of  

𝜆𝜆 = 2𝜋𝜋ℎ �
𝐸𝐸�𝑓𝑓
3𝐸𝐸�𝑠𝑠
�
1 3⁄

                                         (2.1) 

would occur to balance the buckling energy of the film and the stretching 

energy of the substrate.  𝐸𝐸� = 𝐸𝐸 (1 − 𝑣𝑣2)⁄ , is the plane strain modulus [98], with 

E being the Young’s modulus and v being the Poisson’s ratio. Thus, 𝐸𝐸�𝑓𝑓 

represents the plane strain modulus of film and 𝐸𝐸�𝑠𝑠 represents the plane strain 

modulus of substrate. Critical strain raised with the energy comparison 

between flat state and wrinkled state [99],  

𝜀𝜀𝑐𝑐 = 1
4 �

3𝐸𝐸�𝑠𝑠
𝐸𝐸�𝑓𝑓
�
2 3⁄

                                            (2.2) 
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here the critical wavelength and critical strain of wrinkle has been steadily and 

extensively investigated by mechanics research, along with the dependence of 

material property, and the loading conditions including pre-stretch and finite 

deformation [100],[101]. Wrinkle also has the primary feature of weak 

imperfection sensitivity and stable amplitude growth, while the 

characterization has been undertaken in experimental measurement on the 

film property relative to that of the substrate [66],[102].  

 

Figure 2.3 Schematic illustrating wrinkle developing in a bilayer system. A stiff film 

of thickness of h, on top of a soft substrate under compression force. The wrinkle have 

a wavelength λ and amplitude A. 

Short wavelength of wrinkles is favoured by the substrate deformation, 

whereas the long wavelength is favoured by the bending of the thin plate 

[93],[103]–[105]. Parallel wrinkles form vertically to the compression direction if 

the loading is uniaxial [106], however, it can produce complex pattern of 

wrinkles if the loading is biaxial [61],[97],[107]–[110].  The formation of wrinkles 

phenomenon was also studied under tensile [111]–[114], shearing [115],[116] and 

bending [117],[118].   
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With the flat state as a reference, an incremental boundary value 

problem is formulated by linear perturbation analysis, and it is corresponded 

to the onset of wrinkles which brought an eigenvalue problem. The surface 

instability of a hyper-elastic half space [119] and interfacial instability of two 

hyper-elastic half spaces were studied by Biot [120] with linear perturbation 

analysis method. The film and substrate are both considered as linear elastic 

materials in modelling. The thin film was also assumed to have a thickness 

much smaller than wrinkles wavelength. Biot predicted the free surface of an 

elastomeric half-space would be unstable for sinusoidal waves formation when 

a critical compression strain parallel to the surface reaches 0.46 [119]. However, 

Biot’s wrinkling instability has never been observed. Scientists further 

developed nonlinear theories of wrinkles that predict the initiation of wrinkles 

and the growth of wrinkles under small strains [99],[121]–[123].   

2.2.2 Crease 

As schematic shown in Figure 2.4, a creasing instability is a 

phenomenon when the free surfaces create a sharp self-contacting area when 

soft elastic materials is under compression beyond a critical value [63],[124]. 

Different from wrinkle instabilities, crease is a localised deformation and the 

buckling procedure occurs instantly with irreversibility property.      
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Figure 2.4 Schematic illustrating crease formed in soft elastic materials under 

compression. 

Creasing instability was found with a Neo-Hookean material at a 

compression strain about 0.35 ±0.07, when Gent and Cho bent a rubber block 

in experimental test [125]. Later it was proven by the numerical simulations 

contributed by Hohlfeld and Mahadevan [63], a theoretical understanding of 

creasing. They introduced a skin layer with finite bending stiffness to provide an 

energy barrier and break the symmetry balance and create a discontinuous 

transition between flat state and crease. They found that a Neo-Hookean solid free 

surface will become unstable at 𝜀𝜀𝑐𝑐 = 0.35 in plane strain and thus form creases 

nonlinearly. A pre-pinching method was also used to show the critical strain 

for creasing via a finite element simulation [126]. 

Biot’s solution and creases are two distinct instabilities, shown by 

Hohlfeld and Mahadevan. Biot’s solution corresponds to a smooth, wavy 

surface at lower strain value and linearized the boundary condition at a state 

of finite homogeneous. However, crease is a localized self-contact 

phenomenon at large strain value relative to the homogeneous state (Figure 

2.5). Crease instability has sharp tips and the cross-section has a very different 
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shape from wrinkle. It has been observed continually on compressed elastic 

material achieved by various method, like mechanical stimuli [96],[125],[127]–[130], 

restrictive swelling [124],[131]–[143], temperature variation [79], electric field [144]–

[149], and light excitation [150].  

  

Figure 2.5 Crease instability observed in experiment (a) Crease of a swelling gel due 

to the constraint of the substrate [124]. (b) Cross-section view of crease [96]. 

Diab et al. found that the crease localization is a form of instability from 

wrinkle state or fundamental state [151],[152]. A barrier is added to the nucleation 

of crease by surface energy, which makes the nucleation sensitive to defect [119, 

138]. Thus, a consequence of bifurcation was revealed by the snap buckling of 

crease which is a state-switching between subcritical and supercritical 

[63],[126],[153]–[155]. This can be explained by the hysteresis of crease that appeared 

and disappeared, corresponding with the applied compressive strain increases 

and decreases, when crease on top of a surface free from traction and have 

finite thickness [154]. For another aspect, despite the reversibility of local 

deformation is elastic, the hysteresis is still exhibited by the global 

irreversibility during loading and unloading [63],[152]. However, if the external 

loading is an electric field, the formation of crease, or wrinkle, is dependent on 
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the elasto-capillary number [146]. Soft tissue is one of the subjects that could 

take advantage of crease [43],[46],[48], and the crease has been connected with the 

appearance of Schallamach waves on a rubber against a solid surface during 

the frictional sliding [156]. Crease can be put into a range of applications, such 

as the control of chemical pattern[79],[150], biofouling [157], adhesion [158] and the 

behaviour analysis of cellular organism [159]. 

2.2.3 Fold and Ridge 

Wrinkle is formed with the compressive force reached to a critical value 

at a bilayer system that contains a stiff thin film set on top of a soft thick 

substrate. A secondary bifurcation, which varies depending on the substrate 

property, can occur if the compressive force keeps increasing. Once the bilayer 

system is compressed far beyond the critical value of wrinkle, then localized 

fold formed because there is no mismatch stress between the film and 

substrate at this point (Figure 2.6a) [62],[64],[91],[160]–[163]. In other words, the 

fold is formed from wrinkle at higher amplitude aspect ratio for self-contact if 

the amplitude of wrinkle keeps growing. Here the higher amplitude aspect 

ratio means the wrinkle amplitude is in a much large value compared to the 

wrinkle wavelength.  
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Figure 2.6 Fold instability. (a) Progression of the folds with increase of strain from 

top to bottom when the substrate is an elastic solid [162] (b) Progression of the folds 

with increase of strain from top to bottom when the substrate is a viscous liquid [91]. 

The fold can be set periodically by the period multiplication of wrinkle 

and then leads to the localization of fold subsequently. That is when wrinkle 

up against the appearance of sub-harmonic modes due to the nonlinearity of 

elastic response and since loses its initial periodicity [64],[164].  Normally, a 

period-doubled state is developed first from wrinkle state, followed by a 

period-quadrupled state, and finally the formation of self-contacting folds 

[64],[160],[162]. When the wrinkle surface starts the self-contact progression for 

folding, a few selected fold tips initiate the advancing into substrate with 

several of unfolding surround the folds, causing the localization of fold. 

Localized folds can be manipulated by the patterns of the substrate [165], even 

when the substrate is in liquid format (Figure 2.6b) [91],[166],[167] or elastic foam 

[168]. Folding is relevant for the fabrication of nano-structured surfaces, several 

research groups have investigated a variety of characterisation methods for 

folding process, such as wrinkle period multiplication on bilayer system [64] 

and water floated elastic film [91]. Sun, et al. has revealed the nonlinearity of 
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substrate during the winkle post-buckling evolution with a numerical method 

for fold[160], and followed by further investigation by Zhao, et al [169] and 

Hutchinson [94]. But the critical conditions for large amplitude wrinkle 

evolution is still un-clear.  

 

Figure 2.7 Ridge instability. (a) Simulation result showing the cross-section view of 

a secondary bifurcation from wrinkles to ridges [92]. (b) Experimental results showing 

the top view of ridges [170].  

Similar to crease of a localised and irreversible hysteresis behaviour, 

ridge instability is normally formed as the secondary bifurcation on a 

compressed surface layer by releasing a highly pre-stretched substrate 

(Figure 2.7a) [92],[97],[170]–[172]. The morphology of ridge and fold is very 

different although they are both localised structures. Ridge buckles outward 

and bring the surface upward, while the fold developed inwards and collapse 

the surface inside (Figure 2.7b).   The structural evolution of ridge is generally 

irreversible with a snap buckling process, and ridge is easy to develop into a 

ridge-folds state at large strain of a compressed surface [169]–[173]. However, fold 

occurs as a secondary bifurcation from wrinkles if the substrate has no pre-

stretched tension [64]. Ridge instability can be explained by the nonlinearity of 

(a) (b) 
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elastic substrate and it was first predicted in a numerical simulation [92], and 

then was found in experiments [97],[170]–[172].  

 

Table 2.1 Summary of surface instabilities between wrinkle, crease, fold and ridge. 

 Description Schematic 

Wrinkle Periodic waves formed from the top 

stiff layer in a bi-layer system when it 

encountered a compression force 

above critical value.  

 

Crease Localised deformation of a sharp self-

contacting area when soft materials 

under compression force above critical 

value.  

 

Fold Formed from wrinkle at much higher 

amplitude wavelength where no 

modulus mismatch between two 

layers because compression force far 

beyond the critical value.  

 

Ridge Different from fold, ridge buckled 

outward and bring the surface upward 

when it under compression force.  
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2.3 Studies on Switchable Surface Wettability 

2.3.1 Contact Angle 

 

Figure 2.8 (a) Illustrations of surface wettability defined by contact angle, and a 

“Cassie” state (b) A droplet in a “Wenzel” state (c) Advancing and receding contact 

angle measurement 

When a liquid droplet is placed on a solid surface, there is a balance 

between the three interfacial phases, liquid (L), solid (S), and vapour (V), 

where the interfacial energy of γSV (solid-vapour), γSL(solid-liquid), γLV(liquid-

vapour) determines the droplet state whether it should spread out into a film 

or remain as a droplet. If it remains as a droplet, there exists a contact angle 

(𝜃𝜃𝐶𝐶𝐶𝐶) at the edge of the droplet, where it is measured between the liquid-vapour 

(LV) and solid-liquid (SL) interfaces at the three phase contact-line (Figure 
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2.8a). The equilibrium contact angle θCA can be determined by Young’s 

Equation [174]: 

𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝐶𝐶𝐶𝐶 = γ𝑆𝑆𝑆𝑆−𝛾𝛾𝑆𝑆𝑆𝑆
𝛾𝛾𝑆𝑆𝑆𝑆

,                                                 (2.3) 

If the droplet contact angle is smaller than 90˚, the surface is considered as 

hydrophilic. If the contact angle is larger than 90˚, the surface is hydrophobic. 

Highly hydrophobic surfaces made of low surface energy materials may have 

water contact angles around 120˚.  

2.3.2 Contact Angle Hysteresis 

Inspired by the lotus leaf, hydrophobic surface with a bio-mimic self-

cleaning function, where combination of low-surface energy and surface 

roughness leads to the hydrophobic property [175]. Surface wetting behaviour 

can be greatly influenced by surface roughness [176]. If the surface is 

hydrophobic, adding roughness makes it more hydrophobic. On the contrary, 

if the surface is hydrophilic, it masks it more hydrophilic. It is important to 

understand the behaviour of liquid on different topographic surface because 

the surface roughness plays a key role in surface wetting property. Typical 

wetting states of hydrophobic surface include “Cassie-Baxter” state [174] and 

“Wenzel” state [177]. “Cassie-Baxter” state is when a droplet places on the top of 

surface roughness and leaving an interface of solid-liquid and liquid-vapour 

below it (Figure 2.8a). “Wenzel” state is where a liquid stick to the surface 

and maintains contact with the entire surface roughness (Figure 2.8b). It is 
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not easy to describe the local contact angle in either “Wenzel” state or “Cassie-

Baxter” state as the surface is no longer flat. Therefore, with these two-ideal 

descriptions of liquid behaviour on rough surfaces, wettability of a roughness 

surface can also be described in terms of contact angle hysteresis.  

If a droplet is placed on a surface with certain roughness feature, and 

same droplet liquid is added slowly inside, the water droplet volume starts to 

expand. As the volume increases, the contact angle also increases and reaches 

a critical value (𝜃𝜃𝐶𝐶) where the three-phase contact line experiences a sudden 

outward motion. This threshold value 𝜃𝜃𝐶𝐶 is referred as advancing contact angle 

(Figure 2.8c). Reversely, decreasing the water droplet volume will make the 

contact line recede suddenly at some point, the contact angle before the 

movement is called the receding contact angle (𝜃𝜃𝑅𝑅). The difference between 

advancing and receding contact angle is known as the contact angle hysteresis 

[178].  In Wenzel state the liquid penetrates surface asperities resulting in a high 

contact angle hysteresis. In Cassie state the liquid only contacts the top surface 

of asperities therefore it has a low contact angle hysteresis. On the other side, 

it is common to have different contact angles at the front and rear edge of a 

water droplet sitting on a tilted surface (Figure 2.8c).  

To achieve topographical surface with desired wettability performance, 

composite methodology has been explored such as lithography, plasma 

techniques, electrochemical method, electrospinning techniques, low-surface 

energy coating, etc [179]. It was found that geometric morphology, surface 
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microstructure and molecular properties characteristics contribute mainly to 

the control of smart surface wettability [85],[180],[181]. 

2.3.3 Anisotropic Droplet Shaping 

The non-uniform distribution of surface energy is an expression of 

anisotropic wetting of droplet deformation, where the wettability directional 

dependence acts as the asymmetric chemical or physical chemical patterns on 

a material’s surface [182]. Different from isotropic wetting where wetting 

properties are identical in all directions, the anisotropic wetting may need 

additional information for wetting characterisation [183]. In this case, different 

contact angle measurement along perpendicular and parallel direction to the 

surface features can be exhibited from an anisotropic surface droplet with 

chemical or topographic features (Figure 2.9a) [89].  

 

Figure 2.9 (a) Anisotropic droplet on grooved surface [89]. (b) Droplet sliding on un-

stretched surface and pinned by stretched surface with patterned features uncovered 
[184]. 

Droplet motion control on solid surfaces has become an indispensable 

technology in various industrial areas include hydrophobic coating, 

electromechanical system and micro-chip architectures [185],[186]. It is well 
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known that micro patterned surfaces with different wettability can provide 

wetting anisotropy which is depended on surface topography and chemical 

composition. Surface topography is a reliable parameter to control a wide 

range of smart surface functions such as wettability, adhesion, cell patterning 

and optical reflection. Aizenberg Group [184] in Harvard University have 

approached a method to manipulate the mobility of droplet dynamically by 

using a liquid infused system. The stretched film with liquid-repellent coating 

forms a wavy surface morphology by uncovering the solid pattern features 

which will stop the droplet from sliding (Figure 2.9b) [184].  

2.4 Theoretical Understanding on Analytical Method 

Over the past decade, researchers have revealed various 

characterisation on one dimensional (1D) surface instability structures with 

analytical method on solid-surface deformation under in-plane compression 

[64],[125],[160],[173],[187]. The characterization of morphology of the surface 

instabilities also found useful for a series of technological applications [23]–

[25],[188]. A bi-layer system of a thin film on an elastic substrate under 

compression, a variety of surface instabilities developed if the mismatch 

modulus existed between the film and the substrate. Bi-layer system produces 

comparative simple surface instabilities phases, which include single- or multi-

mode wrinkles, creases, folds and ridges. Investigations of instabilities phase 

transitions enable us to understand the formation process of biological and 

geological structure [189],[190]. Accurate control of self-organizing instabilities 
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phase could help us to create unprecedented properties material by folding 2D 

material structures  [191].  

Here, the basic bi-layer system, among variable combinations of 

film/substrate geometries and soft elastic properties, was considered as neo-

Hookean material model. To simulate soft material, hyper-elastic model was 

aimed to use. If the material is assumed to follow incompressible neo-Hookean 

material model, the strain energy expression represented here as:   

W = 𝐶𝐶1(𝐼𝐼1� − 3),                                                 (2.4) 

where C₁ (C1 = μ/2) is the material parameter which contains shear modulus 

(μ) of the material, and 𝐼𝐼1�  represents the first deviatoric of strain invariant. 

However, when a bi-layer is gradually compressed, the film on the top 

buckled to form a periodic wrinkle, depending on stiffness ratio between film 

and substrate. A phase diagram is represented by collecting the instabilities 

phase on a plane of elastic stiffness ratio (or instability wavenumber) versus 

the compressive strain [151][152][127], similar to the material phase diagram that 

phenomenological descripted its minimum free energy for various equilibrium 

phase [192]. 

In general, stiffness ratio and the film property decide the instability 

wavenumber when normalized by the film thickness.  But the normalized 

wavenumber of bi-layer is conducted by the modulus ratio. In particular, the 
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dependence of the normalized wavenumber on the stiffness ratio is converted 

to [92],[94],[160],  

𝑘𝑘� = 2𝜋𝜋ℎ
𝜆𝜆

= �3𝜇𝜇𝑠𝑠𝜇𝜇𝑓𝑓
�
1/3

,                                             (2.5) 

for 𝜇𝜇𝑠𝑠
𝜇𝜇𝑓𝑓
≪ 1, where 𝜆𝜆 is the wavelength, 𝜇𝜇𝑠𝑠 and 𝜇𝜇𝑓𝑓is the shear modulus of the 

substrate and film. The above equation not only represents the stiff-film bi-

layer wavenumber, but also a convenient modulus-ratio index. All bi-layer 

instabilities phases can be plot in a bound plane of (ε, 𝑘𝑘�), where ε represents 

the applied compressive stain on bi-layer. By employing finite element analysis, 

bi-layer instabilities phase diagram can be built with instability evolution 

under compression, while the instabilities localizations, irreversible transition 

and substrate mismatch strain effect on the bi-layer could be observed with the 

phase diagram.  

Finite element analysis is used to perform the simulation of surface 

instabilities phase development by linking the strain deformation in bi-layer 

system under lateral system. If the material considered as compressible neo-

Hookean constitutive model, both the film and substrate will be adopted with 

same shear modulus. With this setting, the strain energy expression is 

expended as [193]: 

W = 𝐶𝐶1(𝐼𝐼1� − 3) + 𝐷𝐷1(𝐽𝐽 − 1)2,                                       (2.6) 
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where D1 is the incompressibility parameter, and J is elastic volume ratio.   

2.5 Summary 

This chapter has introduced the background of surface instabilities as 

an aspect of functional smart surface that behave topography phenomenon, 

and surface wetting concept that is possible induced by the geometrical surface 

structure or surface chemical treatment. Moreover, the basic theoretical 

understanding on analytical method based on a bi-layer system was reviewed. 

Possible material selection was also presented with general FEA package 

requirement. More specific background is included in the following chapters.  
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Chapter 3  

Experimental Methods 

This chapter summarises the general experimental methodologies used 

throughout the project, including fabrication process for functional micro-

structure surface and the characterization method used for investigation.  

3.1 Fabrication Method 

Micro-engineering and surface treatment of pattern template: 

Structural patterned template of SU-8 micro-cylinders on silicon wafer was 

obtained through standard photo-lithographic fabrication technique in 

cleanroom at Durham University. The masks were manufactured from 

external company. Templates with different lattice arrays (square and centered 

square) and various aspect ratios were prepared. A small portion (≈1ml) of 

Trichloro(1H,1H,2H,2H-perfluorooctyl) silane (Sigma-Aldrich), was applied 

from vapour phase at 20 °C for 30 min to facilitate subsequent release of the 

PDMS film.  

Fabrication of Structural Confined Elastic Bilayer: The mounting layer 

was made from a commercially available elastomer product (Elite Double 22, 

Shear modulus ≈ 0.35 MPa) from Zhermack Ltd. After mixing the 

vinylpolysiloxane base with curing agent with a weight ratio of 1:1 for 1 minute, 
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the mixture was cured in the petri dish at 20 °C for 30 minutes. The cured 

elastomeric film was ≈ 2 mm in thickness, and a stripe of ≈ 10×30 mm was cut 

and pre-stretched to 600% of its original length on a uniaxial mechanical strain 

stage. The soft PDMS layer with thickness of 125 μm (Sylgard 184, Dow 

Corning, 30:1 for elastomer base : crosslinker) was prepared by spin-coating 

the degassed mixture on a SU-8 patterned silicon wafer ( ≈ 1 cm2 ) at 1000 rpm 

for 120 s, followed by curing at 70 °C for 1 h. An adhesive PDMS layer with the 

same composition of 30:1 was spin-coated on this cured layer at 3000 rpm for 

120 s, to bond to the mounting layer. After transferring the adhesive coated 

soft PDMS layer to the mounting layer, the assembly was baked at 70 °C for 8 

h to cure the adhesive layer. Prior to characterization, the bilayer was treated 

with oxygen plasma (HPT-100, Henniker) under a working power of 100 watt, 

with a mixed gas atmosphere of oxygen/nitrogen ratio ≈ 0.2. 

3.2 Characterization Method 

Two characterization methods were introduced here for Chapter 4 and 

Chapter 5. The strain was applied by releasing the pre-stretched mounting 

layer with mechanical strain stage.  

Characterization 1: The bilayer was progressed to measurement as soon 

as the oxygen plasma treatment is completed. Incremental deformations in 

nominal strain of ≈ 0.004 were applied to the sample by releasing the 

mounting layer pre-stretched by a fixed amount at regular intervals and 
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situated for 15 min in room temperature. Sample surfaces were observed in 

situ using an upright optical microscope (Nikon LV-100) in brightfield 

reflection mode. For the laser scanning confocal microscopic imaging (Nikon 

A1R), the top layer was labelled by adding a small amount of fluorescent 

monomer (0.1 mg fluorescein-o-acrylate per 1 g PDMS). Scanning electron 

microscopy (MIRA3, TESCAN) was used to observe the surface structure. The 

surface topographic features were assessed with an atom force microscopy 

(D3100, Veeco). Thickness of the plasma treated PDMS was measure with 

surface roughness profiler (BRUKER DektakXT). And the out-of-plane 

measurement was carried out with laser scanning confocal microscopy (Nikon 

A1R) 

Characterization 2: The experiment was carried out immediately after 

the oxygen plasma treatment. A 2 μl deionized (DI) water droplet (dyed with 

red food colour gel, Dr. Oetker, at a weight ratio of 10:1) was deposited on the 

sample surface using a micropipette. Incremental deformation in nominal 

strain of ≈ 0.04 were applied to the sample by releasing the pre-stretched 

mounting layer (Elite Double 22, Zhermack Ltd) by a fixed amount at regular 

intervals. 2D profiles of the droplet was recorded in situ using both an upright 

optical microscope (Nikon LV-100) in brightfield reflection mode and a digital 

camera (model D3200, Nikon) with a macro lens (model 105mm 1:2.8, 

SIGMA). Static contact angle (CA), advenceing CA and receding CA value of 

droplet was measured using a Droplet Shape Analyzer (DSA30S, Kruss). The 

surface topographic features were assessed with an atom force microscopy 
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(D3100, Veeco). Laser scanning confocal fluorescence microscopy (Nikon A1R) 

was used to observe the droplet shape in 3D by dyed it with Fluorescein 

isothiocyanate-dextran (SIGMA) at a weight ratio of 1000:1.  

3.3 Numerical Simulations 

The numerical analysis used a finite element package in Mathematica 

to solve the 2D plain-strain linear elasticity problem for the deformation in the 

patterned soft substrate. A repeatable 2D unit cell was first defined with the 

geometry corresponding to the experiment and, as seen in Figure 3.1, the 

domain by a fine mesh consisting of around 4000 triangles was described.  

 

Figure 3.1. Discretized mesh elements for the numerical analysis of a unit cell: (left) 

non-deformed unit cell, (right) deformed unit cell with a macroscopic strain ε=0.2. 

 

 A plain-strain deformation was then assumed, described by the 2D displacement field 

(𝑢𝑢(𝑥𝑥, 𝑦𝑦) 𝒙𝒙� + 𝑣𝑣(𝑥𝑥, 𝑦𝑦) 𝒚𝒚� ) so the plain-strain stress tensor is 

D+Φ

Φ

(1−ε)(D+Φ)

(1+0.3ε)(D+Φ)

x

y
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𝜎𝜎 = 𝐸𝐸
(1+𝜈𝜈)

�

(1−𝜈𝜈)𝑢𝑢,𝑥𝑥+𝜈𝜈𝑣𝑣,𝑦𝑦

(1−2𝜈𝜈)
𝑢𝑢,𝑦𝑦+𝑣𝑣,𝑥𝑥

2
𝑢𝑢,𝑦𝑦+𝑣𝑣,𝑥𝑥

2
𝜈𝜈𝑢𝑢,𝑥𝑥+(1−𝜈𝜈)𝑣𝑣,𝑦𝑦

(1−2𝜈𝜈)

�,                                       (3.1) 

where 𝐸𝐸 is the Young’s modulus, 𝜈𝜈  is the Poisson’s ratio, and the comma-notation 

denotes partial derivatives. The Mathematica finite element package was then used to 

solve 𝛁𝛁 ⋅ 𝜎𝜎 = 𝟎𝟎 in the meshed domain, subject to the boundary conditions that 𝜎𝜎.𝒏𝒏� =

𝟎𝟎 on the hole edges, and that the straight edges of the cell move with the macroscopic 

strain of the underlying substrate (-ε in the x-direction and 0.3ε in the y-direction) as 

seen in Figure 3.1.  

After solving the displacement fields, the stress on the film can be 

evaluated from the stress tensor above. To determine whether the region is 

unstable towards wrinkling, we diagonalized the stress tensor to find its 

maximum compressive stress. By comparing this compressive stress with the 

theoretical critical value, we can identify the wrinkling region, while the 

wrinkle direction is perpendicular to the principal direction of the maximum 

compressive stress. 

For 3D numerical analysis, simulation package of ANSYS Workbench 

was used. On soft elastic surface material, both wrinkles and creases can be 

described as a state of homogeneous deformation undergoes terms of field 

variables of specified points called nodal points or nodes. A mathematical 

description of strain at any point in the element with nodal displacement is 

{𝜀𝜀} = [𝐵𝐵]𝑒𝑒{𝛿𝛿}𝑒𝑒                                                   (3.2) 
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where {𝜀𝜀} is strain at any point in the element, [𝐵𝐵]𝑒𝑒  is strain displacement 

matrix and {𝛿𝛿}𝑒𝑒  is displacement vector of nodal values of the element [194]. 

Once the element properties and boundary conditions are imposed to 

assemble global properties to get system equation. The solution of these 

system equations gives the nodal values which can be combined with 

additional calculations to describe and predict the elastic surface pattern 

transitions under the compressions. 

The material selection was decided on the linear and non-linear 

procedure that include a compressive neo-Hookean model for non-linear 

progress, as shown blow: 

W = 𝐶𝐶1(𝐼𝐼1� − 3) + 𝐷𝐷1(𝐽𝐽 − 1)2,                                    (3.3) 

where C₁ is the material parameter, 𝐼𝐼1�  represents the first deviatoric of strain 

invariant, D1 is the incompressibility parameter, and J is elastic volume ratio.   

 

 

 

 

 



34 
 

Chapter 4  

Spatially Configuring Wrinkle Pattern 

and Multiscale Surface Evolution with 

Structural Confinement 

 

4.1 Introduction 

Elastic instabilities such as wrinkles, creases and folds, are usually 

considered as unwanted when they appear in engineering structures, as they 

can precipitate fracture and failure. Recently, scientists have significantly 

advanced our understanding of the mechanics of elastic instabilities [18],[29],[61]–

[65],opening the possibility of transforming these unwanted phenomena into 

tools for producing useful shape changes in response to a range of external 

stimuli [148],[195]–[199]. The latter perspective has enabled engineering 

opportunities containing conceptual self-adaptive/autonomous structures in 

low dimensions and has implications in many different contexts such as micro-

/nano-fluidics [200]–[202],flexible electronics [130][23], adhesion [80][81], organic 

solar cells [76], tunable optics [203]–[205], wettability [89][86][206], and promising 

methods for surface patterning [61],[79],[207]–[209]. While our scientific/technical 

understanding has advanced, there remains much to be explored about the 
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control of instability morphology, and in particular how to configure the 

instabilities, such as wrinkling and creasing, to desired patterns with selective 

distribution covering the surface and bespoken thresholds for the formation 

and evolution of instabilities. 

When compressing a bilayer elastomer system with a stiff skin layer, the 

formation of surface wrinkles releases in-plane compression of the stiff layer, 

as bending is energetically more favourable than compression. With further 

compression, the wrinkles experience further bifurcations, including period-

doubling and quadrupling [64][210], and turn into deep folds/creases [151],[169],[211]. 

These wrinkling and post-winkling behaviours have been well understood by 

considering the intrinsic material properties of a bilayer (module mismatch, 

Poisson’s ratio, etc), structural variables (thickness) and the pre-strains 

imposed on the system. However, thus far, such compressive instabilities have 

been studied in non-patterned surface systems, where both wrinkling and 

further bifurcations occur as global events, spanning the entire surface at once. 

Notably, Huck and co-workers investigated the spontaneous formation of 

patterns of aligned buckles on a flat gold/PDMS bilayer with placed 

confinement [212]. Kim and co-workers studied the morphological transitions 

on the surface of a bilayer under a biaxial compressive stress and revealed a 

mechanism to controllably generate a 2D wrinkle/fold pattern on the entire 

film surface [62]. Wang and Zhao have summarised the instability bifurcations 

on flat surfaces and generated a phase diagram by considering the geometrical 

variations and module mismatches [213][214]. Recent work has also studied 
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bilayer instabilities on surfaces with curvature [108],[215]–[217], where wrinkling is 

still a global event, but where the pattern and threshold are influenced by the 

curvature. In this chapter, the investigation focuses on whether the wrinkling 

and further bifurcation in patterned sub-regions of a bilayer can be induced by 

explicitly patterning the surface, thus paving the way for bespoke instability 

morphologies at bespoke thresholds. 

Such controllable formation and development of instabilities in 

targeted regions are highly desirable for engineering applications such as a 

strain sensing structures, actuating units in wearable devices, healthcare 

devices, bio-fluidic devices, etc. In this chapter, a simple strategy is 

demonstrated to initiate 2D harmonic surface wrinkle patterns and targeted 

morphological transitions on the surface of an elastic bilayer under uniaxial 

compressive stress, by employing structural confinement (Bravais lattice holes) 

to regulate the in-plane stress map on a surface. The regions adjoining the 

Bravais lattice holes nucleate harmonic wrinkle networks at small compressive 

strains due to the confinement. At higher compression, the wrinkle-crease 

transition is initialized at selected areas with strain energy localization guided 

by the curved geometrical boundary from the edge of Bravais lattice holes, 

which then finally leading to a global creasing. The dynamics of the formation 

of planar wrinkle patterns and localised wrinkle-creasing transition are 

studied, and a distinct kind of stepwise instability pattern evolution is 

illustrated towards a hierarchical surface. The numerical simulation is also 
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combined with experiments to track the in-plane stress state and study the 

generation of harmonic morphology under the confinement. 

4.2 Results and Discussion 

4.2.1 Formation of Surface Instabilities with Confinement 

The Bravais lattice (named after Auguste Bravais, a set of discrete arrays 

with certain distance) template was prepared by lithographically fabricating 

SU-8 pillars on a Silicon wafer (Figure 4.1a). The Bravais pattern was then 

transferred to a soft substrate by coating the template with a thin (125 µm) 

layer of softer PDMS (shear modulus ≈ 0.1 MPa), which was then cured on a 

substantially pre-stretched elastic ‘mounting’ base layer (thickness ≈ 3 mm, 

Shear modulus ≈ 0.35 MPa). After curing, the PDMS structure was released 

from the template, aided by a salinization treatment applied to the template to 

reduce surface adhesion. Under compression, patterned surfaces composed of 

polygonal shape, i.e., triangles, squares, etc., can yield strain energy 

concentrations and localised bulk deformations around the corners, making it 

difficult to reach the energy threshold to trigger the surface instability. 

Therefore, patterned surface with circular (hole) shape was used to avoid the 

strain energy localization and also expected that the curvatures can be used to 

regulate the formation of instability. Two different Bravais lattices (Figure 

4.1b–e), square and centered square, were employed with various geometries, 

hole diameter (Φ ), hole distance (D), hole depth (h), to establish a range of 
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patterned soft surfaces, where the ratio between distance and diameter 

represents the aspect ratio (D/Φ).  Finally, oxygen plasma treatment was used 

to create a thin stiff layer on the patterned soft substrate (Figure 4.1f) prior 

to the compression.   

 
   

Figure 4.1. Illustration of design and fabrication process of structural 

confinements and guided formation of surface morphologies under 

compression. (a) The structural surface was fabricated by spin-coating a thin PDMS 

precursor layer on lithographically made template (SU-8 pillars array on a silicon 

wafer), then transferring and curing the thin PDMS layer (≈ 125 µm) on the top of a 
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pre-stretched mounting elastomer layer with thickness ≈ 3 mm. Two in-plane arrays 

with varied aspect ratios are designed, (b) illustration and (c) optical microscopy for 

centered square lattice array, (d) illustration and (e) optical microscopy for square 

lattice array. (f) The micro-fabricated surface was treated with oxygen plasma to 

achieve a stiff skin layer (≈ 50 nm). (g) The observation of surface morphology changes 

on square lattice array patterned surface at different compression level.  (h-j) The 

observation of surface morphology changes on centered lattice array patterned 

surface at the same compression sequences in (g) with different aspect ratios. The 

wrinkle patterns are marked with red arrows and creases are marked with green 

arrows. All images in this figure have been formatted with same scale bar of 20 µm. 

Upon subsequent release of the mounting layer from a pre-stretched 

length L0 to a length L, the patterned PDMS layer is under compression, which 

the nominal (far-field) uniaxial compressive strain ε = L0/L – 1 is 

characterized. The oxygen plasma effect was examined on a surface with 

pattern features of D =160 µm, Φ = 80 µm, h =20 µm. For surfaces without 

plasma treatment, the holes slowly closed as the compressive strain increased, 

but no surface wrinkling was observed. In contrast, on the plasma treated 

surface, a series of patterned surface instabilities was observed as compression 

increases, starting with winkles formed at ε ≈ 0.04, then in-plane wrinkling 

bifurcation (period doubling) occurs at ε ≈ 0.08, followed by the nucleation of 

creasing (wrinkling-creasing transition) at ε ≈ 0.1, and global creasing at ε ≈ 

0.3, and finally the closure of lattice hole at ε ≈ 0.55.  

The morphological development of the surface was characterized under 

reflected light optical microscopy to study the dynamic surface evolution with 

different lattice arrays. A series of observations were made at the same strain 
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sequence to reveal surface states at the same deformation level. For the pattern 

with a square lattice (Figure 4.1g), the in-plane wrinkle pattern appears to be 

lateral straight stripes and does not changing much with different aspect ratios 

(D/Φ) (Figure 4.2). For the pattern with centered square lattice, the case is 

more interesting, and three types of in-plane wrinkling patterns are formed at 

small compressive stress with a high sensitivity to the aspect ratios of lattice 

that applied. For D/Φ = 1, an in-plane curved stripes pattern is developed with 

a strong dependency on the local curvature determined by the lattice hole and 

aspect ratio of lattice array (Figure 4.1h). Straight wrinkle stripes pattern is 

evident when the D/Φ = 2 (Figure 4.1i), which is similar to the surface 

patterned with square lattice. However, an in-plane ‘star’ wrinkle pattern is 

generated for D/Φ = 4 (Figure 4.1j), the wrinkle morphology shows a 2D 

periodic distribution around each hole with a ‘star’ shape, implying a diagonal 

strain energy localization.  

 

Figure 4.2. The formation of the lateral wrinkle pattern for the square lattice 

patterned surface with different geometrical aspect ratio.  
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At higher compression, all patterned surfaces develop morphological 

evolutions showing a wrinkle-crease transition, the surface creases nucleate at 

the edge of lattice hole perpendicular to the compression direction at ε ≈ 0.06 

- 0.013. The creases progress as the compression increases, then fully cover the 

surface at ε ≈ 0.3. Among these morphological transitions, an interesting 

phenomenon is discovered that a single crease can be generated on the surface 

with centered square lattice holes (D =80µm, Φ = 20 µm, h =20 µm). This has 

great potential to enable new types of surface actuator with targeted 

compression effects within the scale of a few micrometres. It should also be 

noted that the critical strains for initializing the transition (ε ≈ 0.06 - 0.013) 

are much lower than the typical critical strain value of 𝜀𝜀𝑐𝑐𝑐𝑐𝑒𝑒𝑐𝑐𝑠𝑠𝑒𝑒  ≈ 0.35-0.55 [18][65]. 

The reason is that the nominal strain level used as a control parameter does 

not well reflect the strain localization on the structural confined surface. The 

strain energy localization at a curved boundary near a hole edge for a patterned 

surface could be several folds of that on a non-patterned surface.  

4.2.2 Numerical Analysis of Surface Instabilities  

To understand the instability patterns (Figure 4.3a-4.3c) and 

thresholds observed above, a numerical analysis was conducted by calculating 

the pattern of deformation under the imposed global compressive strain for 

lattice patterned surfaces (Figure 4.3d). Deformation around a single hole 

and square/centered square arrays of holes has been previously studied within 

linear elasticity [92],[218], and generally produce stress concentrations near the 

holes. To generalize these results to the lattices, the patterned substrate was 
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modelled as a linear-elastic 2D plane-strain system consisting of an infinite 

incompressible elastic material containing the appropriate infinite lattice of 

holes. As seen in Figure 4.3e, a square unit cell of the resulting system 

(centered square patterned surface) is considered, and Mathematica finite 

elements was used to solve the plane strain field in response to an imposed 

compressive strain, 𝜀𝜀𝑝𝑝𝑝𝑝𝑐𝑐𝑝𝑝𝑝𝑝, in the x direction and, as measured in experiments, 

a sympathetic extension of 0.3 𝜀𝜀𝑝𝑝𝑝𝑝𝑐𝑐𝑝𝑝𝑝𝑝 in the y direction, and with stress free 

boundary conditions at the edges of the holes.  
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Figure 4.3. Analytical approach of the generated harmonic winkle 

patterns.  Three harmonic patterns are generated as (a) curved ribbon, (b) star shape, 

(c) straight belt. (d) A representative unit area is chosen for numerical analysis. (e) 

Compression of the patterned substrate relative to the compression of the non-

patterned substrate. Blue and red indicate the less and more compressive areas. (f) 

Evolution of wrinkling region as a function of applied strain in the deformed bilayer 

system with patterned holes. Green areas are the wrinkling regions. Lines indicate the 

direction along which the wrinkles will grow while their lengths are the relative 

distance from the wrinkling threshold. (g) Compressive stress in the stiff layer in the 

patterned bilayer system relative to the non-patterned system values at different 

position from the rim of the hole of radius a (maximum stress) to the edge of the unit 

cell (see arrow in (e) bottom). All plotted with D/Φ=0.75, 1, 2 and 4. 
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In Figure 4.3f, the local maximum compressive strain is plotted, εpattern, 

as a fraction of 𝜀𝜀𝑝𝑝𝑝𝑝𝑐𝑐𝑝𝑝𝑝𝑝 , for several different aspect ratios of lattice. The 

compressive strain is strongly localized around the holes. In centered square 

lattices with smaller holes, there are also clearly star-shaped patterns of 

increased compression running between the holes. Same plots for a simple 

square lattice in Figure 4.4, showing compression concentration in lateral 

straight stripes through the holes at all aspect ratios of pattern.  

 

Figure 4.4. Numerical simulation of the wrinkle pattern generation on square lattice 

patterned surfaces. (a) Compression of the patterned substrate relative to the 

compression of the non-patterned substrate. Blue and red indicate the less and more 

compressive areas. (b) Evolution of wrinkling region as a function of a bilayer system 

with patterned holes. Green areas are the wrinkling regions. Lines indicate the 

direction along which the wrinkles will grow while their lengths are the relative 

distance from the wrinkling threshold.  (c) Compressive stress in the stiff layer in the 

patterned bilayer system relative to the non-patterned system values at different 
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position from the rim of the hole of radius α (maximum stress) to the edge of the unit 

cell (see arrow in (c) bottom). All plotted with D/Φ= 1, 2 and 4. 

 

The wrinkling pattern on the stiff plasma-treated skin that decorates 

this base-state deformation was calculated next. To achieve that, the 

compressive stress 𝜎𝜎𝑐𝑐 in the thin film was calculated first, assuming it has a 

Poisson ratio of 𝜈𝜈𝑓𝑓=0.3 (silicon like thin film) directly follows the deformation 

in the soft substrate. The value of this compressive stress, as a fraction of the 

compressive stress that would be observed in an unpatented system, is plotted 

for each lattice in Figure 4.3g, as a function of distance from the centre of the 

central hole, along the line shown in the bottom figure of Figure 4.3e. For 

centered square lattice patterned surface, the compressive stress is severely 

enhanced at the edge of hole, particularly in lattices with small holes, 

explaining why wrinkling occurs earlier in patterned systems. To predict 

wrinkling patterns, the standard result for wrinkling on a substrate was 

applied, which is that wrinkling occurs if 𝜎𝜎𝑐𝑐 > 1
4 �3 𝐸𝐸�𝑠𝑠

𝐸𝐸�𝑓𝑓
�
2/3

𝐸𝐸�𝑓𝑓, where  𝐸𝐸�𝑓𝑓  and  𝐸𝐸�𝑠𝑠 

refer to the plane-strain elastic modulus for the oxidized stiff layer and PDMS 

substrate, respectively, which are related to the Young’s moduli, 𝐸𝐸 , by 𝐸𝐸� =

𝐸𝐸/(1 − 𝜈𝜈2) , where ν  is the Poisson ratio. Taking the physically reasonable 

modulus ratio 𝐸𝐸�𝑓𝑓/𝐸𝐸�𝑠𝑠 =100, plotted in Figure 4.3f, how the predicted wrinkle 

regions grow as the global compression is increased. In accordance with 

experiment, that moving from large holes to small holes does indeed change 

the wrinkling pattern from wavy lines, to straight lines, to stars, and that the 
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patterns with smaller holes wrinkle at smaller global compressions, because 

the compressive stress is more concentrated around the hole. 

4.2.3 Surface Modulus Measurement with AFM 

 

 

Figure 4.5. The modulus mismatch as function of plasma treating duration. 

 

After the plasma treatment for 10 seconds, the surface modulus 

measurement (Figure 4.5) obtained by AFM indentation suggests the plane-

strain elastic modulus mismatch between the film and the substrate is about 

𝐸𝐸�𝑓𝑓/𝐸𝐸�𝑠𝑠 ≈ 25. Accordingly, the critical wrinkling strain for wrinkling from linear 

stability analysis [98],[121],[219],[220] is 𝜀𝜀𝑤𝑤 =  1
4 �3 𝐸𝐸�𝑠𝑠
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 from the critical strain for 

wrinkle formation would be expected at a small strain of εW = 0.061, which 

agrees well with in-lab result of ε ≈ 0.068±0.008 for a non-patterned surface 

(Figure 4.6). However, it does not agree with the case of a lattice patterned 
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surface, in which wrinkle patterns are already present at ε = 0.06, indicating 

that wrinkling occurs at a lower threshold strain as a result of strain energy 

localization near the lattice holes. Furthermore, according to the report from 

Kim and co-workers [62], as compression is increased in system with 𝐸𝐸�𝑓𝑓/𝐸𝐸�𝑠𝑠 ≈ 25, 

wrinkles are expected to period double then evolve into crease. It is expected 

that patterning to also reduce the thresholds for these further bifurcations, but 

they cannot be effectively identified under reflected optical microscopy. 

 

Figure 4.6. The onset of wrinkle at a critical strain of 0.0672 for non-patterned 

PDMS surface under plasma treatment for 10 seconds. 

 

4.2.4 Analysis of Surface Morphology Development 

To unveil more details, AFM was used to track the morphology changes 

as the compressive strain was gradually increased, focusing on the region of 

stress concentration “above” a hole as indicated by the dashed box in Figure 
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4.7a. For the centered square patterned surface with aspect ratio of D =80 µm, 

Φ = 40 µm, h =43 µm, the onset of wrinkling starts at a small compressive 

strain of ε = 0.02 (Figure 4.7b-c) and proceeds to cover the region by ε = 0.11. 

The initial wavelength (λ0) is predicted to be λ0 =  (2𝜋𝜋ℎf)(𝐸𝐸�𝑓𝑓/3𝐸𝐸�𝑠𝑠  )1/3, or 700 

nm for an oxidized layer thickness of hf = 55 nm (measured by surface 

roughness profiler - BRUKER DektakXT), which is in reasonable agreement 

with the measured value of ≈ 850 nm. The progressive wrinkling over this 

range of strain presumably reflects the influence of the energy boundaries 

resulted from the local curvature.  It to be noticed that the creases start to 

nucleate at ε = 0.11, and start to grow at ε = 0.15, then fully cover the region at 

ε = 0.25. A hierarchical surface is formed at ε = 0.55, where the periodic surface 

can be seen under the reflective optical microscopy in Figure 4.7d.  
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Figure 4.7. Characterization of the instabilities on the single hole and 

their evolutions under the uniaxial compression. (a) Top view observations 

and (b) AFM profiling of the selected area in (a) for surface morphology changes 

under the uniaxial compression for a unit area (centered square lattice array) with in-

plane aspect ratio of D =80 µm, Φ = 40 µm, h =43 µm. (c) The surface morphology 

development is plotted with the dependency on compression strain, the surface starts 

to initialize localized wrinkles on ε = 0.02, then develop into periodic doubling at ε = 

0.15, the surface start to form creases locally on ε = 0.2, where the sharp self-contacts 

within the PDMS (green dash lines) are detected by LCSM, the creasing develops 
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globally at last. (d) The reflective image shows a surface hierarchy formed when the 

hole reached the ‘off’ state at a compression deformation of 0.55. Laser confocal 

scanning results in (e) the in-plane distribution of creases and (f) the out of plane 

morphology developed into the PDMS substrate for the selected area in (d), the arrows 

show the high intensity fluorescence signal due to the closure of neighbouring holes. 

The scale bar for the inset figure in (f) is 3 µm. The other scale bars are 40 µm.   

There is clearly a curvature guided formation of wrinkle at ε = 0.02 with 

non-uniform amplitude distribution which reveals the state of energy 

concentration, where the hole edge perpendicular to the compression axis 

scores the highest (Figure 4.7c). The period doubling pattern can be observed 

at 𝜀𝜀 =  0.15 with every second wrinkle grows in amplitude while its neighbours 

shrink. The strain value for this bifurcation is also smaller than the reported 

strain value ≈ 0.17 [64]. From 𝜀𝜀 = 0.15, further compression does not noticeably 

influence the in-plane morphology, since the AFM result cannot reflect the out 

of plane deformation towards the substrate, i.e. self-contact area of the crease. 

Therefore, the cross-sectional scanning data of the film was added from laser-

scanning confocal fluorescence microscopy (LSCM, Figure 4.7e) to reveal the 

out of plane morphological development for the selected area (Figure 4.7f). 

At strain of 𝜀𝜀 = 0.15 (Figure 4.7c), the LCSM data shows a shallow crease 

depth (self-contact area) within 100 nm, where it is considered as the onset of 

the crease. Similar with the wrinkling, this second bifurcation is found to be 

highly sensitive to the presence of local planar curvature (Figure 4.8). At 

higher compressive strains, the crease depth develops under higher 

compressive strains and extends to all scanned areas. 

 



51 
 

 

Figure 4.8. The LCSM scanning to review the initialising of the creasing on the 

targeted area for the centered square lattice patterned surface with aspect ratio of 

Φ=20µm, h=43µm, D/Φ =4. 

 

4.2.5 Lattice Pattern Effects on Instabilities Development 

The lattice pattern effects on post wrinkling bifurcations occurring at a 

higher strain level was considered. It should be noted that the crease nucleates 

but it does not grow across the region adjoining the lattice holes (Figure 4.10) 

for D/Φ ≤ 1. It is expected this may arise due to the viscoelastic nature of the 

substrate, and/or the influence of large curvature. A brief classification of the 

transitions based on the number of initiated crease is summarized in Figure 

4.9a-c for the lattice patterned surface with aspect ratio D/Φ > 1. There are 

two transition types (single crease and multiple creases) for the stripe pattern, 

and the formation of creasing is revealed in Figure 4.9d as the white arrows 

indicated, where the sample was tilted to enable scanning on the wall of hole. 

The “star” type wrinkle pattern seems more likely to generate a single crease 

when being further compressed.  
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Figure 4.9. The evolution of surface morphology at higher compression, 

from wrinkling to creasing. Schematic illustrations of the transition from 

wrinkling to creasing for different harmonic patterns, (a) straight belt, (b) star shape, 

(c) curved ribbon. (d) SEM image reveals the transition moment from wrinkling to 

creasing with the captured initialization of creases. The normalized amplitudes of 

surface features A/λ0 reveal two post-wrinkling bifurcations with increasing strain for 

(e) homogeneous PDMS surface and (f) patterned PDMS surface (centered lattice) 

with in-plane aspect ratio of D =80 µm, Φ = 40 µm, h =43 µm. Normalised amplitudes 

change along with two bifurcations and represented with first order (○), second 
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order(△), and third order (▽). (g) The critical strains for initiating wrinkle (○), 

periodic doubling (△), creasing(▽) for the centered square array with different 

diameter. (h) The compression (△) and recovery (○) curves show the hysteresis and 

non-linearity on the deformation of single hole under uniaxial compression.  

Next, the normalized wrinkle amplitude (A/λ0, where λ0 indicates the 

initial amplitude and A represents the measured amplitude) was plotted as a 

function of the nominal applied strain on a non-patterned surface (Figure 

4.9e) and a Bravais lattice patterned surface (Figure 4.9f, D =80 µm, Φ = 40 

µm, h =43 µm). In each case, beyond wrinkling onset, two additional 

instabilities/bifurcations are seen, corresponding to period doubling and then 

crease formation. However, both the onset of wrinkling and the further 

bifurcations occur at considerably lower global strains in the patterned system: 

the critical wrinkle strain for the patterned surface of ≈ 0.02 is less than one 

third of that in flat surface (ε ≈ 0.068), the critical strain for periodic doubling 

in a patterned surface is ≈ 0.06, whereas it is ≈ 0.18 in flat surface, and for the 

final bifurcation, the wrinkle-crease transition, the critical strain needed is ≈ 

0.08 in patterned surface, which is less than half of that for flat surface (ε ≈ 

0.22). This threshold reduction effect by considering the stress concentration 

in the analytic calculations for systems with D/Φ=2, (seen in Figure 4.3g), 

which exhibit a two-fold stress concentration at the edge of the hole relative to 

the non-patterned system, and hence predicts two-fold reduction in the 

various thresholds. The discrepancy between this calculation and the observed 

three-fold reduction is probably due to the analytic plane-strain 
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approximation not capturing the full 3-D structure of the actual deformation 

field. 

 

Figure 4.10. The deformation of patterned surface under high compression with 

different hole diameter. 

It is important to understand quantitatively how these instabilities 

develop in the presence of the curved boundary from the edge of lattice hole. 

Thus, the normalized strain (the ratio between critical strain and reference 

strain) was plotted for the onset of each instability as a function of the radius 

of lattice hole for D/Φ =2. As seen in Figure 4.9g, the critical strains are 

clearly separated in different ranges, while the planar curvature decided by the 
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radius of the holes influence the strains significantly. The overall strains are 

reduced as a result of the strain localization guided by the curved boundary, 

and it seems the strains for each instability likely to collapse, which agreed well 

with the reported value by Kim that the doubling bifurcations are likely to be 

mixed with creasing with the 𝐸𝐸�𝑓𝑓/𝐸𝐸�𝑠𝑠  value in the range of 14–47 [151],[169]. A key 

advantage of the elastic instability enabled technology is that, as an elastic 

process, it should yield a low degree of hysteresis. Then the hysteresis of the 

lattice patterned surface was investigated with labelling the lateral dimension 

change in the hole (Figure 4.9f), the results suggest a robust transformation, 

which indicates that the viscoelastic relaxation of the soft PDMS layer used 

here is less important.  

4.3 Summary 

In this chapter, an approach was presented to generate periodic planar 

wrinkle 2D pattern and controllable instability evolution towards a 

hierarchical surface by pre-placing Bravais lattice patterns on the surface as 

in-plane structural confinements. The bilayer system shows kinetic bi-

stabilities at certain well-defined strain values of initializing the wrinkles and 

further elastic bifurcations at the designated areas/locations which are closely 

related to the geometries of the confinements. The formation of lateral wrinkle 

patterns has been studied with the dependencies on the geometrical variables 

of in-plane confinements and in good agreement with the predictions from 

numerical analysis. At higher compression, a targeted formation of wrinkle-to-
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crease transition was revealed as result of the reorganization of surface strain 

field. This localized formation of surface instabilities is anticipated, and the 

demonstration of bi-stability over a substantial range of strains will open new 

opportunities for applications of elastic instabilities on responsive surfaces for 

future lab on chip device, by enabling delicate responses to mechanical inputs 

as selectively sensing or actuating structures.  
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Chapter 5  

Bi-axially Switching Droplet Shape by 

Initiating Localized Wrinkle Pattern 

Transformation upon Elastic Surface 

 

5.1 Introduction 

Surfaces with controllable wetting property have been seen of particular 

importance in downstream applications such as water harvesting [221],[222], self-

cleaning [223]–[225], surface coating [226],[227], adhesion [228]–[230] and microfluids 

devices[231]–[234]. One simple strategy to realize the controllability on surface 

wetting is to develop topographical surface structures [235],[236], thereby 

enabling a desired liquid/solid interaction [237]–[240]. Recent advances brought 

diverse approaches to create surface with specific wetting performance by 

using chemical treatment [241]–[243], delicate pattern designs [244]–[246], and 

functional materials [247],[248]. Notably, Quere and co-workers[235] reported the 

droplet shape manipulation on an elastic surface with soft pillars. Park et al. 

studied a structured shape memory polymer and revealed a mechanism to 

manipulate droplet with adjustable surface morphology [249]. 
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In addition to above exercises, researchers developed strategies to 

manipulate surface capillary by creating wrinkled surface [250]–[252], where 

sinusoidal wrinkle can be generated on the stiff surface by relieving the strain 

of pre-strained soft elastomeric foundation layer [103],[253],[254]. The periodicity, 

amplitude, and orientation of wrinkle pattern can be designed and the 

morphological transitions under mechanical stimuli will yield changes on the 

local liquid/solid interaction, even a reorganization of the capillary map over 

the surface [81],[255],[256]. Extensive studies have been performed to investigate 

the geometrical effects on surface energy barriers and the associated pinning 

effects on contact line.  Stafford [83] studied the wetting behavior upon a 

tunable single-period micro-wrinkled surfaces, as a result of  the differences in 

energetic barriers. Yang and co-workers [89] have investigated the influences of 

groove geometry on the anisotropic wetting and fluidic transport with a 

combining force balanced model. Feng et al [257] reported anisotropic wetting 

on hierarchical wrinkling surface that induced by elastic bilayers curvature and 

free energy change. Previous report indicated that to generate wrinkle-

cracking bi-axial morphology  spontaneously on the gold/shape memory 

polymer bilayer [258], could further explored to use this mechano-responsive 

morphology to initialise the anisotropic wetting state autonomously. However, 

all above studies focused on shaping droplet in one direction, understandings 

on shaping droplet bi-axially in a continuous, dynamic and reversible manner 

is yet to be explored. 



59 
 

In this work, a surface with switchable capillary landscape that 

constructed allows us to continuously and reversibly manipulate droplet shape 

to extreme stages in biaxial. By initiating and transforming localized wrinkle 

pattern under uniaxial mechanical stimuli, hierarchical surface structure can 

be driven to change and hence create a continuous transition of surface 

roughness at selected region, leading to an enhanced local pinning effect and 

a dynamical and reversible organization of capillary map. As a result, a 

dynamic and reversible shaping of droplet to extreme oval shape in biaxial can 

be achieved. The concept of reversible and robust shaping of droplet bi-axially 

with a configurable capillary map can lead to significant applications in soft 

robotics, oil-gas engineering, water treatment, healthcare, micro-fluidics, etc. 

5.2 Results and Discussion 

5.2.1 Droplet Shaping by Localized Wrinkle Pattern  

The structural elastic surface with centered square Bravais lattice 

pattern was prepared using the method in previous report [259]. The 

geometrical parameters for the centered square Bravais lattice hole, e.g. 

diameter (Ф), distance (d) and depth (h) are defined in Figure 5.1a. Oxygen 

plasma treatment was used to create a thin stiff layer on the patterned soft 

substrate (Figure 5.1b) prior to the compression. Upon subsequent release of 

the mounting layer from a pre-stretched length Li to a length L, the patterned 

PDMS player is under compression, which the strain can be calculated by εcomp 

= 1 - L/Li. The occurrence of morphology is observed under upright optical 
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microscopy at εcomp = 0.21 (Figure 5.1b), where wrinkling is only developed 

on the surfaces after plasma treatment. Apart from the one-dimensional (1D) 

wrinkles for flat surface, regionally distributed two-dimensional (2D) wrinkles 

are obtained for elastic surface patterned with centered square Bravais lattice 

holes.  

 
 

Figure 5.1. Structural surface design and realization of droplet shaping by 

initiating the elastic instability morphologies. a) Optical microscopy image of 

the centre square lattice hole on PDMS surface. b) Observations of surface 

morphologies at a compressive strain of 0.21 on plane surface after oxygen plasma 

treatment (left), patterned surface without oxygen plasma treatment (middle) and 

patterned surface with oxygen plasma treatment (right), c) observation of droplet 

shape at a compressive strain of 0.5 for the corresponding surfaces in b).  d) The 

illustrations of locally pinning effect on static contact angle, advancing contact angle 

and receding contact angle on instability surface. e) Schematic and illustration of 
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shaping droplet under compression and i) stretching on patterned surface (D = 160 

μm, Φ = 80 μm, h = 40 μm. The scale bar is 1 mm.). The other scale bars are 100 μm. 

 

In demonstration, the droplet is shaped to extreme state on the 

mechano-responsive surface (Figure 5.1c). After depositing a droplet on the 

pre-strained elastic surface, a compressive strain was subsequently applied to 

the surface. A typical anisotropic wetting was achieved on wrinkled surfaces 

(plane and patterned with lattice holes) with water droplet spreading along 

grooved patterns as previously reported by other researchers [260],[261]. The 

directions perpendicular (Ʇ) and parallel (‖) to the wrinkle/groove direction 

are defined to describe surface topography and droplet shape (wetting 

anisotropy). As a dynamic wetting process (Figure 5.1d), the contact angle 

perpendicular to the grooves is much larger because of the pinning of the three-

phase contact line, also known as the contact angle hysteresis caused by the 

advancing angle (𝜃𝜃𝑐𝑐) and receding angle (𝜃𝜃𝑐𝑐).  

The concepts of controlling surface anisotropy under uniaxial 

mechanical stimuli are exercised with a single loop of compression (Figure 

5.1e) and stretching (Figure 5.1f). Under compression, surface instabilities 

occurred and developed to form energy barrier to stop liquid from propagating 

in perpendicular (Ʇ) direction (inset Figure 5.1e, ε = 0.50). Meanwhile, the 

shape of droplet extends along the parallel (‖) direction due to the absence of 

such barrier, allowing the droplet to infuse surface groove (inset Figure 5.1e, 

ε = 0.50). Consequently, an oval shape of droplet is formed with an aspect ratio 

(𝐷𝐷‖ 𝐷𝐷Ʇ⁄ ) of 1.87, where 𝐷𝐷‖ and 𝐷𝐷Ʇrepresents the diameter of droplet in pararral 
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direction and perpendicular direction, respectively. The programable 

stretching of droplet is demonstrated by depositing droplet on the fully 

compressed substrate, then gradually releasing the compressive strain till the 

hole-open (initial) state. The stretching strain εstr is calculated by εstr =1 − 𝐿𝐿 𝐿𝐿𝑝𝑝′⁄ , 

where 𝐿𝐿𝑝𝑝′  is the length for initial state. In Figure 5.1f, the droplet reaches 

𝐷𝐷‖ 𝐷𝐷Ʇ⁄  ~ 0.45, due to the pinning of contact line pinned by local roughness.   

5.2.2 Anisotropic Wetting on Developed Topographical Surface   

To reveal the detailed surface topographical changes, AFM was used to 

trace the development of surface morphology at the cross area between voids 

(the dash box in Figure 5.2a). For patterned surface with aspect ratio d/Ф = 

4 (Figure 5.2b, △), the measured roughness (RꞱ) is ≈ 50 nm at εcomp = 0.13, 

follow by an increase to ≈ 170 mm at εcomp = 0.21, then a gentle decrease till ε 

= 0.46. The amplitude is predicted to be 𝐴𝐴 = ℎ [𝜀𝜀 𝜀𝜀𝑐𝑐⁄ − 1]1/2, or 58.49 nm at 

εcomp = 0.13 for an oxidized layer thickness of  55 nm at cross area, which is in 

reasonable agreement with the measured value of ≈ 50 nm [259]. Interestingly, 

an in-plane directional shifting of the nucleated wrinkle/grooves was observed, 

where the shifting angle (ϕ‖, Figure 5.2a)  is defined between the groove and 

the horizontal compressive stress direction. The wrinkle pattern nucleates with 

a higher angle degree ( ≈ 85°) at the beginning (Figure 5.2c), then reduced to 

≈ 40° for the surface with lattice aspect ratio of 1 (Figure 5.2c, ◯). It should 

be noted that the in-plane angle change dependents on lattice aspect ratio, the 

angle barely changed at an aspect ratio of 4 (Figure 5.2c, ▽), which means 
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the re-orientation of wrinkle/groove pattern is significantly affected by the 

distribution of lattice hole. The combining effects from increment on RꞱ and 

shifting of ϕ‖ facilitate the re-organization of the in-plane capillary map, thus 

lead to an enhanced localized pinning effect to restrain contact line movements.  

 
Figure 5.2. Characterization of the mechano-responsive morphology 

transformation and its induced anisotropic wetting. a) Observation and AFM 

profiles of morphology changes for lattice patterned surface (d = 80 μm, Φ = 40 μm, 

h = 20 μm) under the compression. b) Roughness (RꞱ), c) directional angle (ϕ‖), static 

CA under d) compression and e) stretching deformation. f) Contact angle hysteresis 

for the complex surface in a) at different compressive strains. Observations of contact 

line pinning by g) wrinkle instability and h) lattice patterned hole. Laser scanning 
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confocal records for i) the pinning of contact line by single hole, and j) the residual 

liquid in the hole after the withdraw of contact line. 

The effect of morphology transition on surface anisotropic wetting was 

assessed by measuring the contact angle (CA) statically and dynamically. The 

static CA measurement was performed by depositing droplets on the deformed 

surface at each strain, where the CAs for both directions stably kept around 

120° (Figure 5.3). For dynamical measurement, the contact angle change was 

traced for a single droplet on the surface undergo a continuous loop of 

compression/stretching with a strain rate of 0.004-1. For lattice patterned 

surface without wrinkle, the perpendicular static CA (𝜃𝜃⊥, ☐) shows a value 

around 120° with a slow increasing trend (Figure 5.2d) under compression, 

similar to the static results. However, the value of parallel static CA (𝜃𝜃∥, ◯) 

shows a decline trend due to the Poisson’s ratio effect induced physical 

stretching in the parallel direction. For lattice patterned surface with wrinkle, 

the contact angle value has been reduced from 120° to 100° due to the plasma 

treatment. The amplitude of the wrinkles and thus the curvature of the 

topography lead to a higher deformation of a circularly shaped liquid droplet 

to oval shape to minimize its surface energy. At stretching mode, the 

perpendicular static CA performed a reducing trend (Figure 5.2e) while the 

parallel static CA keep at constant angle degree of ≈ 120°, when the surface 

transited from hole-off to hole-open state. For both compression and 

stretching processes, a large bifurcation of the CA values between the 𝜃𝜃⊥ and 

𝜃𝜃∥ is obtained for lattice patterned surface with wrinkles, indicating a better 

droplet shaping effect.  
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Figure 5.3 Static contact angle and dynamic contact angle measurement 

on deformed surface at each strain a) Perpendicular CA b) Parallel CA 

The contact angle hysteresis results were summarized on lattice 

patterned surface with wrinkles (Figure 5.2f), where the results show a good 

maintenance of perpendicular advancing angle with a change less than 6° and 

a significant drop on parallel advancing angle with a reduction of 26° between 

initial state (εcomp = 0) and a fully compressed state (εcomp = 0.5). For the lattice 

patterned surface without wrinkles, the changes on advancing angle on both 

axes are less than 5°, representing a low efficiency on droplet shaping. An 

increasing on perpendicular advancing angle up to 15° is also observed due to 

the significant development of wrinkles and a decree on parallel advancing 

angle of 8° as a result of the extension of droplet along the wrinkle direction 

for plane wrinkled surface.  

To further understand how the surface morphology influences droplet 

sharping effect, an mismatch of in-plane contact angle (∆𝜃𝜃) is defined by ∆𝜃𝜃 =

𝜃𝜃⊥ −  𝜃𝜃∥, where 𝜃𝜃⊥ and 𝜃𝜃∥ are the dynamic contact angle hysterisis (advancing 
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angle or receding angle) from two axies. It is expected that the in-plane 

advancing angle mismatch (∆𝜃𝜃𝑐𝑐) and the in-plane receding angle mismatch 

(∆𝜃𝜃𝑐𝑐) will be critical to determine the droplet aspect ratio under compression 

and stretching, respectively. For the lattice patterned surface with wrinkles 

(Figure 5.2f), a ∆𝜃𝜃𝑐𝑐𝑎𝑎𝑣𝑣 of less than 3° for initial state (εcomp = 0) was found, 

then increase to 23 ± 6° at max wrinkled roughness state (εcomp = 0.21), finally 

reach to  27 ± 3°  at fully compressed (εcomp = 0.5). However, the ∆𝜃𝜃𝑐𝑐  for 

wrinkled flat surface reaches a value of 21 ± 4° when the substrate was fully 

compressed. Interestingly, an ignorable ∆𝜃𝜃𝑐𝑐𝑎𝑎𝑣𝑣 vaule of 7 ± 3° is shown for the 

lattice patterned surface without wrinkles (Figure 5.4) at εcomp = 0.5. This in-

plane advancing angle difference clearly prove that a preferred surface energy 

barrier is generated on the elastic surface with lattice patterns and regional 

wrinkles, which help to shape the droplet to extreme state under compression.  

 

Figure 5.4 Contact angle hysteresis for the complex no wrinkled surface at different 

compressive strains.  
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Since the droplet stretching is examined by depositing droplet on the 

fully compressed surface, then reversibly restore the substrate to pre-strain 

state, the in-plane receding angle mismatch ( ∆𝜃𝜃𝑐𝑐 ) in compression loop 

therefore can be also used to unveil the effect of surface topology on the droplet 

stretching in a reversal order. It is found  that the ∆𝜃𝜃𝑐𝑐𝑒𝑒𝑐𝑐  increases from 0± 5° at 

starting point of stretching (εcomp = 0.5), then jump to 18 ± 4°  at max wrinkled 

roughness state (εcomp = 0.21) and reduce to 4 ± 3°  when the substrate 

recovered at initial pre-strain state (εcomp = 0), for the lattice patterned surface 

with wrinkles, whereas the  ∆𝜃𝜃𝑐𝑐 changes less than 8° during the stretching for 

both plane wrinkled surface and the lattice patterned surface without wrinkles. 

The initial contact between droplet and surface is Cassie-Baxter[43] state 

where the hole was not filled with liquid (Figure 5.5),  the hypothesis is that 

the surface morphological development plays a critical role in changing 

liquid/solid interaction by translating the contact mode from Cassie/Baxter 

model to Wenzel model. Under compression, the localised wrinkles around the 

hole (Figure 5.2g) produce a strong pining effect on the perpendicular 

direction by generating the roughness and directional angle shifting. During 

the stretching, a combining effect between the wrinkle and lattice pattern 

influence the droplet shape to offer a strong pinning state (Figure 5.2h-i), 

where we even can see the contact line is pined at the edge of hole. Further 

information from Laser confocal scanning results shows there is even a 

residual liquid in the hole after the contact line move away from the region 
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(LSCM, Figure 5.2i-j), as the hole become more favourable for liquid after 

plasma treatment.  

 

Figure 5.5: Optical image of droplet on pattern surface at static state. a) 

Droplet is in Cassis-Baxter state as the liquid not filling the patterned hole which 

proved by the white reflected beam. b) Droplet is in Wenzel state as the liquid filling 

the patterned hole.  

 

5.2.3 Droplet Shape Control on Different Surface Pattern  

The droplet shaping efficiency was evaluated as a function of the 

geometrical factor of lattice pattern (hole size), by plotting the droplet 

anisotropy value (𝐷𝐷‖ 𝐷𝐷Ʇ⁄ ) under compression (positive strain) and stretching 

(negative strain) (Figure 5.6a). Under compression, wetting anisotropy on 

the plane surface (non-patterned and no wrinkles) gives a value of 𝐷𝐷‖ 𝐷𝐷Ʇ⁄  = 1.3 

for the droplet, whereas the plane surface with wrinkles achieve an improved 

performance with  𝐷𝐷‖ 𝐷𝐷Ʇ⁄  = 1.6, due to the increased hydrophilicity (more 

hydroxyl group) and  surface wrinkles (stiffen thin top layer) induced by 

plasma treatment. The quantitative results indicate that the lattice patterned 
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surfaces with wrinkles reach significant increase on wet anisotropy with the 

value of 𝐷𝐷‖ 𝐷𝐷Ʇ⁄  high than 1.8, it also show a preference on the pattern 

specification as the one with hole size of 60 μm  achieves the highest value of 

𝐷𝐷‖ 𝐷𝐷Ʇ⁄  = 2.4.  Under stretching, all lattice patterned surfaces (wrinkled and 

non-wrinkled) achieve low 𝐷𝐷‖ 𝐷𝐷Ʇ⁄  values of around 0.45, indicating a better 

shaping effect than plane surface (non-patterned and no wrinkles) which has 

a 𝐷𝐷‖ 𝐷𝐷Ʇ⁄   of 0.55. 

 

Figure 5.6 Evaluation of droplet shaping efficiency and reproducibility. a) 

The impact of surface geometrical factors on droplet shaping under compression and 

stretching. b) The effect of deforming speed on droplet shaping under compression 

and stretching. c) the hysteresis assessment for the biaxial droplet shaping. d) The 
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cyclic droplet shaping result for lattice patterned surface (d = 80 μm, Φ = 40 μm, h = 

20 μm). 

The key advantage of using this elastic process to switch anisotropic 

wetting, is the high degree of repeatability. The importance of 

loading/unloading rate were further characterized on the different surfaces 

(Figure 5.6b). With increasing average strain rates over the range of 0.004 – 

0.04 s−1, there is no obvious difference for the surface with same lattice pattern 

at compression and stretching. The biaxial shaping of droplet starts by 

depositing the droplet on the substrate with partially relieving the pre-strain 

of substrate to 0.2 (Figure 5.6c). From the multi-cycle biaxial shaping result 

in Figure 5.6c, a hysteresis of less than 0.1 is found between the first 

compression and the second cycle. From the second cycle, the hysteresis 

become ignorable. Good repeatability in cyclic testing the robust bi-axial 

droplet shaping upon the structural elastic surface is obtained (Figure 5.6d), 

with high 𝐷𝐷‖ 𝐷𝐷Ʇ⁄  values between 1.65 to 1.7 and low 𝐷𝐷‖ 𝐷𝐷Ʇ⁄  values from 0.65 to 

0.77 over a number of cycles. A small increase was noticed on both values, this 

may arise due to the deformation relaxation of substrate, the viscoelastic 

nature of the interaction between the substrate and droplet, and/or the 

influence of surface conditions (hydroxyl groups), also the surface tension, but 

a detailed investigation of this point is defered to future studies.  
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5.3 Summary 

In this chapter, bi-axial droplet shaping was demonstrated that can 

control the anisotropy by using the multi-level hierarchical structures based 

on wrinkle/crease in the presence of in-plane structural confinement. 

Compression and stretching was applied to the plasma-treated PDMS bi-layer 

with lattice hole pattern to generate localized wrinkle/creases bifurcation in 

the direction perpendicular to the compressive stress direction. The shape of 

droplet liquid can be bi-axially manipulated on the patterned surface by simply 

tuning the roughness of surface and orientation of the wrinkle/crease. The 

surface roughness has been studied with the dependencies on the geometrical 

layout of lattice hole, corresponding with the measurement of contact angle 

and contact angle hysteresis. Moreover, the combined effects of the surface 

instability, lattice hole confinement and compressive/stretching deformation 

enabled control of anisotropy of water droplets in a single platform. It is 

promised this concept of mechanical-responsive bi-axial droplet wetting will 

open new opportunities for various anisotropic wetting such as microfluidic, 

self-clean and propose a new way to develop dynamic bi-axial wetting surface.  
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Chapter 6  

Theoretical Investigation on 

Configuring the Elastic Instability in 

Soft Surface 

 

6.1 Introduction 

The theoretical approach in this chapter is carried out by finite element 

analysis (FEA) using software ANSYS Workbench. FEA is a computerized 

method for predicting how a product reacts to real-world physical effects, such 

as forces, vibrations, heat and fluid flow. An object is broken down into a large 

number of finite elements and the behaviour of each element is predicted by 

equilibrium equations with boundary conditions, then the individuals are 

summed up to predict the behaviour of the actual object with specific boundary 

conditions.  
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A flow chart for carrying out the FEA is presented below.  

 

Figure 6.1 Flow chart for Finite Element Analysis 

 

In this case, the object is Polydimethylsiloxane (PDMS) which is a 

silicone elastomer that behave highly non-linearly. It has properties including 

thermal stability, high gas permeability, low surface energy, and it is simple to 

manipulate which makes it is attractive for developing microfluidics and 

microstructure components [262]–[267]. The system consists of a thin PDMS film 

with bi-layer structure where the top layer was treated with plasma to achieve 

increased modulus, while the bottom layer was untreated and kept the original 

property of PDMS. The concept of non-linearity in this case refers to the non-

linear properties of the PDMS material and non-linear geometry variation due 
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to large deformation in thin film structure. There is a clear need to utilise the 

viscoelasticity of PDMS material on structural changes with the applied force 

that justify potential applications and robust designs [268], where the hyper-

elasticity of PDMS is able to demonstrate non-linear properties of elasticity.  

Hyper-elastic material is the model used here to simulate the soft 

material. There are several hyper-elastic models[269] based on empirical values 

to describe it.  

• The neo-Hookean model: which uses the material’s characteristics to 

describe the PDMS behaviour. It is adapted to low deformations. 

• The Mooney Rilvin model: which is more precise than the Neo-Hookean 

model for low deformations. Calculation methods are based on 

empirical values, obtained by realizing experiences.  

• Arruda Boyce model: which uses the microscopic and mechanical 

properties of the material. It is precise and adapted to low and high 

deformations. The Gent model is a simplified version of the Arruda 

Boyce model 

• The Odgen model: which use empirical values and it has the most 

accurate property of hyper-elastic . Like the Moonley Rilvin model, 

calculation methods area based on empirical values 

• Yeoh model: used for biological tissues. 



75 
 

All of these models are able to describe the behaviour of PDMS. Here, 

the neo-Hookean model was used because only low deformation is studied, 

and it allows for shorter calculation time. The model was proposed in 1948 by 

Ronald Rivlin [270]. The Neo-Hookean model is used to translate the non-linear 

behaviour of a hyper-elastic material on large deformation which similar to the 

Hooke's law. Hyper-elastic material is initially linear and then transformed to 

be non-linear. Assume the material follows neo-Hookean representation, 

which has the strain energy expression of：  

W = 𝐶𝐶1(𝐼𝐼1� − 3),                                                (6.1) 

Where C₁ is the material parameter which contain shear modulus of material. 

𝐼𝐼1�  is the first deviatoric strain invariant and W is the strain energy density 

This chapter begins with a single block linear analysis to find the proper 

settings of block model and best software performance for comparison with 

non-linear analysis. Non-linear setting of block model is designed to match the 

experimental result. At later stage, the analysis is simplified from single block 

into thin film to reduce the convergence time.  
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6.2 Single Block Linear and Non-linear Simulation  

6.2.1 Linear Specification 

To understand the chemical and physical transition phenomenon on 

surface of complex systems of soft matters, the concept starts from a simple 

simulation of hole deformation on a rubber-like material under a compression 

pressure. This study is realise in microscopic scale and aims to understand how 

the hole becomes distorted according to its diameter and depth. A specific 

model was used to simulate the process at the beginning with standard setup.  

This model is in a basic cuboid shape with a square base and a hole with two 

variable parameters: diameter (Φ) and depth (H). Seven diameters (160μm, 

120μm, 80μm, 50μm, 30μm, 20μm, 10μm) were used, along with different 

depths (38μm, 27μm, 21μm, 17μm, 14μm) for each diameter.   

 

Figure 6.2 Specific dimensions of the single block model. 
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Hooke’s law expresses a relation between stress (σ) and strain (𝜀𝜀) which 

fundamentally describes the behaviour of linear elastic material, represented 

as: 

σ = 𝐸𝐸𝜀𝜀,                                                         (6.2) 

where ‘E’ is the material Young’s modulus. However, non-linear elastic 

material has different behaviours in loading and unloading of the stress and 

strain relation.  Therefore, the Hooke’s law which describes the stress on a solid 

is proportional to the strain provided the stress is less than elastic limit which 

is unavailable in non-linear elastic material. Rubber material was used because 

of its hyper-elasticity and polymerizability [271]. It can withstand large strains 

(more than 500%) and this material is more or less incompressible, which 

means it has a Poisson ratio close to 0.5.  The rubber material applied in this 

section has a density of approximately 990 kg/m3, estimated Poisson's ratio (𝜈𝜈) 

of 0.49 (nearly incompressible) and Young's modulus, E, of 670kPa [272].  

The geometry of the model was built in SolidWork with designed 

dimensions. Table 6.1 summaries the desired elements mesh sizes and hole 

diameters. Diameter/Elements Size ratio were kept constant (6666.667) for 

simulation accuracy. A refinement of the elements near the edge of hole was 

applied to increase the accuracy in this area.  
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Table 6.1 Mesh element size of block with different diameters of hole    

Diameter 

(μm) 
160 120 80 50 30 20 10 

Element Size 

(mm) 
0.024 0.018 0.012 0.0075 0.0045 0.003 0.0015 

        

A frictionless support (Figure 6.3a) was applied it permits movement 

in X-axis and Y-axis, rather than the fixed support (Figure 6.3b).  

 

Figure 6.3 Graphic pictures showing the pressure responding of the model under a) 

frictionless support, and b) fixed support. 

A compression pressure was applied on the two opposite sides of the 

block. To be able to compare the results, the same pressure value was applied 

for all parameter regimes. Total deformation was set as the ‘solution’ for 

diameter ratio calculation.  
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Figure 6.4 Illustration of compression pressure on block model (Red arrows indicate 

the applied pressure on sides of the block). 

 

6.2.2 Results – Linear Setting 

The deformation along the X axis, ΔΦX, and along the Y axis, ΔΦY were 

recorded for different strain values. A constant interval strain of 0.3 was 

applied. 

 

Figure 6.5 Illustration of diameter deformation on block model 

The ratio of ΦX/ΦY was recorded along with compression strain. Results 

was plotted together for seven different diameters. As shown in Figure 6.6a, 

the diameter has a significant impact on the deformation of the block. For all 

hole diameters, the ratio of ΦX/ΦY decrease linearly with compression strain. 
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The smaller the diameter, the smaller the strain is needed for closing the hole. 

On the other hand, larger strains are required to switch off the large diameter 

holes. Only the case wherein Φ = 30 μm was simulated because it was found 

that the hole depth does not affect the deformation ratio (Figure 6.6b). All 

curves for five different hole depths collapsed onto each other. However, all 

these results were generated with linear setting which is based on the 

theoretical property, which could not reflect reality.  

  

Figure 6.6 a) The development of diameter ratio with increasing strain for different 

hole diameters. b) The development of diameter ratio with increaing strain for 

different hole depths. 

 

6.2.3 Non-linear Specification 

As it is said above, to reach a maximal approach of the reality the neo-

Hookean model was applied. For a compressible neo-Hookean material, the 

strain energy density is defined by [193]: 
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W = 𝐶𝐶1(𝐼𝐼1� − 3) + 𝐷𝐷1(𝐽𝐽 − 1)2,                                         (6.3) 

where C₁ is the material constants, 𝐼𝐼1�  is the first deviatoric strain invariant, D1 

is the incompressibility parameter and W is strain energy density. 

By integrating the neo-Hookean model it is expected to see 

perturbations on the surface. In fact, when rubber is distorted, a modification 

of the surface finishing can be observed, hence appearance of the waves and 

cracks. Two parameters, the initial shear modulus μ and the incompressibility 

parameter D1, need to be determined in order to apply neo-Hookean model. 

Shear modulus is the modulus of rigidity, it is the coefficient of elasticity for a 

shearing or torsion force. Initial shear modulus is defined by: 

𝜇𝜇𝑜𝑜 = 𝐸𝐸
2(1+𝑣𝑣)

,                                                        (6.4) 

where E is Young’s modulus of the material and 𝑣𝑣 is Poisson’s ratio, hence:  

𝜇𝜇𝑜𝑜 = 670000
2(1+0.49)

 = 224830 Pa                                        (6.5) 

Incompressibility parameter D1 is defined as: 

𝐷𝐷1 = 2
𝐾𝐾𝑜𝑜

 ,                                                    (6.6) 

where Ko is the initial bulk modulus.   
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Relative compressibility of a material can be assessed by the ratio of its 

initial bulk modulus, Ko, to its initial shear modulus, μo. Table below provides 

the representative values.  

Table 6.2 Representative value between initial bulk modulus and initial shear 

modulus [273]. 

 

Hence the initial bulk modulus is calculated at Poisson’s ratio of 0.49: 

𝐾𝐾𝑜𝑜 = μ𝑜𝑜 × 50 = 11241500 𝑃𝑃𝑃𝑃,                                (6.7) 

and the incompressibility parameter D1 is: 

𝐷𝐷1 = 2
𝐾𝐾

= 2
11241500

= 177 × 10−9 ,                            (6.8) 

The same geometry model, mesh setting, and boundary condition were 

applied to new material. However, the solver was unable to converge the 

solution for previous boundary setting, therefore more frictionless supports 

were inserted. The pressure load was replaced by a displacement as it acts like 
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pressure on the model and the hole deformation will be the same with both 

loads.  

Unfortunately, the analysis based on this Neo-Hookean model was 

extremely time consuming. At the end, the simulation failed to converge. At 

this point, another approach was generated to reduce the simulation process, 

by decreasing the elements. Instead of using a whole block of 3D model, a thin 

film geometry was generated to help reduce the analysis time.  

6.3 Thin Film Non-linear Simulation 

6.3.1 Non-linear Specification 

 
Figure 6.7 Geometry model of the thin film (20×4×0.1 mm). 

A film was created with dimensions of 20 mm × 4 mm × 0.1 mm 

(Figure 6.7). Properties of PDMS were obtained from an in-lab stress-strain 

tensile test and were inserted into ANSYS. 
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For each strain-stress data point, Young’s modulus was calculated by: 

σ = 𝐸𝐸𝜀𝜀,                                                      (6.9) 

then an averaged value of Young’s modulus was calculated: 299600 Pa. The 

same Poisson’s ratio of 0.49 of PDMS was applied. Initial shear modulus, μo, 

and incompressibility parameter, D1, was calculated again with the new 

Young’s modulus.  

𝜇𝜇𝑜𝑜 = 𝐸𝐸
2(1+𝑣𝑣)

= 100536 Pa,                                 (6.10) 

𝐷𝐷1 = 2
𝐾𝐾

= 397 × 10−9  ,                                  (6.11) 

 

Figure 6.8 Geometry model of the thin film (20×4×0.1 mm) with one side fixed and 

another side under an imposed displacement. 
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As shown in Figure 6.8, a displacement was applied on one side of the 

thin film (along the Y-axis) to represent the force applied on the film, while the 

other side was fixed. The input value of the displacement was 4.05 mm.  

Initially, a meshing size of 0.001 mm was used which exceeded the limitation 

of the solving process, a large meshing size of 0.1 mm was subsequently used. 

To speed up the solving process, the length of the model was reduced, however 

the width of the model was chosen as the primary parameter and thus fixed.  

6.3.2 Results 

Figure 6.9 First approach of neo-Hookean simulation with film width of 4 mm.  

The simulation result from the first approaching is shown below in 

Figure 6.9, continuous waves in Y-axis were observed in this 3D structure 

that represents the wrinkling phenomenon under compression force. However, 

the model shaping also went in X-axis that is not according with the real case 
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which is single direction wrinkle shape. This might be due to less-restrict 

boundary condition of the film. 

Increasing the width of the film, it was found that the wider film is the 

large the load is needed to maintain the same strain change. To keep the 

displacement of 4.05 mm and to seek reasonable structure development, the 

width of the film was reduced. After several attempts, a film width of 2 mm was 

selected because wrinkle phenomenon was perfectly observed on the structure 

at this film width (Figure 6.10).  

 

Figure 6.10 neo-Hookean simulation result with film width of 2 mm. 

In previous setting, only one-layer thin film was presented. However, 

wrinkle is formed when a critical compressive load is applied on a bi-layer 

system where top stiff thin film has larger modulus than the bottom soft 

substrate. To mimic the soft substrate, an elastic support boundary condition 
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under the thin film was applied to represent the lower modulus. The software 

requires an input of material stiffness (𝑘𝑘𝑜𝑜), it was calculated by: 

𝑘𝑘𝑜𝑜 = 𝐶𝐶𝐸𝐸
𝐿𝐿

= (0.2×10−6)×299600
0.02

= 2.996,                            (6.12) 

where A is the cross-sectional area, E is the Young’s modulus and L is the 

length of thin film. The modulus mismatch was set from 1 to 50 in order to find 

the influence of modulus.   

 

Figure 6.11 Neo-Hookean simulation result with higher modulus mismatch.  

An interesting phenomenon was found during these simulations. With 

large modulus mismatch, which means the elastic support have lower modulus, 

the simulation result shows a uniform and regular wave that represent the 

wrinkle phenomenon (Figure 6.11). However, if the substrate has higher 

modulus that give lower modulus mismatch in bi-layers system, the simulation 

result is not as uniform as large-modulus-mismatch one. As shown in Figure 
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6.12, the wrinkle phenomenon was generated, but a mild disorder was also 

created under lower modulus mismatch condition.  

 

Figure 6.12 neo-Hookean simulation result with lower modulus mismatch. 

The difference between these two cases suggests that the modulus 

mismatch has a significant influence on the thin film instability in a bi-layer 

system. To compare with experiment result, a modulus ratio of 100 was set in 

the elastic support boundary condition, and a new geometry model with holes 

on thin film was built to represent the experimental conditions. This 

simulation work is left for further act.   
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6.4 Summary 

In this chapter, several approaches were used to investigate the linearity 

of rubber-like material, non-linearity of the hyper-elastic material, PDMS with 

properties input from literature and in-lab test. A linearity of material was 

investigated first to catch a glimpse of pattern transformation with the 

dependencies on geometrical variable of hole diameter. The result suggests 

diameter size indeed has influence on the switch-off strain of hole, but the 

model design was extremely for non-linear analysis. For non-linearity, related 

parameters were calculated to satisfy the simulation requirement on neo-

Hookean model in ANSYS Workbench. With simple film design, it can create 

the periodic planar wrinkle to control instability evolution in certain 

conditions. The film model was significantly reducing the simulation process 

time. In addition, the bilayer system, where the film encountered an elastic 

support, shows the possibility to produce wrinkle phenomena with a further 

simplified approach. Although the specific controllable instability evolution 

towards a spatial lattice hole patterned surface has not yet come to a success 

with a 3D modelling design, the current result gives us a clearer 3D view on 

planar wrinkle over the mathematic simulation presented in chapter 3, and 

provides a possible solution for hyper-elasticity material simulation.  
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Chapter 7  

Conclusion and Future Possibilities  

 

7.1 Overall Conclusion 

Various surface instabilities enable a convenient strategy of micro-

engineered structure impart reversible patterned topography to a surface. 

Chapter 2 is focus on the classic system of a tiff layer on a soft substrate, which 

famously produces parallel harmonic wrinkles at modest uniaxial compression 

that period-double repeatedly at higher compressions and ultimately evolve 

into deep folds and creases. By introducing micron-scale planar Bravais lattice 

holes to spatially pattern the substrate, these instabilities were guided into a 

wide variety of different patterns, including wrinkling in parallel bands and 

star shape bands, and radically reduce the threshold compression. The 

experimental patterns and thresholds were understood by considering a 

simple plane-strain model for the patterned substrate-deformation, decorated 

by wrinkling on the stiff surface layer. The experiments also show localized 

wrinkle-crease transitions at modest compression, yielding a hierarchical 

surface with different generations of instability mixed together. By varying the 

geometrical inputs, the control over the stepwise evolution of surface 

morphologies was demonstrated. These results demonstrate considerable 
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control over both the pattern and threshold of a surface elastic instability and 

have relevance to many emerging applications of morphing surfaces, including 

in wearable/flexible electronics, bio-medical systems and optical devices. 

In chapter 3, the wetting phenomena of liquid reshaping at micro and 

macro scale on a sinusoidal wrinkle and crease patterned surface was 

investigated.  Non-uniform distributions of surface energy caused the 

anisotropic wetting and droplet deformation, while asymmetric physical 

patterns on a material surface induced the directional wetting. On an elastic 

wrinkled groove surface, it is noticed that a droplet can start imbibing into the 

grooves leading to an eventual filling of entire grooves as certain compressive 

strain is approached, hence, to change the droplet shape. To achieve highly 

controllable instabilities and a bi-axial switching droplet shape, a patterned 

elastic surface was created able to initialize localized surface instabilities and 

induce reversible surface morphology changes. At equilibrium, the 

topographic surface consists of a set of circular voids distribute an equilibrium 

manner. By using plasma treatment and mechanical stimuli, the evolution of 

the nano/micro-structure on surface was investigated, which form under 

mechanical stimuli and redistribute the surface energy. A droplet placed on 

our surface is pinned by the topographic features and deforms as the circular 

shapes elongate to elliptical shapes. The static, advancing and receding contact 

angles were measured before and after plasma treatment, showing the 

enhancement of the surface wettability due to changes in the surface chemistry, 

morphology and roughness. 
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In chapter 4, a theoretical approach of Finite Element Analysis was 

presented to understand the non-linearity of hyper-elasticity material and the 

possible morphology evolution under certain compressive load or 

displacement. Simulation was proceeded with different structure model design 

at variable stage. Both literature and in-lab test property of soft material were 

considered to find the appropriate parameters for neo-Hookean model 

analysis on the material non-linearity. The experimental patterned surface was 

simplified into single block and thin film structure to reduce the computer 

working process. The morphology transformation was analysed with simple 

plane-strain model and achieved a reasonable structure variation. However, 

patterned structure is still needed for further analysis to corresponding the 

experimental result to show localized wrinkle-crease transitions at 

compressive load and yield different a hierarchical surface by vary the 

geometrical input.   

7.2 Future Possibilities 

In this thesis, the bilayer system was investigated by focusing 

mechanism study of spatial patterned surface with external mechanical 

loading. Following with investigation on anisotropic droplet shape 

manipulation based on the soft material system. Though out our research work, 

various soft material on bilayer surface properties were presented such as 

topographic roughness evolution, surface morphology development, out-of-

plane physical self-contact depth, patterned surface wettability and macro-
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level droplet shaping.  Although we have covered many aspects in soft material 

bilayer system, there are still limitations of our work. For example, the 

theoretical assumption on droplet shaping and material non-linearity 

simulation on bilayer system.  

To follow up what we have investigated and uncovered in the previous 

chapters, three categories of potential aspects are classified here for future 

work. 

• Hierarchical wrinkle and crease of multi-layered materials is expected to 

have many applications such surface coating, adhesion control, wetting 

control with hydrophobic/hydrophilic surfaces. More systematic study of 

morphology evolution of the multi-scale wrinkles and the reaction 

mechanism is needed. Regarding to different hierarchical morphologies, it 

is essential to have a guide of multi-layer structure durability design for 

surface pattern control.  

• There has been some progress in studying surface instability induced 

droplet shape manipulation in our work. Surface wettability was 

investigated thought out the surface roughness analysis, morphology 

directional development, and capillary mechanism that induced droplet 

pinning. However, there still exists issues on accurately control the droplet 

shape in an area expanding manner with the bi-axially 

compression/stretch of substrate, and the experimental control of droplet 

motion transferability over an appreciable area. From experimental aspect, 
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droplet motion manipulated mechanics under viscoelasticity, dynamic 

loading, combined with anisotropic structure is still waiting to be explored.     

• Much of recent progress in theoretical mechanics research was thanks to 

the advancement of computational mechanism, especially finite element 

method for multi-scale analysis. However, more efforts are still needed to 

develop reliable numerical methods to solving 3D surface instability 

calculations, droplet shaping analysis and the concept of non-linear pattern 

transformation.  
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Abstract: Polymer surface patterning and modification at the micro/nano scale has been discovered
with great impact in applications such as microfluidics and biomedical technologies. We propose
a highly efficient fabricating strategy, to achieve a functional polymer surface, which has control
over the surface roughness. The key development in this fabrication method is the polymer positive
diffusion effect (PDE) for an ion-bombarded polymeric hybrid surface through focused ion beam
(FIB) technology. The PDE is theoretically explored by introducing a positive diffusion term into
the classic theory. The conductivity-induced PDE constant is discussed as functions of substrates
conductivity, ion energy and flux. The theoretical results agree well with the experiential results on
the conductivity-induced PDE, and thus yield good control over roughness and patterning milling
depth on the fabricated surface. Moreover, we demonstrate a controllable surface wettability in
hydrophobic and superhydrophobic surfaces (contact angles (CA) range from 108.3◦ to 150.8◦) with
different CA hysteresis values ranging from 31.4◦ to 8.3◦.

Keywords: ion beam milling; topographic surface; wetting; contact angle hysteresis

1. Introduction

Surface patterning and modification at micro-/nano-scales have been of great importance in creating
functional surfaces for a wide range of applications, such as water repelling and self-cleaning [1–4],
antifouling [5], anti-icing [6], adhesion control, and drag reduction technologies [7,8]. To create
surfaces with desired roughness and topography, some techniques have been commonly used, such
as lithography-based plasma etching and deposition, coating on top of patterned substrates, and/or
soft-lithography pattern transferring, and, more recently, creating stimuli-responsive surface cracking,
wrinkling [9–13] and other deformations on smart material surfaces [14–16].

The focused ion beam (FIB) technique has proven its efficiency in manufacturing semiconductors,
metals and metal oxides, with its unique capability for rapid prototyping and high precision [17,18].
The fundamental mechanism of FIB is that highly energetic ions driven by an electrical field knock
atoms off the material surface by electro-collision and the recoil action between the ion and target
material surface (Figure 1). For ion-milled surfaces, the morphological evolution can cause kinetic
roughness, which has attracted increasing research interest in recent decades [19–21]. However,
limited attempts have been reported on the topic of FIB processing on polymeric substrates, since
the charging effect from the insulated polymer matrix significantly reduces manufacturing precision,
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and the understanding of the morphological evolution for an ion-milled polymer surface remains yet
to be fully explored [22–25]. Compared to other surface morphology modification techniques, the
FIB method has great potential for scalable patterning with both roughness level and geometry size
ranging from a few nanometers to 10 µm.
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Figure 1. Schematics of focused ion beam (FIB) milling on (a) silicon and (b) conductive polymeric
hybrid surface. (c) Following a straight trajectory (solid line), the ion penetrates an average distance α
inside the solid (dashed line) and completely releases its kinetic energy at P. The dotted equal energy
contours indicate the energy decreasing area around point P. The energy released at point P contributes
to erosion at O. The inset shows the laboratory coordinate frame: the ion beam forms an angle θ
with the normal to the average surface orientation, z, and the in-plane direction x is chosen along the
projection of the ion beam.

2. Theoretical Background

As shown in Figure 1, ion bombardment is commonly considered as atomic processes taking
place inside the bombarded material within a finite penetration depth. The ions pass through a
distance α before they completely release their kinetic energy with a spatial distribution inside the
target substrates. An ion releasing its energy at point P in the solid contributes energy to the surface
point O that may induce the atoms in O to break their bonds and leave the surface or diffuse along
it. The pattern formation by ion beam sputtering has been previously understood as the interplay
between the unstable dependence of the sputtering yield on surface curvature and stabilizing surface
relaxation mechanisms [26,27]. The most successful model to predict surface evolution under ion
sputtering was the Bradley and Harper (BH) equation [28]. BH theory describes the ripple formation
by discussing the surface topography h(x, y, t), measured from an initial smooth configuration in the
(x, y) plane. However, it could not explain the surface roughening well [29–31]. Therefore, Makeev,
Barabási and Cuerno [32] refined the noisy Kuramoto–Sivashinsky (KS) equation [33,34] based on
the Sigmund theory of sputter erosion [35], where the surface was bombarded by ions, and included
the Kardar–Parisi–Zhang (KPZ) nonlinear term in the BH equation. Cuerno et al [26,36,37] further
developed an effective evolution equation:

∂h
∂t

= −v∇2h + λ1(∇h)2
− λ2∇

2(∇h)2
−K∇4h (1)

where v, λ1 and λ2 are the average coefficients determined by the experimental parameters such as
ion flux, ion energy, etc. For an amorphous solid in equilibrium with its vapor, K∇4 h (known as
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the MBE equation) [38] has been studied and obtained [39,40]. Equation (1) was originally used to
describe dynamic scaling on the surface under the thermal surface diffusion; here, the conditional
surface diffusion factor, K, can be decomposed with conductivity-induced PDE constant, Dc [39,41]:

K =
DcβΩ2Mcon

kbT
exp

(
−∆E
kbT

)
(2)

where β is the surface free energy per unit, Ω represents the atomic volume, Mcon denotes the number
density of conductive particles, kb is the Boltzmann constant, T is the absolute temperature, and ∆E
is the activation energy for surface diffusion. The value of Dc could be determined by the evolved
Nernst–Einstein equation [42,43]:

Dc
≡
σdckbT
e2Mcon

(3)

Here σdc represents the DC conductivity of sample and e is the elementary charge. To simplify the
discussion, the symmetric case (δ = u, which are the distribution distances in directions parallel and
perpendicular along the beam) was applied to the current model, and the incident angle θ is zero. The
linear wavelength instability could be calculated as in Ref. [34]:

li = 2 π
(2K

v

)1/2
(4)

which correlates to ion flux and matrix conductivity, and where i refers to the direction (x or y).
Given a small incidence angle = −(Fα)/2δ, where F ≡

(
εJp/

√
2π

)
exp

(
−

α2

2δ2

)
[44,45], Equation (1)

could describe the surface roughening caused by PDE, after considering the conductivity induced ion
diffusion by Equations (2) and (3). The J means the average ion flux, ε denotes the total energy carried
by the ion and p is a proportionality constant between power deposition and rate of erosion.

The surface roughness evolution could be predicted from the following equation [26]:

τ = vλ2/(Kλ1) (5)

Equation (5) has been applied under different experimental conditions [46,47].
We have previously demonstrated carbon-based polymer composites with exciting properties

induced by enhanced electrical conductivity [48,49]. In this project, conductive polymer composites
will be used to overcome the challenge from the dielectric surface charging effect during the FIB
process. A new concept of conductivity-induced PDE is proposed to understand ion impacting a
conductive polymer surface and to predict the surface evolution during FIB. The ion-bombarded
surface topographic features with conductivity-induced PDE are theoretically predicted using Monte
Carlo simulation, and also experimentally assessed. Comparative studies of FIB-induced surface
patterning and morphological evolution are carried out. The emerging application of fabricated
surfaces is explored with surface wetting controls. We expect that the findings in this work will advance
the current understanding of FIB fabrication on polymer surfaces.

3. Experimental Methods

Conductive polymer nanocomposites such as polystyrene–carbon nano-particles (CNPs) were
used to create the conductive polymer surfaces [50–53]. The styrene-based precursor (PS, Veriflex®,
CRG Co. Ltd., Miamisburg, OH, US) [50,51] and the CNPs (VULCAN® XC72R, CABOT, Boston, MA,
US), were ultrasonically agitated in a three-neck flask for 2 h at 1000 rpm [54]. Then the curing agent
(Luperox ATC50, Sigma-Aldrich, St. Louis, MI, US) was added, and the mixture stirred for 45 min.
Polystyrene–carbon nano-particles composite (CNP/PS) films with a thickness of 200 µm were made
by casting the mixture into a PTFE mold and baking in a vacuum oven at 75 ◦C for 36 h.
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Electrical conductivity was measured using an I-V testing set-up and thermo-electrical testing was
performed through a Schlumberger Solartron 1250 Frequency Response Analyser from 20 to 100 ◦C in
an isolated chamber with an ambiance of air.

A dual-beam FIB instrument (FEI, Quanta3D FEG, Thermo Fisher Scientific, Waltham, MA, US)
equipped with liquid gallium ion source (Ga+, 30 KeV) and Scanning electron microscopy (SEM)
was used. The topographic surface was assessed with an atom force microscopy (AFM, Triboscope,
Bruker, Coventry, UK). Sputter yield was calculated through Monte Carlo simulation (TRIDYN, binary
collision approximation ion irradiation simulation) [55,56], which simulates the ion irradiation of
amorphous targets in the binary collision approximation. It allows for a dynamic rearrangement of the
local composition of the target material [57]. Therefore, effects in high-fluence implantation, ion mixing,
and preferential sputtering caused by atomic collision processes can be concluded [58]. Considering
the current macromolecular-based hybrid system, an enthalpy of sublimation value (6.2 eV) was set in
the simulation by consulting the chemically covalent bond energies and atom composition.

4. Results and Discussion

Figure 2a illustrates the conductive hybrids, based on the SEM fracture surface morphologies for
2 vol. % CNP/PS. The background SEM showed that the CNPs were distributed uniformly throughout
the textured polymer matrix. The electrical current (imaginary) flowed through the conductive hybrid
while the threshold network was generated. Figure 2b presents the DC conductivity results with little
variations as a function of CNP concentrations at room temperature. When CNP concentrations (ϕCNP)
increased from 0.5 to 2 vol.%, the conductivity dramatically increased from 1 × 10−8 to 100 S/m, and
this increment slowed down when the CNP concentration exceeded 2 vol. %. The conductivity for
ϕCNP > 2 vol. % was sufficient to enter the general semiconductor region.
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Figure 2. (a) Scanning electron microscopy (SEM) observation of the conductive surface for 2 vol. %
CNP/PS; (b) DC conductivity results as a function of CNP content and the inset linear fitting curves
needed for determining the threshold value; (c) DC conductivity for composites with dependency on
temperature and CNP concentration; (d) calculated conductivity diffusion coefficients as a function
of temperature.

Such a percolation network has been well understood as a polymer-based inorganic (σ1)–organic
(σ2, σ2 << σ1) conducting system, or resistors and capacitors [59–61]. At a lower CNP concentration,
conduction is mainly dominated by hopping conduction among the nanofillers, thus appearing closer
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to the insulator [59,61]. They became conductors when the filler concentration increased to a critical
value, i.e., the percolation threshold (ϕc), which formed the electron bridge within the substrate by the
filler state [62]. To determine ϕc, the conductivity σwas fitted based on the power laws [59,63]:

σ(ϕCNP) ∝ (ϕc −ϕCNP)
−s when ϕCNP < ϕc (6)

σ(ϕCNP) ∝ (ϕCNP −ϕc)
t when ϕCNP > ϕc (7)

where t and s are the critical exponents in the conducting and insulating regions. The linear-fitting
results clearly defined the threshold network with ϕc = 2 vol. %, t = 0.858, and s = 4.75 (the inset in
Figure 2b). Previous reports [64,65] noted that a higher critical value (t > 2) in a polymer/CNP system
will reduce the conductive efficiency, whereas, a good conductive efficiency (t = 0.858) was achieved
due to the uniform nanofiller distribution by the adopted techniques.

The conductivity–temperature relationship is shown in Figure 2c, where the measured conductivity
gradually increased with the rising temperature, which enhanced the hopping conductivity in
composites [66]. The sample conductivity for 2 vol. % CNP/PS approached the percolation limit of an
insulator-dominating state, and further rises in temperature significantly increased the conductivity
through the enhanced hopping. When the CNP content was above ϕc, the CNP particles/clusters
were more likely to link with each other, forming a continuously distributed CNP network in the
matrix. Figure 2d summarizes the calculated conductivity diffusion coefficients with dependency
on temperature. For the composites that hadn’t formed the threshold network, the diffusion
coefficients were low, and the value was located in the ion diffusion range inside of the insulated
solid (<10−18 m2/sec) [67]. With the CNP content increased, the PDE constant significantly increased
from 10−21 to 10−11. It should be noticed that the diffusion constant for an ion-liquid system is
10−11–10−9 m2/sec [67]. This conductive network generation by adding CNP enhanced the overall ion
diffusion capability dramatically. From the information in Figure 2c,d, the thermal effect on sample
conductivity, or Dc, which caused a changing factor of 10–100, is negligible when comparing the large
improvement by increasing conductivity.

Since all coefficients in Equation (1) are determined by ion flux and K, the coefficient K can be
calculated with Dc (in Figure 2d) by Equations (2) and (3). We next investigate the influence from
material with a fixed ion flux φ = 1.2 × 109 ions/(µm2/sec). With the Monte Carlo algorithm it could
be obtained that v = 187 nm2/min, λ1 = 78.4 nm/min, and λ2 = 4373.2 nm3/min. The simulated
roughness τ is displayed in Figure 3a–c, compared with the experimental AFM plots. The quantitative
agreement in the order of magnitude between the experimental and the theoretical results was found
for predicting the surface evolution trend, and the surface roughness decreased constantly with the
CNP content increases. The experimental values were only half of the theoretical values for 1 vol. %
and 2 vol. % CNP/PS composites. For 3.5 vol. % CNP/PS, the magnitude of the experimental result
agreed well with theory, which could be attributed to the metallic type surface morphological evolution
occurring during ion milling on the samples with high conductivity. Furthermore, the asymptotic
morphologies revealed the increasing li values as well as the reduction of τwith the target conductivity
increases, implying a higher self-smoothing effect and a thermal relaxation mechanism led to a less
defined pattern order for the hybrids. The discrepancy between the experimental data and theoretical
prediction can be explained by ignoring the rapid temperature rises during ion sputter, which induces
a thermal diffusion.

The milling depth values are plotted as a function of ion flux in Figure 3d–f; the grey areas
represent the overall removal depth, including the targeted milling depth (500 nm), and the calculated
roughness, while the up-edge indicates the accumulating value of roughness and targeted removal
depth. As predicted, the self-smoothing conductive-induced PDE was found as shown in each figure.
Both the experimental and numerical morphologies presented a low surface roughness associated with
low ion flux values, contrary to the much higher roughness values under higher ion flux. This could be
derived from the flux related parameters in Equation (5), v, λ1 and λ2, which change significantly with
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applying higher ion flux. Moreover, the experimental average removal depth was reduced at high
ion flux for all samples; this could be due to the inaccurate numerical calculation at high roughness.
Figure 3d–f shows the roughness reduced with increased conductivity both in experimental and
numerical results, proving that the pattern characteristics are dominated by the sample conductivity.
Figure 3a–c also reflects that the roughness peak at high conductivity values is broader when the
sample was bombarded at the same flux values. It should be noted that the ion flux employed in
this work is 10–1000 times higher than those have been reported [26,36,68]; the thermally activated
surface diffusion effect could not be ignored when the target’s temperature increases, which causes the
self-smoothing effect on the milled surface as well as conductivity-induced PDE does.
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longitudinal plots for different composites (milling time = 160 sec); (d–f) Time evolving milling efficiency
(removal depth, h(t)) with surface roughness (error bar); the gray area represents the roughness with
targeted removal depth of 500 nm.

The experimental topographic information is summarized in Figure 4 with SEM images, AFM
profiles and statistical analysis for AFM data. The deteriorating trends are presented with dependencies
on ion flux and sample conductivity; the SEM observation illustrates that higher ion flux creates
more surface roughness, probably combined with the re-deposition [69]. The milling precision was
improved with sample conductivity increases, which could be identified from the evolving morphology
in the SEM images under different ion flux; simultaneously, the AFM contour plots agree with this
improvement well, with showing concentrated milled depth. The contour plots also reflect that the
highest roughness appears for 1 vol. % CNP/PS, which indicates milling accuracy was lowered with
low conductivity. The statistical analysis from AFM suggests wide distributed milling depths for
the 1 vol. % sample especially under the high ion flux (1.25 × 1010 and 1.75 × 1010 ions/(µm2/sec)).
Meanwhile, a concentrated distribution for 3.5 vol. % CNP/PS was observed under the low ion flux,
which represented high uniformity for the milling depth. Figure 4 also reveals that the actual average
milling depths were around 700 nm for most conditions with considerable errors, which some distance
from the target removal depth of 500 nm. The possible reason could be the thermal induced polymer
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chain broken during the high energy ion sputter process, which could be understood as the thermal
induced positive effect. Although improved milling precision was achieved for 2 vol. % and 3.5 vol. %
CNP/PS, the actual milling depth decreases for 1 vol.% CNP/PS when ion flux increased. This could be
attributed to the calculation uncertainty caused by the ultimate roughness, as previously mentioned,
the residual surface charge and the re-deposition caused by molecular chain breaking [70]. Additionally,
the Monte Carlo codes in this work considered the effects in high-fluence implantation, ion mixing and
preferential sputtering caused by atomic collision processes, and proved a positive correspondence
between ion milling efficiency and sample conductivity. However, it did not take account of the
thermal induce surface diffusion, which has been previously proved with the stabilization effect on an
milled surface [26,44,71].
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5. Application Demonstration

The CNP/PS polymer matrix surfaces were FIB ion milled into different micro-roughness regions
(2 × 2 mm2 areas pre-patterned with 20 × 20 µm2 square pattern arrays) with milling depths ranging
from 0.5 to 1.2 µm, and Ra (arithmetic mean roughness) values ranging from 700 to 4800 nm (0.7 to
4.8 µm). Different patterns are demonstrated in Figure 5a, from line array to dedicated probe shape.
The processing efficiency and the precision are significantly increased. We next selected the dot
array pattern (Figure S1) for the surface wetting testing. A self-assembly monolayer (SAM) of
Trichloro(1H,1H,2H,2H-perfluorooctyl)silane (FOTS, Sigma-Aldrich, St. Louis, MI, US), was applied
from the vapor phase at room temperature (~20 ◦C) for 30 min to facilitate a conformal hydrophobic
layer over the CNP/PS topologies.

To set a benchmark, the static contact angle (CA) of 2 µL of deionized (DI) water on a smooth
FOTS surface was measured to be 107◦. Figure 5b shows that on the modified CNP/PS surface, the
CA ranges from 108.3◦ to 150.8◦ (Figure 5c). Dynamic CA measurements (advancing and receding)
were also taken, with different CAH (Figure 5d) values ranging from 31.4◦ to 8.3◦. These values shown
in Figure 5c,d were close to Wenzel state prediction at lower roughness (<3.5 µm), and closer to the
Cassie–Baxter state at higher roughness [13] with CA = 150.8◦ and CAH = 8.3◦, which conforms to the
superhydrophobic surfaces (SHS) criteria of CA > 150◦ and CAH < 10◦.
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Figure 5. (a) FIB engineered nanostructures, from left to right, lines pattern, nano-hole, nano-probe,
nano-tunnel; the scale bar is 500 nm. Static contact angle (CA) and contact angle hysteresis
(CAH = advancing CA - receding CA) characterization on patterned CNP/PS polymer with FOTS
layer. (b) CA and CAH values of a DI water droplet on superhydrophobic surface (Ra = 4.8 µm).
Relationships between (c) CA and surface roughness, and (d) CAH and surface roughness.

6. Conclusions

Good structure property relationships were revealed with the homogeneous dispersing state of
CNPs in a PS matrix from SEM observation, measured conductivity and the stable electrical–temperature
performance. The assessment of ion milled surfaces indicated that milling accuracy and surface
roughness are highly dependent on the sample’s conductivity. A good agreement between experimental
results and the theoretical prediction was achieved in describing the surface’s evolving trend, including
the general analytical conditions for the coarsening process to occur and the roughness of the surface
with different ion flux and material conductivity. Resulting micro-roughness patterns were coated with
hydrophobic monolayer FOTS and demonstrated surface wettability control, resulting in hydrophobic
and superhydrophobic surfaces (CA ranging from 108.3◦ to 150.8◦) with different CA hysteresis values
ranging from 31.4◦ to 8.3◦.

It must be noted that the ion bombardment on a macromolecular surface is far more complicated
than a silicon surface. In future work it would thus be interesting to investigate ion sputtering on
conductive polymer (composites) surfaces with conductivity and thermal-induced PDEs, and more
substrate-related factors, such as molecular chain movements and polymer degradation.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4360/11/7/1229/s1,
Figure S1: FIB milled nano hole array for surface wetting control.
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ABSTRACT: Zeolitic imidazolate frameworks (ZIFs), a
group of metal−organic frameworks (MOFs), hold promise
as building blocks in electromagnetic (EM) wave absorbing/
shielding materials and devices. In this contribution, we
proposed a facile strategy to synthesize three-dimensional
ZIF-67-based hierarchical heterostructures through coordi-
nated reaction of a preceramic component, poly-
(dimethylsilylene)diacetylene (PDSDA) with ZIF-67, fol-
lowed by carbonizing the PDSDA-wrapped ZIF at high
temperature. The introduction of PDSDA leads to control-
lable generation of a surface network containing branched
carbon nanotubes and regional distributed graphitic carbons,
in addition to the nanostructures with a well-defined size and porous surface made by cobalt nanoparticles. The surface
structures can be tailored through variations in pyrolysis temperatures, therefore enabling a simple and robust route to facilitate
a suitable structural surface. The heterostructure of the ZIF nanocomplex allows the existence of dielectric loss and magnetic
loss, therefore yielding a significant improvement on EM wave absorption with a minimum reflection coefficient (RCmin) of
−50.9 dB at 17.0 GHz at a thickness of 1.9 mm and an effective absorption bandwidth (EAB) covering the full Ku-band (12.0−
18.0 GHz).

KEYWORDS: zeolitic imidazolate frameworks, electromagnetic wave absorbing, nanocomplex, heterostructure, coordination reaction

■ INTRODUCTION

Metal−organic frameworks (MOFs) have attracted significant
interest in the last few decades from various fields such as
absorbent materials for gas separation, energy storage,
luminescence materials, and biosensors.1−5 The high desig-
nability on functionalities for MOFs can be facilitated via
changing the precursors and/or synthetic conditions,6,7 as well
as post-synthesis modifications (extended annealing, etc.).8−10

Recently, a subgroup of MOFs, zeolitic imidazolate framework
(ZIF), has gained significant interest because of its high
porosity,11,12 excellent mechanical stability,13 tunable surface
properties,14,15 and exceptional chemical and thermal stabil-
ities.11,16 ZIFs also offer excellent configurability on structures
by substituting the metal centre with other ions,5,17,18 such as
Cu2+, Ni2+, and Cd2+, yielding zeolite-like structures,19,20 which
is desired for electromagnetic (EM) wave absorption/
shielding.21−30 The ultra-wide band absorption in specific
bands such as Ku-band (12−18 GHz) and X-band (8.2−12.4

GHz) for EM wave absorbing materials is always important for
their application in wireless communication, satellite commu-
nication, and medical and aerospace fields.31,32

Thus far, the ZIF faces challenges to achieve a high real
permittivity (ε′) and poor impedance matching after pyrolysis,
which lead to a strong reflectivity of EM waves on the surface
and poor performance of EM wave absorption. One potential
solution is to construct a structural surface using low dielectric
materials to “trap” the EM wave on the surface. The concept
remains yet to be achieved because of the challenges in
facilitating nanostructures during multi-step synthesis and the
withholding of the synthesized structure during pyrolysis at
high temperatures during the post-synthesis treatment.
Ceramic materials with a lower complex permittivity can

Received: March 4, 2019
Accepted: April 23, 2019
Published: April 23, 2019

Research Article

www.acsami.orgCite This: ACS Appl. Mater. Interfaces 2019, 11, 17706−17713

© 2019 American Chemical Society 17706 DOI: 10.1021/acsami.9b03944
ACS Appl. Mater. Interfaces 2019, 11, 17706−17713

D
ow

nl
oa

de
d 

by
 N

O
R

T
H

U
M

B
R

IA
 U

N
IV

 a
t 0

9:
35

:1
0:

82
0 

on
 J

un
e 

18
, 2

01
9

fr
om

 h
ttp

s:
//p

ub
s.

ac
s.

or
g/

do
i/1

0.
10

21
/a

cs
am

i.9
b0

39
44

.

www.acsami.org
http://pubs.acs.org/action/showCitFormats?doi=10.1021/acsami.9b03944
http://dx.doi.org/10.1021/acsami.9b03944


essentially bridge the gap and provide good EM wave
absorption properties.33−35 A dedicated heterostructure from
ceramics can be achieved by introducing the polymeric ceramic
precursors into the multi-stage synthesis, resulting in control-
lable generation of the surface structure after pyrolysis.
However, this route has been less considered in ZIF-based
nanomaterials.
Here, we proposed a facile strategy to synthesize a ZIF-67-

based nanocomplex with hierarchical structures by initializing a
coordination reaction between poly(dimethylsilylene)-
diacetylenes (PDSDA), a polymeric ceramic precursor with a
lower complex permittivity with cobalt in ZIF-67.36,37 After
pyrolysis, we successfully prepared a nanocomplex consisting
of multi-lengthscale interfaces between core−shell structures
with a porous low dielectric external shell (formed by
PDSDA), a high permittivity magnetic core (formed by ZIF-
67), carbon nanotubes (formed by amorphous carbon locally
catalyzed by cobalt) on the surface, and amorphous carbons.
We demonstrate enhanced EM wave absorption with a
minimum reflection coefficient (RCmin) of −50.9 dB at 17.0
GHz with a sample thickness of 1.9 mm and an effective
absorption bandwidth (EAB) covering the full Ku-band
(12.0−18.0 GHz) with a designable heterostructure.

■ EXPERIMENTAL SECTION
Materials. Dichlorodimethylsilane (98%), trichloroethylene

(>98%), hexachloro-1, 3-butadiene (97%), n-butyllithium (1.6 M
solution in hexanes), and N,N-dimethylformamide (DMF) were
purchased from Alfa Aesar, China (Tianjin, China). Cobalt nitrate
hexahydrate (99.99% metals basis) was bought from Macklin Co.
(Shanghai, China), and 2-methylimidazole (99%) was purchased from
TCI Co. (Shanghai, China). All other reagents were used as received.
Synthesis of PDSDA. The synthesis of PDSDA was conducted

using the standard Schlenk technique.38,39 0.14 mol (42.51 g) n-
butyllithium was dissolved in 60 mL tetrahydrofuran at −78 °C in an

acetone/dry ice bath under an argon atmosphere. Then, 0.035 mol
(9.456 g) hexachloro-1,3-butadiene was added through an argon-
purged syringe. Subsequently, 0.035 mol dichlorodimethylsilane
(4.578 g) was dropped into the flask at −78 °C. After stirring at
room temperature for 12 h, chlorotrimethylsilane (2 mL) was added.
Then the mixture was dissolved in toluene to filter out lithium
chloride. The polymer was precipitated in methanol and dried in a
vacuum environment. Finally, the alkyne-containing PDSDA was
obtained.

Syntheses of ZIF-67 and Pre-Pyrolyzed ZIF-67. ZIF-67 was
synthesized according to refs.40,42 1.5 mmol cobalt nitrate in 12 mL
deionized water and 67 mmol dimethylimidazole in 80 mL deionized
water were mixed and stirred vigorously for 6 h. After stirring for 24 h,
the purple precipitates were collected by centrifugating three times
using methanol as the eluent. Finally, the as-prepared ZIF-67 was a
purple solid. The ZIF-67 was pyrolyzed at 500 °C for 2 h (heating
rate 5 K/min under argon) in a tube furnace to prepare pre-pyrolyzed
ZIF-67 (P-ZIF-67). 0.02 g of PDSDA and 0.1 g of pre-pyrolyzed ZIF-
67 were mixed in DMF at room temperature under ultrasonication for
4 h to fulfill the coordinated reaction to get P-ZIF-67 wrapped with
PDSDA.

Preparation of the ZIF-67-Based Nanocomplex. The P-ZIF-
67 wrapped with PDSDA was pyrolyzed at various temperatures (500,
600, 700, and 800 °C) under an argon atmosphere in a tube furnace
(GSL-1700X, Kejing New Mater. Ltd., Hefei, China). The obtained
Co/Si/C/N nanocomplex was named Co/Si/C/N-500, Co/Si/C/N-
600, Co/Si/C/N-700, and Co/Si/C/N-800, according to the
pyrolyzed temperature.

Characterization. Fourier transform infrared spectroscopy (FT-
IR) measurement was performed on a FT-IR spectrometer (DSOR
27, Bruck, Germany). Thermogravimetric analysis and mass
spectrometry analysis were conducted on a simultaneous thermal
device (449C Jupiter, Netzsch, Geraẗebau GmbH, Selb, Germany)
coupled with a quadrupole mass spectrometer. The flow of argon is 40
mL/min and the heating rate is 10 K/min. The crystal structure was
analyzed by using a X-ray diffractometer (XRD) (Rigaku D/Max-
2550VB+/PC) with Cu Kα irradiation (λ = 1.54178 Å, 40.0 kV, 40.0
mA). Scanning electron microscopy (SEM) (Hitachi-S-4800) and

Figure 1. Schematic illustration of the fabrication route toward the ZIF-67-based heterostructure nanocomplex (a,b), SEM images of ZIF-67 (c)
after step II in (a) with magnified observation (d) in the selected area, the morphology of the ZIF-67-based heterostructure nanocomplex with
magnified observation in the selected area (e,f), and theoretical and experimental XRD results for the ZIF-67 crystal (g).
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transmission electron microscopy (TEM) (FEI Talos-F200X) were
used to observe the morphology and elemental distribution of
samples. The Raman spectrum (inVia, Renishaw, USA) was equipped
with a 514 nm Ar laser excitation device. A Micromeritics Tristar
3020 (Micromeritics Co.) nitrogen adsorption instrument was used to
measure the specific surface and pore size distribution (Brunauer−
Emmett−Teller, BJH model). The magnetic hysteresis loop was
measured using a vibrating sample magnetometer (Lake Shore VSM
7307) at 298.15 K.
EM Wave Absorption Measurement. The complex permittivity

and complex permeability of the Co/Si/C/N heterostructure
nanocomplex were measured using a vector network analyzer
(MS4644A, Anritsu) in the frequency range of 2−18 GHz. The
milled Co/Si/C/N samples were dispersed in a paraffin matrix with
30% mass fraction to form coaxial rings with an inner diameter of 3.04
mm and an outer diameter of 7.0 mm. On the basis of the generalized
transmission line theory and metal backplane model,43,44 the
reflection coefficient (RC) can be calculated using the relative
complex permittivity according to the following equation:45
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where Zin, εr, and μr are the normalized input impedance, permittivity,
and permeability of the materials, respectively. f, d and c represent the
frequency, thickness (m), and velocity of the EM wave in vacuum,
respectively.

■ RESULTS AND DISCUSSION
The synthesis route of the ZIF-67-based heterostructure
nanocomplex is schematically illustrated in Figure 1a, where
the ZIF-67 is prepared from cobalt nitrate and 2-
methylimidazole (step I).40,41,43 The pre-pyrolyzed ZIF-67
(step II) represents a basic polyhedral geometry with 80% yield
as shown in the Supporting Information (Figure S1) with a
number of cobalt atoms. In step III and step IV, the PDSDA
was wrapped on ZIFs to fulfill the low complex permittivity
and high ceramic yield (Figure S1) in the final nanocomplex.
The complete disappearance of the alkenyl peak at 2100 cm−1

in FT-IR (Figure S2) suggests that the coordination reaction
successfully occurs between the transitional metal ions (Co2+)
with the alkenyl groups in PDSDA.39 After pyrolysis at high
temperatures (500 °C or above) under an Ar atmosphere (step
V), we successfully obtained the ZIF-67-based heterostructure
nanocomplex (Figure 1b), which is assumed to have a core−
shell structure (Figure 1a) with a low dielectric shell (formed
by PDSDA) and high real permittivity (ε′), magnetic core
(formed by ZIF-67), and branched carbon nanotubes on the
surface as metal Co could indorse graphitic carbon to form
carbon nanotubes and amorphous carbons.46−48 The samples
are labeled Co/Si/C/N-500, Co/Si/C/N-600, Co/Si/C/N-
700, and Co/Si/C/N-800, where the digital number refers to
the pyrolysis temperature.
The morphology and structure of pre-pyrolyzed ZIF-67 and

its derived nanocomplex were evaluated by SEM (Figure 1c−
f), where we observed a typical rhombic dodecahedron
morphology for pre-pyrolyzed ZIF-67 (Figure 1c−d) in a
size distribution of 300−400 nm.49,50 After initializing the

Figure 2. The TEM images of pre-pyrolyzed ZIF-67 crystals collected after step II (a) and ZIF-67-based heterostructure nanocomplex after step V
(b), with magnified observation of Co nanoparticles and the selected area electron diffraction (SAED) image (inset) in (c), the AFM profile (d) of
the selected area in (b), the EDS mapping (Co, Si, C, N) (e) of the nanocomplex in (b), XRD (f) and Raman results (g) for the nanocomplex at
different temperatures, N2 adsorption and pore size distribution plots (h), and hysteresis loop and coercivity (inset) of the nanocomplex (i).
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coordinated reaction with PDSDA on the ZIF surface and
pyrolyzing at high temperature, we obtained a highly
mesoporous surface on the ZIF-based nanocomplex (Figure
1e,f). The powder X-ray diffraction (XRD) result for pre-
pyrolyzed ZIF-67 (Figure 1g) suggests a sodalite topology of
(Co(mIM)2) in good agreement with the theoretical crystal
structure. Overall, the good preservation in the dodecahedron
shape was presented after pyrolyzing at high temperatures.51,52

By thermally pyrolyzing in an inert atmosphere, the organic
ligands in the ZIF-67 crystal (Figure 2a) can be carbonized,
and metal ions will be reduced to form a hybrid metal/carbon
structure.53,54 By characterizing the pyrolyzed ZIF-based
nanocomplex using TEM, we found (i) clear boundaries as
being defined by the original ZIF (Figure 2b) covered by (ii)
highly branched carbon nanotubes (CNTs, typically ca. 10 nm
in diameter and ca. a few micrometers in length), and (iii) a
mesoporous surface where metallic cobalt particles (Figure 2c)
were formed. After the decomposition and carbonization, most
of the cobalt deposited outside of the carbon matrix to form a
porous shell. The corresponding SAED pattern (inset, Figure
2c) confirms that the polycrystallinity phase occur for the
pyrolyzed ZIF-67. The organic ligands in PDSDA were
catalyzed by cobalt to generate CNTs on the surface, as well
as graphene skirts regionally located at the edge of the
nanocomplex (Figure 2d).
From the EDS mapping in Figure 2e, we find a uniform

distribution of C (red), Si (green), and N (blue) with the same
profile of pre-pyrolyzed ZIF (labelled by Co), which proves the
homogeneity coverage of the branched CNTs on the ZIF
nanocomplex. We next assess the elemental and valence states
of the ZIF-67-based nanocomplex at 700 °C using XPS (Figure
S3a). The high-resolution C 1s spectrum (from 282 to 292 eV,
Figure S3b) reveals four types of carbon bonds corresponding
to C−C (284.6 eV), C−N (285.4 eV), C−O (286.5 eV), and
O−CO (289.2 eV).39,55−57 The Co 2p spectrum (from 773
to 789 eV for Co 2p3/2 and from 790 to 809 eV for Co 2p1/2,
Figure S3c) agrees well with four signature peaks, that is, Co
(779.0 eV), Co trivalent (783.6 eV), and bivalent (794.5 and
800 eV). The divalent cobalt is oxidized to trivalent cobalt
when exposed to air.58 The N 1s spectrum (from 395 to 405
eV, Figure S3d) deconvolutes into pyridinium-N at 398.5 eV,
pyrrole nitrogen at 400.3 eV, graphitic nitrogen at 401.3 eV,
and nitric oxide at 404.5 eV.59 The Si 2p spectrum (from 98 to
106 eV, Figure S3e) indicates the coexistence of three
deconvoluted peaks of SiC (100.8 eV), SiOxCy (102.5 eV),
and SiO2 (103.4 eV).60 Combined with the thermogravimetric
analysis (TGA) curve (green) in Figure S1, the PDSDA seems
only partially degraded at 700 and 800 °C, indicating that a
transition layer can be formed.
We next investigated the temperature-dependent phase

composition and morphology changes of the synthesized
nanocomplex by analyzing the powder XRD results (Figure
2f). Weak diffraction peaks are found for the Co/Si/C/N-500
at the CoN(111) and (220) crystal face at 2θ = 36.9° and 2θ =
61.7° (JCPDS#83-0831) and Co2N(111) and (200) crystal
face at 2θ = 42.5° and 2θ = 65.3° (JCPDS#72-1368),
respectively. However, no obvious characteristic peaks of CoN
are shown for Co/Si/C/N-600, Co/Si/C/N-700, and Co/Si/
C/N-800, indicating the collapse of the CoN structure at 600
°C. The diffraction peaks at 2θ = 44.5°, 2θ = 51.5°, and 2θ =
76.0° are assigned to the (111), (200), and (220) crystal face
of cubic Co crystals. The enhanced peak for graphitic carbons
is observed when the pyrolysis temperature increases. The

grain sizes for graphitic carbons and cubic Co are calculated
using the Debye−Scherrer equation.50,61

λ
β θ

=D
K
cos (3)

where K = 0.90, λ = 0.154 nm, θ is the diffraction angle, and β
is the full width at half maxima of the most intense peak. The
calculated grain sizes of cubic cobalt atoms in Co/Si/C/N-600,
Co/Si/C/N-700, and Co/Si/C/N-800 are 15.3, 16.4, and 20.7
nm, respectively, and the dendritic structure gradually grows
on the surface of the ZIF-67-based nanocomplex when the
temperature increases to 600 °C and above (Figure S4).
Raman spectra are used to understand the morphological

distribution of carbons in the pyrolyzed nanocomplex (Figure
2g). With the increase of pyrolysis temperature, the ID/IG of
the integrated intensity changes to represent the degree of
disorder. Compared to Co/Si/C/N-600/800, the ID/IG of Co/
Si/C/N-700 is higher, indicating a higher lattice disorder in
sp2-hybridized carbon atoms and/or deposition of amorphous
carbon. The black spot (cobalt nanoparticles, Figure 2b) is
distributed around the dendritic polyhedron and causes
hysteresis. Meanwhile, the branching dendrite extends free
space and offers more contact surface, thus improving the
impedance matching. The results of XRD in Figure 2f indicate
clear polycrystalline phases, for example, (111), (200), and
(220), for the metallic cobalt, which agree well with TEM and
SAED results as shown in Figure 2c.
We then analyzed the porosity of the nanocomplex by

plotting N2 adsorption desorption curves using the BJH
calculation method (Figure 2h). All samples present a typical
type IV adsorption hysteresis characteristic loop at the nominal
pressure (p/p0) of 0.15−1.0 and 0.40−1.0.62,63 The rapid
increase of the N2 adsorption curve near the nominal pressure
of 0.95 is attributed to the capillary condensation, revealing the
presence of large pores in a sample with a size distribution
from 1.5 to 4.0 nm (see Table S2). For the ZIF67 crystals, the
specific surface area is up to 2055.4 m2/g. Because of the
introduction of PDSDA with a high ceramic yield on surfaces,
the specific surface area and pore size of the ZIF-based
nanocomplex rapidly decreased when pyrolysis temperature
increases. The small specific surface area of Co/Si/C/N-500
indicates the incomplete formation of a porous structure at low
temperature. The Co/Si/C/N-700 shows a high specific
surface area of 319.2 m2/g, whilst we discover a decrease in
the porosity for Co/Si/C/N-800, likely to occur once the
skeleton structures collapse and/or partially damage at high
temperature.
For EM wave absorption application, the general guideline

suggests that more than 90% of the incident EM wave will be
absorbed when the value of RC reaches −10 dB or less, which
is considered as a key criterion to determine EAB. By plotting
the RC data for the Co/Si/C/N porous complex at a
frequency range of 2−18 GHz (Figure 3a), an RCmin value
of −50.9 dB is found for Co/Si/C/N-700 with an EAB of 5.72
GHz, which covers almost the whole Ku-band (12−18 GHz).
This excellent EM wave absorption property is enabled by the
multi-length scale heterostructure formed after introducing
PDSDA into ZIF-67, where the pyrolyzed material without
PDSDA presents an opposite performance (Figure S5). It
should also be noted that the complex presents a strong
magnetic effect after pyrolysis (inset, Figure 3a), as part of the
unique feature of ZIF-67. The thickness-dependent peak shift
can be given by the following equation63
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where tm and fm are the thickness and frequency of the peak
dip, and λ and c represent the wavelength of the EM wave and
the light velocity in a vacuum, respectively. The Co/Si/C/N-
700 presents the best EAB and RCmin performance among the
rest of the samples (Figure S6), indicating that the optimized
heterostructure is achieved at 700 °C. The ZIF-67-based
complex in this research also presents advantage when
comparing to the other reports (Figure 3b).
In transition-metal/ZIF-67 complex systems, that is Zn/ZIF-

67,22 CuO/ZIF-67,23 and Fe/Ba-ZIF-67,64 the Co/Si/C/N-
700 with a RCmin value of −50.9 dB and an EAB of 5.72 GHz
shows the best EAB and RCmin. Even though Fe/ZIF-67 shows
an EAB of 6.72 GHz and a RCmin of −49.2 dB when the mass
fraction in the paraffin matrix is as high as 40%,65 the thickness
and density are also much higher than those of the Co/Si/C/N
nanocomplex. When it comes to silicon or carbon/ZIF-67
systems, for example, MWCNT/ZIF-67,24 SiC/ZIF-67,66 and
cotton/Ba-ZIF-67,67 our Co/Si/C/N nanocomplex also
possesses superior absorption in the whole Ku-band (12.0−
18.0 GHz), which has not been reported elsewhere in silicon
or carbon/ZIF-67 systems.
The EM wave absorption performance is determined by

complex permittivity and permeability. The real part (ε′) of
permittivity and the imaginary part (ε″) are related to
polarization and dielectric loss ability, respectively. From the
viewpoint of impedance matching, the low ε′ and high ε″ are
favorable to the enhanced EM wave absorption, that is, low
reflection coefficient. As shown in Figure S7, the Z value of
Co/Si/C/N-700 with a thickness of 1.9 mm is in the range of
0.8−1.0 in the Ku-band, implying good impedance matching
performance and excellent EM wave absorption. The
attenuation constant α of the Co/Si/C/N nanocomplex
calculated through eq 5 can access the dissipation effect for
the EM wave. The strong attenuation capability gradually
increased in the high frequency range as shown in Figure S7.
Meanwhile, the best impedance matching as well as large
attenuation ability of Co/Si/C/N-700 endows strong broad-
band absorbing performance.52

Figure 3. Reflection coefficient of Co/Si/C/N-700 at various
thicknesses and demonstration of coercivity for ZIF-67, P-ZIF-67,
and Co/Si/C/N-700 under magnetic field (a), and comparison of the
EM wave absorption properties of the ZIF-67-based nanocomplex
with other reported values (b), where the solid symbol and hollow
symbol refer to EAB and RCmin, respectively.

Figure 4. Complex permittivity plots (a) and permeability plots (b) for the Co/Si/C/N nanocomplex, and the illustration of hypothesized
interfacial-driven EM wave attenuation for the Co/Si/C/N nanocomplex (c).
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Furthermore, in Figure 4a, the values of the real part (ε′)
and imaginary part (ε″) in 2−18 GHz for all samples are
presented. For Co/Si/C/N-700, the ε′ value is in the range of
10−42 in 2−10 GHz. With the increase of the frequency, the
ε′ gradually decreased to about 5. At the same time, the ε″
(from 0.8 to 47) of Co/Si/C/N-700 is lower than that of other
samples. Thus, Co/Si/C/N-700 shows the low reflection
coefficient and wide EAB in the Ku-band. The magnetic
permeability of the Co/Si/C/N nanocomplex is also sensitive
to the frequency. As shown in Figure 4b, the real part (μ′) and
imaginary part (μ″) increased in 2−18 GHz for Co/Si/C/N-
500, Co/Si/C/N-600, and Co/Si/C/N-800, while the μ′
decreased after 10 GHz for Co/Si/C/N-700. The μ″ of Co/
Si/C/N-700 is higher than that of Co/Si/C/N-500 and Co/
Si/C/N-800 in 10−18 GHz. Overall, from the contribution of
both dielectric loss and magnetic loss, the Co/Si/C/N-700
shows excellent EM absorption among all the nanocomplexes.
As well known, the attenuation of the EM wave is the

consequence caused by the combined effects from dielectric
loss and magnetic loss. Dielectric tangent loss (tan δε = e″/ε′)
and magnetic tangent loss (tan δμ = μ″/μ′) are calculated to
assess the EM dissipation factors. Figure S8 shows the value of
EM loss with the Co/Si/C/N nanocomplex. It is obvious that
the tan δε value of Co/Si/C/N-700 decreases as the frequency
increases, whereas the tan δμ value shows an opposite trend.
To well understand the effect of magnetic loss on the EM wave
attenuation, we plot the hysteresis loop of the Co/Si/C/N
porous complex in Figure 2i. The ZIF-67 and P-ZIF-67 only
show a linear paramagnetic response. However, the Co/Si/C/
N nanocomplex shows a strong ferromagnetic response with a
gradually rising saturation magnetization (Ms) (7.9, 20.6, 47.3,
and 50.1 emu/g) when the pyrolysis temperature increases.
Because the absolute values of susceptibility are less than 1 (|χ|
< 1, Table S2), the paramagnetic response of the Co/Si/C/N
nanocomplex can be judged. The magnetization is attributed to
the CoN and Co2N nanocrystals in the nanocomplex. Because
the Co/Si/C/N-700 possesses the highest remanence (Mr) of
13.2 emu/g and coercivity (Hc) of 350 Oe in comparison to
other three samples (44−277 Oe), it can dissipate the EM
wave into heat to attenuate at a high frequency.68

Based on the analyses mentioned above, the illustration of
hypothesized interfacial-driven EM wave attenuation for the
Co/Si/C/N nanocomplex is presented in Figure 4c. The
heterostructured Co/Si/C/N nanocomplex consisting of a low
dielectric layer, porous structure, and regular distribution of
magnetic cobalt particles provides multiple interfaces to enable
unique impedance matching and EM loss. The low dielectric
layer like dendrites and porous structures can allow the EM
wave to enter the polyhedron and convert into heat and atomic
vibration. The conductive network formed by amorphous
carbon and cobalt particles can maximize the interfacial
polarization loss. Ferromagnetism of the cobalt particle and
transmission of the low dielectric layer to a high dielectric core
allow more EM wave absorption rather than reflection, thus
enhancing the formation of a magnetic eddy current.69,70 The
combining effect from multi-lengthscale structures among the

interfaces contribute to outstanding EM wave absorption
properties together.

■ CONCLUSIONS
A facile strategy was developed to achieve a ZIF-67-based
heterostructured nanocomplex by introducing a surface
coordinated reaction between PDSDA and ZIF-67. The
involvement of PDSDA allows the ZIF host to undergo
significant surface morphological transformations by carboniz-
ing the organic ligand during the pyrolysis. The nanocomplex
possesses a hierarchical heterostructure consisting of an MOF
defined by the original ZIF particles, nano-structured surface
made by branched CNTs and a regionally distributed graphene
skirt, and a mesoporous surface based on Co particles. After
further exploring the structure-functionality relationship of the
nanocomplex, unique EM wave absorption for the synthesized
nanocomplex is demonstrated, by achieving a RCmin value of
−50.9 dB and a EAB of 5.72 GHz at a thin thickness of 1.9 mm
that almost covers the whole Ku-band (12.0−18.0 GHz). We
expect that this study of the structural design of the ZIF-based
nanocomplex will open up a new window for developing high-
performance EM wave absorbing materials in future.

■ ASSOCIATED CONTENT
*S Supporting Information
The Supporting Information is available free of charge on the
ACS Publications website at DOI: 10.1021/acsami.9b03944.

TGA-mass curves of polymers, XPS spectra, and
reflection coefficient of ceramics (PDF)

■ AUTHOR INFORMATION
Corresponding Authors
*E-mail: ben.xu@northumbria.ac.uk (B.X.).
*E-mail: kongjie@nwpu.edu.cn (J.K.).
ORCID
Ben B. Xu: 0000-0002-6747-2016
Jie Kong: 0000-0002-9405-3204
Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
This work was financially supported by the National Natural
Science Foundation of China (21875190), the Natural Science
Basic Research Plan in Shaanxi Province of China (2018JC-
008, Distinguished Young Scholar), the Shaanxi Province Key
Research and Development Plan for Industry Innovation
Chain (Cluster) (2018ZDCXL-GY-09-07), the Analytical and
Testing Center of NPU, and the Engineering and Physical
Sciences Research Council (EPSRC) grants-EP/N007921 and
EP/N032861/1.

■ REFERENCES
(1) Han, L.; Yu, X.-Y.; Lou, X. W. D. Formation of Prussian-Blue-
Analog Nanocages via a Direct Etching Method and their Conversion
into Ni-Co-Mixed Oxide for Enhanced Oxygen Evolution. Adv. Mater.
2016, 28, 4601−4605.
(2) Li, J.-R.; Kuppler, R. J.; Zhou, H.-C. Selective Gas Adsorption
and Separation in Metal-Organic Frameworks. Chem. Soc. Rev. 2009,
38, 1477−1504.
(3) Zhang, W.; Lu, G.; Cui, C.; Liu, Y.; Li, S.; Yan, W.; Xing, C.; Chi,
Y. R.; Yang, Y.; Huo, F. A Family of Metal-Organic Frameworks

ACS Applied Materials & Interfaces Research Article

DOI: 10.1021/acsami.9b03944
ACS Appl. Mater. Interfaces 2019, 11, 17706−17713

17711

http://pubs.acs.org/doi/suppl/10.1021/acsami.9b03944/suppl_file/am9b03944_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsami.9b03944/suppl_file/am9b03944_si_001.pdf
http://pubs.acs.org
http://pubs.acs.org/doi/abs/10.1021/acsami.9b03944
http://pubs.acs.org/doi/suppl/10.1021/acsami.9b03944/suppl_file/am9b03944_si_001.pdf
mailto:ben.xu@northumbria.ac.uk
mailto:kongjie@nwpu.edu.cn
http://orcid.org/0000-0002-6747-2016
http://orcid.org/0000-0002-9405-3204
https://www.ncbi.nlm.nih.gov/pubmed/30892830
http://dx.doi.org/10.1021/acsami.9b03944


Exhibiting Size-Selective Catalysis with Encapsulated Noble-Metal
Nanoparticles. Adv. Mater. 2014, 26, 4056−4060.
(4) Wu, H. B.; Lou, X. W. Metal-Organic Frameworks and Their
Derived Materials for Electrochemical Energy Storage and Con-
version: Promises and Challenges. Sci. Adv. 2017, 3, No. eaap9252.
(5) Saha, S.; Das, G.; Thote, J.; Banerjee, R. Photocatalytic Metal-
Organic Framework from CdS Quantum Dot Incubated Luminescent
Metallohydrogel. J. Am. Chem. Soc. 2014, 136, 14845−14851.
(6) Yoon, S. M.; Park, J. H.; Grzybowski, B. A. Large-Area,
Freestanding MOF Films of Planar, Curvilinear, or Micropatterned
Topographies. Angew. Chem., Int. Ed. 2017, 56, 127−132.
(7) Zhang, Z.; Chen, Y.; Xu, X.; Zhang, J.; Xiang, G.; He, W.; Wang,
X. Well-defined Metal-Organic Framework Hollow Nanocages.
Angew. Chem., Int. Ed. 2014, 53, 429−433.
(8) Zhuang, X.; Gehrig, D.; Forler, N.; Liang, H.; Wagner, M.;
Hansen, M. R.; Laquai, F.; Zhang, F.; Feng, X. Conjugated
Microporous Polymers with Dimensionality-controlled Heterostruc-
tures for Green Energy Devices. Adv. Mater. 2015, 27, 3789−3796.
(9) Kim, M.; Cahill, J. F.; Fei, H.; Prather, K. A.; Cohen, S. M.
Postsynthetic Ligand and Cation Exchange in Robust Metal-Organic
Frameworks. J. Am. Chem. Soc. 2012, 134, 18082−18088.
(10) Kaneti, Y. V.; Dutta, S.; Hossain, M. S. A.; Shiddiky, M. J. A.;
Tung, K.-L.; Shieh, F.-K.; Tsung, C.-K.; Wu, K. C.-W.; Yamauchi, Y.
Strategies for Improving the Functionality of Zeolitic Imidazolate
Frameworks: Tailoring Nanoarchitectures for Functional Applica-
tions. Adv. Mater. 2017, 29, 1700213−1700244.
(11) Phan, A.; Doonan, C. J.; Uribe-Romo, F. J.; Knobler, C. B.;
O’Keeffe, M.; Yaghi, O. M. Synthesis, Structure, and Carbon Dioxide
Capture Properties of Zeolitic Imidazolate Frameworks. Acc. Chem.
Res. 2010, 43, 58−67.
(12) Banerjee, R.; Phan, A.; Wang, B.; Knobler, C.; Furukawa, H.;
O’Keeffe, M.; Yaghi, O. M. High-throughput Synthesis of Zeolitic
Imidazolate Frameworks and Application to CO2Capture. Science
2008, 319, 939−943.
(13) Tan, J. C.; Bennett, T. D.; Cheetham, A. K. Chemical structure,
network topology, and porosity effects on the mechanical properties
of Zeolitic Imidazolate Frameworks. Proc. Natl. Acad. Sci. U.S.A. 2010,
107, 9938−9943.
(14) Aromí, G.; Barrios, L. A.; Roubeau, O.; Gamez, P. Triazoles and
tetrazoles: Prime ligands to generate remarkable coordination
materials. Coord. Chem. Rev. 2011, 255, 485−546.
(15) Morris, W.; Doonan, C. J.; Furukawa, H.; Banerjee, R.; Yaghi,
O. M. Crystals as Molecules: Postsynthesis Covalent Functionaliza-
tion of Zeolitic Imidazolate Frameworks. J. Am. Chem. Soc. 2008, 130,
12626−12627.
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Albelo, L. M.; Coudert, F.-X.; Slater, B.; Cheetham, A. K.; Mellot-
Draznieks, C. Zeolitic Imidazole Frameworks: Structural and
Energetics Trends Compared with Their Zeolite Analogues.
CrystEngComm 2009, 11, 2272−2276.
(20) Karagiaridi, O.; Bury, W.; Sarjeant, A. A.; Stern, C. L.; Farha, O.
K.; Hupp, J. T. Synthesis and Characterization of Isostructural
Cadmium Zeolitic Imidazolate Frameworks via Solvent-assisted
Linker Exchange. Chem. Sci. 2012, 3, 3256−3260.
(21) Shahzad, F.; Alhabeb, M.; Hatter, C. B.; Anasori, B.; Man
Hong, S.; Koo, C. M.; Gogotsi, Y. Electromagnetic Interference
Shielding with 2D Transition Metal Carbides (MXenes). Science
2016, 353, 1137−1140.

(22) Feng, W.; Wang, Y.; Chen, J.; Li, B.; Guo, L.; Ouyang, J.; Jia,
D.; Zhou, Y. Metal Organic Framework-Derived CoZn Alloy/N-
doped Porous Carbon Nanocomposites: Tunable Surface Area and
Electromagnetic Wave Absorption Properties. J. Mater. Chem. C 2018,
6, 10−18.
(23) Ma, J.; Zhang, X.; Liu, W.; Ji, G. Direct Synthesis of MOF-
Derived Nanoporous CuO/Carbon Composites for High Impedance
Matching and Advanced Microwave Absorption. J. Mater. Chem. C
2016, 4, 11419−11426.
(24) Yin, Y.; Liu, X.; Wei, X.; Li, Y.; Nie, X.; Yu, R.; Shui, J.
Magnetically Aligned Co-C/MWCNTs Composite Derived from
MWCNT-Interconnected Zeolitic Imidazolate Frameworks for a
Lightweight and Highly Efficient Electromagnetic Wave Absorber.
ACS Appl. Mater. Interfaces 2017, 9, 30850−30861.
(25) Yin, Y.; Liu, X.; Wei, X.; Yu, R.; Shui, J. Porous CNTs/Co
Composite Derived from Zeolitic Imidazolate Framework: A
Lightweight, Ultrathin, and Highly Efficient Electromagnetic Wave
Absorber. ACS Appl. Mater. Interfaces 2016, 8, 34686−34698.
(26) Lv, H.; Yang, Z.; Wang, P. L.; Ji, G.; Song, J.; Zheng, L.; Zeng,
H.; Xu, Z. J. A Voltage-Boosting Strategy Enabling a Low-Frequency,
Flexible Electromagnetic Wave Absorption Device. Adv. Mater. 2018,
30, 1706343−1706351.
(27) Lu, S.; Meng, Y.; Wang, H.; Wang, F.; Yuan, J.; Chen, H.; Dai,
Y.; Chen, J. Great Enhancement of Electromagnetic Wave Absorption
of MWCNTs@Carbonaceous CoO Composites Derived from
MWCNTs-Interconnected Zeolitic Imidazole Framework. Appl.
Surf. Sci. 2019, 481, 99−107.
(28) Wang, K.; Chen, Y.; Tian, R.; Li, H.; Zhou, Y.; Duan, H.; Liu,
H. Porous Co-C Core-Shell Nanocomposites Derived from Co-MOF-
74 with Enhanced Electromagnetic Wave Absorption Performance.
ACS Appl. Mater. Interfaces 2018, 10, 11333−11342.
(29) Lv, H.; Yang, Z.; Ong, S. J. H.; Wei, C.; Liao, H.; Xi, S.; Du, Y.;
Ji, G.; Xu, Z. J. A Flexible Microwave Shield with Tunable Frequency-
Transmission and Electromagnetic Compatibility. Adv. Funct. Mater.
2019, 29, 1900163.
(30) Luo, C.; Tang, Y.; Jiao, T.; Kong, J. High-Temperature Stable
and Metal-Free Electromagnetic Wave-Absorbing SiBCN Ceramics
Derived from Carbon-Rich Hyperbranched Polyborosilazanes. ACS
Appl. Mater. Interfaces 2018, 10, 28051−28061.
(31) Yin, X.; Kong, L.; Zhang, L.; Cheng, L.; Travitzky, N.; Greil, P.
Electromagnetic Properties of Si−C−N Based Ceramics and
Composites. Int. Mater. Rev. 2014, 59, 326−355.
(32) Dai, X.; Du, Y.; Yang, J.; Wang, D.; Gu, J.; Li, Y.; Wang, S.; Xu,
B. B.; Kong, J. Recoverable and Self-healing Electromagnetic Wave
Absorbing Nanocomposites. Compos. Sci. Technol. 2019, 174, 27−32.
(33) Luo, C.; Jiao, T.; Gu, J.; Tang, Y.; Kong, J. Graphene Shield by
SiBCN Ceramic: A Promising High-Temperature Electromagnetic
Wave-Absorbing Material with Oxidation Resistance. ACS Appl.
Mater. Interfaces 2018, 10, 39307−39318.
(34) Luo, C.; Jiao, T.; Tang, Y. S.; Kong, J. Excellent Electro-
magnetic Wave Absorption of Iron-Containing SiBCN Ceramics at
1158K High-Temperature. Adv. Eng. Mater. 2018, 20, 1701168.
(35) Song, Y.; He, L.; Zhang, X.; Liu, F.; Tian, N.; Tang, Y.; Kong, J.
Highly Efficient Electromagnetic Wave Absorbing Metal-Free and
Carbon-Rich Ceramics Derived from Hyperbranched Polycarbosila-
zanes. J. Phys. Chem. C 2017, 121, 24774−24785.
(36) West, R.; David, L. D.; Djurovich, P. I.; Stearley, K. L.;
Srinivasan, K. S. V.; Yu, H. Phenylmethylpolysilanes: formable silane
copolymers with potential semiconducting properties. J. Am. Chem.
Soc. 1981, 103, 7352−7354.
(37) Kong, J.; Schmalz, T.; Motz, G.; Müller, A. H. E.
Magnetoceramic Nanocrystals from the Bulk Pyrolysis of Novel
Hyperbranched Polyferrocenyl(boro)carbosilanes. J. Mater. Chem. C
2013, 1, 1507−1514.
(38) Corriu, R. J. P.; Guerin, C.; Henner, B.; Jean, A.; Garnier, F.;
Yassar, A.; Kuhlmann, T. Organosilicon polymers: synthesis of
poly[(silanylene)diethynylene]s with conducting properties. Chem.
Mater. 1990, 2, 351−352.

ACS Applied Materials & Interfaces Research Article

DOI: 10.1021/acsami.9b03944
ACS Appl. Mater. Interfaces 2019, 11, 17706−17713

17712

http://dx.doi.org/10.1021/acsami.9b03944


(39) Luo, C.; Duan, W.; Yin, X.; Kong, J. Microwave-Absorbing
Polymer-Derived Ceramics from Cobalt-Coordinated Poly-
(dimethylsilylene)diacetylenes. J. Phys. Chem. C 2016, 120, 18721−
18732.
(40) Wu, R.; Xue, Y.; Liu, B.; Zhou, K.; Wei, J.; Chan, S. H. Cobalt
Diselenide Nanoparticles Embedded within Porous Carbon Polyhedra
as Advanced Electrocatalyst for Oxygen Reduction Reaction. J. Power
Sources 2016, 330, 132−139.
(41) Torad, N. L.; Hu, M.; Ishihara, S.; Sukegawa, H.; Belik, A. A.;
Imura, M.; Ariga, K.; Sakka, Y.; Yamauchi, Y. Direct Synthesis of
MOF-Derived Nanoporous Carbon with Magnetic Co Nanoparticles
toward Efficient Water Treatment. Small 2014, 10, 2096−2107.
(42) Jiang, Z.; Li, Z.; Qin, Z.; Sun, H.; Jiao, X.; Chen, D. LDH
Nanocages Synthesized with MOF Templates and Their High
Performance as Supercapacitors. Nanoscale 2013, 5, 11770−11775.
(43) Lerf, A.; He, H.; Forster, M.; Klinowski, J. Structure of Graphite
Oxide Revisited∥. J. Phys. Chem. B 1998, 102, 4477−4482.
(44) Miles, P. A.; Westphal, W. B.; Von Hippel, A. Dielectric
Spectroscopy of Ferromagnetic Semiconductors. Rev. Mod. Phys.
1957, 29, 279−307.
(45) You, B.; Jiang, N.; Sheng, M.; Drisdell, W. S.; Yano, J.; Sun, Y.
Bimetal-Organic Framework Self-Adjusted Synthesis of Support-Free
Nonprecious Electrocatalysts for Efficient Oxygen Reduction. ACS
Catal. 2015, 5, 7068−7076.
(46) Wu, R.; Wang, D. P.; Rui, X.; Liu, B.; Zhou, K.; Law, A. W. K.;
Yan, Q.; Wei, J.; Chen, Z. In-situ Formation of Hollow Hybrids
Composed of Cobalt Sulfides Embedded within Porous Carbon
Polyhedra/carbon Nanotubes for High-performance Lithium-ion
Batteries. Adv. Mater. 2015, 27, 3038−3044.
(47) Tang, J.; Salunkhe, R. R.; Liu, J.; Torad, N. L.; Imura, M.;
Furukawa, S.; Yamauchi, Y. Thermal Conversion of Core-Shell Metal-
Organic Frameworks: A New Method for Selectively Functionalized
Nanoporous Hybrid Carbon. J. Am. Chem. Soc. 2015, 137, 1572−
1580.
(48) Xia, W.; Zhu, J.; Guo, W.; An, L.; Xia, D.; Zou, R. Well-defined
carbon polyhedrons prepared from nano metal-organic frameworks
for oxygen reduction. J. Mater. Chem. A 2014, 2, 11606−11613.
(49) Bhat, I.; Husain, S.; Khan, W.; Patil, S. I. Effect of Zn Doping
on Structural, Magnetic and Dielectric Properties of La-
FeO3Synthesized through Sol-gel Auto-combustion Process. Mater.
Res. Bull. 2013, 48, 4506−4512.
(50) Jacobs, B. W.; Houk, R. J. T.; Anstey, M. R.; House, S. D.;
Robertson, I. M.; Talin, A. A.; Allendorf, M. D. Ordered metal
nanostructureself-assembly using metal-organic frameworks as
templates. Chem. Sci. 2011, 2, 411−416.
(51) Lu, S.; Meng, Y.; Wang, H.; Wang, F.; Yuan, J.; Chen, H.; Dai,
Y.; Chen, J. Great Enhancement of Electromagnetic Wave Absorption
of Mwcnts@Carbonaceous CoO Composites Derived from Mwcnts-
Interconnected Zeolitic Imidazole Framework. Appl. Surf. Sci. 2019,
481, 99−107.
(52) Fang, J.; Liu, T.; Chen, Z.; Wang, Y.; Wei, W.; Yue, X.; Jiang, Z.
A Wormhole-Like Porous Carbon/Magnetic Particles Composite as
an Efficient Broadband Electromagnetic Wave Absorber. Nanoscale
2016, 8, 8899−8909.
(53) Chen, Y.-Z.; Wang, C.; Wu, Z.-Y.; Xiong, Y.; Xu, Q.; Yu, S.-H.;
Jiang, H.-L. From Bimetallic Metal-Organic Framework to Porous
Carbon: High Surface Area and Multicomponent Active Dopants for
Excellent Electrocatalysis. Adv. Mater. 2015, 27, 5010−5016.
(54) Salunkhe, R. R.; Tang, J.; Kamachi, Y.; Nakato, T.; Kim, J. H.;
Yamauchi, Y. Asymmetric Supercapacitors Using 3D Nanoporous
Carbon and Cobalt Oxide Electrodes Synthesized from a Single
Metal-Organic Framework. ACS Nano 2015, 9, 6288−6296.
(55) Zhao, W.; Kong, J.; Liu, H.; Zhuang, Q.; Gu, J.; Guo, Z. Ultra-
high Thermally Conductive and Rapid Heat Responsive Poly-
(benzobisoxazole) Nanocomposites with Self-Aligned Graphene.
Nanoscale 2016, 8, 19984−19993.
(56) Bhadra, B. N.; Song, J. Y.; Khan, N. A.; Jhung, S. H. TiO2-
Containing Carbon Derived from a Metal-Organic Framework

Composite: A Highly Active Catalyst for Oxidative Desulfurization.
ACS Appl. Mater. Interfaces 2017, 9, 31192−31202.
(57) Zhao, W.; Tang, Y.; Xi, J.; Kong, J. Functionalized Graphene
Sheets with Poly(ionic liquid)s and High Adsorption Capacity of
Anionic Dyes. Appl. Surf. Sci. 2015, 326, 276−284.
(58) Chen, H.; Wang, M. Q.; Yu, Y.; Liu, H.; Lu, S.-Y.; Bao, S.-J.;
Xu, M. Assembling Hollow Cobalt Sulfide Nanocages Array on
Graphene-like Manganese Dioxide Nanosheets for Superior Electro-
chemical Capacitors. ACS Appl. Mater. Interfaces 2017, 9, 35040−
35047.
(59) Song, Z.; Liu, W.; Cheng, N.; Norouzi Banis, M.; Li, X.; Sun,
Q.; Xiao, B.; Liu, Y.; Lushington, A.; Li, R.; Liu, L.; Sun, X. Origin of
the High Oxygen Reduction Reaction of Nitrogen and Sulfur co-
doped MOF-derived Nanocarbon Electrocatalysts. Mater. Horiz.
2017, 4, 900−907.
(60) Wang, B.; Wang, Y.; Lei, Y.; Wu, N.; Gou, Y.; Han, C. Tailoring
of Porous Structure in Macro-Meso-Microporous SiC Ultrathin
FibersviaElectrospinning Combined with Polymer-Derived Ceramics
Route. Mater. Manuf. Processes 2015, 31, 1357−1365.
(61) Ashiq, M. N.; Qureshi, R. B.; Malana, M. A.; Ehsan, M. F.
Fabrication, Structural, Dielectric and Magnetic Properties of
Tantalum and Potassium Doped M-type Strontium Calcium
Hexaferrites. J. Alloys Compd. 2015, 651, 266−272.
(62) Xia, W.; Zou, R.; An, L.; Xia, D.; Guo, S. A Metal−organic
Framework Route to in situ Encapsulation of Co@Co3O4@C Core@
Bishell Nanoparticles into a Highly Ordered Porous Carbon Matrix
for Oxygen Reduction. Energy Environ. Sci. 2015, 8, 568−576.
(63) Li, G.; Wang, L.; Li, W.; Ding, R.; Xu, Y. CoFe2O4 and/or
Co3Fe7Loaded Porous Activated Carbon Balls as a Lightweight
Microwave Absorbent. Phys. Chem. Chem. Phys. 2014, 16, 12385−
12392.
(64) Wang, L.; Guan, Y.; Qiu, X.; Zhu, H.; Pan, S.; Yu, M.; Zhang,
Q. Efficient Ferrite/Co/Porous Carbon Microwave Absorbing
Material based on Ferrite@Metal-Organic Framework. Chem. Eng. J.
2017, 326, 945−955.
(65) Quan, B.; Liang, X.; Ji, G.; Ma, J.; Ouyang, P.; Gong, H.; Xu,
G.; Du, Y. Strong Electromagnetic Wave Response Derived from the
Construction of Dielectric/Magnetic Media Heterostructure and
Multiple Interfaces. ACS Appl. Mater. Interfaces 2017, 9, 9964−9974.
(66) Zhang, K.; Wu, F.; Xie, A.; Sun, M.; Dong, W. In Situ Stringing
of Metal Organic Frameworks by SiC Nanowires for High-
Performance Electromagnetic Radiation Elimination. ACS Appl.
Mater. Interfaces 2017, 9, 33041−33048.
(67) Zhao, H.; Cheng, Y.; Ma, J.; Zhang, Y.; Ji, G.; Du, Y.
Sustainable Route from Biomass Cotton to Construct Lightweight
and High-Performance Microwave Absorber. Chem. Eng. J. 2018, 339,
432−441.
(68) Ohkoshi, S.-I.; Kuroki, S.; Sakurai, S.; Matsumoto, K.; Sato, K.;
Sasaki, S. A Millimeter-Wave Absorber Based on Gallium-Substituted
ε-Iron Oxide Nanomagnets. Angew. Chem., Int. Ed. 2007, 46, 8392−
8395.
(69) Cao, M.-S.; Yang, J.; Song, W.-L.; Zhang, D.-Q.; Wen, B.; Jin,
H.-B.; Hou, Z.-L.; Yuan, J. Ferroferric Oxide/Multiwalled Carbon
Nanotube vs Polyaniline/Ferroferric Oxide/Multiwalled Carbon
Nanotube Multiheterostructures for Highly Effective Microwave
Absorption. ACS Appl. Mater. Interfaces 2012, 4, 6948−6955.
(70) Fang, J.; Liu, T.; Chen, Z.; Wang, Y.; Wei, W.; Yue, X.; Jiang, Z.
A Wormhole-Like Porous Carbon/Magnetic Particles Composite as
an Efficient Broadband Electromagnetic Wave Absorber. Nanoscale
2016, 8, 8899−8909.

ACS Applied Materials & Interfaces Research Article

DOI: 10.1021/acsami.9b03944
ACS Appl. Mater. Interfaces 2019, 11, 17706−17713

17713

http://dx.doi.org/10.1021/acsami.9b03944


Contents lists available at ScienceDirect

Composites Science and Technology

journal homepage: www.elsevier.com/locate/compscitech

Recoverable and self-healing electromagnetic wave absorbing
nanocomposites

Xingyi Daia, Yuzhang Dua, Jiye Yanga, Ding Wangb, Junwei Gua, Yifan Lib, Steven Wangc,
Ben B. Xub,∗∗, Jie Konga,∗

aMOE Key Laboratory of Materials Physics and Chemistry in Extraordinary Conditions, Shaanxi Key Laboratory of Macromolecular Science and Technology, School of
Science, Northwestern Polytechnical University, Xi'an, 710072, PR China
bMechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
c School of Chemical Engineering and Advanced Materials, Newcastle University, Newcastle Upon Tyne, Tyne and Wear, NE1 7RU, UK

A R T I C L E I N F O

Keywords:
Self-healing
Reprocessing
Recycling
Electromagnetic wave absorption
Dynamic covalent bonds

A B S T R A C T

Recent advancements in electronics engineering require materials with the resiliency and sustainability to ex-
tend their life time. With this regard, we presented a sustainable multi-functional nanocomposites strategy by
introducing dynamic imine bonds based polyazomethine (PAM) as molecular interconnects and Fe3O4-loaded
multiwalled carbon nanotubes as electromagnetic (EM) wave absorbing units. Driven by the reversible dynamic
imine bonds, our materials show robust spontaneous self-healing with excellent healing efficiencies of 95% for
PAM and 90% for nanocomposite, and an accelerated recovery under a moderate mechanical stimulus. By
adding Fe3O4-loaded multiwalled carbon nanotubes, the hybrids show excellent EM wave absorbing properties
with 50% increment on minimum reflection coefficient (−40.6 dB) than the reported value. We demonstrate a
full degradability by decomposing a nanocomposite sheet of 100mg in an acidic solution within 90min at room
temperature. The nanofillers and monomers after degradation can be re-used to synthesis nanocomposites. The
testing results for recoverable nanocomposites show a good retention on mechanical property. This novel
strategy may shed a light on the downstream applications in EM wave absorbing devices and smart structures
with great potential to accelerate circular economy.

1. Introduction

Electromagnetic (EM) interference and pollution have been seen as
threats to public health and environment, caused by the ubiquitously
use of cell phones, motors, computers, remote sensors, radars, etc. [1,2]
One of the essential solutions is to innovate and apply high performance
EM wave absorbing materials in products, which has attracted con-
siderable interests in last few years [3–5]. In comparison to other
conventional materials (metals, ceramics and carbons), polymeric na-
nocomposites offer great advantages due to their flexibility, easy pro-
cessing, light-weight, low cost, etc. [6–8] However, intrinsic char-
acteristics from polymeric materials still bottle-necked the
advancement where mechanical failures (cracking and fracture) can be
easily found within structures/devices during operation [9–12]. The
disposal of failed products arises even more concerns relevant to the
environmental sustainability. Therefore, a circular material strategy
that can provide resiliency, i.e. self-recovery and sustainability

(recyclability), would be highly desirable for next generation EM wave
absorbing devices [13–15].

Self-healing property, fulfilled by the reversibility of macro-
molecular systems, has been studied extensively under noncovalent
(physical) interactions, i.e. the inherent long-chain entanglements [16],
metal-ligand coordination [17], host-guest interactions [18,19], ionic
interactions [20], electrostatic interactions [21], π-π stacking [22], and
hydrogen bonds [23]. Self-healing can be obtained by generating re-
versible chemical covalent bonds in the materials network [24–27],
those chemical interactions include acylhydrazone bonds [28–30],
disulfide bonds [31,32], boronic ester linkages [33], diarylbibenzofur-
anone links [34], thiuram disulfide units [35], Diels-Alder reactions
[36], and imine bonds (eCH]Ne) [37–40].

Notably, Bao and co-workers synthesised a polydimethylsiloxane
(PDMS) elastomer with spontaneous self-healing function by forming
supramolecular dynamic interactions with coordination complexes
[41]. Recently, Yu et al. developed a PDMS elastomer with self-healing
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property by incorporating imine bond, and demonstrated conceptual
applications in flexible interconnector and chemical sensor [42]. Zhang
et al. designed a kind of electromagnetic shielding materials with easy-
processing and self-healing capacity under external force and magnetic
force [43]. Wang et al. also reported an EM wave absorption coating
with self-healing property, a less ideal minimum reflection coefficient
was reported as −27.2 dB with a thickness of 4mm [44]. Nevertheless,
polymeric nanocomposites based EM absorbing materials with sus-
tainable features has been under exploited, partially due to the high
viscosity and irreversible physical interactions brought by the nano-
fillers.

In this work, we propose a synthesis strategy to achieve EM wave
absorbing nanocomposites by using dynamic imine bonds-based poly-
azomethine (PAM) as macromolecular interconnects and Fe3O4-loaded
multiwalled carbon nanotubes (Fe3O4@MWCNTs) as EM wave ab-
sorbing units. The nanocomposite presents a unique spontaneous self-
healing, and an outstanding reprocessability that can be reformed
under a low compressive stress at room temperature. We demonstrate a
good sustainability for our composites by instantly degrading the
polymer network in an acidic solution, from where the nanofillers and
monomers can be collected and reused, therefore lead to an improved
environmental impact by using this facile materials strategy.

2. Experimental section

2.1. Materials

Trimethylolethane (98.0%, TCI), p-toluenesulfonylchioride (99.0%,
TCI), 4-dimethylaminopyridine (DMAP, 99.0%, Aladdin), 4-hydroxy
benzaldehyde (99.0%, Aladdin), potassium carbonate (99.0%,
Aladdin), poly(propylene glycol)bis(2-aminopropyl ether) (PEA,
Mn= 2000Da, Aladdin), iron(II) chloride tetrahydrate (FeCl2·4H2O,
99.0%, Aladdin), iron chloride hexahydrate (FeCl3·6H2O, 99.0%,
Aladdin). Multi-walled carbon nanotubes (MWCNTs, average diameter
of 20–40 nm, length of 10–30 μm, purity > 90%) were purchased from
Chengdu Org. Chem. Co. Ltd. All other reagents were utilized as re-
ceived unless otherwise specified.

2.2. Two steps synthesis of 1, 1, 1-tris[(4-formylphenoxy)methyl]ethane

The first step is to synthesis tris[(4-tolylsulfonyl)methyl]ethane. As
shown in Supporting Information (Fig. S1), trimethylolethane (2.45 g,
20 mmol) and a catalytic amount of DMAP were dissolved in 30mL
pyridine, then the mixture was cooled to 0 °C in an ice bath. Later, we
added p-toluenesulfonylchioride (13.34 g, 70mmol) in 20mL pyridine
drop by drop into above mixture. The mixture was then removed from
the ice-water bath and the reaction was kept going for 12 h at room
temperature. When the reaction was completed, the mixture was di-
luted with 100mL dichloromethane, and then washed with 200mL 1M
HCl solution, 200mL water and dried. The solvent was evaporated and
a white crystalline solid was obtained by crystallization (9.8 g, yield:
84.1%). 1H NMR (400MHz, CDCl3, δ): 7.72 (d, 6H, ArH), 7.38 (d, 6H,
ArH), 3.79 (s, 6H, eCH2-), 2.49 (s, 9H, eCH3), 0.92 (s, 3H, eCH3).

The second step began with mixing tris[(4-tolylsulfonyl)methyl]
ethane (5.83 g, 10mmol), 4-hydroxy benzaldehyde (4.98 g, 40mmol)
and potassium carbonate (5.58 g, 40mmol) in 30mL anhydrous N, N-
dimethylformamide (DMF) under nitrogen atmosphere, and the mix-
ture was heated at 150 °C under reflux for 12 h. Then, the mixture was
extracted into 100mL dichloromethane and washed with 200mL
water, 100mL saturated brine and dried over anhydrous MgSO4. The
solvent was evaporated and the crude product was achieved after
purification (3.2 g, yield: 74.1%). 1H NMR (400MHz, CDCl3, δ): 9.91 (s
3H, eCHO), 7.87 (d, 6H, ArH), 7.05 (d, 6H, ArH), 4.22 (s, 6H, eCH2-),
1.41 (s, 3H, eCH3).

2.3. Preparations of polyazomethine (PAM) and Fe3O4@MWCNTs/PAM
nanocomposites

For PAM sample preparation, poly(propylene glycol)bis(2-amino-
propyl ether) (PEA, 200mg, 0.1mmol) was dissolved in 0.5 mL anhy-
drous N, N-dimethylformamide (DMF), followed by adding tris[(4-for-
mylphenoxy)methyl]ethane (31mg, 0.0667mmol). After uniformly
mixing the solution, glacial acetic acid (AcOH, 2.5 μL) was added. The
mixture was then slowly transferred to the Teflon moulds and sealed at
room temperature for 12 h. The prepared PAM was dried at 35 °C in the
open air for 24 h, to allow the chemical cross-linking to complete within
the materials. Fe3O4 decorated multi-walled carbon nanotubes (Fe3O4@
MWCNTs) were prepared as presented in Fig. S2. For Fe3O4@MWCNTs/
PAM nanocomposites, certain amount of synthesised Fe3O4@MWCNTs
nanofillers were added and ultra-sonicated for 30min when mixing PEA
and tris[(4-formylphenoxy)methyl]ethane in DMF. The rest processes
were the same to that for PAM.

2.4. Characterization

1H NMR analyses were recorded by a Bruker Avance 400 spectro-
meter (Bruker BioSpin, Switzerland) at 25 °C with deuterated chloro-
form (CDCl3) as the solvent. Chemical shifts are referenced to tetra-
methylsilane (TMS). The uniaxial tensile tests were carried out
following the requirements in ISO37-4, using an Instron 3342 universal
tester at a crosshead speed of 20mmmin−1. At least four specimens for
each healing time and repeated repair were tested to obtain the average
values of the tensile strength, fracture strain, as well as standard de-
viation. Optical observations were performed under an upright micro-
scope (Olympus IX73). The surface microstructures were assessed via a
field emission scanning electron microscope (FE-SEM, SU-8010,
Hitachi) operated at an accelerating voltage of 1.0 kV. The surface
profiles were performed with a Dektak XT (Bruker) with a line scanning
rate of 0.05mm per second. Other analyses, such as Fourier transform
infrared spectroscopy, Powder X-ray diffraction, X-ray photoelectron
spectroscopy are presented in Supporting Information.

2.5. Microwave absorption measurements and analysis

The relative complex permittivity and permeability were measured
on rectangular specimens (22.8 mm×10.2 mm×2.0mm) by a vector
network analyzer (VNA, MS4644A, Anritsu, Japan) using waveguide
method in the frequency range of 8.2–12.4 GHz. On the basis of the
metal backplane model, the reflection coefficient (RC) can be calculated
from the measured relative complex permittivity and permeability ac-
cording to the transmission line theory by the following equations:
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where Zin stands the normalized input impedance, μr and ɛr are, re-
spectively, the relative complex permeability and permittivity, and f
represents the frequency of the microwaves, d is the thickness of tested
materials, and c is the light velocity in vacuum [45,46].

3. Results and discussion

The reversible dynamic imine bond enabled self-healing process is
illustrated in Fig. 1a. The key molecular interconnect is the dynamic A2-
B3 imine bonds based cross-linked PAM network, where A2 and B3 re-
present poly(propylene glycol)bis(2-aminopropyl ether) and 1, 1, 1-tris
[(4-formylphenoxy)methyl]ethane, respectively. The formation of dy-
namic imine bond (eCH]Ne) can be traced from the 1H NMR results
(Fig. S3) with a signature peak signalling at 8.24 ppm. This also agrees
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well with the FT-IR data (Fig. S4), where a new absorption peak for
eCH]Ne bond was found at 1640 cm−1.

To assess the self-healing performance enabled by the dynamici-
mine bonds, pure PAM tiles with shapes as ‘Tetris’ elements (Fig. 1b) are
prepared and assembled into a rectangular sheet at free-standing state,
then left to heal in an open air at 25 °C. Interestingly, the ‘Tetris’ tiles
spontaneously splice together into one single sheet after 24 h, without
applying any external stimuli. We subsequently perform a quick as-
sessment for the spliced sheet under a uniaxial compression, the flat
sheet transforms into a buckling state (Fig. 1c), and it also can be
stretched (Movie S1), which indicates a good homogeneity for the
healed sample. Optical microscopic observations were used to record
the spontaneous self-healing on the surface of pure PAM. A nearly full
restoration of surface can be observed (Fig. 1d) after a healing process
for 24 h (Fig. 1e). The surface profiles in Fig. 1f describe the out of plane
morphological changes for specimens (0.8 mm in thickness) during self-
healing. The dash line represents the true cut profiles that can't be re-
flected due to the instrumental limit from the probe. After self-healing,
the surface is reinstated with negligible residual depths of less than
2 μm.

Supplementary video related to this article can be found at https://
doi.org/10.1016/j.compscitech.2019.02.018.

We next study the self-healing property quantitatively by measuring
the uniaxial tensile stress-strain relationship as a function of healing
time at 25 °C (Fig. 1g). For the as-fabricated sample (or original
sample), the results suggest a Young's modulus (Epure) of
∼0.76 ± 0.08MPa, a breaking strain of 215% and peak strength of
0.79MPa for pure PAM. The healing efficiency is defined as ηs/ηο,
where ηs is the fracture strain for current sample, and ηο is the fracture
strain for original sample. The healing efficiency results indicate a clear
dependency on the healing time, the elongations reach ∼100% of that
for the original PAM sample after healing for 24 h. It was found that the
specimens healed for 6 h and 12 h broke at the incision, while the
specimen healed for 24 h did not break at the contacted surface under
the tensile testing. This observation further confirmed that the me-
chanical properties of PAM can be completely restored after a certain
period of self-repair and PAM has excellent self-repairing character-
istics. Cyclic tensile test was performed to verify the robustness of this

self-healing effect, where sample was cut into two parts from the middle
and performed the spontaneous self-healing for 24 h for each cycle. The
stress-strain curves in Fig. 1h indicate robust self-healing performances
for both of pure PAM by showing a ηs/ηο of 95% for PAM after three
cycles (H3). The reversible nature of dynamic imine bonds plays a key
role in this remarkable self-healing function. The ‘mobile’ ends between
scratched surfaces, eNH2 groups and eCH]O groups, spontaneously
couple to form eCH]Ne bonds when the surfaces physically contact,
therefore led to a self-healing functionality [47–49].

To explore the EM absorbing application for this unique PAM ma-
terials, Fe3O4@MWCNTs/PAM nanocomposites was fabricated, as il-
lustrated in (Fig. 2a). In addition, refining the compatibility between
the fillers and polymer matrix is the key issue to improve the absorption
performance of composites. By modifying the CNTs with Fe3O4, the
aggregation of CNTs could be avoided due to the presence of Fe3O4

magnetic nanoparticles on its surface, which effectively decreased the
Van Der Waals' interactions between CNTs, meanwhile the intrinsic
aggregation of Fe3O4 magnetic nanoparticles will be prevented since
the existence of CNTs.Thus, Fe3O4@MWCNTs nanocomposites could
uniformly disperse in the polymer matrix for the synergy between
Fe3O4 and CNTs. By taking advantage of coupling the imine bonds on
the surface, we even weld pure PAM and nanocomposite samples to-
gether (Fig. 2b) and demonstrate a good elasticity for the welded
sample under stretching (Fig. S7 and Movie S2) and bending. A brief
test to verify the bonding strength after the formation of dynamic imine
bonds between surfaces of pure PAM and nanocomposite with 15 wt%
Fe3O4@MWCNTs films (1mm in thickness, 0.2 g in weight for each
film, Fig. 2c), the alien films bond so tight that the bilayer can hold a
shear load of 200 g, five hundred folds of the weight for bilayer film.

Supplementary video related to this article can be found at https://
doi.org/10.1016/j.compscitech.2019.02.018.

In tensile testing section, the data from 15wt% Fe3O4@MWCNTs/
PAM nanocomposite is selected. For the as-fabricated samples (or ori-
ginal samples), the results suggest a Young's modulus (Ecomp) of
∼2.25 ± 0.22MPa, a breaking strain of 192% and peak strength of
3.07MPa for the nanocomposites with 15 wt% Fe3O4@MWCNTs. As
noticed, the enhancement in Young's module, Ecomp/Epure ∼3, shows a
considerable gap to the calculated value (Ecomp/Epure∼ 62) based on

Fig. 1. (a) Illustration of self-healing effect driven by coupling the dynamic imine bonds at fractured surface, with the chemical structure drawings for A2 and B3

monomers. Splicing of a collection of (b)PAM ‘Tetris’ tiles via self-healing and (c) uniaxially compressing the spliced sheet to buckle. Optical microscopic images of
PAM (d) before and (e) after self-healing. (f) Surface profiles for pure PAM before and after self-healing. Tensile testing results for PAM (g) at different healing time
and (h) after healing for one, two, three cycles (H1, H2, H3).
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Halpin and Tsai's equations [50,51], because of the decreasing of
physical interaction area after coating Fe3O4 particles on the surface of
MWCNT. Similar to Pure PAM sample, a high healing efficiency, ηs/ηο∼
98%, was shown (Fig. 2d) for nanocomposites sample with 15 wt%
Fe3O4@MWCNTs after healing for 24 h. Further cyclic test results in-
dicate robust self-healing performances for the same nanocomposite
with aηs/ηο of 90% after three cycles (H3).

The EM wave absorbing property of materials, mainly determined
by the Fe3O4@MWCNTs nanoparticles in matrix, are generally asso-
ciated with their electromagnetic parameters, i.e. relative complex
permittivity (ɛr= ɛʹ - jɛʺ) and relative complex permeability (μr= μʹ -
jμʺ), where the real parts (ε′ and μ′) represent the storage ability of EM
wave and imaginary parts (ε″ and μ″) are related to dissipation of EM
wave [52]. Recent theoretical development on the EM wave absorption
also proposed a hypothesis that an enhancement of absorption (Fig. 2f)
can be achieved by creating a multiple reflection state within the ma-
terials when uniformly distributing nanoparticles in matrix [53,54].

When measuring the complex permittivity and permeability for the
nanocomposites (Fig. S5), we found that both ɛʹ and ɛʺ values sig-
nificantly increased in X-band (8.2–12.4 GHz) as the concentration of
Fe3O4@MWCNTs increases. A high value of μ″, strong dielectric loss
and magnetic loss properties were achieved for the composite with
15 wt% nanofillers (Figs. S5c and S5f). By calculating the reflection
coefficient (RC) via the transmission line theory (Equs. (1) and (2)), the
nanocomposite with 15 wt% Fe3O4@MWCNTs hold the strongest EM
wave absorptions with a minimum RC to −40.6 dB at 10.0 GHz
(Fig. 2g–i), 150% of the value in the previous report [44]. The effective
absorption bandwidth is much higher (3.4 GHz) to cover 81% X-band.
This significant enhancement could be attributed to the minimal

reflection on the PAM surface (low ε′∼3) benefited from good im-
pedance matching. And the Fe3O4@MWCNTs attenuates the EM waves
with the complementary effect between dielectric loss and magnetic
loss over a wide range of frequency. The strong dielectric loss is at-
tributed to electron polarization relaxation and interfacial polarizations
between Fe3O4 and MWCNTs, and between MWCNTs and PAM matrix.
The Fe3O4 nanoparticles make a contribution to the magnetic loss,
which is mainly induced by the natural resonance and eddy current
loss. It should be noted that the uniformly distribution of Fe3O4@
MWCNTs can lead to multiple reflections of EM wave, thus further
strengthen EM wave absorption performance for the nanocomposite
[55,56].

The dynamic imine bonds also offer a unique reprocessability to our
materials with a moderate mechanical compression. To demonstrate
this feature, coloured pure PAM pieces (dimensional size less than
1 cm✕1 cm, 1mm in thickness, see inset in Fig. 3a) are cut and put into
a mould. After being compressed under 5MPa for 3 h at 25 °C, all pieces
re-united into one single sheet. To further understand this mechano-
reformation process, we performed time dependent reformation ex-
periments with different compression stresses (up to 10MPa). Surpris-
ingly, it only took 1 h to achieve a full reformation when applying
10MPa. The reformation for 15% Fe3O4@MWCNTs nanocomposites
took slightly longer (Fig. 3b) than Pure PAM at the same compression
stress. The tensile results for reformed samples (Fig. 3c and d) suggest a
good retention of mechanical property for both pure PAM and nano-
composites with 15 wt% Fe3O4@MWCNTs, after the fourth reproces-
sing cycle (R4).

In addition to the good self-healing and mechano-reformation cap-
abilities, the dynamic bond also enables an outstanding recyclability,

Fig. 2. (a) Illustration of the structure for Fe3O4@MWCNTs/PAM nanocomposites with an inset SEM image for the Fe3O4@MWCNTs nanoparticles. Self-healing
enabled (b) welding of cut dumbbell samples and (c) tough bonding of films (1mm in thickness) between the PAM and 15wt% Fe3O4@MWCNTs/PAM. Tensile
testing results for 15 wt% Fe3O4@MWCNTs/PAM nanocomposite (d) at different healing time and (e) after healing for one, two, three cycles (H1, H2, H3). (f)
Schematic of EM wave absorption mechanism in nanocomposite. Reflection coefficient (RC) results for Fe3O4@MWCNTs/PAM nanocomposite in 8.2–12.4 GHz with
nanofiller's concentrations of (g) 10wt%, (h) 15wt%, and (i) 20 wt%.
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where the organic network of composite can be fully decomposed by
decoupling the eCH]Ne bonds in an acidic solution (Fig. 3e), such as
glacial acetic acid, hydrochloric acid and trifluoroacetic acid. At a so-
lution of HCl/DMF (2 v/v %), purePAM film (∼100mg, Fig. S6) can be
instantly degraded within 2.5 h, rather than swelling in pure DMF. The
1H NMR data for the post-degradation solution for PAM (Fig. 3f), re-
veals a complete degradation of PAM network, the imine proton peak
for eCH]Ne at 8.24 ppm disappears and the characteristic signal of
end aldehyde groups at 9.86 ppm becomes stronger than that of PAM.

We further study the degradation efficiency by measuring the
weight loss as a function of the acid concentration. The ttotal (time for
degrading all polymeric phase in sample, Fig. 3g) for nanocomposite
with 15 wt% Fe3O4@MWCNTs takes about 80% of the ttotal for pure
PAM at the same acid concentration. The kinetics data indicates that
the t1/2 (time for degrading 50wt% polymer in sample) takes∼ 70% of
ttotal for pure PAM and ∼80% of ttotal for nanocomposite with 15 wt%
Fe3O4@MWCNTs, due to the decreased physical contact area as a result
of the volumetric blocking by the nanofillers. When increasing the acid
concentration to 5 v/v%, the degradation reaches an instant level by
showing a t1/2 less than 50min for pure PAM and a t1/2 less than 60min
for nanocomposite with 15 wt% Fe3O4@MWCNTs. After full decom-
position, we re-synthesised the nanocomposite from the recycled
components. After assessing the mechanical property, we found that the
recycled nanocomposite (Fig. 3h) maintains a similar fracture strain,
maximum stress and shows a slightly low young's modules (Erecycled/
Eo∼ 80%), comparing to the original samples.

4. Conclusion

In summary, we propose a dynamic imine bond enable resilient and
circular materials strategy with potentials in EM wave absorbing

application. The synthesised materials show unique self-healing feature
and robust reprocessing capability driven by the dynamic imine bonds
based molecular interconnects. By adding Fe3O4@MWCNTs, excellent
EM wave absorbing property was achieved with 50% of enhancement
on the EM wave absorption. Moreover, a highly efficient recyclability is
demonstrated by instantly dissolving PAM based materials in an acidic
solution within 1.5 h, by de-coupling the molecular interconnects. After
separation, the nanofillers and monomers can be reused, therefore lead
to a good environmental sustainability. We expect this molecular in-
terconnect enabled sustainable nanocomposites technology to find ap-
plications in the fields of flexible electronics, micro-devices and smart
structures.
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and 15 wt% Fe3O4@MWCNTs/PAM nanocomposites. (h) Mechanical analysis results for the re-synthesised composite sample and the original sample.
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Keywords:
 Studies on surface wettability have received tremendous interest due to their potential applications in research
and industrial processes. One of the strategies to tune surface wettability is modifying surface topography at
micro- and nanoscales. In this research, periodic micro- and nanostructures were patterned on several polymer
surfaces by ultra-precision single point diamond turning to investigate the relationships between surface topog-
raphies at the micro- and nanoscales and their surface wettability. This research revealed that single-point dia-
mond turning could be used to enhance the wettability of a variety of polymers, including polyvinyl chloride
(PVC), polyethylene 1000 (PE1000), polypropylene copolymer (PP) and polytetrafluoroethylene (PFTE), which
cannot be processed by conventional semiconductor-based manufacturing processes. Materials exhibiting com-
monwettability properties (θ≈ 90°) changed to exhibit “superhydrophobic” behavior (θ ˃ 150°). Comparedwith
the size of the structures, the aspect ratio of the void space betweenmicro- and nanostructures has a strong im-
pact on surface wettability.
Copyright © 2019 Tianjin University. Publishing Service by Elsevier B.V. on behalf of KeAi Communications Co., Ltd.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Contact angle
Wettability
Single-point diamond turning
Structured surface
Hydrophobicity
1. Background

Surface behavior plays a key role inmany physical or chemical prop-
erties such as wettability,1 optical properties,2 thermal emissivity,3

corrosion,4 and other biological and chemical processes.5–8 Wettability
is the tendency of one fluid to spread on or adhere to a solid surface.
Wettability can bemeasured by the contact angle, which is convention-
ally measured through the liquid, where a liquid–vapor interfacemeets
a solid surface. Different theories have been proposed to explainwetting
phenomena.9 Young defined the wettability for ideal surfaces as in
Eq. (1).

cos Ɵidealð Þ ¼ ϒsv þ ϒsl

ϒlv
ð1Þ

where θideal is the ideal contact angle, γlv is the surface tension of the liq-
uid/vapor interface,γsl is the surface tension of the solid/liquid interface,
and γsv represents the surface tension of the solid/vapor interface. De-
pending on the value of the contact angle, surfaces can be classified
into four groups: superhydrophobic (θN150°), hydrophobic
g Service by Elsevier B.V. on behalf of
(90°bθb 150°), hydrophilic (10°bθb90°), and superhydrophilic
(θb˂ 10°).10

The wettability can also be researched by the advancing contact
angle (θa), receding contact angle (θr), andhysteresis angle (θH). The ad-
vancing contact angle is ameasure of the liquid–solid cohesion,whereas
the receding contact angle is a measure of liquid–solid adhesion. Con-
tact angle hysteresis can arise from molecular interactions between
the liquid and solid or from surface anomalies, such as roughness or
heterogeneities.11 It is defined as the difference between the value of
the angle of advance and the value of the receding contact angle
(Eq. (2)).

θH ¼ θA−θr ð2Þ

Surface energy and topography are themain factors affectingwetta-
bility. Wettability has been widely researched as a function of surface
texture, material's chemistry, and processing conditions.12

Surface topography can be altered modifying roughness.13,14 The
presence of features on surfaces can lead to large values of hysteresis
where substantial forces may be required to initiate drop movement.15

For very rough surfaces, drops can be suspended atop patterns, leaving
air between them.16 This suspension enables to have substrates with
superhydrophobic behavior where drops can roll easily on them behav-
ing as self-cleaning surfaces.
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Fig. 1. Sketches of a liquid droplet in (a) the Wenzel state with an apparent contact angle θW and (b) the Cassie–Baxter state with an apparent contact angle θCB.
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Wenzel and Cassie–Baxter createdmodels for explainingwettability
in real surfaces that exhibit some degree of roughness or are chemically
heterogeneous. TheWenzel model supposes that a liquid can penetrate
in the pores of the surface, and contact is homogeneous.Wenzel's equa-
tion is shown in Eq. (3):

cos θWð Þ ¼ r• cosθideal ð3Þ

where θideal is the contact angle in an ideal surface that cannot be prac-
tically obtained. θW is the contact angle in a real surface, and r is the
Wenzel roughness factor. The factor r tries to explain that the roughness
enhances the wettability properties of the smooth surfaces.

The Cassie–Baxter model describes heterogeneous wetting contact
between the droplet and surface due to air entrapment. According to
this theory, there is an area fraction where the liquid and solid are in
contact and another area fraction where the liquid and gas stay in con-
tact. The Cassie–Baxter model is defined in Eq. (4).

cos θCBð Þ ¼ f 1• cosθ1 þ f 2• cosθ2 ð4Þ

where θCB is the contact angle in a real surface, θ1 and θ2 are the contact
angles of the two surfaces that are in contact (liquid–vapor and liquid–
solid), and f1 and f2 are the apparent area fractions of surface compo-
nents. Sketches of the Wenzel and Cassie–Baxter model are shown in
Fig. 1.

The contact angle is generally expected to obey the Wenzel model
on substrates with moderate roughness, and it follows Cassie–Baxter
PTFE

PE 500

PVC

PE1000

Diamond 
tool

(a) (b)

Fig. 2. Overall manufacturing process: (a) experimental setup of diamond turning process; (b
different structures in 4 μm (Area 1), 2 μm (Area 2), 1 μm (Area 3), and 500 nm (Area 4).
behavior on highly rough surfaces. On hydrophobic surfaces (θ
≈ 100°) of moderate roughness (rs ≈ 2), both Wenzel and Cassie–
Baxter states can co-exist. Some researchers believe the wettability
models are limited because they use contour area rather than the con-
tact line.17

Superhydrophobic examples are found in lotus leaves18 and certain
insects and birds19 where superhydrophobicity is achieved by surface
textures consisting of micro- and nano-scale hierarchical structures.
On the basis of these principles, two main strategies are developed for
the preparation of superhydrophobic surfaces. One strategy consists of
the deposition of hydrophobic materials that can be applied as coating
layers such as poly(dimethylsiloxane) (PDMS)20 or fluorinated silane
compounds.21 This strategy is associated with certain disadvantages
such as cost, long procedure, and problems with substrate biocompati-
bility. The other strategy consists of machining of patterns on the sur-
faces by photolithography and electron beam lithography.22

Photolithography has the disadvantage of limited choices in photoresist
and substrate. Electron beam lithography presents the disadvantage of
being a slow and expensivemanufacturing technique that cannot be ap-
plied at a large scale.

Single point diamond turning (SPDT) is a versatile and highly con-
trollable technique for manufacturing micro- and nanostructured sur-
faces with high accuracy. Compared with lithography technologies,
SPDT can be used to machine a wide range of materials including poly-
mers, metals, and ceramics, with high throughput at very large scales.
This technique is based on turning with diamond as the cutting tool to
mechanically remove materials with a precision in several nanometers
53◦

Substrate

(c)

) microscope image of the diamond cutting process; (c) an aluminum sample with four



10 μm 10 μm 2 μm

10 μm 5 μm 3 μm

(a) (b) (c)

(d) (e) (f)

Fig. 3. SEM images of micro and nanostructures on different materials: (a) 4 μm gratings on aluminum; (b) 2 μm gratings on aluminum; (c) 0.5 μm gratings on aluminum; (d) 0.5 μm
gratings on PE1000; (e) 0.5 μm gratings on PTFE; and (f) 0.5 μm gratings on PVC.
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on a wide variety of materials. SPDT is affected by process and material
factors. The material factors include material swelling and recovery,
grain boundaries, material spring back, and minimum undeformed
chip thickness.23

Throughmanufacturing of micro- and nanostructures on a variety of
materials by SPDT, this research aimed to investigate how surface to-
pographies affect wettability in hydrophobic and hydrophilic regimes.
For this reason, micro- and nanostructures on the surfaces of several
materials, including aluminum, polyvinyl chloride (PVC), polyethylene,
polypropylene copolymer, PFTE and polypropylene copolymer (PP),
with feature dimensions from 500 nm to several micrometers, were
employed. The surface of the different patterned areas and thewettabil-
ity of these materials were characterized and analyzed. Finally, the
Fig. 4. Contact angle measu
values of contact angles obtained for the different patterned and flat
surfaces were compared, and the patterns' height was found to affect
the wettability for these materials.

2. Experimental procedures

Through a customized five axis ultra-precision machine, micro- and
nanogratings (500 nm, 1 μm, 2 μm, and 4 μm) were machined on
materials including aluminum, PVC, polyethylene 1000 (PE 1000), poly-
ethylene 500 (PE 500), polypropylene copolymer (PP), and PFTE. Under
a spindle speed of 1000 rpm, feed rates of 4 mm/min, 2 mm/min,
1 mm/min, and 0.5 mm/min were employed to achieve 4 μm, 2 μm,
1 μm, and 0.5 μm per revolution. A sharp point diamond tool with
rements for aluminum.



Fig. 5. Contact angle measurements for PVC.
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an inclined angle of 53° was used. The size of the structures was con-
trolled by changing the cutting depth. The 53° inclined angle ensured
that the width of the gratings was the same as the cutting depth. Min-
eral spiritmistwasused as coolant during the cuttingprocess. To ensure
the consistency of the cutting process, all substrates (75 mm× 25mm)
weremounted circularly around the center of the headstock (Fig. 2(a)).
An opticalmicroscope image of the diamond cuttingprocess is shown in
Fig. 2(b). On each substrate, gratings in dimensions of 4 μm, 2 μm, 1 μm,
and 0.5 μm were cut within the ribbon areas 1–4 (Fig. 2(c)). The fabri-
cation results were measured by scanning electron microscopy (SEM;
FEI Quanta 3D FEG). To avoid contaminating the surfaces, all samples
were uncoated and measured under low vacuum SEM mode (120 Pa).

The wettability of the surfaces was characterized by measuring the
contact angles (Krüss Drop Shape Analyzer – DSA30) at different areas
Fig. 6. Contact angle measu
of each sample, along vertical and parallel directions (Fig. 2(c)). To re-
duce error in measurement, five water droplets (2 μL each) were ran-
domly placed in each area. For each droplet, apparent contact angles
including static contact angle, advancing contact angle, and receding
contact angle were measured, and the average value was considered
the measurement result.

3. Results and discussion

SEM images of the micro and nanostructures from 4 μm to 500 nm
on different substrates are shown in Fig. 3. Under the same cutting
depth, the actual surface topographyof the gratings onmetal and plastic
surfaces slightly differed due to the different elastic recovery rates after
material removal.
rements for PE 1000.



Fig. 7. Contact angle measurements for PE 500.
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For each material, contact angles on flat surface and structured sur-
faces (areas 1–4) were measured. The measurement results for contact
angles are shown in Figs. 4–9. For aluminum and PVC, all contact angles
were measured along both vertical and parallel directions (Fig. 2(c)).
The measurement results for these two materials are illustrated in
Figs.4 and 5.

For each material, the roughness factor (Rf) and packing parameter
(p) were calculated. The packing parameter is the fraction of the struc-
tured surface area over the total area of the substrate. The roughness
factor was estimated theoretically given that the patterns adopt a
square shape and considering the height, width, and distance. For the
different patterned areas, the distance between patterns was constant,
so the pitch distance did not influence the roughness factor. The width
of the patterns showed small variations in the different materials due
to the different elastic behavior of the materials during the machining
process, resulting in minimal changes in the roughness factor.
Fig. 8. Contact angle me
Therefore, the roughness factor would depend mainly on the height of
the patterns. Considering that the height of the pattern ranged from 4
μm to 500 nm, the roughness factor was expected to decrease from
Area 1 (pattern height of 4 μm) to Area 4 (pattern height of 500 nm).
The roughness factors and packing parameters for different materials
are shown in Table 1.

Given the existence of micro and nanostructures, in areas 1 and 3,
the wettability of aluminum changed from hydrophilic (θ = 69.4°) to
hydrophobic (up to 93.6°). This result contradicts the Wenzel model
defined in Eq. (3). The Wenzel model predicts that an increase in the
surface roughness for hydrophilic materials can enhance their hydro-
phobicity behavior and exhibit small apparent contact angles. Thus, air
bubbles successfully trapped by these structures possibly affect thewet-
ting behavior of aluminum substrates, and the droplet follows a com-
posite state. If the droplet is in the composite state, the apparent
contact angle should be calculated using Cassie and Baxter's model
asurements for PP.



Table 1
Roughness factor and packing parameter estimation for the different materials.

Material Rf p

Aluminum 3.8–4.79 0.84–0.90
PVC 3.9–5.08 0.55–0.96

PE 1000 3.83–4.56 0.76–0.79
PE 500 3.01–4.07 0.54–0.73
PTFE 1.08–2.86 0.76–0.80
PP 2.62–4.12 0.70–0.76

Fig. 9. Contact angle measurements for PTFE.
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defined by Eq. (4). Zu et al. performed a theoretical analysis on sub-
strates patterned by square patterns following the Cassie–Baxter
model. This model predicts that the area fraction of the solid–liquid in-
terface, f, is only dependent on the pattern width and pitch distance.
This model predicts that the apparent contact angle should decrease
with the increase in pattern height for flat substrates with θ ˂ 90°.24
This model cannot explain the experimental results. These results can
be explained by taking into account the phenomenon of passivation
where aluminum forms a thin surface layer of aluminum oxide upon
contact with oxygen in the atmosphere through oxidation, which is en-
hanced at high temperatures. This layer creates porosity on the surface
of the structures. The formation of this oxidized structure can resemble
anodized aluminum. The surface of passivated aluminum transitions
from slightly hydrophilic to moderately hydrophobic up to film thick-
nesses of about 6 μm.25

PVC, PE 1000, PP, and PTFE exhibited a great change in their wetta-
bility behavior (Δθ N 50°) when micro- and nanostructures were intro-
duced to the surfaces, shifting from non-extraordinary wettability
behavior (θ ≈ 90°) to superhydrophobic behavior (θ ˃ 150°). All four
areaswith structures ranging from 500 nm to 4 μmshowed similar con-
tact angles. The Wenzel model predicts that patterned materials with
intrinsic contact angles θ ˃ 90° demonstrate an enhancement in their hy-
drophobic behavior when the roughness factor is increased. According
to Nosonovsky et al., the change in contact angle in the Wenzel model
depends on the different geometric parameters of the surface structure
such as width and height of the pillars, distance between pillars, pat-
terns shape, and pattern packing.26 This model explains that the aspect
ratio and packing parameter of the structures have anoutstanding effect
on the variation in the contact angle on surfaces with patterned struc-
tures. In the different patterned areas, the pattern height decreased
from 4 μm to 500 nm, whereas the width of the patterns showed
small variations in the differentmaterials due to the different elastic be-
havior of the materials during the machining process. The aspect ratio
was in the range of 1–5 for the different manufactured areas. In the dif-
ferent patterned surfaces, p oscillated between 0.5 and 0.9. According to
this theoretical analysis, an increase in the aspect ratio for materials
with intrinsic contact angles θ ˃ 90° could extensively enhance the hy-
drophobicity of the materials.

With the patterned surfaces, the hydrophobicity of PE 500 only
slightly increased (Δθ ≈ 10°–15°). According to theoretical analysis,
the Cassie–Baxter model indicates that the height of the pillars does
not influence the wettability of the materials.24 This phenomenon is
quite unique especially when compared with PE 1000, which has very
similar wettability on flat surfaces. This effect can also be explained by
their different surface topography. PE 1000 offers higher wear resis-
tance and impact strength than PE 500. Therefore, under the same cut-
ting parameters, PE1000 is more difficult to remove than PE 500. As
shown in Fig. 10, the gaps between each patterns (1 μm) on PE 1000
(Fig. 10(a)) were smaller than those on PE 500 (Fig. 10(b)), leading to
a void spacewith high aspect ratio, which facilitated air trapping and re-
sulted in a high contact angle. Thus, for hydrophobic surfaces (θ≈ 100°)
of moderate roughness (Rs ≈ 2), both wettability models can co-exist,
and the droplet may stay in a state of metastable equilibrium.24

The contact angle hysteresis of each material is also studied. Theo-
retical analysis of other researchers demonstrated that contact angle
hysteresis depends on the width/pitch ratio of the structures, as well
as the density of the pillars.27,28 Among the tested materials, aluminum,
PE 500, PP, and PTFE did not show ameasurable change in contact angle
hysteresis with the different patterns, whereas PE 1000 exhibited an en-
hancement in contact angle hysteresis with an increased the roughness
factor. By contrast, PVC showed a reduction in contact angle hysteresis
when the roughness factor increased. Our observation revealed a rela-
tionship between contact angle hysteresis and the size of the surface
structures. Recent research demonstrated that contact angle hysteresis
is strongly correlated with the projected area fraction for fully wetting
space (fw).29 For all the polymer materials used in this work, fw varied
from 0 to 1, depending on the structures and surface finish. Although
the same size of structures was achieved on differentmaterials, the sur-
face finish differed (Fig. 3). Such a difference caused the unpredictable
behavior of contact angle hysteresis on different materials. Other stud-
ies indicated that contact angle hysteresis is affected by the height of
the patterns, pitch distance,30 and shape of patterns.31,32 The main



Gaps with high aspect ratio

(a)

Gaps with low aspect ratio

(b)

Fig. 10. SEM images of 1 μm gratings on PE 1000 (a) and PE 500 (b) (scale bar is 10 μm).
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finding in the literature is that sharp patterns lead to a remarkable en-
hancement in contact angle hysteresis.33 Further research should
focus on controlling surface finish and the shape of structures for an
in-depth study of contact angle hysteresis.

4. Conclusions

By using SPDT, this research demonstrated the changes in surface
wettability throughmicro- and nanostructures onmaterials that cannot
be processed by conventional lithography-based technologies. Results
revealed that the wettability of polymers such as PVC, PE 1000, PP,
and PTFE can be greatly enhanced (Δθ ≈ 50°). Meanwhile, aluminum
and PE 500 exhibit a moderate change in their wettability properties
(Δθ ≈ 10°) when features are manufactured on their surfaces. From
500 nm to 4 μm, the correlation between the sizes of the structures
and surface wettability is not strong. In such a scale, the aspect ratio of
void structures plays an important role in surface wettability. For the
same material, void space with high aspect ratio can trap air easily,
resulting in a high contact angle. In addition, the experimental results
can be well explained through the introduction of the roughness factor
and the packing parameter, which indicates that surfaces with different
wettabilities can be tuned through these parameters and then fabri-
cated by SPDT.
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Spatially Configuring Wrinkle Pattern and Multiscale Surface 
Evolution with Structural Confinement

Ding Wang, Nontawit Cheewaruangroj, Yifan Li, Glen McHale, Yinzhu Jiang, David Wood, 
John Simeon Biggins,* and Ben Bin Xu*

Surface elastic instabilities, such as wrinkling and creasing, can enable a 
convenient strategy to impart reversible patterned topography to a surface. 
Here the classic system of a stiff layer on a soft substrate is focused, which 
famously produces parallel harmonic wrinkles at modest uniaxial compression 
that period-double repeatedly at higher compressions and ultimately evolve 
into deep folds and creases. By introducing micrometer-scale planar Bravais 
lattice holes to spatially pattern the substrate, these instabilities are guided 
into a wide variety of different patterns, including wrinkling in parallel bands 
and star shape bands, and radically reduce the threshold compression. The 
experimental patterns and thresholds are enabled to understand by consid-
ering a simple plane-strain model for the patterned substrate-deformation, 
decorated by wrinkling on the stiff surface layer. The experiments also show 
localized wrinkle-crease transitions at modest compression, yielding a hier-
archical surface with different generations of instability mixed together. By 
varying the geometrical inputs, control over the stepwise evolution of surface 
morphologies is demonstrated. These results demonstrate considerable con-
trol over both the patterns and threshold of the surface elastic instabilities, and 
have relevance to many emerging applications of morphing surfaces, including 
in wearable/flexible electronics, biomedical systems, and optical devices.
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stimuli.[8–13] The latter perspective has 
enabled engineering opportunities with 
self-adaptive/autonomous structures in 
low dimensions and has implications in 
many different contexts such as micro-/
nanofluidics,[14–16] flexible electronics,[17,18] 
adhesion,[19,20] organic solar cells,[21] tun-
able optics,[22–24] wettability,[25–27] and 
promising methods for surface pat-
terning.[1,28–31] While our scientific/tech-
nical understanding has advanced, there 
remains much to be explored about the 
control of instability morphology, and 
in particular how to configure instabili-
ties, such as wrinkling and creasing, to 
desired patterns with selective distribution 
covering the surface and bespoke thresh-
olds for the formation and evolution of 
instabilities.

When compressing a bilayer elastomer 
system with a stiff skin layer, the forma-
tion of surface wrinkles releases in-plane 
compression of the stiff layer, as bending 
is energetically more favorable than com-
pression. With further compression, the 

wrinkles experience further bifurcations, including period-dou-
bling and quadrupling,[5,32] and finally develop into deep folds/
creases.[33–35] These wrinkling and postwinkling behaviors have 
been well understood by considering the intrinsic material 
properties of a bilayer (module mismatch, Poisson’s ratio, etc.), 
structural variables (thickness) and the prestrains imposed 
on the system. However, thus far, such compressive instabili-
ties have been studied in nonpatterned surface systems, where 
both wrinkling and further bifurcations occur as global events, 

Hierarchical Surfaces

1. Introduction

Elastic instabilities such as wrinkles, creases and folds, are usu-
ally considered as unwanted when they appear in engineering 
structures, as they can precipitate fracture and failure. Recently, 
scientists have significantly advanced our understanding of the 
mechanics of elastic instabilities,[1–7] opening the possibility of 
transforming these unwanted phenomena into tools for pro-
ducing useful shape changes in response to a range of external 
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spanning the entire surface at once. Notably, Huck et al. investi-
gated the spontaneous formation of patterns of aligned buckles 
on a flat gold/polydimethylsiloxane (PDMS) bilayer with placed 
confinement.[36] Kim et al. studied the morphological transi-
tions on the surface of a bilayer under a biaxial compressive 
stress and revealed a mechanism to controllably generate a 2D 
wrinkle/fold pattern on the entire film surface.[3] Wang and 
Zhao have summarized the instability bifurcations on flat sur-
faces and generated a phase diagram by considering the geo-
metrical variations and module mismatches.[37,38] Recent work 
has also studied bilayer instabilities on surfaces with curva-
ture,[39–42] where wrinkling is still a global event, but where the 
pattern and threshold are influenced by the curvature. Here we 
investigate whether we can induce wrinkling and further bifur-
cations in patterned subregions of a bilayer by explicitly pat-
terning the surface, thus paving the way for bespoke instability 
morphologies at bespoke thresholds.

Such controllable formation and development of instabili-
ties in targeted regions are highly desirable for engineering 
applications such as strain sensing structures, actuating units 
in wearable devices, healthcare devices, bio-fluidic devices, etc. 
In this paper, we demonstrate a simple strategy to generate 
2D harmonic surface wrinkle patterns and control transitions 
thresholds on the surface of an elastic bilayer under uniaxial 
compressive stress, by employing structural confinement  
(a Bravais lattice of holes) to regulate the in-plane stress 
map on a surface. The regions adjoining the Bravais lattice 
holes nucleate harmonic wrinkle networks at small compres-
sive strains due to confinement. At higher compression, the 
wrinkle-crease transition is initialized at selected areas with 
strain energy localization guided by the curved geometrical 
boundary from the edge of Bravais lattice holes, which then 
finally develop into a global creasing. The dynamics of the for-
mation of planar wrinkle patterns and localized wrinkle-crease 
transition are studied, and we illustrate a distinct stepwise 
instability pattern evolution toward a hierarchical surface. We 
also combine experiments with numerical simulations to track 
the in-plane stress state and study the generation of harmonic 
morphology under the confinement.

2. Results and Discussion

The Bravais lattice template was prepared by lithographically 
fabricating SU-8 pillars on a silicon wafer (Figure 1a). The Bra-
vais pattern was then transferred to a soft substrate by coating 
the template with a thin (125 µm) layer of softer PDMS (shear 
modulus ≈0.1 MPa), which was then cured on a substantially 
prestretched elastic “mounting” base layer (thickness ≈3 mm, 
shear modulus ≈0.35 MPa). After curing, the PDMS struc-
ture was released from the template, aided by a salinization 
treatment applied to the template to reduce surface adhesion. 
Under compression, patterned surfaces composed of polygonal 
shapes, i.e., triangles, squares, etc., can yield strain energy con-
centrations and localized bulk deformations around their cor-
ners, making it difficult to reach the energy threshold to trigger 
the surface instability. Therefore, we used patterned surfaces 
with circular (hole) shapes to avoid strain energy localization 
and also expected that the curvatures can be used to regulate 

the formation of instabilities. Two different Bravais lattices 
(Figure 1b–e), square and centered square, were employed with 
varied geometrical aspect ratios, hole diameter (Φ), hole dis-
tance (D), hole depth (h), to establish a range of patterned soft 
surfaces. Finally, oxygen plasma treatment was used to create a 
thin stiff layer on the patterned soft substrate (Figure 1f) prior 
to the compression.

Upon subsequent release of the mounting layer from a pre-
stretched length L0 to a length L, the patterned PDMS layer 
is under compression, which we characterize by the nominal 
(far-field) uniaxial compressive strain ε = L0/L − 1. The oxygen 
plasma effect was examined on a surface with pattern fea-
tures of D = 160 µm, Φ = 80 µm, h = 20 µm. For surfaces 
without plasma treatment, the holes slowly closed as the 
compressive strain increased, but no surface wrinkling was 
observed (Movie S1, Supporting Information). In contrast, on 
the plasma treated surface (Movie S2, Supporting Informa-
tion), we observed a series of patterned surface instabilities 
as compression increased, starting with wrinkles formed at  
ε ≈ 0.04, then in-plane wrinkling bifurcation (period dou-
bling) at ε ≈ 0.08, followed by the nucleation of creasing 
(wrinkling-creasing transition) at ε ≈ 0.1, and global creasing at 
ε ≈ 0.3, and finally the closure of lattice holes at ε ≈ 0.55.

The morphological development of the surfaces was char-
acterized under reflected light optical microscopy to study the 
dynamic surface evolution with different lattice arrays. A series 
of observations were made at the same strain sequence to 
reveal surface states at the same deformation level. For the pat-
tern with a square lattice (Figure 1g), the in-plane wrinkle pat-
tern appears to be lateral straight stripes and does not change 
much with different aspect ratios (Figure S1, Supporting Infor-
mation). For the pattern with centered square lattice, the case is 
more interesting and we see three types of in-plane wrinkling 
patterns formed at small compressive stress with a high sen-
sitivity to the aspect ratios of lattice we applied. For D/Φ = 1, 
an in-plane curved stripes pattern is developed with a strong 
dependency on the local curvature determined by the lattice 
hole and aspect ratio of lattice array (Figure 1h). Straight 
wrinkle stripes pattern is evident when D/Φ = 2 (Figure 1i), 
which is similar to the surface patterned with square lat-
tice. However, an in-plane ‘star’ wrinkle pattern is generated 
for D/Φ = 4 (Figure 1j), the wrinkle morphology shows a 2D 
periodic distribution around each hole with a “star” shape, 
implying a diagonal strain energy localization.

At higher compression, all patterned surfaces develop mor-
phological evolutions showing a wrinkle-crease transition, the 
surface creases nucleate at the edge of lattice hole perpendicular 
to the compression direction at ε ≈ 0.06–0.013. The creases pro-
gress as the compression increases, and fully cover the surface at 
ε ≈ 0.3. Among these morphological transitions, an interesting 
phenomenon is discovered that a single crease can be generated 
on the surface with centered square lattice holes (D = 80 µm, 
Φ = 20 µm, h = 20 µm). This has great potential to enable new 
types of surface actuator with targeted compression effects within 
the scale of a few micrometers. It should also be noted that the 
critical strains for initializing the transition (ε ≈ 0.06–0.013) 
are much lower than the typical critical strain value of 
εcrease ≈ 0.35–0.55.[2,7] The reason is that the nominal strain level 
we used as a control parameter does not well reflect the strain 
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localization on the structural confined surface. The strain energy 
localization at a curved boundary near a hole edge for a patterned 
surface could be several folds of that on a nonpatterned surface. 
We will discuss these features in more detail later in this report.

To understand the instability patterns (Figure 2a–c) and 
thresholds observed above, we conducted a numerical analysis 

by calculating the pattern of deformation under the imposed 
global compressive strain for lattice patterned surfaces 
(Figure 2d). Deformation around a single hole and square/
centered square arrays of holes has been previously studied 
within linear elasticity,[43,44] and generally produce stress con-
centrations near the holes. To generalize these results to our 

Adv. Funct. Mater. 2018, 28, 1704228

Figure 1. Illustration of design and fabrication process of structural confinements and guided formation of surface morphologies under compression. 
a) The structural surface was fabricated by spin-coating a thin PDMS precursor layer on a lithographically made template (SU-8 pillars array on a silicon 
wafer), then transferring and curing the thin PDMS layer (≈125 µm) onto the top of a pre-stretched mounting elastomer layer with thickness ≈3 mm. 
Two in-plane arrays with varied aspect ratios are designed, b) illustration and c) optical microscopy for centered square lattice array, d) illustration, 
and e) optical microscopy for square lattice array. f) The microfabricated surface was treated with oxygen plasma to achieve a stiff skin layer (≈50 nm). 
g) The observation of surface morphology changes on square lattice array patterned surface at different compression levels. h–j) The observation of 
surface morphology changes on a centered lattice array patterned surface at the same compression sequences in (g) with different aspect ratios. The 
wrinkle patterns are marked with red arrows and creases are marked with green arrows. All images in this figure have been formatted with the same 
scale bar of 20 µm.
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lattices, we modeled the patterned substrate as a linear-elastic 
2D plane-strain system consisting of an infinite incompress-
ible elastic material containing the appropriate infinite lattice 
of holes. As seen in Figure 2e, we consider a square unit cell 
of the resulting system (centered square patterned surface), 
and used Mathematica finite elements to solve the plane strain 

field in response to an imposed compressive strain, εplain, in 
the x direction and, as measured in experiments, a sympathetic 
extension of 0.3 εplain in the y direction, and with stress free 
boundary conditions at the edges of the holes.

In Figure 2f, we plot the local maximum compressive 
strain in our solutions, εpattern, as a fraction of εplain, for several 

Adv. Funct. Mater. 2018, 28, 1704228

Figure 2. Analytical approach of the generated harmonic winkle patterns. Three harmonic patterns are generated as a) curved ribbon, b) star shape,  
c) straight belt. d) A representative unit area is chosen for numerical analysis. e) Compression of the patterned substrate relative to the compression of 
the nonpatterned substrate. Blue and red indicate the less and more compressive areas. f) Evolution of wrinkling region as a function of applied strain 
in the deformed bilayer system with patterned holes. Green areas are the wrinkling regions. Lines indicate the direction along which the wrinkles will 
grow while their lengths are the relative distance from the wrinkling threshold. g) Compressive stress in the stiff layer in the patterned bilayer system 
relative to the nonpatterned system values at different position from the rim of the hole of radius a (maximum stress) to the edge of the unit cell (see 
arrow in (e) bottom). All plotted with D/Φ = 0.75, 1, 2, and 4.
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different aspect ratios of lattice. We see that the compressive 
strain is strongly localized around the holes. In centered square 
lattices with smaller holes, there are also clearly star-shaped pat-
terns of increased compression running between the holes. We 
show the same plots for a simple square lattice in Figure S2 
(Supporting Information), showing compression concentration 
in lateral straight stripes through the holes at all aspect ratios 
of pattern.

We next calculate the wrinkling pattern on the stiff plasma-
treated skin that decorates this base-state deformation. To do 
this, we first calculate the compressive stress σc in the thin film, 
assuming it has a Poisson ratio of vf = 0.3 directly follows the 
deformation in the soft substrate. The value of this compres-
sive stress, as a fraction of the compressive stress that would 
be observed in a nonpatented system, is plotted for each lat-
tice in Figure 2g, as a function of distance from the center of 
the central hole, along the line shown in the bottom figure of 
Figure 2e. For a centered square lattice patterned surface, we 
see that the compressive stress is strongly enhanced at the edge 
of hole, particularly in lattices with small holes, explaining why 
wrinkling occurs earlier in patterned systems. To predict wrin-
kling patterns, we apply the standard result for wrinkling on a 

substrate, which is that wrinkling will occur if 
E

E
E

1
4

3c
s

f

2/3

fσ >








 ,  

where fE  and sE  refer to the plane-strain elastic modulus for 
the oxidized stiff layer and PDMS substrate, respectively, which 
are related to the Young’s moduli, E, by E E/(1 )2ν= − , where ν 
is the Poisson ratio. Taking the physically reasonable modulus 
ratio E E/f s  = 100, we plot, in Figure 2f, how the predicted 
wrinkle regions grow as the global compression is increased. 
We see, in accordance with experiment, that moving from large 
holes to small holes does indeed change the wrinkling pattern 
from wavy lines, to straight lines, to stars, and that the patterns 
with smaller holes wrinkle at smaller global compressions, 
because the compressive stress is more concentrated around 
the hole.

After plasma treatment for 10 seconds, the surface modulus 
measurement (Figure S3, Supporting Information) obtained by 
AFM indentation suggests the plane-strain elastic modulus mis-
match between the film and the substrate is about E E/f s ≈ 25.  
Accordingly, the critical strain for wrinkling from linear sta-
bility analysis[45–48] is E E0.25(3 / ) 0.061W s f

2/3ε = = , which agrees 
well with our result of ε ≈ 0.068 ± 0.008 for a nonpatterned 
surface (Figure S4, Supporting Information). However, it does 
not agree with the case of a lattice patterned surface, in which 
wrinkle patterns are already present at ε = 0.06, indicating 
that wrinkling occurs at a lower threshold strain as a result of 
strain energy localization near the lattice holes. Furthermore, 
according to the report from Kim et al., as compression is 
increased in systems with E E/f s ≈ 25, wrinkles are expected to 
period double then evolve into creases. We expect patterning 
to also reduce the thresholds for these further bifurcations, 
but they cannot be effectively identified under reflective optical 
microscopy.

To unveil more details, we used AFM to track the surface 
morphology changes as the compressive strain was gradu-
ally increased, focusing on the region of stress concentration 
“above” a hole as indicated by the dashed box in Figure 3a. 

For the centered square patterned surface with aspect ratio of  
D = 80 µm, Φ = 40 µm, h = 43 µm, we found the onset of 
wrinkling starts at a small compressive strain of ε = 0.02 
(Figure 3b–c) and progress to cover the region by ε = 0.11. The 
initial wavelength (λ0) is predicted to be h E E(2 )( /3 )0 f f s

1/3λ π= ,  
or 700 nm for an oxidized layer thickness of hf = 55 nm, 
which is in reasonable agreement with the measured value of 
≈850 nm. The progressive wrinkling over this range of strain 
presumably reflects the influence of the energy boundaries 
resulting from the local curvature. We also find the creases start 
to nucleate at ε = 0.11, and start to grow at ε = 0.15, then fully 
cover the region at ε = 0.25. A hierarchical surface is formed at 
ε = 0.55, where we can see the periodic surface under the reflec-
tive optical microscopy in Figure 3d.

There is clearly a curvature guided formation of wrinkle at  
ε = 0.02 with nonuniform amplitude distribution which reveals 
the state of energy concentration, where the hole edge perpen-
dicular to the compression axis scores the highest (Figure 3c). 
The period doubling pattern can be observed at ε = 0.15 with 
every second wrinkle growing in amplitude while its neigh-
bors shrink. The strain value for this bifurcation is also smaller 
than the reported strain value ≈0.17.[5] From ε = 0.15, further 
compression does not noticeably influence the in-plane mor-
phology, since the AFM result cannot reflect the out of plane 
deformation toward the substrate, i.e., self-contact area of the 
crease. Therefore, we add the cross-sectional scanning data of 
the film from laser-scanning confocal fluorescence microscopy 
(LSCM, Figure 3e) to reveal the out of plane morphological 
development for the selected area (Figure 3f). At a strain of ε = 
0.15 (Figure 3c), the LSCM data shows a shallow crease depth 
(self-contact area) within 100 nm, where it is considered as the 
onset of the crease. Similar with the wrinkling, this second 
bifurcation is found to be highly sensitive to the presence of 
local planar curvature (Figure S5, Supporting Information). At 
higher compressive strains, the crease depth develops under 
higher compressive strains and extends to all scanned areas.

We next consider the lattice pattern effects on post wrin-
kling bifurcations occurring at a higher strain level. It should 
be noted that the crease nucleates but it does not grow across 
the regime adjoining the lattice holes (Figure S6, Supporting 
Information) for D/Φ ≤ 1. We expect this may arise due to 
the viscoelastic nature of the substrate, and/or the influ-
ence of large curvature. A brief classification of the transi-
tions based on the crease number initiated is summarized in 
Figure 4a–c for the lattice patterned surface with aspect ratio 
D/Φ > 1. There are two transition types (single crease and 
multiple creases) for the stripe pattern, and the formation of 
creasing is revealed in Figure 4d. The “star” type wrinkle pat-
tern seems more likely to generate a single crease when being 
further compressed.

We next plot the normalized wrinkle amplitude (A/λ0) as 
a function of the nominal applied strain on a nonpatterned 
surface (Figure 4e) and a Bravais lattice patterned surface 
(Figure 4f, D = 80 µm, Φ = 40 µm, h = 43 µm). In each case, 
beyond wrinkling onset, two additional instabilities/bifurca-
tions are seen, corresponding to period doubling and then 
crease formation. However, both the onset of wrinkling and the 
further bifurcations occur at considerably lower global strains 
in the patterned system: the critical wrinkle strain for the 

Adv. Funct. Mater. 2018, 28, 1704228
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patterned surface of ≈0.02 is less than one third of that in the 
flat surface (ε ≈ 0.068), the critical strain for periodic doubling 
in the patterned surface is ≈0.06, whereas it is ≈0.18 in flat 
surface, and for the final bifurcation, the wrinkle-crease transi-
tion, the critical strain needed is ≈0.08 in the patterned surface, 
which is less than half of that for the flat surface (ε ≈ 0.22). 
We can understand this threshold reduction effect by consid-
ering the stress concentration in our analytic calculations for 
systems with D/Φ = 2 (seen in Figure 2g), which exhibit a two-
fold stress concentration at the edge of the hole relative to the 
nonpatterned system, and hence predicts two-fold reduction in 
the various thresholds. The discrepancy between this calcula-
tion and the observed three-fold reduction is probably due to 

our analytic plane-strain approximation not capturing the full 
3D structure of the actual deformation field.

It is important to understand quantitatively how these insta-
bilities develop in the presence of the curved boundary from the 
edge of lattice holes. Thus, we plot the normalized strains for the 
onset of each instability as a function of the radius of lattice hole 
for D/Φ = 2. As seen in Figure 4g, the critical strains are clearly 
separated in different ranges, while the planar curvature decided 
by the radius of the holes influence the strains significantly. 
The overall strains are reduced as a result of the strain locali-
zation guided by the curved boundary, and it seems the strains 
for each instability are likely to collapse, which agrees well with 
the reported value by Kim that the doubling bifurcations are 

Adv. Funct. Mater. 2018, 28, 1704228

Figure 3. Characterization of the instabilities on the single hole and their evolutions under the uniaxial compression. a) Top view observations and 
b) AFM profiling of the selected area in (a) for surface morphology changes under the uniaxial compression for a unit area (centered square lattice 
array) with in-plane aspect ratio of D = 80 µm, Φ = 40 µm, h = 43 µm. c) The surface morphology development is plotted with the dependency on 
compression strain, the surface starts to initialize localized wrinkles on ε = 0.02, then develops into periodic doubling at ε = 0.15, the surface starts 
to form creases locally at ε = 0.2, where the sharp self-contacts within the PDMS (green dashed lines) are detected by LSCM, and finally the creasing 
develops globally. d) The reflective image shows a surface hierarchy formed when the hole reached the “off” state at a compression deformation of 
0.55. Laser confocal scanning reveals e) the in-plane distribution of creases and f) the out of plane morphology developed into the PDMS substrate 
for the selected area in (d), the arrows show the high intensity fluorescence signal due to the closure of neighboring holes. The scale bar for the inset 
figure in (f) is 3 µm. The other scale bars are 40 µm.
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likely to be mixed with creasing with the E E/f s  value in the 
range of 14–47.[34,35] A key advantage of the elastic instability 
enabled technology is that, as an elastic process, it should yield 
a low degree of hysteresis. We then investigate the hysteresis 
of the lattice patterned surface with labeling the lateral dimen-
sion change in the hole (Figure 4f). The results suggest a robust 
transformation, which indicates that the viscoelastic relaxation 
of the soft PDMS layer used here is less important.

3. Conclusion

In this report, we present an approach to generate periodic 
planar wrinkle 2D patterns and controllable instability evolu-
tion toward a hierarchical surface by preplacing Bravais lattice 
patterns on the surface as in-plane structural confinements. 
The bilayer system shows kinetic bistabilities at certain well-
defined strain values initializing the wrinkles and further elastic 

bifurcations at the designated areas/locations which are closely 
related to the geometries of the confinements. The formation of 
lateral wrinkle patterns has been studied with the dependencies 
on the geometrical variables of in-plane confinements and the 
results are in good agreement with the predictions from numer-
ical analysis. At higher compression, we also reveal a targeted 
formation of wrinkle-to-crease transition as result of the reorgan-
ization of surface strain field. We anticipate this localized forma-
tion of surface instabilities, and the demonstration of bistability 
over a substantial range of strains will open new opportunities 
for applications of elastic instabilities on responsive surfaces 
for future lab on chip devices, by enabling delicate responses to 
mechanical inputs as selectively sensing or actuating structures.

4. Experimental Section
Microengineeringand Surface Treatment of Pattern Template: Structural 

patterned templates of SU-8 microcylinders on silicon wafer were 

Figure 4. The evolution of surface morphology at higher compression, from wrinkling to creasing. Schematic illustrations of the transition from wrin-
kling to creasing for different harmonic patterns, a) straight belt, b) star shape, and c) curved ribbon. d) SEM image reveals the transition moment 
from wrinkling to creasing with the captured initialization of creases. The normalized amplitudes of surface features A/λ0 reveal two postwrinkling 
bifurcations with increasing strain for e) homogeneous PDMS surface and f) patterned PDMS surface (centered lattice) with in-plane aspect ratio of 
D = 80 µm, Φ = 40 µm, h = 43 µm. Normalized amplitudes changes along with two bifurcations and represented with first order (○), second order 
(△), and third order (▽). g) The critical strains for initiating wrinkle (○), periodic doubling (△), creasing (▽) for the centered square array with 
different diameter. h) The compression (△) and recovery (○) curves show the hysteresis and nonlinearity on the deformation of a single hole under 
uniaxial compression.
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obtained through a standard photolithographic fabrication technique. 
Templates with different lattice arrays (square and centered square) and 
varied aspect ratios were prepared. A SAM of trichloro(1H,1H,2H,2H-
perfluorooctyl)silane (Sigma-Aldrich), was applied from the vapor phase 
at 20 °C for 30 min to facilitate subsequent release of the PDMS film.

Fabrication of Structural Confined Elastic Bilayer: The mounting 
layer was made from a commercial available elastomer product (Elite 
Double 22, shear modulus ≈ 0.35 MPa) from Zhermack Ltd. After 
mixing the vinylpolysiloxane base with a curing agent with a weight 
ratio of 1:1 for 1 min, the mixture was cured in the petri dish at 20 °C 
for 6 h. The cured elastomeric film was ≈3 mm in thickness, and a 
stripe of ≈6 mm × 20 mm was cut and prestretched to 400% of its 
original length on a uniaxial mechanical strain stage. The soft PDMS 
layer with thickness of 125 µm (Sylgard 184, Dow Corning, 30:1 for 
elastomer base:crosslinker) was prepared by spin-coating the degassed 
mixture on a SU-8 patterned silicon wafer (≈1 cm2) at 1000 rpm for 
120 s, followed by curing at 70 °C for 1 h. An adhesive PDMS layer with 
the same composition of 30:1 was spin-coated on this cured layer at 
3000 rpm for 120 s, to bond to the mounting layer. After transferring 
the adhesive coated soft PDMS layer to the mounting layer, the 
assembly was baked at 70 °C for 8 h to cure the adhesive layer. Prior 
to characterization, the bilayer was treated with oxygen plasma (HPT-
100, Henniker) under a working power of 100 W, with a mixed gas 
atmosphere of oxygen/nitrogen ratio ≈ 0.2.

Characterization: The bilayer was progressed to measurement as 
soon as the oxygen plasma treatment was completed. Incremental 
deformation in nominal strain of ≈0.004 were applied to the sample 
by releasing the mounting layer prestretch by a fixed amount at regular 
intervals and situated for 15 min in room temperature. Sample surfaces 
were observed in situ using an upright optical microscope (Nikon 
LV-100) in brightfield reflection mode. For the laser scanning confocal 
microscopic imaging (Nikon A1R), the top layer was labeled by adding a 
small amount of fluorescent monomer (0.1 mg fluorescein-o-acrylate per 
1 g PDMS). Scanning electron microscopy (MIRA3, TESCAN) was used 
to observe the surface structure. The surface topographic features were 
assessed with an atom force microscopy (D3100, Veeco).

Numerical Analysis: The numerical analysis used a finite element 
package in Mathematica to solve the 2D plane strain linear elasticity 
problem for the deformation in the patterned soft substrate. A repeatable 
2D unit cell was first defined with the geometry corresponding to 
the experiment and, as seen in Figure S7 (Supporting Information), 
the domain by a fine mesh consisting of around 4000 triangles was 
described.

A plain-strain deformation was then assumed, described by the  
2D displacement field +( ( , )ˆ ( , )ˆ)u x y x v x y y  so the plane strain stress 
tensor is
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where E is the Young’s modulus, ν is the Poisson’s ratio, and the 
comma-notation denotes partial derivatives. The Mathematica finite 
element package was then used to solve ∇ ⋅ σ = 0 in the meshed domain,  
subject to the boundary conditions that σ ⋅ =ˆ 0n  on the hole edges, and 
that the straight edges of the cell move with the macroscopic strain of 
the underlying substrate (−ε in the x-direction and 0.3ε in the y-direction) 
as seen in Figure S7 (Supporting Information).

After solving for the displacement fields (Figure 2e), the stress on 
the film could be evaluated from the stress tensor above. To determine 
whether the region is unstable toward wrinkling, the stress tensor was 
diagonalized to find its maximum compressive stress (Figure 2g). By 
comparing this compressive stress with the theoretical critical value, 
the wrinkling region could be identified (Figure 2f), while the wrinkle 
direction (the short lines in Figure 2f) was perpendicular to the principal 
direction of the maximum compressive stress.

Supporting Information
Supporting Information is available from the Wiley Online Library or 
from the author.
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Responsive Hydrogels Based Lens Structure with

Configurable Focal Length for Intraocular Lens (IOLs)

Application

Yifan Li, Ding Wang, Jack Richardson, Ben Bin Xu*

Summary: Stimuli-responsive hydrogel has attracted wide interests in bio-

applications, especially in bio-optical systems that need tuning and adjustment

of their optical performances. In this paper, we have investigated the materials

and structural designs for the potential intraocular Lens (IOLs) design by

studying swelling induced morphology changes and subsequently optical

properties of ionic responsive Poly (Acrylamide-co-sodium acrylate) hydrogel.

The equilibrium swelling ratio and swelling kinetics of gel were measured under

both free standing and confined conditions. The Poly (Acrylamide-co-sodium

acrylate) hydrogel has shown reversible swelling response to the ion

concentration. Autonomous focusing of the gel lens was demonstrated under

the certain ionic stimulus. Initial optical results have been presented with

designable stimuli-responsive focal length shifting under structural

confinement.

Keywords: hydrogel; intraocular Lens; ionic; stimuli-responsive

Introduction

One of the recent research interests in
intraocular lens (IOLs) technology is to
achieve variable focal lengths by using
suitable materials and novel designs. The
most common solution is to either directly
fabricate the lens and its components onto
curved surfaces by moulding, or geometri-
cally reshape a planar system.[1–4] By far, all
reported IOLs designs are of fixed focal
length, the technical challenge remains to
be addressed under the term of developing
gel lens with adjustable focal length in an
autonomous and reversible manner. From
the perspective of customer experiences,
the IOLs with self-regulating focal length
could offer convenient care solutions to
perspective patients by providing vision

tolerance to avoid over-sight or/and over-
intensity after surgery.[2]

By applying various external stimuli
such as temperature, pH, electric and
magnetic fields, and chemical triggers,
hydrogel can undergo reversible deforma-
tion to change its size and shape.[4–11]

Stimuli-responsive hydrogels have been
developed into various sensor and actuator
applications include bio-medical sensors,
artificial muscle actuators, scaffolds for
tissue engineering, active surfaces and drug
delivery systems.[12–15] The swelling and
de-swelling of the polymer network was
firstly discovered as a result from reversible
titration of weakly ionised polyelectrolyte
gels.[3] Given a proper boundary condition,
curvilinear layouts could be generated on
the surface of gel during swelling. Such
stimuli induced geometrical change will
result in strong nonplanar imaging capabil-
ity and autonomous control.[16–18] Recent
study by Dong and co-workers[19] pre-
sented a hydrogel based adaptive liquid
lens, where the water-oil interfaces were

Smart Materials and Surfaces Lab, Faculty of
Engineering and Environment, Northumbria
University, Newcastle upon Tyne NE1 8ST, UK
E-mail: ben.xu@northumbria.ac.uk

Macromol. Symp. 2017, 372, 127–131 DOI: 10.1002/masy.201600159 | 127

� 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim wileyonlinelibrary.com



pinned and deformed by actuating ring-
shaped hydrogel structures by changing
temperature and pH, mimicking the mech-
anism of a human eye. The utilisation of
responsive materials could simplify the lens
design without degrading the field of view,
focal area, illumination uniformity, or
image quality.[20]

In this article, we introduce a conceptual
design to confine the circular gel structure
on the rim with a 3D printed holder. The
purpose is to configure the curvature of gel
lens in a coordinated manner under the
ionic stimulus, to achieve variable focal
length autonomously. When swelling
occurs under the given confinement, the
original thickness of fabricated curved lens
changes in an elastic and reversible way
that allow us to control the curvature of the
lens. This actuation is defined precisely by
the nature of the polyelectrolyte gel in this
work and the kinetic is studied. The
investigation of the focal length change
suggests that the fabricated gel lens covers
the whole range of the human eyes. The
conceptual gel lens in this study could be an
active substrate to integrate with other
elements for advanced eye prosthetic
device development.

Results and Discussion

The gel lens structure was designed to be
confined by a 3D printed holder with
hollowed structure for the swelling tests
(Figure 1a–d). Stimuli responsive poly-
(acrylamide-co-sodium acrylate) (PAAM-
co-NaAc) hydrogels (Figure 1e) has been
used. As the copolymer gel can response to
both ionic and thermal stimuli,[21] the
degree of swelling and morphology change
of the thin gel layer under certain confine-
ment can be varied through changes to
either the ionic strength of the phosphate
buffered saline (PBS) solution (ionic
strength¼ 150mM) or temperature. The
conceptual gel lens design has used a
circular shape with a diameter of
13.8mm, and varied thicknesses. The pro-
totyping of gel lens consisted of three steps
(Figure 1f). Firstly, the self–designed
micro-mould was assembled. Secondly,
the reaction-moulding of the gel was
performed. And finally, the cover slip
was removed to release the lens. The lens
was designed with different aspect ratios by
controlling the initial height from 250mm
to 2mm, with a fixed projection diameter of
13.8mm.

Figure 1.

Experimental design of an ion-concentration controlled swelling hydrogel adaptive lens. The stimuli hydrogel is

placed on a 3D printed holder to give a ring confinement during the swelling. (a) The pre-swelling set, (b) the

Lens effect after swelling. The cross section views of pre-swelling state (c), and post swelling state (d). (e) The

illustration of gel network and chemical composition for the PAAm-co-NaAc in our study. (f) From top to

bottom, the gelation process in a micro-mould consisting of a 3D printed mould and a cover slip.
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The gel swelling test was performed in
PBS solutions at room temperature (20 �C)
with three different confining conditions,
free standing (bulk, Figure 2a), side
confinement (Figure 2b), and rim confine-
ment (Figure 2c). As illustrated in
Figure 2d, the conceptual lens design with
rim confinement could present a focal
length change when the nonlinear mor-
phology changes occur as a result of the
ionic swelling. The swelling results are
compared in Figure 2e, the rim confine-
ment swelling presents the significant
deformation with a H/h� 2.42, while the
free standing swelling achieve the equilib-
rium state at a H/h� 1.56 for one dimen-
sion, and aH/h� 2.06 for side confinement.
Under the rim confinement, the lens
structure could achieve higher deformation
from the central axial, yielding a significant
curvature changes during the swelling
process.

The next step was to build a multi-point
laser marking based focal length measure-
ment system (Figure 3a) to characterize the
focal length changes for the gel based lens
structure under ionic swelling. By setting
the dimensional variables of the system and
controlling the position of the laser input,
we will receive the laser mark in the paper
receiver. As shown in Figure 3b, the
distance from lens to paper receiver can
be set by controlling the Z-stage, where Ic is
the position when the laser gets through the
centroid of the gel lens and the Ie is the

laser gets through the edge, we will have
focal length�Dl/(D-d). For each measure-
ment, one Ic and at least three Ie need to be
measured. Resulted sample marks of the Ic
and Ie are shown in Figure 3c and d. As a
dynamical process, we used the ionic
strength in buffer solution to control the
swell ratio (H/h), the calculated focal
lengths are shown in Figure 3e. When the
swelling started, the focal length was start
drop into measurable range at �26mm,
then keep dropping when the lens was
further swollen. The focal length reached a
practical range of �15 when the H/h is 1.7,
and remained relatively stable within this
range. We noted a wide distribution of the
data during the high swelling state, this was
caused by the data processing when the
Numerical Aperture (NA) was applied to
compensate the deflection, while the actual
incident angle was hard to capture during
the dynamic swelling. The experimental set
will be further improved with laser confocal
system to identify the laser incident angle.
In all, the responsive gel based lens
supported by the rim confinement have
demonstrated variable-focus ability and
can autonomously respond to ionic stimuli.

This responsive hydrogel-based lens is
easy to fabricate and its stimuli-responsive
nature offers a highly adaptable property,
which could be used as substrate to be
integrated with other elements such as
circuits and sensor for prosthetic
application. Moreover, the mechanical

Figure 2.

Schematic andmeasurement of the morphology change under different swelling state, (a) free standing, (b) one

side confinement, (c) ring confinement for PAAm-co-NaAc gel lens, (d) the parameters to describe the

morphology change of the lens, the original height h, the original Focal Length Lf, the height after swelling H,

and the Focal Length after swelling L’f. (e) The swelling kinetics of the gel under different confining state, free

standing (D), side confinement (&), and ring confinement in this study (O).
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confinement has realised a wide range of
focal length change, which could signifi-
cantly improve the vision quality by
achieving a wide field of view. However,
there are still some work need be done to
understand the mechanics of the geometri-
cal curvature change under rim confine-
ment, and the calculation correction of
focal length changes at high swelling level.

Conclusion

We have developed a novel IOLs tech-
nique with ionic responsive gel under

specific confinement. The ionic swelling
induced morphological transformation en-
abled a wide range of focal length changes
(1! 10mm). This technology also ena-
bles simple and cost effective fabrication as
well as reasonable fast response times (in
the a few minutes). The responsive gel
based lens has a highly adaptive property
and could autonomously respond to
changes of ionic strength in the environ-
ment and provide visible output signals. It
could also be used as substrate to inte-
grated other elements to generate novel
opto-electronic systems for prosthetic
applications.

Experimental Section

3D Printing Micro Mold and Device

Assembly

The lens mold was printed via Objet 24
desktop system with photo cured acrylic
based material. The mold design
employed standard contact lens parame-
ters, and was completed in Solidwork
software before being loaded into a
Strasys

1

Objet24 system for printing.
The printed parts were cleaned and rinsed
with isopropanol (IPA), before being
annealed on a hot plate at 100 �C for
15min. The assembly of gelation chamber
was constructed by the printed mold and a
glass cover slip.

Gelation and Lens Fabrication

The Poly (Acrylamide-co-sodium acrylate)
hydrogel was synthesized with 825mM
acrylamide, 115mM sodium acrylate,
4.5mMN,N0-methylenebis(acrylamide),
5mM of Flourescein o-acrylate (for swell-
ing test only), 0.3mL of N,N,N0,N0-
tetramethylethylenediamine and 1.0mL of
a 10wt% aqueous ammonium persulfate
solution. Gelation was completed within
20min in the assembled chamber. After
removing the coverslip, the gel lens can be
obtained and then put into a phosphate
buffer saline solution (Sigma-Aldrich)
prepared with a total ionic strength of
150mM.

Figure 3.

(a) The experimental set to determine the focal length

for the lens during the ionic swelling by laser marking.

(b) Dimensional parameters for calculation of the

focal length. Sample laser targeting for (c) Ic and (d) Ie.

(e) Calculated focal length with different swelling

ratio for the PAAm-co-NaAc gel lens.
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Gel Swelling Study and Focal Length

Measurement with Laser Marking

The swelling testing was carried out via
direct optical observation of the fluores-
cence dyed gel products. For the free
standing mode, the gel was cut into cube
with varied original dimensions of 2.5mm,
5mm and 7.5mm. For the side confined and
rimconfinement swelling tests, the gel sheets
used the same diameter of 13.8mm, and the
sheets with varied thickness of 250mm,
500mm and 750mm respectively. The lens
sheet has a thickness gradient similar with
spherical cap. Gels were allowed to equili-
brate for 2 h in the PBS solution with certain
ionic strength and the gel was imaged using
either aZeiss

1

Axiovert 200 inverted optical
microscope (2.5�, 5�and10�objectives)or
a Zeiss

1

LSM 510 META laser scanning
confocal fluorescence microscope, where a
HeNe laser (wavelength520nm)wasused to
excite the fluorescence fluorophore (detec-
tion filter: 480nm). The focal length charac-
terizationwas carried via amulti points laser
marking and calculated the focal length. The
low energy HeNe laser (power �4mW,
wavelength �633nm) was adopted in this
measurement to prevent any possible deg-
radations of the gel. The final focal length
calculation was correct with the Numerical
Aperture (NA), to compensate the deflec-
tion between then liquid/air interface.
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Not all wrinkles are unwanted, by Senior Lecturer Dr Ben Bin Xu and PhD student Ding Wang.

Professor Ngianga-Bakwin Kandala 

The United Nations.

Senior lecturer Dr Ben Bin 
Xu and PhD student Ding 
Wang’s prize-winning 
photograph is a visually 

striking image of a thin elastic 
material, which has been heavily 
compressed during their research. 
The pair are members of the 
Smart Materials and Surfaces Lab 
with the faculty of  Engineering 
and Environment at Northumbria. 
Their current research, funded by 
a £97k grant from the EPSRC, is 
focused on the micro-mechanics 
of soft materials such as gels 
and silicone elastomers and 
how these can be used in future 
engineering applications. 

Dr Xu, a senior lecturer in 
Mechanical and Construction 
Engineering at Northumbria said: 
“While the wrinkling, buckling 
and folding of the surfaces of thin 
films, such as aging skin or the 
crumpling of a thin film device, 
are traditionally seen as faults, 
this wrinkling can actually be 

used to improve multifunctional 
chip devices for use in biology, 
tissue engineering and chemical 
engineering. This photo, captured by 
Ding Wang during our research, is 
a wonderful visual representation of 
the work we are carrying out. For the 
image to be recognised in this very 
prestigious national competition is a 
fantastic achievement.”

The EPSRC's Science Photography 
Competition is now in its fourth year 
and is open to all EPSRC-funded 
researchers. This year the competition 
attracted more than 100 entries 
across five categories – Eureka and 
Discovery, Equipment and Facilities, 
People and Skills, Innovation, and 
Weird and Wonderful.

Competition judge Dr Helen Czerski 
said: “Scientists and engineers are 
often so busy focusing on the technical 
details of their research that they can 
be blind to what everyone else sees 
first: the aesthetics of their work. 
Science is a part of our culture, and 
it can contribute in many different 

ways. This competition is a wonderful 
reminder of the emotional and artistic 
aspects of science, and it's great that 
EPSRC researchers have found this 
richness in their own work.”

The EPSRC is the main funding 
agency for engineering and physical 
sciences research and invests £800 
million a year in research and 
postgraduate training, building 
the knowledge and skills base 
needed to address the scientific 
and technological challenges facing 
the nation. Northumbria offers 
a range of fascinating courses in 
the field of Mathematics, Physics 
and Electrical Engineering, with a 
number of research groups at the 
University driving breakthroughs 
and discoveries in these disciplines.

Eureka moment for Northumbria’s 
‘smart’ researchers
Two Northumbria researchers working in smart surfaces have won a prize in the Eureka and Discovery category of the 
Engineering and Physical Sciences Research Council’s (EPSRC) annual photography competition.

United Nations asks Northumbria 
professor to help address global problem 
Eliminating the practice of Female Genital Mutilation (FGM) is a step closer thanks to the expertise 
of a Northumbria academic.

A world-leading biostatistics 
expert, Professor Ngianga-
Bakwin Kandala was 
invited to a prestigious 

United Nations (UN) conference 
in April to discuss his analysis of 
the complex social, cultural and 
environmental reasons why FGM 
occurs. His work in statistical analysis 
and modelling will help policy makers 
understand the causes of FGM and 
design solutions, which could help 
eradicate this global problem. Using 

data provided by National Statistics 
Offices, charities and NGOs to 
identity FGM hotspots, Professor 
Kandala focused his analysis on 
Kenya in the first instance and 
presented these findings at this 
year’s joint UNFPA-UNICEF Female 
Genital Mutilation/Cutting (FGM/C): 
Accelerate Change conference. 

Professor Kandala, who is based 
in Northumbria’s Mathematics, 
Physics and Electrical Engineering 
department, said: “The Bayesian 
method of analysing data allows 
us to take all the complex social, 
cultural and environmental factors 
into account to produce a far more 
accurate and multi-dimension 
view of the situation and how it is 
changing over time.

“We can then present these 
findings in a way which allows policy 
makers to understand the problem 
and design bespoke solutions for 
individual countries or communities.

“This is the first time data in 
relation to FGM has been analysed 
using this method and on this scale 

and I was delighted to be asked by 
the UN to present my findings at the 
Accelerate Change conference.”

Professor Kandala has spent the last 
15 years working with organisations 
such as the World Health 
Organisation, children’s charity 
UNICEF and the UK’s Department 
for International Development 
(DFID) to map global health and 
disease in developing countries 
using statistical analysis. In recent 
years, he has played a major role in 
helping establish a group to train 
biostatisticians in Africa.

Alongside his work in developing 
countries, Professor Kandala is 
also interested in studying the 
relationship between air pollution 
and health in developed countries, 
including the UK, in the future. 
This would include studying links 
between Mono-nitrogen Oxide, 
sulphur dioxide, particulate matter, 
benzene, heart failure, hospital 
admissions and mortality and 
mapping health trends in relation to 
air pollution.

Speaking about Professor Kandala’s 
invite to the UN, Professor Glen 
McHale, Pro Vice-Chancellor 
(Engineering & Environment), said: 
“The work Professor Kandala is 
carrying out is of global importance 
and is an excellent example of the 
type of internationally significant 

and ground-breaking research being 
carried out by our academics here 
at Northumbria.”

www.northumbria.ac.uk/maths
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In article number 1704228, John Simeon Biggins, 
Ben Bin Xu, and co-workers report the formation 
of versatile wrinkle patterns on an elastic bilayer. 
The image shows guided formation of the surface 
instability on a micro-patterned thin elastic 
surface under high compression. The harmonic 
hierarchy was caused by the in-plane distribution 
of strain energy regulated by the confinement 
from the placed Bravais lattice pattern.
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