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A large-scale test of the relationship between procrastination and 

performance using learning analytics 

Many studies have found a relationship between students’ self-reported 

procrastination and their grades. Few studies have used learning analytic data as a 

behavioural measure of procrastination in order to predict performance, and there 

is no systematic research on how this relationship may differ across assessments 

or disciplines.  In this study we analyse nine years’ worth of institutional 

electronic submission records, a total of 73,608 assignment submissions, to 

examine the relationship between submission time and grades across 

assignments, students, courses, and disciplines in higher education.  A significant 

negative relationship was found overall, with students who submitted closer to 

the deadline obtaining lower grades, however the size of the relationship was 

negligible, accounting for less than 1% of the variance in grades.  The 

relationship varied significantly depending on student, assignment, course, and 

discipline.   
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Aims and objectives 

 

The aim of this paper was to examine whether digital records of higher education 

students’ coursework assignment submission times could usefully be added to the 

analytic measures used to identify university students at risk of failure or drop-out.  

Previous studies are scarce, but several studies using coursework assessment completion 

time as a proxy for procrastination have found that later completion of assessments 

correlated with lower grades.  These previous studies are limited to one or two courses 

in a small range of disciplines, so it is difficult to know to what extent it would be 

predictive for all students in all disciplines.  This study examines the full range of 



disciplines offered at a university, to investigate the relationship between submission 

time and grades, and whether it is consistent across students, assignments, courses, and 

disciplines.  If so, this could be useful data to add to university-wide predictive analytics 

systems, but if the relationship is weak or context-dependent, its usefulness would be 

more limited.   

 

Introduction 

Learning analytics is a growing field, defined as ‘the measurement, collection, 

analysis and reporting of data about learners and their contexts, for purposes of 

understanding and optimising learning and the environments in which it occurs’ 

(description provided for conference website by Siemens, 2010).  One of the most 

common uses of learning analytics is to identify students at risk of failure or drop-out, 

with the aim of improving retention (Dawson et al. 2014; Agudo-Peregrina et al. 2014).  

Typically this is done by looking at students’ frequency of access and cumulative time 

spent in their university’s virtual learning environment (VLE), interactions with other 

students and staff online, attendance, library use, marks for formative or summative 

assessments, and demographic data (e.g. De Freitas et al. 2014; Colvin et al. 2015).  

Relatively few studies have looked not just at what students do, but when they do it.  

Later engagement may indicate dilatory behaviour due to poorer self-regulation 

strategies or lower motivation, a pattern of behaviour subjectively experienced as 

procrastination, ‘the voluntary delay of an intended and necessary and/or [personally] 

important activity, despite expecting potential negative consequences that outweigh the 

positive consequences of the delay’ (Klingsieck 2013, 26). 

  



Most university students procrastinate, by their own account, with 20-50% 

suffering chronic procrastination which they would rather overcome (Solomon and 

Rothblum 1984; Steel 2007).  Procrastination in students has been linked with stress 

(Tice and Baumeister 1997), depression and anxiety (Solomon and Rothblum 1984; 

Rozental et al. 2015).  A range of theories have attempted to explain procrastination 

(Klingsieck 2013), ranging from those linking procrastination with personality traits, to 

motivational approaches explaining procrastination as a gap between intention and 

action, owing to lack of intrinsic motivation or poor self-regulation.  Situational 

approaches incorporate contextual factors, suggesting that procrastination occurs when 

the task to be done is particularly boring, difficult, pointless, or requires personal 

sacrifices.  So some theories assume procrastination is an individual trait, which would 

predict that students with a tendency to procrastinate would show similar behaviour 

across all their higher education studies, while situational theories would predict that 

students procrastinate more on some tasks than others. 

 

Procrastination has also been associated with lower grades.  A meta-analysis by 

Kim and Seo (2015) found a significant weighted mean correlation of r = -0.13 between 

procrastination and grades, across different procrastination questionnaires, countries, 

age-groups, and assessment types.  The size of the correlation was substantially larger 

when the performance measure was coursework grades (r = -0.64) rather than 

examination grades.  The relationship between procrastination and performance was 

strongest for younger (compulsory sector) students.  The strength of the relationship 

also varied depending whether procrastination was measured by self-report 

questionnaires (as in 68 of the studies reported in the 33 papers) or by external 

observation (14 studies), and whether performance was self-reported (20 studies) or 



externally-assessed (62 studies).  They found the strongest relationship (r = -0.39) 

between externally-assessed procrastination and externally-assessed performance.  Kim 

and Seo argued that self-report is inaccurate and unreliable as students tend to 

exaggerate both their procrastination and their grades, so they favoured use of 

observational measures over self-report questionnaires.  Of the papers that used external 

observation of procrastination to predict grades, five (Steel, Brothan, and Wambach 

2001; Moon and Illingworth 2005; Howell at al. 2006; Rotenstein, Davis, and Tatum, 

2009; Hensley 2014) used behavioural measures such as observed delay in completion 

of online quizzes, or assignment submission time.  These behavioural measures are 

learning analytic measures which can be captured through digital traces.    

 

A variety of learning analytic measures have been treated as proxy measures of 

procrastination, for example time of first activity in the VLE (e.g. McElroy and Lubich 

2013; Baker et al. 2015), pace of VLE accesses to indicate cramming or spaced learning 

(e.g.  Thille et al. 2014; Jo et al. 2016), and assignment submission time - how close to 

the deadline students completed assignments.  Our study focuses on the last of these 

measures.  Using submission time as a behavioural measure of procrastination assumes 

that students who hand in work close to the deadline have been putting off working on 

their assignments, leading them to submit very close to the deadline.  Researchers have 

found that students spend increasing amounts of time on an assignment as the deadline 

approaches, and the same pattern has been observed in the timing of assignment 

submissions across a cohort, with the number of submissions increasing steeply as the 

deadline approaches, resembling a hyperbolic curve (Dewitte and Schouwenburg 2002; 

König and Kleinman 2005; Howell et al. 2006). 

 



While there may be other reasons for later submission, such as making optimal 

use of information, illness, or leaving more time for proof-reading, it is fairly certain 

that students who submit further in advance of the deadline are less likely to be 

procrastinators.  The advantage of submission time as a metric is that it is easy to extract 

from learning analytic data, so would be a good measure to include in calculations of at-

risk students if it proves to be an important predictor of performance. 

 

The earliest study that examined at the relationship between submission time 

and performance was on American psychology students as they completed a series of 

online quizzes (Steel, Brothan, and Wambach 2001). Submission time had a moderate 

negative correlation with examination grade and a high negative correlation with 

coursework grade.  These correlations were much higher than those between students’ 

self-assessed level of procrastination and grades, suggesting that learning analytic 

measures of procrastination may be a better predictor of performance than questionnaire 

measures. 

 

Moon and Illingworth (2005) carried out a similar study, also on psychology 

students in the USA, with similar findings.  Levy and Ramim (2012) also looked at 

procrastination in online computer-marked quizzes, in information science students in 

the USA.  They found that students who procrastinated until the day of the deadline 

performed significantly worse than those who completed the quizzes earlier.  Hensley 

(2014) found, for anatomy students in the USA, a weak but significant negative 

correlation between quiz submission time and grades.  Rotenstein, Davis and Tatum 

(2009) studied MBA students in the USA after they completed computer-marked 

homework assignments, and likewise found a weak but significant negative correlation 



with homework grade.  In the UK, Arnott and Dacko (2014) found that marketing 

students who submitted an assignment early obtained significantly more distinctions 

than later submitters.  In Spain, Cerezo et al. (2016) found a significant negative 

relationship between psychology students’ e-training assignment submission times and 

performance.  In contrast, two studies of assessed discussion forum postings found no 

significant correlation between posting time and grades, in Canada (Howell et al. 2006) 

and Israel (Gafni and Geri 2010). 

 

Overall, seven of nine studies found a significant relationship between 

submission time and performance, though the strength of relationships varied and only a 

small sub-set of all disciplines was tested.  Gašević et al. (2016) pointed out the dangers 

of ignoring educational context, since learning analytics predictive of success for 

students in one discipline were not in another.  Contextual factors that might have 

influenced the results of the nine studies on submission time and performance are 

largely unknown, so it would be valuable to determine to what extent the relationship 

varies depending on context, for example discipline.   

Research questions 

The main research question is to determine whether there is a reliable association 

between assignment submission time and grades.  We predicted that students who 

submit closer to the deadline (a proxy measure of procrastination) would obtain lower 

marks than those who submitted well in advance of the deadline. 

 

If a relationship was found, the second research question is to ask whether the 

relationship between submission time and grades would differ markedly from one 

student to another, or whether the costs of delay would be similar across all students.  



Some (e.g. Chu and Choi 2005; Choi and Moran 2009; Corkin, Yu, and Lindt 2011; 

Kim, Fernandez, and Terrier 2017) have suggested that procrastinating students fall into 

two types, with only ‘passive’ procrastinators showing poorer outcomes.  Students who 

are confident and delay as a deliberate strategy, so-called ‘active procrastinators’, thrive 

on pressure. So some students may not display a negative relationship between delay 

and grades. 

 

The third research question is whether or not the relationship varies across 

assignments, as procrastination may be more costly for some assignments than others.  

Finally, we asked whether the relationship might vary in different courses (modules) or 

disciplines.   

Methods 

Data 

The data for this study were all electronic assignment submissions for an entire 

university over a 9-year period (April 2006 to April 2015).  The university is a ‘post-

1992’ university located in the North of England, UK.  Not all assignments were 

submitted electronically, so the data is not a complete representation of the university’s 

assignment submissions.  The file obtained from the electronic submission database 

contained 385,668 records each representing an individual student’s assignment 

submission. 

Data cleaning and sampling 

The data were prepared for statistical analysis in the following ways. All records with 

no marks associated with them (73% of the sample) were discarded, as irrelevant for 



answering our research questions.  This could for example have included unmarked 

drafts, formative assessments, or late work which was not graded. 

 

All records where students submitted after the deadline were discarded.  These 

cases are likely to have included students who were offered extensions due to 

disabilities or extenuating circumstances, and possibly some students given a late work 

penalty.  Submissions were also excluded if submitted by staff on behalf of a student.   

 

Any assignments where all students submitted within a short timescale of less 

than 6 hours were excluded (these could have been exam submissions, or assignments 

that staff had forgotten to open to students until very late).  As deadlines in the system 

were often recorded as one minute before the hour (e.g. 15:59), one minute was added 

to all the deadlines to ensure that students who submitted on time were not recorded as 

late. Some deadlines were recorded as a few minutes after the hour (e.g. 10:02, 14:10) 

suggesting staff allowed a small leeway: these were not altered, apart from adding the 

extra minute. 

 

Most submissions were marked on the percentage scale, with a pass mark of 

40%, however a few of the assignments had been marked using a different denominator 

(e.g. out of 20), and, as long as the marks awarded were consistent with this setting, 

those assignment marks were converted to the percentage scale.  In some cases it was 

not clear whether assignments were marked on the full percentage scale, so as a 

precaution, we also excluded any assignments with only one submission awarded 50% 

or less, or any assignments with multiple submissions where the median mark was less 

than 40% and the highest mark 50% or less.  Any individual submissions given a mark 



over 100 were also excluded.  Any assignments where students were only awarded only 

two or three different marks (e.g. all students received either 0% or 40%) were 

discarded as representing pass/fail assessments rather than those graded on a scale.   

 

Finally, outliers were removed following the assumption that assignment 

submissions follow a hyperbolic curve with very few students submitting early, and 

increasingly large numbers of students submitting as the deadline approaches (Dewitte 

and Schouwenburg 2002; König and Kleinman 2005; Howell et al. 2006).  Under this 

assumption, outliers at the ‘early’ end of the range would be expected, and therefore 

have not been removed.  Outliers at the ‘late’ end of the scale, falling substantially after 

the bulk of submissions, were removed because this would not fit the expected curve, 

and would suggest that the deadline was reset to encompass a few students who were 

permitted to submit at a later date, after the bulk of the cohort.  A submission was 

defined as an outlier if it was submitted more than 1.5 interquartile ranges after the later 

quartile.  Quartiles were calculated using the interpolation method using Python’s 

numpy package (Oliphant 2006). 

 

At the end of this cleaning and sampling process, 73,608 records remained for 

analysis, 71% of the marked submissions, representing 19% of the original sample.   

Variables 

The following variables were utilised in this study: 

 

The explanatory variable (predictor) was submission time.  A measure of how 

close to the deadline each student submitted their assignment was calculated by 

subtracting the submission time from the assignment deadline.  Because the distribution 



of submission times was, as predicted, highly negatively skewed, with few students 

submitting early and increasing numbers of submissions as the deadline approached, a 

natural log transformation was performed.   

 

The submission-time data were then group-mean centred around the mean 

submission time for each assignment.  Group-mean centring was used rather than the 

more usual grand-mean centring, because we could not be certain that staff who set up 

the electronic assignments had entered the correct deadline.  In many cases, it appeared 

that all students on a course had submitted a week or more before the deadline, which 

was implausible and does not fit with the observation that student behaviour follows a 

hyperbolic curve.  This means that submission times, calculated by subtracting the 

actual time of submission from the deadline as set in the electronic system, are not 

reliable.  Centring the submission times by assignment recalculates each student’s 

submission time for an assignment so it is relative to submissions by other students on 

the same assignment.  We reversed the sign so that negative numbers represented 

students who submitted earlier than average for that assignment and positive numbers 

represented those who submitted later than average – we will call this measure 

‘procrastination’.  This removes the reliance on knowing the actual deadline, while still 

allowing students to be characterised as early or late submitters.  The consequence of 

this decision is that the predictor variable ‘procrastination’ represents relative delay, 

compared with other students doing the same assignment, rather than absolute delay. 

 

The criterion (dependent) variable was mark (numerical grade), on a percentage 

scale with a pass mark of 40%. 

 



Students 

Records were each associated with a student identity code.  In total 21691 unique 

students were included in the study, with an average of 3.4 submissions each (range 1-

27). 

Assignments 

2335 individual assignments were included in the study.  Some assignments were set 

across several different cohorts with a similar title, but were coded as different 

assignments because the task and marking schemes may have differed. 

Courses 

There were 1272 courses (modules within a programme).  Markers and types of 

assignments often differ within the same course. 

Disciplines 

Records were coded into 21 cognate discipline groupings based upon the courses owned 

by academic teams. The discipline groupings were: Psychology,  Social Sciences, 

Social Work, Culture (History, American Studies), English, Languages, Geography, 

Tourism, Environment, Sport, Chemistry, Biology, Healthcare Sciences (Biomedical 

Sciences, Pharmaceutical Sciences), Pharmacy, Nursing, Education, Law, Business, 

Computing, Media, and Performing Arts.  

Statistical analysis 

Before examining the relationship between submission time and marks, it is important 

to recognise that the data set is not homogenous.  Each data point represents one 

assignment submission by an individual student, but to treat these data points as 



independent would be erroneous.  There are several layers of structure and groupings 

across data points.  For example each student will have contributed several data points, 

by submitting different assignments at different times.  Data points can also be grouped 

by different assignments, by different courses, or even by different subject disciplines.  

Other groupings may exist which cannot be discerned from the existing data, such as 

submissions marked by a particular marker, or assignments of particular types.  Because 

of the existence of these groupings within the data, we chose to analyse the data using 

multilevel modelling.  This allowed some of the hierarchical structure to be taken into 

account (Hox 2010), to evaluate the extent to which each of the four main forms of 

structure: student, assignment, course, and discipline, accounted for the variance in 

marks, before then determining to what additional extent procrastination also explained 

marks. 

 

Results 

Descriptive statistics 

The distribution of submission times was highly skewed.  The median time of 

submission was 24 hours before the deadline.  Most assignments showed the classic 

hyperbolic shape (König and Kleinman 2005; Howell et al. 2006), with increasingly 

more students submitting as the deadline approached, and fewer students submitting 

very many days in advance.  An example is shown at Figure 1; the student who 

submitted closest to the deadline submitted less than three minutes beforehand. 

 

  



Figure 1: Submission times for the largest assignment in the sample (business 

management)  

 

 

 

Unconditional variance components models 

All analysis was carried out in MLwiN 3.02 (Charlton et al. 2017; Rasbash et al. 2017), 

and R 3.6.0 (R Core Team 2019) using the lme4 package (Bates et al. 2015).   

 

In the first stage of investigation, the students’ mark was entered as the outcome 

variable in a two-level hierarchical model, using the iterative generalised least squares 

method of estimation, first with students as the level 2 random factor, then with 

assignments as the level 2 random factor, then with course and finally with discipline 

(models 1-4, respectively), to establish the amount of variance in marks accounted for 

by each alternative structure.   



Table 1: Variance components models for two-level hierarchical structures with marks 

as the outcome variable 

 

Model 1 2 3 4 
Random effect Student Assignment Course Discipline 
VPC† (%) 28.8 23.5 15.0 2.8 
Deviance 596360 585981 593100 602919 
Likelihood ratio 
test 

t(19610)=737.8, 
p<.001 

t(2063)=339.1, 
p<.001 

t(1220.5)=319.5, 
p<.001 

t(19.7)=101.1, 
p<.001 

* Significance calculated using lmerTest package following the Satterthwaite method, see Luke (2017) 
† Variance partition coefficient 
 

Likelihood tests determined that all of these 2-level models made a significant 

contribution to explaining the variability in marks, as seen in Table 1.  Clear evidence of 

multilevel structure can be seen by looking at the variance partition coefficient (VPC), 

which is here also equivalent to the intraclass correlation coefficient.  When the level 2 

random effect in the model was the student, the intraclass correlation between 

submissions was 0.288, so marks awarded to the same student across different 

assignments correlated.  To put it another way, ~29% of the variance in marks can be 

attributed to individual differences between students.  The remaining 71% of the 

variance in marks is due to other situational factors which differ from one assignment 

submission to the next.  Some of these situational factors can be seen in the other three 

variance components models.  With assignments as the random effect, 23.5% of the 

variance in marks is explained by differences between assignments.   Courses and 

subject disciplines were responsible for smaller amounts of the variance in marks, 15% 

and 3%, respectively.  Differences between disciplines explained relatively little of the 

variance in marks. 

 

In case some of this variance is shared, further unconditional models were tested 

(Table 2; the first two models from Table 1 are repeated here as a baseline comparison).  

First we tested a cross-classified model including both students and assignments.  This 



model 5 accounted for significantly more variance in marks, but the proportions of 

variance explained by students (28%) and assignments (19%) were only slightly lower 

than those in the separate models, suggesting that these were largely independent 

sources of variance.   

 

In model 6 we tested whether nesting assignments in courses explained more of 

the variance than assignments alone.  In this model 14% of the variance in marks was 

explained by assignments and 10% by courses.  Adding courses substantially reduced 

the amount of variance explained by assignments, suggesting that some of the apparent 

differences in assignments were actually due to differences in courses, where the 

variance barely dropped.  We then added students to this model in a hierarchical cross-

classified model (7).  Again the proportion of variance explained by students remained 

the same, but the variance explained by assignments and courses dropped.  Finally we 

added disciplines in model 8, to test whether assignments nested in courses nested in 

disciplines explained more of the variance in marks than model 6. In this model 13% of 

the variance was explained by assignments, 8% by courses and only 2% by disciplines.   

Table 2: Variance components models for cross-classified and three-level hierarchical 

structures with marks as the outcome variable 

 

Model Deviance Random factor VPC (%) Compared with χ2 df 
1 Hierarchical 2 level 596360 Students 29    
2 Hierarchical 2 level 585981 Assignments 24    
5 Cross-classified 2 level 575583 Students 28 Model 1 20777* 1 
   Assignments 19 Model 2 10398* 1 
6 Hierarchical 3 level 585744 Assignments 14 Model 2 296* 1 
 

 
 Courses 10    

7 Cross-classified 3 level 505552 Students 28 Model 5 159* 1 
   Assignments 12 Model 6 10320* 1 
   Courses   7    
8 Hierarchical 4 level 585685 Assignments 13 Model 6 59* 1 
   Courses 8    
 

 
 Disciplines 2    

    * Significant at p<.001  



 
 

It was not possible to compute a cross-classified 4-level model to include 

students as well, because it failed to converge.  However, we would expect that ~28% 

of the variance explained would be due to students, and the proportions explained by 

assignments, courses and disciplines would be expected to drop by perhaps 1% each as 

was the case in model 7.  Table 2 shows that each model explains significantly more 

variance than the previous ones, with students always providing the primary source of 

variance in marks.   

 

Inferential statistics 

Since we were unable to calculate a full model with random effects for students cross-

classified with assignment nested in courses nested in disciplines, we decided to 

separate the analysis of student-level effects from the analysis of assignment-level 

effects.  Model 1 is the empty model used to capture student-level effects.  Since model 

8 (the full hierarchy of assignments nested in courses nested in disciplines) captured 

significantly more of the variance in marks than model 2 or model 6, we also proceeded 

using model 8 as an empty model. The second stage of analysis involved adding 

submission time as a predictor, first only with random intercept and fixed slope, then 

secondly also allowing slopes to vary randomly, to determine which models best 

accounted for the variance in marks.  This analysis was carried out in R 3.6.0, using 

Nakagawa et al.’s (2017) method for estimating the effect size, R2, for multilevel 

models.  

 



Table 3 shows the addition of procrastination as an explanatory variable to 

model 1, first with random intercept and then allowing random slope.  Both models 1a 

and 1b are a significant improvement on the unconditional model, with the random 

slope model explaining significantly more variance.  This confirms that procrastination 

significantly explains marks, with the relationship between procrastination and marks 

varying depending on the student. 

 

Table 3: Inferential statistics for the model fit for submission time with students as a 

random factor, each model compared with the previous one 

 

Model  Deviance χ2 df R2 
 

     marg. cond. VPC (%) 
1 Student (null) 596360   - 0.288 29 
1a Intercept 596143 218* 1 0.003 0.287  
1b Slope 596114   29* 2 0.003 0.292  

    * Significant at p<.001  
 

 

The covariance of 0.93 between slope and intercept was significant and positive 

indicating a fanning-out effect, so that students with lower marks had steeper (more 

negative) slopes, as seen in Figure 2.    

  



Figure 2: Marks predicted from procrastination level for each student by Model 1b 

 

 

 

To make it easier to see the overall pattern, we entered student average mark and 

its interaction with procrastination into the equation, to produce the schematic 

representation in Figure 3. 

 

  



Figure 3: Change in marks depending on submission time for students with very low 

average marks (a fail at 25%), average marks (lower second class at 55%), and first 

class marks (75%), for an average assignment 

  

 

 

Since this is looking at repeated submissions across the same student, this tells 

us that there is a very slight trend for greater procrastination (submission nearer the 

deadline) to be associated with poorer marks, and that the drop in marks is slightly 

higher for students who have lower marks than those with higher marks.  However, the 

drop in marks on an average assignment between submitting one week early and half an 

hour before the deadline is only around 1%. 

We also examined at the relationship between procrastination and marks in the context 

of assignments nested in courses nested in disciplines (model 8).  This was a between-

students comparison, since here we were looking at whether later submissions on a 
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particular assignment (where each submission is made by a different student) were 

associated with lower marks.  We tested whether the relationship between submission 

time and mark varies by assignment, by course, and by subject discipline.  Table 4 

shows that model 8b, with random slopes permitted for all the levels (assignment, 

course and discipline) accounted for significantly more of the variance in marks.  This 

means that there was a significant relationship between submission time and marks, and 

that this relationship varied depending on assignment, course and discipline, however 

this relationship was again very weak, accounting for less than 1% of the variance in 

marks.   

 

Some assignments had a shallower slope than others, suggesting that 

procrastination was less important in some assignments than others.  The relationships 

did not vary in any systematic way according to marks: the covariances between 

intercept and slope were not significant.  The pattern for courses and for disciplines was 

similar to that for assignments.  For academic disciplines, those with the strongest 

relationship between procrastination and marks were Environment and Geography, and 

those with the least were Business, Law, and Nursing.  There was little evidence of any 

cognate subject clustering. 

Table 4: Inferential statistics for the model fit for submission time with assignments 

nested in courses nested in disciplines as random factors, each model compared with the 

previous one 

 

Model  Deviance χ2 df R2 
 

     marg. cond. VPC (%) 
8 Assignment, Course & 

Discipline (null) 
585685   - 0.236 23.6 

8a Intercept 585029 655* 1 0.003 0.243  
8b Slope (all) 584948   82* 5 0.003 0.248  

    * Significant at p<.001  
  



Discussion 

 

We expected, based on previous literature (Steel, Brothan, and Wambach 2001; Moon 

and Illingworth 2005; Rotenstein, Davis, and Tatum 2009; Levy and Ramim 2012; 

Hensley 2014; Arnott and Dacko 2014; Kim and Seo 2015; Cerezo et al. 2016), that 

assignment submission time (as a proxy measure of procrastination) would predict 

marks, such that later submissions would be associated with lower marks.  This 

prediction was confirmed, with submission time significantly predicting marks, 

however effect sizes were very small.  This was the case both within-students 

(longitudinal) and between-students (cross-sectional).  In all the models the amount of 

variance in marks which was explained by procrastination was negligible, at less than 

1%, and as low as 0.3% when student-level factors were taken into account.  

 

Inspection of the empty models first established that multilevel modelling was 

necessary, since marks varied significantly according to student, assignment, course, 

and discipline, so each submission could not be treated independently of others.  The 

main source of variance in marks (at 28-29%) was students, showing a certain 

consistency in the marks that an individual student received across assignments.  It was 

reassuring that this was the main source of variance, and was much higher than variance 

in marks due to assignments, courses or disciplines, since variation in marks between 

assignments can potentially aggregate into differences large enough to affect students’ 

degree classifications, creating unfairness in the system.  There is no evidence of such 

an issue in this data set: we found that as the context became more general (from 

assignments to courses to disciplines), variance in marks reduced.  The variance in 

marks from one discipline to another was relatively small at 2%, and could have been 



lower if we could also have excluded student-level factors (that some disciplines may 

have a greater number of high-performing students, for example due to higher entry 

qualifications).  These findings suggest that a student’s final degree classification is 

unlikely to be heavily influenced by their choice of discipline or course options, even if 

some assignments tend to be ‘harder’ or ‘easier’.   

 

The within-students prediction was tested in a multilevel model with students as 

a random-effects factor. This showed a significant but very weak negative relationship 

between submission time and mark.  On average, when a student submitted an 

assignment relatively late, that student obtained marginally lower marks than on 

assignments when they submitted earlier.  The best fit model was a random-slopes 

model, where the strength of the relationship between submission time and marks varied 

by student.  This could be because submission time is less of a measure of 

procrastination for some students than others, or it could be because procrastination is 

less detrimental for some students than others, as claimed by Chu and Choi (2005).  

However, there was also a systematic pattern of variation between students.  The 

negative slope was a little steeper for students with lower average marks than for 

students with higher average marks, so later submission was better at predicting a drop 

in marks for lower-scoring students than for higher-scoring students.   

 

A direct causal relationship between submission time and marks can be 

dismissed as implausible, since it is unlikely that the student would have obtained 

higher marks on a particular assignment if they had stopped work and handed in that 

assignment earlier.  It is more likely that on the occasions that students submitted 

relatively late, they did so because they had insufficient time to complete the 



assignment to their usual standard, and were still trying to improve it towards the end.  

This could be due to procrastination, or other pressures beyond the student’s control 

such as work or technical issues.  Since whatever caused the late submission was more 

detrimental to students scoring at the lower end of the marking scale, it is possible that 

aspects of an assignment which contribute most to marks were completed earlier by first 

class-scoring students, so that running out of time was less costly than for students 

scoring at the low end.  These speculations would need to be investigated in further 

research, however the effect sizes involved were very small, with substantially later 

relative submission necessary in order to observe as much as a 1% drop in marks. 

 

The between-students prediction was tested in a multilevel model with 

assignments nested in courses nested in disciplines as random factors.  Here we found 

that later submissions in all these contexts attracted significantly lower marks, though 

the effect size was again very small.  The fully random-slope model was the best model, 

so that the relationship between submission time and marks varied by assignment, by 

course, and by discipline.  For example, in Business the negative slope was shallow, 

whereas in Environment and Geography, the slope was steeper, so students who 

submitted close to the deadline in Environment or Geography were more likely to risk 

lower marks than those submitting late in Business.  There was no evidence of delay 

being less detrimental in ‘easier’ assignments, courses or disciplines (those where more 

students got high marks): just a slight tendency for delay to be detrimental across all 

assignments on average.   

 

Although this large scale study has confirmed the negative relationship between 

submission time and grades found by Steel, Brothan, and Wambach (2001), Moon and 



Illingworth (2005), Rotenstein, Davis, and Tatum (2009), Levy and Ramim (2012), 

Hensley (2014), Arnott and Dacko (2014), and Cerezo et al. (2016), the small effect size 

and unreliability of the association for any particular student or assignment suggests that 

submission time would not be a useful metric for identifying at-risk students. 

 

Kim and Seo’s (2015) meta-analysis of the existing studies at that time 

suggested that behavioural measures were more promising than self-reported measures 

of procrastination for showing a relationship with performance, however this was based 

on a small number of studies which, compared with our findings, seem anomalous.  The 

medium to large relationships found by Steel et al. (2001) and Howell et al. (2006) 

would be very unusual.  Even in the studies we reviewed in the introduction to this 

paper, small correlations (0.1 to 0.2) were more common, with larger samples rendering 

these significant.  Our large-scale testing suggests the average correlation is much 

smaller (around 0.08 at most) which does suggest a possible file drawer effect 

(Rosenthal 1979). Since most marking interfaces allow markers to view both 

submission time and marks, it is possible that many markers have observed or even 

statistically tested possible associations between them, with those obtaining results that 

showed no significant relationship proceeding no further, so only the most striking 

results have made it into the public domain. 

 

The main limitation of our study is that it looked at only one university, where 

nearly all the courses were on-campus and assessed by high-stakes coursework 

assignments.  There may be other contexts for which the relationship may be stronger 

and more consistent.  However, what is definitely clear from our study is that, in most 

contexts, it is unlikely that the relationship between submission time and grade will be 



useful for predictive purposes, and there is no reason to believe that findings from 

previous literature will replicate in different assignments, courses, disciplines, or 

universities.  It would be useful to carry out further work to narrow down in what 

conditions the relationship may be stronger, for example identifying if there are any 

common factors shared by assignments for which procrastination is more strongly 

associated with low marks.   

 

A second limitation of our study is that we used submission time as a proxy 

measure of procrastination; the small effect sizes found may be because submission 

time is not a very good measure of procrastination, or may be because procrastination is 

not very strongly associated with performance.  Further research is needed to validate 

submission time as a measure of procrastination.   

 

In conclusion, in this large scale study we have demonstrated that, contrary to 

more promising small-scale findings, submission time alone is not a useful predictor of 

mark for a student on an assignment, as effect sizes are extremely small and the 

relationship between submission time and marks varies depending on both student and 

assignment context.   
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