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Abstract The rapidly evolving functionalities of the Internet of things (IoT)
has led to the concurrence of a more intricate and interconnected network of
devices. These devices specifically relate to a generic set of devices like the
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sensory devices, smart appliances, smart hubs, and other associated objects
which permissively provide a ubiquitous connectivity among the devices. This
is considered to be one of the most crucial prerequisites of the IoT technologies
as several devices need to be included in the convolution for the acquisition,
extraction, storage, processing, and other operations. The involvement of an
extensively large number of devices adds to the complexity in the connectiv-
ity and communication between the devices. Thus in order to understand the
scalability and the heterogeneity of these interconnected devices, the power-
law exponent is an important measure. In this paper, we provide an analytical
framework to illustrate the ubiquitous power-law behavior in the devices con-
nected to the internet. It also provides the mathematical insight to characterize
the dynamic behavior of the devices connected to the IoT. It emphasizes on
the traits of the wireless sensor networks (WSNs), which are the elementary
constituent of the IoT, and its future development and scopes in prospect of
contemporary technologies.

Keywords Internet of Things · Wireless Sensor Networks · Power-law ·
Scalability · Interconnectivity

1 Introduction

In recent years, the internet of things (IoT) is experiencing a revolutionary up-
thrust in confronting the requirements of huge number of consumers globally
by providing solutions for connecting a multitude of physical world devices
serving enormous functionalities. The expansion of the IoT and its associated
services have provided enormous solutions for the healthcare, academia, and
business industries to name a few [1,2,3,4]. Attributing to the cutting edge
growth in the performance of the communication technology and the scope of
the sensing devices, the proficiency of the IoT has scaled up considerably. How-
ever, in order to achieve an entirely functional model for the IoT ecosystem,
several crucial performance benchmarks are to be considered such as hetero-
geneity of the devices and interconnection network, topological constraints,
efficient management of resources, interoperability among the devices, and
optimizing the power consumption [9,10,11,12,13]. These factors are exten-
sively dependent on the density of the network and the diverse collection of
devices involved in the network.

In order to accomplish the transformations brought about by the expansion
of the IoT, various reference models are to be taken into consideration. Sev-
eral leading standards development organizations like the ITU-T, have been
very effective throughout the principal development phase of several tech-
nologies and have made vital recommendations to enhance the capabilities of
these technologies [28,29,30,31]. Apart from all these developments, there are
some generic consensus which are yet to be solved on some of the most de-
manding technical potentiality of IoT. These demands are aimed at providing
heterogeneity in the interconnection networks, handling multiplicity of the de-
vices, minimizing the network complexities, improving the energy efficiency,
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and managing the numerous resources. All these necessities are predominantly
influenced by the capabilities of the IoT system sustained by a massive collec-
tion of connected devices.

In the real world, many complex topological structures envelope a wide
collection of heterogeneous systems, or devices, with specialized technological
and computational capabilities. Initially, the application of complex networks
was studied in connection to graph theory. In graph theory the fundamental
focus was on regular graphs and their properties. In the 1950s the conception
of large scale networks came into existence, but there were no specific design
principles defined for random graphs. This lack of explicit design principles
made the characterization of the anatomy of random networks more inevitable
in order to understand the underlying dynamics of the complex networks.
In [23,24,25,26,27], a more acceptable conceptualization of the random graph
theory and the complex networks was presented, which subsequently lead to
the advancements in substantial areas of network science.

At present several networks (like complex networks) are portraying an ex-
tensive degree of heterogeneity in nodes. Some popular example where these
patterns can be distinctively observed include the World Wide Web (WWW),
the internet, social networks, and the networks observed in aircrafts. There
have been several studies on complex networks which reveal that in the course
of progression in the topological support of network, certain types of ema-
nating networks, referred to as the scale-free networks have emerged. These
networks encompass several peculiarity in their coherent traits and parame-
ters by displaying intrinsic heterogeneity in their behavior. This heterogeneous
behaviour is observed due to the preferential attachment, which enables the
nodes to establish several connections with the set of nodes initially present
in the network [23,32,8,33]. The degree of the nodes evidently exhibit hetero-
geneity in their degree distribution, such that the network’s degree follows the
power-law distribution. The nodes involved in these networks have relatively
short distance of inter-connectivity, which complies to the small-world prop-
erty. These systems are very robust towards node failures, due to the densely
interconnected network of nodes.

In this paper, we present a brief summary of some of the evolving dynamic
networks technologies. We then provide an insight to the basic terminologies
relevant to our study like the random graph theory concepts, the small-world
concept, and the scale-free networks. We then switch to the convergence of
these technologies with IoT, and conceptualize the scale-free traits of IoT.
We then present the proposed IoT based framework for handling dynamic
networks. These networks are observed to provide more befitting solutions as
compared to the conventional theories of achieving robustness in communica-
tion networks. We then formalize the proposed scheme with several well-known
mathematical models and establish the basis for our proposed scheme. We the
provide the simulation results for the proposed model and provide an analysis
of the theoretical results and the experimental results. We finally present the
conclusive remarks on our proposed scheme with some suitable future direc-
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tions.

2 Background

Most of the physical world objects, irrespective of their capabilities, can be
efficiently converged into a single functional unit by utilizing the networking
abilities of IoT. In 1960, Erdös and Rênyi [6], proposed the random graph
model for large-scale networks, which was designed by combining the conven-
tional approaches of the graph-theoretic concepts and the notion of statistical
physics. In [7], Watts and Strogatz studied the importance of the small-world
networks for some dynamical systems. They extended the regular graph model
by introducing some irregularities to its structure, to better study the versa-
tility of dynamical systems. Their model showed properties analogous to the
random graphs, in terms of path lengths.

Barábasi and Albert [8] studied the scale-free properties of large-scale net-
works. They put forward two generic rules : (i) The new vertices associated
with a network followed preferential attachment; and (ii) The network topol-
ogy displayed continuous expansion with the inclusion of new vertices. These
features gave rise to the concept of the scale-free distributions in large net-
works. This model illustrates the self-organizing properties of the vertices in-
volved in a network, which resembles the fundamental properties of real WSNs
[50,51,52,53]. The applications of several probabilistic models can be observed
in the studies [41,42,44,43]. These systems worked well under the influence of
growing uncertainties in the system. Barrat et al. [49], studied a network model
which considered the edge weights of each connected node. This weight param-
eters enables the addition of several essential functionalities associated with
a network. Some of them include the variations in the connection strength,
factors affecting the connection, intensity of the connection, and so on. This
type of network is most suitable for evaluating the performance of the WSNs
involved in the IoT.

3 Basic Concepts

In this section, some of the primary concepts associated with the evolution
of the scale-free networks is discussed. A brief account on the evolution and
applicabilities of the random graphs is first given, which resulted in the inven-
tion of various evolving technologies. We start with the elementary concepts
of the random graphs and then quickly upsurge to the unfolding traits of the
scale-free networks.
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3.1 Random Networks

The evolution of the random graphs has been an elemental revelation to many
developing technologies. Over the years several patterns in nature as well as
complex systems have evolved around this theory. In [15], Erdös and Rényi,
were the first to bring into focus the concept of random graphs. Random graphs
have evolved as a consequence of the irregularities observed in the topological
arrangements of the regular graphs [32,15,16,17]. The emergence of random
graphs have induced a rich set of concepts associated with the degree distri-
bution of the graphs and have favored the growth of several associated per-
ceptions. The complexity of arrangements observed specifically in the random
networks and the uncertainty of their organization have made their study
prominent while dealing with complex networks. The random graph theory
has several applications, to mention a few, it can be used for determining the
connectedness of the network, it can be used for handling attacks in random
networks, along with application sin exploratory tree structures [40].

3.2 Small-World Networks

The small-world systems are mostly observed to be highly clustered, which is
quite similar to the behavior portrayed by regular lattices [8]. This phenomena
can be observed in several research applications like the spread of contagious
diseases, social networks, and the internet [20,19,21]. A peculiar examples of
the small-world networks can be observed in the electricity grid distribution
lines, as the distribution lines need to be highly resilient towards the occurrence
of any failures in the transmission grid. The small-world networks show an
increasingly growing amount of disorder in the network topology which makes
it suitable for modelling the behaviour of dynamical systems [18].

3.3 Scale-Free Networks

In 1999, Barábasi and Albert [8,22], initially studied the evolution of scale-free
networks which were based on the behavior of real world networks. A large
number of real world networks display the scale-free property. The scale-free
networks initially constitute of a fixed number of nodes in the network, which
shows continuous growth with the addition of randomly incoming nodes. These
newly added nodes require to be connected to the existing network, without
interfering with the existing topology of the nodes.

Fig. 1, shows the topology of the scale-free network, where the newly added
nodes are connected to the central node. The large scale-free networks may
constitute of several central nodes. These central nodes usually have a higher
number of connections as compared to the other nodes present in the network.

There are two important feature of the scale-free network:
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Fig. 1: A topological representation of the scale-free network with the newly
added nodes.

– Topological growth: As the new incoming nodes are continuously added
to the network, the network scales up. A system constituting of an initial
number of nodes (say n0) is considered. If we consider a random set of
incoming nodes (say Rn), such that the new node n (for n ∈ Rn) with en
edges, such that en ≤ n0.

– Preferential attachment of nodes: While selecting from the existing set of
nodes with which the newly added nodes can be connected , a probability
based attachment principle is used [8,32] which enables the new node to
connect to the existing set of nodes (say N) depending upon the degree
(say ki) of the node N nodes.

4 Convergence with IoT

In this section, we conceptualize the existence of the power-law behaviour ob-
served in the topological arrangement of dynamic WSNs, and its relevance
for characterizing the increased amount of uncertainty observed in the degree
distributions of large heterogeneously spread IoT networks. These networks
are exclusively tolerant towards the changes caused by the addition of new
incoming sensor nodes in the network, and are also more reliable in-terms of
the occurrence of node failures.
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4.1 Conceptualizing the Small-World Scenario for WSNs

Wireless sensor networks (WSNs), have enormously developed in their poten-
tiality and configurations over the years. In order to perceive the continually
changing events a densely deployed WSN is required for obtaining the factual
and cumulative data of the environment. This involves the association of a
huge number of coupled sensor nodes over a large area for sensing the data
coming from heterogeneous sources. The WSNs usually are portrayed as self-
organizing systems which efficiently customize the network topology of the
sensor nodes, for the dynamic management of the network activities. These
traits distinguish the WSNs from most static, wired, and constrained systems,
by making them more adaptable to faults, distance of communication, and
power constraints. Due to it’s capabilities of being versatile, and ubiquitous
clustered, the WSNs display high degree of disorder in their organization.

In recent times, the interest in the study of the small-world properties of
different scenarios is expanding hugely. Several researchers have explored al-
ternating fields of the real world and have observed intriguing outcomes, which
obey the small-world property. Unlike the properties of the regular lattices,
the networks which obey the small-world property have relatively higher con-
nectivity among the nodes, they show considerable variations in their degree
distributions, and have reduced path lengths between the node. In [24,34,35,
36], the authors have extensively addressed the issues in genomic sequencing
in-terms of the small-world network. Further the studies in [37,38,39], have
revealed that the functionalities of the human brain network follows the small-
world property in response to external stimuli.

The topology of the WSNs is said to follow the small-world property char-
acterized by the densely clustered sensor nodes possessing diverse sensing ca-
pabilities. Previously several issues in the WSNs prevented their extensive use
in a multitude of fields. Some of the drawbacks in the static network topology
of the WSNs, are as follows:

– Inaccuracy in the Signal: Due to the increase in the distance between the
two communicating nodes, the propagated signal usually lacks accuracy at
the receiving end. These inaccuracies are induced from several conflicting
situations like presence of huge obstacles in the ray of sight (ROS) of the
signal, delays caused due to excessive path lengths.

– Node Failure: The sensors nodes and microcontrollers involved in a WSN
have usually limited power resources. While accomplishing the exchange of
information between far off nodes, these nodes usually loose their efficiency
due to the constrained power supply. Hence the network may suffer from
node failures, their by minimizing the reliability of the WSN.

– Energy Wastage: In static WSNs, there is no source for regulating the
activation and the deactivation of the sensor nodes. All the nodes in the
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network work uniformly at the same level. This sometimes results in the
wastage of energy resources of the sensor nodes as in a network of sensor
nodes not all the sensors need to be employed concurrently for accomplish-
ing a certain task.

– Network Topology: The topology of the static WSNs is similar to that of
the regular lattice. It follows an order degree distribution. This topology
may not satisfying for continuously changing requirements. Thus making
it unsuitable for largely growing networks.

Hence it can be said that the regular WSNs may fail to efficiently handle
the increase in the number of sensor nodes, and the growing interconnection
network topology. Thus bringing about the need for a more robust WSN topol-
ogy, which can adaptively handle the increase in the amount of uncertainty
in the network. This brings in the approach for a large network constituted
of heterogeneous sensor nodes with distinct sensing capabilities. These nodes
need to be organized in a highly coupled interconnection network such that,
they provide an accurate exchange of data. Further this network organization
is much desired as, it reduces the delay in transmission caused due to lengthy
communication paths, and works well against node failures, in an integrative
way. These systems are ideal especially in heathcare sectors, and the defense,
as they facilitate an uninterrupted flow of data throughout the system, without
causing any bifurcations in the perceived data. Thus the notion of the small-
world properties of the WSN emerges, which can be appropriately advantaged
as a working model for providing an integrated characterization of the dy-
namic WSNs. By conceptualizing the small-world properties of the WSNs,
we can achieve befitting results in terms of the robustness of the network,
functionality, reduced propagation-delays, and improved signal quality.

4.2 Conceptualizing the Scale-Free Networks for IoT

In this section, we extend our study towards the application of the scale-free
properties of IoT. From the studies made in [48,49], it is evident that the
scale-free networks provide a better understanding of the frequently changing
networks and for networks which have varying flow of information throughout
the system. The most fundamental functional modules of the IoT constitute of
the sensor nodes which are used for the inception of multiple events. In order
to infer the data from a wider area, a huge WSN is desired with immensely
high performance constraints. Large WSNs usually require to be dynamic in
order to efficiently utilize the resources involved. The WSNs with dynamic
properties show a high rate of clustering with the cluster head (or, the central
node) being connected to a larger number of sensor nodes. Thus the cluster
heads are rich in the number of links they establish with each sensor node in
the cluster, and are therefore said to have a higher degree distribution.
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Fig. 2: Deployment scenario for various IoT devices.

In densely clustered networks like the one desired for modeling the IoT with
a heterogeneous set of sensor nodes [22,8,48], a huge number of links between
the sensor nodes exists. This makes the network more resilient towards link
failures and can therefore be used for dynamic systems. When the number of
sensor nodes in the IoT architecture scale up continually, the system becomes
more vulnerable to failures. Thus, the dynamic capabilities of the scale-free
networks makes it suitable to model the IoT with huge number of nodes.

Fig. 2, shows a scenario for the deployment of several sensor nodes in a city
with each central node connected to the sink or, the gateways. This particular
case is quite similar to the study in [48], with the gateways acting as the
central nodes for several other central nodes (cluster heads) present in the
cluster of the sensor nodes. These gateways have a higher degree of connection
as observed in [48,49].
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Fig. 3: An example of a graph for addition of a new node in a scale-free
network.

Fig.3, shows the basic graph examples with varying number of nodes and
different topological arrangements.

4.3 Generation of scale-free WSN

In this section, we provide the simulations in MATLAB for generating the
scale-free networks [8,45]. We have considered three specific cases for which
we generate the scale-free sensor networks. The first case which we have con-
sidered is constituted of 100 nodes (N = 100), with the average degree distri-
bution of the nodes as 〈k〉 = 4, the overall links (or edges) among the sensor
nodes in the network is E = 400, and the interconnection probability of the
sensor nodes is p = 0.5, such that 0 < p < 1. In [32], it is said that with the
increase in the probability of the interconnection link p, the amount of uncer-
tainty of the network increases, till it reaches 1. Fig. 4, shows the simulated
sensor network with the above parameters. In the second case, we consider a
WSN with number of sensor nodes as N = 50, the total number of links as
E = 200, the average degree distribution given by 〈k〉 = 4, and the intercon-
nection probability as p = 0.6. The network architecture can be observed in
Fig. 5. In the third case, we consider a WSN with 20 nodes (N = 20), the
degree distribution of the nodes is taken as 〈k〉 = 4, with 120 links (E = 120),
and an interconnection probability of 0.4 (p = 0.4). These networks favor the
dynamic behaviour of the IoT, by augmenting the performance of the system
in-terms of reliability, ubiquity, and robustness. Table 1, provides a compre-
hensive account of the specific simulation parameters used for generating the
three scale-free WSNs.
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Algorithm 1, shows a procedure for generating a random collection of sensor
nodes which is inline with [32]. Here we consider a dynamic WSN, such that
N represents the set of nodes involved in the system. Initially the system is
said to have n0 nodes, along with a degree distribution of the ith sensor nodes
represented as ki. If we consider n to be the set of existing nodes, such that
n ∈ N , then the ni randomly incoming sensor nodes can be incrementally
added to the WSN. The algorithm generates a random set of sensor nodes
based on the probability of the degree distribution of the sensor nodes given
as, ∏

(ki) =
ki∑
j

kj
. (1)

Thus from Eq. (1), we obtain the optimum value for the degree distribution
of the sensor nodes.

Algorithm 1: An algorithm for random node generation for scale-free
WSNs
Input : n0, ki, n
Output: ki
N ← set of all the nodes present in the system.
n0 ← set of nodes initially present in the system such that n0 ∈ N .
ki ← degree distribution of all the nodes in the system.
n← set of existing nodes.
ni ← set of newly added nodes.
ki ← degree distribution of newly added nodes.
for ni! = 0 and ni ∈ N do

n = n + ni

Compute:∏
(ki) = ki∑

j
kj

end

5 The IoT Framework

In this section, we present two holistic frameworks based on the conventional
small-world phenomena and the scale-free networks [32,8,49]. The applicabil-
ity of these two scenarios have been previously discussed in Section-4. It was

Table 1: Parameters for generation of random nodes for the scale-free IoT
framework.

Nodes (N) Edges (E) Probability (p) Node degree (k)
100 400 0.4 4
50 200 0.6 4
20 120 0.4 6
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Fig. 4: Representation of the scale-free sensor nodes for N = 100, E = 400,
p = 0.5, 〈k〉 = 4.

observed that large network structures like the IoT, which are characteris-
tically constituted of a relatively heterogeneous set of sensor nodes, converge
with the dynamical systems with temporally changing configurations. Thus by
accomplishing a scale-free model for the IoT, the resources can be better uti-
lized (like power supply and memory constraints), which consequently provide
a system with enhanced capabilities. It is observed that the degree distribu-
tion of the WSNs, under the influence of uncertainties in the dynamic network,
follows a power-law distribution. Some other applications of the power-law dis-
tribution can be found in [47,46].

5.1 The Small World Scenario

If we consider a WSN to have node set, v = {v1, v2, . . . , vn} where n = |v|
denotes the total number of nodes in the WSN.
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Fig. 5: Representation of the scale-free sensor nodes for N = 50, E = 200,
p = 0.6, 〈k〉 = 4.

In the random or small-world WSN topology. the connection probability p
with i node having ki degrees follow binomial distribution with parameters n
and p i.e.,

ki = B (n, p) . (2)

So,

F (ki = k) = Cn−1k pk(1− p)n−1−k. (3)

The probability of ith node connected k existing nodes is pk, similarly,
probability of the number of edges connected to the ith node is (1− p)n−1−k .

Let Xk be any random variable, representing the number of nodes in the
WSN with degree k. Hence the expectation value for the number of nodes with
degree k can be obtained from Eq.(3) as follows,

E (Xk) = nF (ki = k) = αk, (4)

where,

αk = nCn−1k pk(1− p)n−1−k. (5)
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Fig. 6: Representation of the scale-free sensor nodes for N = 20, E = 120,
p = 0.4, 〈k〉 = 6.

When, n >> 0, and p is very small, the Eq.(3) can be rewritten as,

p (k) = lim
n→∞

(n− 1) (n− 2) · · · (n− 2− k) (n− 1− k)!

k! (n− 1− k)!
×
(αk
n

)k(
1− αk

n

)n−1−k
(6)

p (k) = lim
n→∞

n− 1

n− 1
.
n− 2

n− 1
.
n− 3

n− 1
. ...

n− 1− (1 + k)

n− 1

(
αk

k

k!

)(
1− αk

n

)n−1(
1− αk

n

)−k
(7)

lim
n→∞

(
1− αk

n

)n−1
= e−αk (8)

F (Xk = k) =
e−αkαkk
k!

=
e−〈k〉〈k〉k

k!
(9)

where 〈k〉 is the average degree of the random networks or small world WSN
topologies. Therefore from Eq.(9), it is evident that for large number of nodes
the degree distribution of the random, or small-world WSN topology follows
Poisson distribution.
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Fig. 7: Representation of the degree distribution with parameters N = 1000,
and kavg = 10.0368 for a random network.

In Fig. 7,we present the Poisson distribution in compliance with the degree
distribution of the simulated data with 1000 nodes and an average degree
distribution of kavg = 10.0368, estimated for the particular simulated data
using the most likelihood estimate (MLE).

5.2 The Scale-Free Scenario

The scaling up of the WSN in the support of IoT infrastructure falls in the
category of random networks. The dynamical changes of the adhoc sensor
nodes to the existing WSNs satisfies the scale-free network properties and the
degree distribution of sensor nodes follows a Power-law behavior. A dynamic
new sensor node is connected to node i with degree ki and probability

∏
such

that, ∏
(ki) =

ki∑
j

kj
(10)

where
∑
j

kj is the total number of edges in the existing WSN topology. Fol-

lowing Barabasi and Albert [32], the degree distribution can be modeled as,

∂ki
∂t

= n
∏

(ki) =
nki
n∑
j=1

kj

(11)

After t time steps the WSN creates n = t + n0 nodes and nt edges. Here, n0
be the number of initial nodes in the WSN. At each time step a new node is
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added to the existing WSN and connected to n existing nodes, where n ≤ n0
The denominator sum is calculated as,∑

j

kj = 2nt− n (12)

Using Eqs. (11) and (12), we get,

∂ki
∂t

=
ki
2t

(13)

The above equation can be solved under initial condition at node i, ki (ti) = n
is,

ki (t) = n

√
t

ti
(14)

The probability that a node having ki (ti) degree less than k degree.

So,

F (ki (t) < k) = F

(
ti >

(n
k

)2
t

)
(15)

The probability density function (PDF) for the time step ti is given by,

F (ti) =
1

no + t
(16)

F

(
ti >

(n
k

)2
t

)
= 1− F

(
ti ≤ t

(n
k

)2)
(17)

= 1− t
(n
k

)2 1

n0 + t
(18)

The probability density function can be obtained,

p (k) =
∂P (ki (t) < k)

∂k
=

2n2t

n0 + t

1

k3
(19)

For very large value of t i.e., t >> 0,

p (k) ∼ 2n2k−3 (20)

From Eq.(20), we obtain the degree distribution for a dynamic network of
wireless sensor nodes. This behavior is typically portrayed by systems which
are resilient to high degrees of disorder. Thus by providing a power-law degree
distribution for the WSNs, we intend to add more reliability to the network.
This can provide a futuristic framework for building the IoT applications.
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Fig. 8: Representation of the degree distribution for n0 = 1, n0 = 3, n0 = 5,
n0 = 7, k−3.

5.3 Simulation Results

In this section, we provide the simulation results obtained in compliance to
the methods used in [45]. We build the simulation environment by initially
considering n = n0 = 5 heterogeneous sensor nodes with a degree distribution
of k = 3 (here the heterogeneity of the sensor nodes is independent of the
network topology and is only concerned with the coherent properties of the
sensor nodes and the type of data perceived). The WSN network has a total
of 2000 sensor nodes, by incrementally making addition of new sensor nodes
to the network. At every step function a new node is added to the existing n
sensor nodes in the WSN.

In Fig. 8, we provide an account of the theoretical distributions (obtained
in Eq.(20)) observed for different values of n0, considered in the logarithmic
scale.

Fig. 9, gives an account of the power-law distribution for the simulated
data. It is evident that with
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Fig. 9: Representation of the degree distribution of the empirical data with
power-law distribution.

6 Conclusion and Future works

It can be concluded that with the rapid evolution of the Internet of things
(IoT) and its functionalities, have led to the concurrence of a more intricate
and interconnected network of devices. These devices specifically relate to a
generic set of devices like the sensory devices, smart appliances, smart hubs,
and other associated objects which permissively provide a ubiquitous connec-
tivity among the devices. Thus it is inevitable for the IoT devices to obtain
heterogeneity. This gives rise to certain amount of disorder in the network,
which the conventional network topologies may not efficiently characterize.
Thus a more dynamic alternative approach has been provided in this chapter
to befit the requirements of the IoT ecosystem, by adding more reliability to
the system, and thereby improving the overall performance of the system. The
complexities involved due to the addition of extensively large number of de-
vices to the static WSNs have been discussed. Thus in order to understand the
scalability and the heterogeneity of these interconnected devices, the power-
law exponent is an important measure. In this chapter, we have provided an
analytical framework to illustrate the ubiquitous power-law behavior observed
in the devices connected to the internet. We have also provided the mathemat-
ical insights to characterize the dynamic behavior of the devices connected to
the IoT by emphasizing on the small-world traits of the wireless sensor net-
works (WSNs). Finally we have provided an analysis of the theoretical and
simulation results obtained for the proposed model.
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The study of scale-free networks and the small-world phenomena have lead
to the evolution of several constituent theories whether it may be in the char-
acterization of the human brain cell interactions, or the air-craft systems. Its
applicability in new spheres of science and technology is still evolving. Thus a
lot more factors are to be taken into consideration before formally implement-
ing the scale-free network model for the IoT.
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