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Abstract

In this paper, I generalise the logical concept of compatibility into a set theo-
retical one. The basic idea is that two sets are incompatible if they produce at
least one pair of opposite or contrary objects. In section 1, I formalise oppo-
sition as an operation ′ : E −→ E, where E is the set of opposable elements of
our universe U, and I propose some models in section 2. From this, I define in
section 3 a relation C : ℘U× ℘U× ℘U℘U, which has logical compatibility as
its more natural interpretation. Other models are sketched in section 4 and,
in the final section, I discuss some limitations of this proposal.
Keywords: consistency, paraconsistency, opposition, contrariness, involution

1 Opposition

That some set is compatible with another depends on whether they produce a pair of
opposite or contrary objects. In order for a function ′ : E −→ E to be an operation
of opposition it needs to be involutory:

Axiom 1. x = x′′.

From where we obtain the following corollaries:

Corollary 2. x′ = y′ ⇒ x = y.

Corollary 3. x′ = y ⇒ x = y′.

The first means that ′ is injective and, since ′ is its own inverse function, we can
interpret as saying that ′ is surjective. This establishes that ′ is a bijective function.

Intuitively, x′ denotes the opposite or contrary of x; in other words, an operation
of opposition transforms an element of E into its opposite. Since it is not necessary
that all elements of our domain have an opposite, the domain of this operation is
restricted to E, which is the set of opposable elements of our universe U.

These properties, however, are not sufficient to completely characterise the con-
cept of opposition. Some additional properties depend on the introduction of other
operations. In fact, there is room for debating whether some of these properties
are adequate or not. For example, we might say that the white bishop in h1 (see
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Figure 1: The chess table.

figure 1) is opposed to the black rook in a8. But it may also be said that this rook
is opposed to the white knight in a1 (which is opposed to the black queen in b3?).

Now, this may be fairly taken as a silly consideration, but it shows to some extent
that the properties of our formalisation depends on what notion of opposition are
we trying to capture. Since I do not pretend to be exhaustive, I will restrict this
concept even more by requiring that that ′ be irreflexive.

Axiom 4. x 6= x′.

This axiom prevents any object from being its own opposite.

2 Interpretations of ′

Several mathematical functions are relations of opposition. For example, classical
negation satisfies all the previous properties. Furthermore, if we take our domain U
to the set of wffs of a language, we have that E = U. If p and q are wffs, we may
take p = q to mean that p and q have the same logical value.

Also, the inverse operation of group theory is also an operation of opposition.
This implies that the additive inverse (x′ 7→ −x) and the multiplicative inverse
(x′ 7→ 1/x) are also operations of opposition in the relevant domains. This obvious
holds also for the inverse operation of any model of group theory.

A remarkable interpretation is the absolute complement operation (A′ 7→ AC )
of set theory. This means that we can also have properties in the domain of ′. For
example, if P is in the domain of ′, we may define P′ as the predicate in whose exten-
sion are all x such that ¬Px; that is, the extension of P′ is the absolute complement
of the set corresponding to the extension of P. We can alternatively take P′ as the
one antonymous property of P, which is the one antonymous property of P′.

In the first approach, if P stands for ‘x is transparent’, P′ would stand for ‘x
is opaque’, since all non transparent things are opaque. (We are restricting our
domain to normal sized physical objects.) In the second approach, if P stands for
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‘x is white’, P′ could stand for ‘x is black’. Notice that this works only if we take
blackness and whiteness as opposite properties in the sense previously defined.

3 The relation C

I define classical compatibility as a three-place relation C : ℘U× ℘U× ℘U℘U satis-
fying:1

Definition 5. C(A,B)∗ ⇔ x, x′ ∈ (A ∪B)∗, for no x.

The expression C(A,B)∗ is read “A is ∗-compatible with B,” where A,B ∈
℘U and ∗ ∈ ℘U℘U. Accordingly, we say that A is ∗-incompatible with B iff not
C(A,B)∗. The relation C is symmetric in the sense that:

Theorem 6. C(A,B)∗ ⇔ C(B,A)∗, for all A,B and ∗.

However, C is no equivalence relation since it is neither reflexive nor transitive.
Those properties clearly do not hold when ∗ is increasing and monotone (which
are properties of closure operations). In that case, it cannot be reflexive since
C({x, x′}, {x, x′})∗ never holds. Nor can it be transitive because even in the hypoth-
esis that C({x},B)∗ and C(B, {x′})∗, it still does not hold that C({x}, {x′})∗.

The most natural interpretation of C is the relation of logical compatibility be-
tween sets of sentences with respect to a relation of consequence. Such interpretation
depends on defining consistency.

Definition 7. A is consistent ⇔ α,¬α ∈ A, for no α, and inconsistent otherwise.

For our interpretation we take U to be the set of statements or propositions of a
formal language, ′ the operation of negation, and ∗ a relation of logical consequence
(`: ℘U −→ U).2 From this, it follows that two sets of sentences A and B are
compatible iff there is no α such that A∪B ` α and A∪B ` ¬α. That is, in order
for two sets of sentences to be consistent, it is necessary that the set of their logical
consequences be consistent too.

Let us compare this definition with that of Batens and Meheus (2000). Al-
though they initially define compatibility as a relation between sentences and sets
of sentences, they clarify in their footnote 1 that it is a symmetric relation. The
following definition is enough, for my purposes, to capture their syntactic definition
of compatibility.

Definition 8. D(A,B)` ⇔ (A ` α⇒ B 0 ¬α), for all α.

Assuming ` is increasing, any pair of sets in the extension of C is also in the
extension of D.

Theorem 9. C(A,B)` ⇒ D(A,B)`.

1Remember that Y X is the set of all functions from X to Y . Hence, ℘U℘U is the set of all
functions from and to sets of U (cf. Halmos, 1974, 30).

2Remember that α ∈ A` iff A ` α.
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Proof. Assume C(A,B)` and let A ` α. Since ` is increasing, this means that
A ∪B ` α. For the same property it would follow from B ` ¬α that A ∪B ` ¬α,
which is forbidden by C(A,B)`. Hence, B 0 ¬α.

The converse follows if ` is classic, in which case it means that it is increasing
and satisfies the compactness theorem.

Theorem 10. D(A,B)` ⇒ C(A,B)`.

Proof. We assume D(A,B)` and suppose for reductio that (A∪B)` is inconsistent.
In that case, the compactness theorem guarantees that (A∪B)` has an inconsistent
subset. Since ` is classical, A` is consistent, otherwise A would imply all formulae,
including the negations of tautologies, and since B implies all tautologies, this would
mean that not D(A,B)`. We can prove that B is consistent in a similar way. Hence,
in order for (A ∪ B)` to be inconsistent it is necessary that some α be such that
A ` α and B ` ¬α, which is forbidden by D(A,B)`.

This proves that (classical) logical compatibility, as defined by Batens and Meheus,
is a model of C. Let us now turn to other interpretations.

4 Other (informal) interpretations of C

We may speak about incompatible sets of entities when U is interpreted as the set
of all (conceivable) entities. One way to show this is through answering the question
triggering the irresistible force paradox, i.e. what happens when an unstoppable force
meets an immovable object? Let M stand for the relation ‘x can move y’. We have
then that an immovable object is any y satisfying ∀x(¬xMy). An unstoppable force
is instead an object that can move any object that encounters; that is, an x satisfying
∀y(xMy).

Now, is it possible that an unstoppable force and an immovable object thus
defined can exist in the same possible world? Unless we dismiss the principle of non
contradiction, the answer is clearly no. Otherwise, if there where an object, say a,
such that ∀y(aMy), and another b such that ∀x(¬xMb), it would follow that aMb
and ¬aMb. Informally, we can say that the opposite of an immovable object is an
unstoppable force, which makes incompatible any set containing both. 3

In another interpretation, it is possible to state that two sets of properties are
compatible or incompatible for a given entity. In order to do this we can treat
entities as sets of properties: the properties that those entities have. This treat-
ment corresponds to Russell’s conception of proper names, for whom “what would
commonly be called a ‘thing’ is nothing but a bundle of coexisting qualities such as
redness, hardness, etc.” (1995, 97, my emphasis). For example, if we let B stand for
‘x is single’ and M for ‘x is married’, we may say that B′ = M. The properties of
being single and being married are in this sense incompatible, since all non married
persons are single.

3This solution was well presented by Isaac Asimov in his Book of Facts: “The rules of the game
of reason say the question is meaningless and requires no answer. The question: ‘What would
happen if an irresistible force met an immovable body?’ In a universe where one of the above
conditions exists, by definition the other cannot exist.” (Asimov, 1979, 281)

4



5 Limitations of classical compatibility

It does not seem right that C not be reflexive. After all, how can a set be incompati-
ble with itself? Nevertheless, C(A,A)∗ only fails for those sets such that x, x′ ∈ A∗,
for some x.

Corollary 11. C(A,A)∗ ⇔ x, x′ ∈ A∗, for no x.

In this framework we can state that all sets that are incompatible with themselves
are (logically) unacceptable or inconceivable, depending on the kind of incompati-
bility we are talking about.

The problem with this approach is that it would make it impossible to analyse
(in)compatibility between inconsistent sets. For example, if we had an inconsistent
(though non trivial) theory T, we would have to conclude that all sets of observation
statements (consistent or otherwise) are incompatible with T. This would result in
T being a priori false instead of falsifiable.

As it happens, this situation can be corrected if we stick Batens’ and Meheus’
definition. In such case, though, compatibility could not be a symmetric relation,
as they want. One such theory of para-compatibility is a topic for another paper.
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