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LEARNING SPATIO-TEMPORAL REPRESENTATIONS

WITH TEMPORAL SQUEEZE POOLING

Guoxi Huang and Adrian G. Bors

Department of Computer Science, University of York, York YO10 5GH, UK

ABSTRACT

In this paper, we propose a new video representation learn-

ing method, named Temporal Squeeze (TS) pooling, which

can extract the essential movement information from a long

sequence of video frames and map it into a set of few im-

ages, named Squeezed Images. By embedding the Tempo-

ral Squeeze pooling as a layer into off-the-shelf Convolution

Neural Networks (CNN), we design a new video classification

model, named Temporal Squeeze Network (TeSNet). The re-

sulting Squeezed Images contain the essential movement in-

formation from the video frames, corresponding to the op-

timization of the video classification task. We evaluate our

architecture on two video classification benchmarks, and the

results achieved are compared to the state-of-the-art.

Index Terms— Convolution Neural Networks (CNN),

Temporal Squeeze pooling, video representation.

1. INTRODUCTION

Video classification attracts increasing research interest, given

its numerous applications. Extracting features characteristic

to the movement in the scene is essential in tasks which are

required in applications from video surveillance to video sum-

marization, or when attributing the movement of an actor in a

movie. We can identify two categories of approaches: using

hand-crafted features, and based on deep learning.

Hand-crafted features, such as 3D histograms of gradi-

ents [1], scale-invariant spatio-temporal interest points [2, 3]

dense trajectories [4] as well as the dynamics of change in

movement and location [5], have been used in various video

tasks. Bilen et al. [6] proposed dynamic images that summa-

rize spatio-temporal information of a video clip into a single

image which preserves the semantics of the scene in a com-

pact format.

Convolution Neural Networks (CNN) have been used

for learning visual representations in many applications and

recently they have been employed successfully for video pro-

cessing as well. The two-stream video classification model

[7] contains both spatial and temporal processing pipelines.

CNNs models containing 3D convolution kernels (3D CNN),

such as C3D [8] and I3D [9], represent a promising way for

spatio-temporal representation learning. However, 3D CNNs

are prone to overfitting when trained on small datasets from

scratch. Meanwhile, the training of 3D CNN on large datasets

requires very large computational demands, and the model

size is quadratic when compared to 2D CNNs used for video

processing. Long short-term memory (LSTM) networks [10],

represent a category of recursive neural networks (RNN)

that can learn the long term dependency of time series data

and can compensate for the shortcomings of 2D CNNs to

some extent. 2D CNN+LSTM [11] was proposed to capture

the spatio-temporal information from videos. However, 2D

CNN+LSTM was shown to have lower performance than the

two-stream model in action recognition benchmarks, [9].

In this study, a new Temporal Squeeze (TS) pooling

methodology, which can be embedded into CNNs, is pro-

posed. The proposed TS pooling approach aggregates the

temporal video information into a reduced spatial dimension

by means of an optimization approach which preserves the

video information characteristics. In this study, TS pooling

is optimized for the video classification task. TS pooling

can compensate for the shortcomings of the dynamic images

[6], by controlling the pooling size. In this research study,

we demonstrate that the proposed TS pooling mechanism

can summarize the visual representation of up to 64 video

frames while dynamic images would only process 10 frames.

By embedding the temporal squeeze pooling as a layer into

the off-the-shelf CNNs, we design a new video classification

model named Temporal Squeeze Network (TeSNet). The

proposed methodology for representing video information is

presented in Section 2. The experimental results are provided

in Section 3 and the conclusion is drawn in Section 4.

2. VIDEO INFORMATION REPRESENTATION

2.1. Temporal Squeeze Pooling

The proposed approach relies on the observation that con-

secutive video frames usually contain repeating informa-

tion, especially either the background for a still camera,

or the foreground, when the camera follows a target. A

temporal squeeze pooling aims to compress the dynamic

information of a video clip with K frames into D frames

(D << K), such that essential information is preserved.

Consequently, repeating information is filtered out while pre-

serving the essential, usually specific movement patterns.

Let X = [x1,x2, . . . ,xK ] denote K video frames where



xi ∈ R
H×W×C , i = 1, . . . ,K and H , W , C represent the

height, width and the number of channels (colour), respec-

tively. The TS layer aims to find out the optimal hyperplane

A ∈ R
K×D, and map every pixel of X from the vector

space of RK onto a much smaller information defining space

R
D. The aim is to preserve the relevant dynamic information

across the temporal direction into the compressed space.

In the following, the squeeze and excitation operations

proposed in [12] are adopted for the TS pooling. The frame

sequence X is initially processed by the squeeze operation,

producing a frame descriptor. The squeeze operation is im-

plemented by using global average pooling along the spatial

dimensions H , W and C. Then, the squeeze operation is fol-

lowed by the excitation operation, which is made up of two

consecutive fully connected (FC) layers. The output of the

excitation operation is reshaped to become the column space

of A, which defines a hyperplane. In the squeeze operation,

the k-th element of a frame-wise z ∈ R
K is calculated by:

zk = Fsq(xk) =
1

HWC

H∑

i=1

W∑

j=1

C∑

l=1

xk(i, j, l). (1)

In the excitation operation, the input-specific hyperplane is

calculated by:

Fex(z,W) = δ2(W2δ1(W1z)), (2)

where δ1 and δ2 refer to the activation functions and W1 ∈
R

K×K , W2 ∈ R
KD×K refer to the weights of the FC lay-

ers. Then, the output of equation (2) is reshaped into a matrix

A′ ∈ R
K×D. The input-specific hyperplane for the projec-

tion is given by

A = Φ(A′), (3)

where Φ is a function that guarantees A is column indepen-

dent. We flatten X along its H , W and C dimensions into

a vector X = [x̄1, x̄2, ..., x̄HWC ] where x̄i ∈ R
K , and then

project it onto the hyperplane A, resulting in a vector X̂. The

i-th element of the projection, x̂ is calculated by:

yi = (ATA)−1ATx̄i,

x̂i = Ayi, i = 1, . . . , HWC
(4)

where yi ∈ R
D represent the mapping coefficients. We re-

shape the vector Y = [y1,y2, . . . ,yHWC ] into a new image

sequence Y′ of D frames of size H ×W ×C. The squeezed

sequence of D frames can be used as a simplified, yet an in-

formation comprehensive representation, that summarizes the

dynamics taking place in the given set of K video frames.

2.2. Optimization

In this study, the TS pooling is optimized with respect to the

video classification task. In order to ensure that the projection

X̂ retains as much meaningful spatio-temporal information as

possible from the original video sequence X, X̂ should be

close to the original video data X. This relies onto finding

the optimal hyperplane A fitting X aiming to minimize the

residuals of projections. Let us denote the mean absolute error

(MAE) on projections by lproj , calculated as:

lproj =
1

HWC

HWC∑

i

‖x̄i − x̂i‖ , (5)

where ‖·‖ represents the standard L2 norm in the K-dimensional

Euclidean space R
K .

2.3. Temporal Squeeze Network

The Temporal Squeeze pooling can process not just video

frames but also the outputs of convolution layers of a CNN.

When it is plugged into off-the-shelf CNNs, it forms a new ar-

chitecture, named Temporal Squeeze Network (TeSNet). We

choose the Inception-ResNet-V2 [13] as the backbone CNN

embedding the TS pooling block. In order to form an end-

to-end training, we add the loss term lproj from (5) to the

classification loss used in the original network, resulting in

the following loss function:

lfinal = lclassif + β

M∑

i=1

liproj + λlL2, (6)

where lclassif is the cross-entropy loss of the classification

[13], lL2 is the L2 normalization term of all the trainable

weights in the architecture, λ is the weight decay, β is the

weight for the TS loss component lproj , where the projection

residuals are summed up for all M TS layers.

TS layers can be embedded in different sections of the

backbone CNN. We design our model by following the prin-

ciple of decreasing the number of mapped frames D when

embedding into a deeper network layer position. In this case,

the model represents a pyramidal video processing scheme.

The first TS layer should be configured with a relatively larger

D generating more frames, and therefore the loss of tempo-

ral information caused by successive pyramidal projections

would be reduced. We adopt the two-stream architecture [7],

including an RGB image frame stream and an Optical Flow

(OF) stream. For the OF stream we use the TV-L1 optical

flow algorithm [14] and its output is stored as JPEG images,

where the colour encodes the optical flow vectors.

3. EXPERIMENTAL RESULTS

3.1. Dataset and Implementation Details

We conduct experiments on two human activity classification

benchmarks, UCF101 [15] and HMDB51 [16]. UCF101 con-

tains 13,320 real video sequences labelled int 101 classes,

collected from YouTube [15], while HMDB51 contains 7,000

video clips distributed in 51 action classes [16]. During the

experiments we follow the ”three train/test splits” rule, and

report the final performance by averaging the top-1 accuracy

over the three splits. Our model is pre-trained on ImageNet

[17]. To evaluate our model, we reimplement the Temporal

Segment Network (TSN) [18] with our backbone network.

We set the dropout as 0.5 to prevent overfitting and adopt



(a) Selection of 10 consecutive frames from video sequence. (b) Output of TS

Fig. 1. Visualizing the input and the corresponding output of the TS layer with K = 10, D = 2.

the same data augmentation techniques as in [18] for network

training. The size of the input frames is set to 299 × 299,

which is randomly cropped from the resized images, and K

consecutive frames are randomly selected from each video se-

quence. We use Stochastic Gradient Descent for optimizing

the network parameters in which the batch size is set to 32,

momentum of 0.9, weight decay λ = 4e−5, β = 10. The

initial learning rate is set to 0.001 for the image stream and at

0.005 for the Optical Flow stream. We train the model for 30

epochs, with a ten times reduction for the learning rate when

the validation accuracy saturates.

During testing, we uniformly sample 20 clips from each

video clip and perform spatially fully convolutional inference

for all clips, and the video-level score is obtained by averag-

ing all the clip prediction scores of a video. For the proposed

TeSNet, we set Φ(·) = I in (3), resulting in A′ = A, while

the column independent A is properly initialized. We con-

sider LeakyReLU for δ2(·) and the Sigmoid activation func-

tion for δ1(·) in equation (2) and these choices are crucial for

the performance of the model.

3.2. Visualization Analysis

We explore how the temporal squeeze pooling represents the

spatio-temporal information within the video clips by visual-

izing its outputs. In Fig 1, we show the output of the TS layer

with K = 10, D = 2 resulting in 2 squeezed images. The

clip, shown on the first row in Fig 1a display a clear salient

movement, and we can observe that its corresponding output

of TS summarizes the spatio-temporal information, as shown

on the first row in Fig 1b. The other clip, shown on the second

row, does not contain any obvious movement. When there is

no movement present in a video clip, the TS layer captures the

characteristic static information about the scene, as shown in

the last two images from the second row of Fig 1b.

Fig 2 depicts the outputs of the TS layer with K = 10,

D = 2. The output of the TS layer with RGB frames is

shown in Fig. 2b, and the output of the TS layer of optical

flow images is shown in Fig. 2d. We observe that the output

of the TS layer tends to preserve the still information and the

motion information separately. This indicates that by consid-

ering a single image we may not be able to represent the un-

derlying spatio-temporal information from the video. More-

over, when considering D = 3, the classification accuracy is

higher than for D = 1, according to the results from Table

1. This result further demonstrates that summarizing the dy-

namics of a long video clip into a single image would lose

essential spatio-temporal information. A dynamic image [6]

attempts to summarize the entire information from a video

clip into a single image, which can explain why they fail to

properly represent long video clips.

(a) Single Image (b) Squeezed Image

(c) Optical Flow (d) Squeezed Optical Flow

Fig. 2. Given input video frames, flow images and the corre-

sponding outputs for the TS layers K = 10, D = 2.

3.3. Embedding the TS layer into the network

In the following, we explore where and how to embed TS lay-

ers into the CNN. The results are shown in Table 1, where the

second column indicates the location for inserting a TS layer

with the corresponding D indicated in the third column. A

single TS layer, M = 1 is embedded in the settings No. 1

and 2, while M = 2 for the settings No. 3, 4 and 5. The

model from No. 1 setting, which embeds a TS layer directly

after the inputs of the network, achieves the best result in all

settings. However, the model with No. 5 setting which em-

beds two TS layers into the backbone network requires less

computation and has almost the same performance as the No.

1 setting. When a lower level of computation complexity is

required, then No. 5 setting is preferable to be used. When

inserting the TS layers into the middle section of the back-

bone network it leads to worse performance. One possible

explanation is that the network was initially pretrained on Im-

ageNet and then the inserted TS layers did not fit well with



the settings of these pretrained kernels and resulted in poor

performance. To avoid this problem, the model including its

TS layers has to be pretrained on a large video dataset.

No. Location of Number of squeezed Top-1

TS layer frames (Di) (%)

1 Input D1 = 3 85.4

2 Input D1 = 1 83.1

3
Conv2d 1a 3x3

Conv2d 4a 3x3

D1 = 3
D2 = 1

81.7

4
Conv2d 1a 3x3

Block A

D1 = 3
D2 = 1

84.9

5
Conv2d 1a 3x3

Block B

D1 = 3
D2 = 1

85.3

Table 1. Evaluating the accuracy when embedding the TS

layer at different depths of the CNN.

We also explore how the length of the input video clip

affects the performance of our model. we consider a rather

small batch size of 8 and a maximum clip length of 64 because

of the GPU memory limitation. For a clip length of 64, we

adopt the setting No. 5 from Table 1 but consider D1 = 16
and D2 = 4. When considering clip lengths of 10 or 16, we

use the first setting from Table 1. The results are shown in

Table 2. It can be observed that when increasing the length of

the video clip, the performance is improving as well.

clip length Classif. (%)

10 85.3

16 86.2

64 87.8

Table 2. Comparing the effect of various clip length of videos

on RGB stream on the split 1 of UCF101 database.

Architecture length RGB OF RGB + OF

Baseline 1 83.5 85.4 92.5

TSN 3 85.0 85.1 92.9

TeSNet 64 87.8 88.2 95.2

Table 3. Performance of different architectures with two-

stream on the split 1 of UCF101 database.

We also evaluate TeSNet by comparing with the base-

line and TSN [18] whose the backbone network is Inception-

ResNet-v2. The results provided by different architectures

and streams are shown in Table 3. We can observe that the

fusion of the RGB and OF streams with TeSNet successfully

boosts up the top-1 accuracy from 92.5% to 95.2% on the

split 1 of UCF101, and outperforms that of TSN (Inception-

ResNet-v2) by 2.3% which demonstrates the effectiveness of

the proposed method.

Method UCF101 HMDB51

iDT+Fisher vector [19] 84.8 57.2

iDT+HSV [20] 87.9 61.1

C3D+iDT+SVM [8] 90.4 -

Two-Stream (fusion by SVM) [7] 88.0 59.4

Two-Stream Fusion+iDT [21] 93.5 69.2

TSN (BN-Inception) [18] 94.2 69.4

Two-Stream I3D [9] 93.4 66.4

TDD+iDT [22] 91.5 65.9

Dynamic Image Network [6] 95.5 72.5

Temporal Squeeze Network 95.2 71.5

Table 4. Temporal squeeze network compared with other

methods on UCF101 and HMDB51, in terms of top-1 accu-

racy, averaged over three splits.

3.4. Comparison with the state-of-the-art

For fare comparisons, we only consider those models that

are pre-trained on ImageNet [17]. The results are provided

in Table 4. The proposed TeSNet achieves 95.2% top-1 ac-

curacy on UCF101 and 71.5% on HMDB51, which outper-

forms TSN (BN-Inception) by 1% and 2.1% on UCF101 and

HMDB51, respectively. As the dynamic image network fuses

the prediction scores of four streams using a better backbone

network architecture, while the proposed model only uses

two-streams, and therefore the results are not directly compa-

rable. Nevertheless, the advantage of our proposed method is

that we can control the number of frames for the output of the

TS layer, while the dynamic image method [6] can only sum-

marize a part of the spatio-temporal information into a single

image. The proposed TeSNet method can represent the infor-

mation through TS pooling from as many as 64 frames, unlike

in [6], where the dynamic image method would show perfor-

mance degradation when processing more than 20 frames.

4. CONCLUSION

In this paper, we propose a new video representation scheme,

while aiming to improve video classification tasks, called

Temporal Squeeze (TS) pooling. By embedding the TS layer

into off-the-shelf CNNs, the network learns spatio-temporal

features, characteristic to discriminating classes of video se-

quences. We have investigated various locations in the struc-

ture of the CNN network for embedding the TS layers. TS

layers are also used on the optical flow data stream extracted

from the video which are then combined with the image

stream. Experiments have been performed on both UCF101

and HMDB51 datasets and the results indicate that the tem-

poral squeezed representations are compact and meaningful

for improving the video classification performance. The pro-

posed temporal squeeze layers can be embedded into a wide

range of CNN networks, leading to a video summarization

which is optimized with respect to the video classification

task.
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