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  Abstract 

Within the Routine Outcome Monitoring System “OQ-Analyst”, the questionnaire “Assessment for 

Signal Cases” (ASC) supports therapists in detecting potential reasons for not-on-track trajectories. 

Factor analysis and a machine learning algorithm (LASSO with 10-fold cross-validation) were 

applied and potential predictors of not-on-track classifications were tested using logistic multilevel 

modelling methods. The factor analysis revealed a shortened (30-item) version of the ASC with 

good internal consistency (α = 0.72 – 0.89) and excellent predictive value (AUC = 0.98; +PV = 

0.95; -PV = 0.94). Item-level analyses showed that interpersonal problems captured by specific 

ASC items (not feeling able to speak about problems with family members; feeling rejected or 

betrayed) are the most important predictors of not-on-track trajectories. It should be considered that 

our results are based on analyses of ASC items only. Our findings need to be replicated in future 

studies including other potential predictors of not-on-track trajectories (e.g. changes in medication, 

specific therapeutic techniques, or treatment adherence) which were not measured in this study. 

 

Key words: psychotherapy; progress feedback; routine outcome monitoring, Assessment for Signal 

Cases 
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Research has repeatedly shown that not all mental health patients benefit from psychotherapy. 

Approximately in 5-10% of adult patients (Lambert, 2013a) and in 14-24% of child and adolescent 

patients (Warren, Nelson, Burlingame, & Mondragon, 2012) mental health deteriorates during the 

course of psychological treatment. A number of Routine Outcome Monitoring systems (ROM; 

Boswell, Kraus, Miller, & Lambert, 2015) have been developed to support patient-focused 

psychotherapy research (Howard, Moras, Brill, Martinovich, & Lutz, 1996). These systems aim to 

systematically monitor relevant indicators of patients’ mental health (e.g., psychological symptoms) 

and to provide feedback about patients’ progress to clinicians (and patients) throughout the course of 

therapy. ROM can help to identify patients with negative symptom trajectories early in the course of 

therapy and to counteract treatment failure. One of the most widely used ROM system is the OQ-

Analyst (Lambert, 2012, 2015), which helps to track patients’ weekly progress using the Outcome 

Questionnaire-45 (OQ-45, Lambert et al., 2004; Haug, Puschner, Lambert, & Kordy, 2004; Lambert, 

Hannöver, Nisslmuller, Richard, & Kordy, 2002). The OQ-45 measures three domains including: 

symptoms (e.g., anxiety and depression), interpersonal problems, and social role functioning. The 

total score is a measure of patients’ general mental health functioning. The OQ-Analyst software plots 

expected recovery curves for patient groups with differing levels of intake OQ-45 scores. This allows 

the identification of cases with extreme deviations in the OQ-45 by comparison to an expected 

trajectory of improvement, starting with the second therapy session. These expected treatment 

response curves were based on a sample of over 11,000 patients who completed the OQ-45 during 

the course of treatment in a variety of routine care clinical settings (Finch, Lambert, & Schaalje, 

2001). According to Lambert (2013b) 40% of the outcome variance at the end of therapy is explained 

by the OQ-45 intake score and changes in OQ-45 scores between sessions 1 to 3. Further variables 

such as demographic or diagnostic information can explain incremental variance of only 1%. 

Accordingly, the OQ-Analyst predictions of expected treatment response are simply based on the 

initial OQ-45 score at the start of therapy. 
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Previous research has shown that patients whose OQ-45 score deviates negatively from their 

expected trajectory at least once during treatment (“not-on-track” signal) are at risk of treatment 

failure (Hannan et al., 2005; Lambert, Whipple et al., 2002; Spielmans, Masters, & Lambert, 2006). 

Lutz et al. (2006) reported that the probability of treatment failure increases as a function of the 

number of not-on-track signals in patients’ trajectory of change. Clinical Support Tools (CSTs) are 

implemented in the OQ-Analyst to support therapists in improving outcomes for patients with not-

on-track signals during treatment (Harmon, Hawkins, Lambert, Slade, & Whipple 2005; Lambert et 

al., 2007). These CSTs comprise a questionnaire called the Assessment for Signal Cases (ASC; 

Lambert et al., 2007) with a linked clinical decision-tree, as well as intervention handouts to support 

clinicians in problem-solving. The ASC consists of 40 items (answered on a 5-point Likert scale) 

which aim to assess the following four domains: therapeutic alliance, social support, motivation, and 

negative life events. These domains were chosen with reference to psychotherapy process variables 

highlighted as important in previous studies (therapeutic alliance: e.g., Fluckiger, Del Re, Wampold, 

and Horvath (2018); social support: e.g., Roehrle und Strouse (2008); motivation: e.g. Norcross, 

Krebs, and Prochaska (2011); life events: e.g., Sexton (1996). In a review of psychotherapy research, 

Asay and Lambert (1999) estimated that factors which are external to the therapy process (e.g., social 

support and critical life events) may explain up to 40% of therapy outcome, therapeutic alliance up 

to 30%, patients’ therapy motivation and expectations up to 15%, and the remaining 15% may be 

explained by other psychotherapeutic models and interventions which are not captured by the ASC. 

In clinical practice, the ASC is intended to be administered only when patients’ symptom 

trajectory is not-on-track to support clinicians in assessing if poor progress may be related to problems 

in one or more of the four ASC domains. In one controlled trial, the ASC was provided to all patients 

(not-on-track and on-track) on a weekly basis in order to monitor their ASC domains continuously 

throughout the course of therapy (Probst et al., 2013; Probst, Lambert, Dahlbender, Loew, & Tritt, 

2014; Probst, Lambert, Loew, Dahlbender, & Tritt, 2015). This trial replicated the results of previous 

studies: progress feedback based on the OQ-45 combined with CSTs improves the outcome of not-
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on-track cases (see also Harmon et al., 2007; Lambert, Whipple, & Kleinstäuber, 2018; Shimokawa, 

Lambert, & Smart, 2010; Slade, Lambert, Harmon, Smart, & Bailey 2008; Whipple et al., 2003). 

Probst et al. (2015) found that the social support and negative life events domains of the ASC were 

associated with extremely negative deviations from expected treatment response trajectories (not-on-

track signals). The important role of social support in not-on-track cases, compared with other ASC 

domains, was also demonstrated by White et al. (2015). These findings suggest that the therapeutic 

alliance and motivation domains of the ASC are rather unrelated to not-on-track signals. An 

alternative explanation may be that the ASC domains might include single items that have weak 

correlations with other items, thus undermining the factorial validity of the measure and introducing 

“noise” in outcome prediction analyses. It is possible that highly specific aspects of the ASC domains 

(e.g., features captured by single items) could be related to not-on-track signals, but such correlations 

could be obscured by entering other “noise” items in analyses. Moreover, the four-factor structure of 

the ASC has been proposed by the authors of this measure but has not been tested with psychometric 

methods yet, which casts some doubt over the validity of findings of previous studies. 

The present study aimed to extend our understanding of the aspects associated with poor 

progress in psychotherapy. The central research question of this study was: which items and domains 

of the ASC predict not-on-track signals in an inpatient clinical sample? To answer this question, we 

examined the predictive value of the ASC domains proposed by authors of the measure compared to 

ASC domains extracted with factor analysis. Furthermore we examined the predictive value of 

specific ASC items.  

 

Methods 

Design, setting, and interventions  

This study was based on the re-analysis of data from a randomized controlled trial on the efficacy of 

the OQ-Analyst in inpatient treatments for patients with severe psychosomatic problems (Probst et 

al., 2013, 2014). As typical for psychosomatic medicine in Germany (see Zipfel, Herzog, Kruse, & 
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Henningsen, 2016), multi-professional teams (mostly psychologists, physicians, and nurses) provided 

multi-modal and multi-method treatments based on the bio-psycho-social model comprising 

individual and group psychotherapy, relaxation/mindfulness training, physical activity therapy, art, 

dance, and music therapy and - if required - crisis intervention, visitations by nurses, medical 

consultations. Inpatient psychotherapy often is recommended when outpatient treatment is deemed 

insufficient. Compared to patients that are referred to outpatient psychotherapy, patients referred to 

inpatient psychotherapy for example have longer sick leaves, are less able to work, exhibit more often 

a somatoform or personality disorder, are more burdened by psychological symptoms, have a lower 

functional level, and the personality structure is less favorable (Huber, Brandl, Henrich, & Klug, 

2002). The core competencies of German psychosomatic clinics lie in treating somatoform/functional 

disorders, eating disorders, somatopsychic disorders (including psycho-oncology, psychocardiology, 

neuropsychosomatics, and psychodiabetology), as well as psychotraumatology and an overlap with 

psychiatry exists in depressive, anxiety, and personality disorders (Zipfel et al., 2016, p. 262). The 

patients participating in the trial that was re-analyzed here were randomly assigned to either inpatient 

treatment-as-usual or inpatient treatment-as-usual combined with feedback-informed treatment. Both 

groups were monitored on a weekly basis using standardized questionnaires described below. For 

those randomized to the feedback group, the responsible individual therapist received weekly 

feedback reports of the OQ-Analyst (Lambert, 2012). Further details about the trial such as the flow-

charts are described by Probst et al. (2013, 2014). The study was approved by the Ethics committee 

of the University Clinic of Regensburg, Germany.  

Measures 

The 45-item Outcome Questionnaire (OQ-45; Lambert et al., 2004) is a self-report measure of 

psychological distress covering three domains of symptoms, interpersonal problems, and social 

functioning. The German version of the OQ has been reported to have good internal consistency (α = 

0.93) and adequate retest-reliability (r = 0.88) (Lambert, Hannöver, et al., 2002). Each item is scored 

using a 5-point Likert scale, yielding a total severity score ranging between 0 – 180. The OQ-Analyst 
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software (Lambert, 2012) uses well-established statistical methods that provide an automated “not-

on-track signal” (NOT) when a patient’s responses to the OQ-45 indicate atypically high levels of 

distress, by comparison to cases with similar intake severity scores (Finch, et al., 2001). This risk 

signal is intended to prompt the therapist to identify and to attempt to resolve problems that impede 

treatment progress. 

 The Assessment for Signal Cases (ASC; Lambert et al., 2007) is a 40-item self-report 

questionnaire covering four domains; therapeutic alliance (11 items, range of total score: 11 to 55), 

social support (11 items, range of total score: 11 to 55), motivation (9 items, range of total score: 9 to 

45), and negative life events (9 items, range of total score: 9 to 45). These four areas have been 

proposed to influence patients’ progress in psychotherapy, and form the basis for clinical 

recommendations and techniques that may help to resolve obstacles impeding patients’ treatment 

progress (Lambert et al., 2007). The ASC used in this study was translated into German via a back-

translation method, yielding adequate reliability indices for each subdomain (α = 0.71 to 0.89) (Probst 

et al., 2013). Some ASC items are reverse-scored, so that low domain scores indicate problems in 

each domain. 

Participants characteristics 

Patient progress can only be classified as on-track or not-on-track for treatment weeks following 

intake (NOT signal: Yes or No). At least one ASC assessment in these weeks is required to study 

associations between the ASC and NOT signals. Relevant data was available for two hundred-eighty-

three patients (receiving either treatment-as-usual or treatment-as-usual + feedback-informed 

treatment; data from both conditions were pooled to have a larger sample size). The majority of these 

patients were female (59.7%). On average, the participants were 48.27 (SD = 13.44) years old and 

their intake OQ-45 score amounted to 81.11 (SD = 25.67). The most frequent psychiatric diagnoses 

according to ICD-10 were depressive disorders (F32: 10.3%; F33: 19.6%), somatoform disorders 

(F45: 29.1%), anxiety-related disorders (F40: 2.8%; F41: 9.1%; F42: 1.6%; F43: 7.2%), and eating 



8 

 

disorders (F50: 2.3%; F51: 3.1%). The average amount of psychiatric diagnoses per patient was 2.25 

(SD = 1.09). 

Statistical analysis 

We approached our overall aim of the study –to investigate the information of the ASC that is most 

important to predict NOT signals– using factor analysis and signal detection methods. The statistical 

analysis was organized in three stages guided by specific objectives: (1) to examine the factor 

structure and reliability of the ASC measure domains; (2) to identify specific ASC items that are 

associated with NOT signals; (3) to compare the predictive value of factor analysis versus signal 

detection approaches. 

Stage 1 applied factor analysis using all 40 ASC items from the intake assessment. Missing 

data for cases (N = 32; 11.3%) that did not respond to an ASC item were imputed by averaging the 

values from 25 estimated datasets using an expectation maximization method (Schafer & Olsen, 

1998). We initially examined the adequacy of the dataset for factor analysis using the Kaiser-Meyer-

Olkin (KMO) test and Bartlett’s test of sphericity. In order to empirically determine how many factors 

optimally explained the variability in the data, we applied parallel analysis using polychoric 

correlations, based on unweighted least squares, with promin rotation (Lorenzo-Seva, 1999; 

Timmerman & Lorenzo-Seva, 2011). Items that had factor loadings < .50 were excluded, in order to 

retain a parsimonious set of items that were strongly associated with each domain. Cronbach’s alpha 

was used to examine the internal consistency of each domain. 

Taking a different approach in stage 2, we ignored the factor structure of the ASC, and instead 

applied a supervised machine learning analysis to select items that were most reliably associated with 

NOT signals. Multicollinearity between ASC items was expected, so LASSO regularization 

(Tibshirani, 1996) was performed as a method to exclude variables that did not significantly improve 

predictive value and which covaried strongly with reliable predictors. The logistic LASSO regression 

shrinks (penalizes) beta coefficients toward zero, aiming to yield conservative models that minimize 

overfitting. The magnitude of a penalized coefficient indicates the weight of its predictive signal, so 
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variables with coefficients that were shrunk to exactly zero were excluded. In order to determine the 

optimal variable selection and model with minimal expected prediction error, a 10-fold cross-

validation approach was applied (Rodriguez, Perez, & Lozano, 2010). This analysis was run across 

the whole dataset (weekly assessments = 895; within 283 patients) in order to identify ASC items that 

predicted NOT signals consistently across different partitions (folds) of the dataset. This analysis only 

included data from treatment week 2 onwards, since the OQ-Analyst system only starts to classify 

sessions as on-track or not-on-track after the initial therapy session. 

In stage 3, we examined the predictive value of alternative ASC models. Logistic multilevel 

modelling was applied, with weekly assessments (level 1) nested within patients (level 2), including 

random intercepts for patients. The dependent variable was the NOT signal (0 = on track; 1 = not-on-

track). Preliminary model building steps indicated that a loglinear trend for the total number of 

therapy sessions fit the data better than linear or exponential (quadratic, cubic) trends. The predictors 

entered into “Model A” included each of the four ASC domain scores derived from the original 40-

item version, controlling for total number of sessions and baseline OQ-45 scores. In “Model B” again 

the four ASC domain scores were entered, controlling for the total number of sessions and baseline 

OQ-45. However, the domain scores were derived from a shortened 30-item version of the ASC that 

was supported by the factor analysis (based on factor loadings > 0.50). “Model C” only included the 

items selected by the LASSO procedure, controlling for the number of sessions and baseline OQ-45. 

All continuous variables were grand-mean-centered to aid interpretability. In order to compare these 

three models, we examined their goodness-of-fit (-2 Log likelihood, AIC, BIC) and predictive 

accuracy indices (positive and negative predictive values, AUC). 

Results 

Factor analysis and reliability of the ASC 

The suitability of this dataset for factor analysis was confirmed by Bartlett’s test of sphericity (x2 = 

5050.8, df = 780, p < .001) and a high index of sampling adequacy (KMO = 0.84). Table 1 presents 

the rotated factor loadings for each of the four ASC domains.  This factor solution had an excellent 
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goodness-of-fit index (GFI = 0.98) and produced a shortened 30-item version with reliability indices 

(Cronbach’s α = 0.72 to 0.89) that were highly consistent with those obtained for the 40-item version. 

Correlations between the full and shortened scales were strong (r > .90, p < .001, shown in Table 1) 

for all four factors. 

LASSO variable selection 

In total, 43 cases were classified as not-on-track at some point during therapy, and 9.9% (89/895) of 

all treatment weeks in the dataset showed NOT signals. The LASSO variable selection procedure 

produced a sparse and statistically significant model (F [2, 892] = 16.48, p < .001) that predicted the 

probability of showing NOT signals across treatment sessions. Of the 40 items entered as potential 

predictors, only two were selected: question 14 (“I could talk about problems with my family” – social 

support domain), penalized B = -0.05, SE = 0.03; question 33 (“I felt rejected or betrayed by 

someone” – life events domain), penalized B = -0.04, SE = 0.03. 

Comparing alternative ASC models 

Table 2 presents fixed effects for logistic multilevel models examining the results of three alternative 

ASC models (see methods “Model A”, “Model B”, “Model C”). After controlling for treatment 

duration, the therapeutic alliance was not significantly associated with NOT signals in models A and 

B. Motivation was significantly associated with NOT cases in Model B but not in Model A. All three 

models converged in finding that greater problems (lower than average scores) in social support and 

life events domains were significantly associated with NOT signals. The probability of sessions being 

classed as NOT was not significantly associated with treatment duration (“Sessions” variable). Cases 

with higher intake severity on the OQ-45 measure (“BL_OQ-45” variable) were less likely to have 

treatment sessions classed as NOT, although this association was not statistically significant in the 

best fitting model (Model C). 

 As shown in Table 3, Model C had the best (smallest) goodness-of-fit indices, and Model B 

had better fit than Model A. Predictive accuracy indices were best for model B, with an excellent 

trade-off between sensitivity and specificity (AUC = 0.98). Despite the fact that the 2-item Model C 
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was much briefer than the others, a patient with a positive test result would have an 82% probability 

of being classed as NOT, and a negative test result would be associated with a 94% probability of a 

typical symptom trajectory (“on track” signal). Model B had the best combination of positive (92%) 

and negative (95%) predictive values. 

 

Discussion 

This study demonstrates that problems with social support and adverse life events are consistently 

associated with extremely negative deviations in psychological distress and functioning. The present 

study extends previous findings (Probst et al., 2015; White et al., 2015) by identifying that 

interpersonal problems captured by specific ASC items (not feeling able to speak about problems 

with family members; feeling rejected or betrayed) were found to be particularly important. It is 

interesting to note that these aspects are external to the therapy process; whereas the aspects that are 

internal to the therapy process were either not (alliance) or not consistently (motivation) related to 

NOT signals. 

These findings suggest that attention to interpersonal difficulties and close relationships may 

be an important focus of therapy in cases that are at risk of poor response to treatment. One possible 

interpretation could be that inpatients in this treatment setting could have significant personality 

dysfunction and interpersonal problems, which could become exacerbated and associated with 

increased distress. It is known that the prevalence of personality disorders is twice as high in inpatient 

settings by comparison to outpatient care, and 10 times more common than in the general population 

(Lieb, Zanarini, Schmahl, Linehan, & Bohus, 2004). Hence, we cannot necessarily assume that the 

findings in this sample can be generalized to outpatient psychotherapy settings. 

The four-factor structure of the ASC measure was confirmed using factor analysis. 

Furthermore, using a conventional item-reduction approach, the shorter 30-item version displayed 

equal or better internal consistency across domains, by comparison to the original 40-item version. 

This shortened version of the ASC had remarkable predictive values above 90%, which suggests that 
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the information contained can reliably help to identify cases that are NOT. Although the full 

motivation to change scale in the 40-item ASC was not related to NOT signals, the shortened 

motivation to change scale in the 30-item ASC was significantly associated with NOT signals after 

excluding items which had low factor loadings. This implies that there are items in the full motivation 

to change scale that introduce noise and undermine its predictive value. On this basis, we can 

confidently recommend using the shortened 30-item version which could be more feasible to 

implement in future studies and clinical practice. However, therapists should be instructed to carefully 

monitor two items (14, 33) related to interpersonal problems, which were identified as key predictors 

of NOT signals. This would help to make therapists more aware of specific interpersonal issues that 

influence treatment progress. It should, however, be kept in mind that therapists in clinical settings 

are rather reluctant to use ROM systems, even though using ROM has the potential to improve 

treatment outcomes for patients who are at risk of treatment failure (Lambert & Harmon, 2018). A 

recent review by Lewis et al. (2019) summarized key barriers and facilitators for the successful 

implementation of ROM and feedback systems. 

The following limitations should be considered when interpreting the present results. Some 

cases (~11%) had missing data in some of the ASC items. We dealt with this problem using multiple 

imputation, although this may have led to some inaccuracies in these cases. Another limitation 

concerns the sole reliance on the ASC to identify potential aspects that are associated with poor 

treatment response, whereas other variables (e.g., changes in medication, specific therapeutic 

techniques, treatment adherence, etc.) could also be informative to assess the process of change. 

Furthermore, although we found that interpersonal aspects (captured in the social support and life 

events domains) were associated with not-on-track signals, we cannot draw any conclusions about 

cause-and-effect relations. Interpersonal problems may have led to increased distress in some cases, 

but it is also possible that increased distress (caused by other unmeasured factors) could have led to 

interpersonal difficulties. 
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We conclude that attending to social support and life events is of particular importance during 

the treatment of inpatients with common mental health problems, since these are found to be 

associated with poor treatment progress. Based on the results of our factor analysis we recommend 

applying the more economical 30-item version of the ASC for future clinical and research purposes. 

Special attention should be paid to two specific ASC items capturing interpersonal problems. 

Currently these two specific ASC features however cannot be considered as sufficient predictors of 

NOT cases. Their role in predicting patients’ negative deviations in psychological distress has to be 

studied further in other samples and clinical settings. 
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Table 1. Factor structure of the Assessment for Signal Cases (ASC) 

 

item Domain Factor 1 

 
Explained variance = 
6.269 
 
Full 11-item α = .89 
Short 10-item α = .89 
Full*Short r = .99 

Factor 2 

 
Explained variance 
= 3.767 
 
Full 11-item α = .77 
Short 6-item α = .82 
Full*Short r = .94 

Factor 3 

 
Explained variance 
= 5.451 
 
Full 9-item α = .78 
Short 7-item α = .81 
Full*Short r = .95 

Factor 4 

 
Explained variance = 
3.890 
 
Full 9-item α = .72 
Short 7-item α = .72 
Full*Short r = .96 

1 Alliance 0.614* 0.032 0.217 -0.028 
2 Alliance 0.800* -0.028 0.144 -0.066 
3 Alliance 0.694* 0.022 0.110 -0.062 
4 Alliance 0.882* -0.023 0.021 -0.026 
5 Alliance 0.686* 0.019 0.137 -0.064 
6 Alliance 0.629* -0.067 0.208 0.138 
7 Alliance 0.696* -0.082 0.112 0.222 
8 Alliance 0.588* -0.106 0.136 0.252 
9 Alliance 0.471 0.240 0.116 -0.170 
10 Alliance 0.868* 0.052 -0.044 -0.096 
11 Alliance 0.716* 0.080 0.013 -0.129 
12 Social support -0.127 0.770* 0.145 -0.138 
13 Social support -0.218 0.832* 0.177 -0.154 
14 Social support 0.127 0.529* -0.283 0.293 
15 Social support 0.100 0.591* -0.210 0.200 
16 Social support 0.074 0.703* -0.005 0.112 
17 Social support -0.016 0.759* -0.039 0.080 
18 Social support -0.027 0.478 0.019 -0.082 
19 Social support 0.143 0.215 -0.182 -0.271 
20 Social support 0.124 0.459 0.235 -0.066 
21 Social support 0.338 0.169 -0.238 -0.058 
22 Social support -0.067 0.247 0.102 0.259 
23 Motivation 0.230 -0.090 0.713* -0.031 
24 Motivation 0.014 -0.076 0.906* -0.080 
25 Motivation 0.203 -0.028 0.591* -0.119 
26 Motivation -0.021 0.012 0.840* 0.003 
27 Motivation -0.099 -0.006 0.875* -0.005 
28 Motivation 0.053 0.095 0.647* 0.226 
29 Motivation -0.190 0.111 0.464 0.186 
30 Motivation -0.019 0.208 0.446 -0.139 
31 Motivation -0.042 -0.070 0.642* 0.203 
32 Life events -0.010 -0.046 -0.058 0.604* 

33 Life events 0.027 0.016 -0.066 0.718* 

34 Life events 0.115 -0.007 -0.030 0.694* 

35 Life events -0.054 -0.046 0.103 0.696* 

36 Life events 0.032 -0.073 0.196 0.569* 

37 Life events 0.002 0.081 -0.091 0.651* 

38 Life events -0.027 0.022 0.019 0.185 
39 Life events 0.012 0.076 0.089 0.429 
40 Life events -0.086 -0.002 -0.001 0.575* 

Notes: Rotated factor loadings of parallel analysis using polychoric correlations, based on unweighted least squares, with promin 
rotation. *Factor loadings > 0.50. Full*Short r = correlation between full and shortened scale. Total variance explained by the 
factor solution was 53.1%. 
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Table 2. Multilevel models fitting alternative versions of the ASC questionnaire to predict not-on-track 

signals 

 

 Model A: 40-item ASC 

Fixed effects 

Variables B (SE) p 95% CI 
Intercept -4.53 (0.79) < .001 -6.08, -2.97 
Sessions (Log) 0.89 (0.49) .070 -0.07, 1.85 
BL_OQ-45 (mc) -0.03 (0.01) .002 -0.05, -0.01 
Alliance (mc) -0.23 (0.29) .437 -0.80, 0.35 
Social support (mc)  -1.06 (0.24) < .001 -1.54, -0.58 
Motivation (mc) -0.59 (0.32) .065 -1.21, 0.04 
Life events (mc) -1.30 (0.26) < .001 -1.81, -0.79 
 Model B: 30-item ASC 

Fixed effects 

Variables B (SE) p 95% CI 
Intercept 5.85 (1.66) < .001 2.58, 9.11 
Sessions (Log) 0.94 (0.50) .060 -0.04, 1.91 
BL_OQ-45 (mc) -0.02 (0.01) .023 -0.04, -0.01 
Alliance (mc) -0.33 (0.28) .230 -0.87, 0.21 
Social support (mc)  -0.61 (0.17) < .001 -0.94, -0.28 
Motivation (mc) -0.64 (0.29) .028 -1.22, -0.07 
Life events (mc) -0.96 (0.21) < .001 -1.38, -0.54 
 Model C: 2-item ASC 

Fixed effects 

Variables B (SE) p 95% CI 
Intercept -3.42 (0.71) < .001 -4.80, -2.03 
Sessions (Log) 0.36 (0.46) .427 -0.54, 1.27 
BL_OQ-45 (mc) -0.01 (0.01) .407 -0.02, 0.01 
Item 14 (mc) -0.38 (0.13) .003 -0.62, -0.13 
Item 33 (mc)  -0.39 (0.11) < .001 -0.61, -0.18 

Notes: Fixed effects from logistic multilevel models predicting risk signal classification 
(0 = on track, 1 = not on track); across N = 895 treatment sessions within N = 283 
patients; entering random intercepts for patients; Log = loglinear trend; mc = grand 
mean centred; BL_OQ-45 = baseline severity in OQ-45 measure; B = regression 
coefficient; SE = standard error; CI = confidence intervals 
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Table 3. Goodness-of-fit and predictive accuracy of alternative ASC models 

 

 Goodness-of-fit indices  Predictive accuracy indices 

 -2 LL AIC BIC  +PV -PV AUC 
Model A 5210.59 5212.59 5217.38  0.91 0.94 .973 
Model B 5091.40 5093.40 5098.18  0.92 0.95 .975 
Model C 4862.52 4864.52 4869.31  0.82 0.94 .976 

Notes: -2LL = -2 Log likelihood; AIC = Akaike’s information criterion; BIC = Bayesian information criterion; 
+PV = positive predictive value; -PV = negative predictive value; AUC = area under the curve 

 

 

 

 

 

 

 

 


