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ABSTRACT

Recent observations of Jupiter and Saturn suggest that heavy elements may be diluted in the
gaseous envelope, providing a compositional gradient that could stabilise ordinary convection
and produce a stably-stratified layer near the core of these planets. This region could consist
of semi-convective layers with a staircase-like density profile, which have multiple convective
zones separated by thin stably-stratified interfaces, as a result of double-diffusive convection.
These layers could have important effects on wave propagation and tidal dissipation that
have not been fully explored. We analyse the effects of these layers on the propagation and
transmission of internal waves within giant planets, extending prior work in a local Cartesian
model. We adopt a simplified global Boussinesq planetary model in which we explore the
internal waves in a non-rotating spherical body. We begin by studying the free modes of a
region containing semi-convective layers. We then analyse the transmission of internal waves
through such a region. The free modes depend strongly on the staircase properties, and consist
of modes with both internal and interfacial gravity wave-like behaviour. We determine the
frequency shifts of these waves as a function of the number of steps to explore their potential
to probe planetary internal structures. We also find that wave transmission is strongly affected
by the presence of a staircase. Very large-wavelength waves are transmitted efficiently, but
small-scale waves are only transmitted if they are resonant with one of the free modes. The
effective size of the core is therefore larger for non-resonant modes.

Key words: planets and satellites: gaseous planets – hydrodynamics – waves – planets and
satellites: physical evolution – asteroseismology – methods: analytical

1 INTRODUCTION

Understanding the internal structures of giant planets and stars is an

important topic in astrophysics and planetary sciences. The interior

structures of stars are generally well understood, helped in a large

part by progress in helio- and asteroseismology (e.g. Christensen-

Dalsgaard 2002; Chaplin & Miglio 2013). High-precision photo-

metric data from space missions such as CoRoT and Kepler has

enabled much recent progress in asteroseismology, which has ex-

tended our knowledge of the interior structure of stars to those

outside the solar system (Baglin et al. 2002; Gilliland et al. 2010).

These methods rely on analysing the frequencies of stellar photo-

metric variability, which allow us to probe the interior structure of

a star if the internal free oscillation modes are well understood. It

is however much more difficult to explore giant planets in a similar

way, even those in our solar system (but see Gaulme et al. 2011 who

have detected a signal compatible with global acoustic modes using

ground-based instrumentation). On the other hand, space missions

such as Juno and Cassini have allowed high-precision measurements

of the gravity fields of the giant planets in our solar system, Jupiter

⋆ E-mail: mmcmp@leeds.ac.uk

and Saturn (Miguel et al. 2016; Bolton et al. 2017). This informa-

tion has allowed us to constrain planetary interior models, as well

as their internal differential rotation (e.g. Wahl et al. 2017; Guillot

et al. 2018; Iess et al. 2019).

The interiors of giant planets are traditionally modelled with

a three-layer structure, consisting of a rocky/icy core underneath

a convective envelope of metallic hydrogen and helium, which is

surrounded by a molecular envelope (e.g. Stevenson 1982; Guillot

2005; Fortney & Nettelmann 2010). Each layer is usually assumed

to be chemically homogeneous, with the heavy elements concen-

trated in the core. However, the sizes of each region, and the exact

nature of the transitions between them are uncertain. Furthermore,

recent observational evidence from Juno gravity field measurements

indicates that heavy elements are probably distributed throughout

the inner regions of the planet (Wahl et al. 2017; Helled & Steven-

son 2017; Debras & Chabrier 2019). As a result, there has been

much ongoing research in recent years to explore planetary models

incorporating compositional gradients or non-adiabatic structures

(Chabrier & Baraffe 2007; Leconte & Chabrier 2012; Lozovsky

et al. 2017; Vazan et al. 2016; Berardo & Cumming 2017; Vazan

et al. 2018; Debras & Chabrier 2019).

Standard models with chemically homogeneous layers also
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assume convection to be efficient so that the entropy profile is adia-

batic. Compositional gradients can however interact with ordinary

convection, and inhibit it if the concentration of heavy elements

decreases sufficiently rapidly with radius. In fluids with a stabil-

ising compositional gradient and a destabilising entropy gradient,

double-diffusive convection (also known as “semi-convection" in

astrophysics) may occur instead (e.g. Garaud 2018). This is possi-

ble if temperature diffuses more rapidly than composition, as ex-

pected in giant planet interiors. Double-diffusive convection is an

oscillatory linear instability (or overstability) that excites internal

gravity waves. It exhibits fascinating nonlinear dynamics, and often

leads to the formation of layers in the density field (e.g. Wood et al.

2013; Garaud 2018). This layered state consists of thin convective

layers (probably much smaller than a pressure scale height) that are

sandwiched by much thinner diffusive (stably-stratified) interfaces,

so that the density profile resembles a staircase. This leads to a

non-adiabatic, stably-stratified, entropy profile in these parts of the

planetary interior. Density staircases have also been observed in the

Artic oceans on Earth, where there is a stabilising salinity gradient

and a destabilising thermal gradient (e.g. Ghaemsaidi et al. 2016;

Shibley et al. 2017). They may also be present outside the cores of

massive stars, where heavy elements generated through nuclear re-

actions can diffuse into the neighbouring convective region (Maeder

2009; Kippenhahn et al. 2012).

The transport of heat by double-diffusive convection is much

less efficient than that by ordinary convection (in the absence of

compositional gradients), so its occurrence has important conse-

quences for the evolution of giant planets (Chabrier & Baraffe 2007;

Leconte & Chabrier 2012; Lozovsky et al. 2017; Vazan et al. 2016;

Berardo & Cumming 2017; Vazan et al. 2018) and ice giant planets

(Podolak et al. 2019; Helled et al. 2019). In particular, this could

contribute to the inflated radii of some hot Jupiters (e.g. Chabrier

& Baraffe 2007). Saturn’s observed luminosity is also larger than

predicted using standard models at its present age, and the delayed

cooling caused by compositional gradients is one possible explana-

tion (Leconte & Chabrier 2013).

In addition to the gravity field measurements of Jupiter and

Saturn, there is further indirect evidence for the possible existence

of a stably-stratified layer in the interiors of these planets. Certain

density waves in Saturn’s rings are believed to be excited by gravita-

tional forcing due to global oscillation modes inside Saturn (Marley

& Porco 1993; Hedman & Nicholson 2013; Hedman et al. 2019).

Fuller (2014) showed that their frequencies could only be repro-

duced in his models if there is a (sufficiently large and strongly)

stably-stratified region outside the core, which modifies the fre-

quencies of the f-modes (surface gravity modes – strictly speaking

these are mixed modes). While these models may not contain all of

the relevant physics at present, they provide independent evidence

for the existence of a stably-stratified region near the core of Saturn.

There are two regions in the deep interiors of giant planets

which could be stably stratified and potentially contain density stair-

cases. The first is the region outside the core, where a compositional

gradient could be produced by the erosion or dissolution of the core

(Guillot et al. 2004; Wilson & Militzer 2012; Moll et al. 2017), or

perhaps exist as a remnant of the formation of these planets (Steven-

son 1982; Liu et al. 2019). The second region is located further from

the centre, occurring near the transition between the metallic and

molecular hydrogen and helium layers, where the conditions may

be suitable for helium rain to occur (Stevenson & Salpeter 1977;

Nettelmann et al. 2015). In particular, this is thought to reduce the

helium content of Saturn’s outer envelope, and may create a stabilis-

ing compositional gradient. A different type of giant planet interior

model with an extended stably-stratified layer near the surface has

also been explored by Ioannou & Lindzen (1993a,b).

The long-term tidal evolution of star, planet and moon systems

can also be used to constrain the internal structures of these bodies

(e.g. Ogilvie & Lin 2004; Mathis & Remus 2013; Ogilvie 2014).

This is because the rates of tidal dissipation are believed to depend

strongly on their interior structure. Astrometric observations of the

moons of both Jupiter and Saturn indicate that their moons are

migrating outwards at rates that require efficient tidal dissipation

inside these planets (Lainey et al. 2009, 2012, 2017). It is uncertain

how such efficient tidal dissipation can be explained theoretically.

One possibility, which motivates the present paper, is that stably-

stratified layers in giant planets could play a key role, by enabling the

excitation (and subsequent dissipation) of gravity waves. However,

the presence of a density staircase could modify the properties of

these waves, and this has not yet been fully explored. Alternative

possibilities to explain the observations include the dissipation of

inertial waves in convective regions (Ogilvie & Lin 2004; Favier

et al. 2014), visco-elastic dissipation in a rocky/icy core (Remus

et al. 2012), and the resonant locking of tidal gravito-inertial modes

(Fuller et al. 2016). The latter mechanism may require a stable layer

to operate effectively. Note that the effective viscosity of turbulent

convection acting on the non-wavelike tidal flows is unlikely to be

important (e.g. Goldreich & Nicholson 1977; Duguid et al. 2020).

Motivated by the potential importance of stably-stratified lay-

ers in giant planets, and of their possible density staircases, we set

out to analyse the effects of these layers on wave propagation, and

ultimately also on tidal dissipation. The effect of a density stair-

case on the free oscillation modes of a stratified region was studied

by Belyaev et al. (2015) using a local Cartesian model. The free

modes were found to differ from those of a continuously stratified

medium, with those waves with wavelengths that are comparable

with a step-size being affected the most. The transmission of inter-

nal waves through a density staircase in a similar Cartesian model

was studied by Sutherland (2016), who adopted the “traditional

approximation" to incorporate rotation (this assumes that the buoy-

ancy force dominates the Coriolis acceleration in the direction of

stratification, thereby disallowing inertial waves), and subsequently

André et al. (2017) studied the free modes and transmission of inter-

nal and inertial waves in a local model that included the full Coriolis

acceleration at any latitude in a planet. The density staircase was

found to strongly affect the transmission of waves through such a

region in a frequency and wavelength-dependent manner. In partic-

ular, incident gravito-inertial waves are preferentially transmitted if

they have large wavelengths relative to a step size, or if they are

resonant with one of its free modes. Inertial waves are also strongly

affected by a staircase, and are primarily reflected unless they have

a large wavelength relative to the size of the entire stratified region,

except for those modes that are resonant with a free mode of the

staircase, or if their frequencies match the local inertial frequency

(André et al. 2017).

In this paper, we set out to analyse the effects of a density stair-

case on the propagation and transmission of internal waves within

giant planets. We build upon these prior works by adopting a sim-

plified global (spherical) Boussinesq model. This allows us to study

the propagation of waves with wavelengths comparable with the

radius of the stratified layer, which may be important for the inner

regions of these planets, and also those with small harmonic degrees

(therefore large horizontal wavelengths) such as those that may be

the easiest to observe. We neglect rotation in this study partly be-

cause we focus on internal waves, and partly for simplicity, because

including the full effects of rotation makes the problem inherently

MNRAS 000, 1–18 (2020)
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two-dimensional (e.g. Dintrans et al. 1999). Incorporating the full

effects of rotation in a global model is an important topic for future

work (e.g. Ogilvie & Lin 2004, 2007).

The structure of this paper is as follows: in § 2, we outline our

model and the governing equations. In § 3, we derive the dispersion

relation governing the free modes of a density staircase, and discuss

its properties. We compare the modes of a staircase to those of a

continuously stratified medium in § 3.4, and we explore the trans-

mission of internal waves in § 4. Finally, we present our conclusions

in § 5.

2 MODEL

We consider the propagation of internal waves through a region con-

sisting of well-mixed convective layers separated by infinitesimally

thin interfaces, i.e. a density staircase. This work extends André

et al. (2017) to spherical geometry.

We adopt the Boussinesq approximation (Spiegel & Vero-

nis 1960) for simplicity, and to facilitate understanding before we

progress to a more complicated physical model. This is appropri-

ate for studying waves with shorter wavelengths than a pressure or

density scale height, and with phase speeds that are slow relative to

the sound speed. This is likely to be a reasonable approximation for

studying the free modes of a density staircase, though it is strictly

not valid for studying the largest wavelength waves in a planet.

We also adopt the Cowling approximation (Cowling 1941), thereby

neglecting perturbations to the gravitational potential, which is a

reasonable approximation for studying internal waves, particularly

those with (horizontal and radial) wavelengths that are shorter than

the planetary radius.

2.1 Governing equations

We briefly outline the derivation of the linear adiabatic equa-

tions of motion describing the non-radial oscillations of a non-

rotating spherical planet (Gough 1993; Christensen-Dalsgaard

1997; Thompson 2006). We use spherical polar coordinates (r, θ, φ),
where r = 0 corresponds to the centre of the planet, and adopt a basic

state that is a spherically-symmetric planetary model in hydrostatic

equilibrium, with density ρ0(r), pressure p0(r) and gravitational

potential Φ0(r). We consider linear perturbations to this basic state

of the form

p(r, t) = p0(r) + p′(r, t),

and similarly for other variables, where a prime denotes the Eulerian

perturbation, ξ is the Eulerian displacement and u = ∂ξ/∂t is

the fluid velocity. The resulting linearised adiabatic (thus far fully

compressible) equations of motions are,

ρ′ + ρ0∇ · ξ = 0, (1)

ρ0
∂2ξ

∂t2
= −∇p′ + ρ′g0, (2)

p′ + ξ · ∇p0 =
Γ1p0

ρ0

(
ρ′ + ξ · ∇ρ0

)
, (3)

where Γ1 =
(
∂ ln p0

∂ ln ρ0

)

ad
is the first adiabatic exponent and g0 =

−∇Φ0. The displacement is split into radial and horizontal compo-

nents,

ξ = ξr r̂ + ξh,

where r̂ · ξh = 0, and r̂ is the radial unit vector. Since the basic state

is static and spherically-symmetric, we may expand perturbations

using spherical harmonics with harmonic time-dependence, i.e.

ξr (r, θ, φ, t) = ξ̃r (r)Ym
l
(θ, φ)e−iωt,

and similarly for other variables, where the physical quantity is the

real part of this expression, and we use orthonormalised spherical

harmonics Ym
l

. Substituting this into Eqs. (1) to (3), and using these

to eliminate ξ̃h and ρ̃, we obtain:

dξ̃r

dr
= −

(
2

r
+

1

Γ1p0

dp0

dr

)
ξ̃r +

1

ρ0ω
2c2

(
S2
l
− ω2

)
p̃′, (4)

dp̃′

dr
= ρ0

(
ω2 − N2

)
ξ̃r +

1

Γ1p0

dp0

dr
p̃′, (5)

where the squared adiabatic sound speed is

c2
= Γ1

p0

ρ0
, (6)

the squared Lamb frequency is

S2
l
=

l(l + 1)c2

r2
, (7)

and the squared buoyancy frequency, or Brunt-Väisälä frequency, is

N2
= g

(
1

Γ1

ln dp0

dr
− d ln ρ0

dr

)
. (8)

We have also defined g0 = −g(r)r̂ . The radial dependence of g(r)
involves the density structure of the entire region within that radius,

not just the staircase.

To simplify our analysis we assume that the background varia-

tions in density and pressure are much smaller than their maximum

values, and that the wave speed is much smaller than the adiabatic

sound speed, or equivalently, that ω2 ≪ S2
l
. The above system then

reduces to

dξ̃r

dr
= −2ξ̃r

r
+

1

ρ0ω
2

l(l + 1)
r2

p̃′, (9)

dp̃′

dr
= ρ0ω

2

(
1 − N2

ω2

)
ξ̃r, (10)

which can be combined to give

d2 ξ̃r

dr2
+

4

r

dξ̃r

dr
+

[(
N2

ω2
− 1

)
l(l + 1) + 2

]
ξ̃r

r2
= 0. (11)

We confirm in Appendix A that this equation can also be obtained

by adopting the Boussinesq approximation from the outset.

We note that Eqn. (11) can be simplified using the substitution

χ = r2 ξ̃r , reducing it to the form,

d2 χ

dr2
+

(
N2

ω2
− 1

)
l(l + 1) χ

r2
= 0, (12)

where the effective radial wavenumber can be identified as,

k2
r =

l(l + 1)
r2

(
N2

ω2
− 1

)
. (13)

Note that in general

N2
= −T0αT

cp
g0 · ∇s0, (14)

where αT is the coefficient of thermal expansion, cp is the specific

heat capacity at constant pressure, and T0 and s0 are the temperature

MNRAS 000, 1–18 (2020)
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Figure 1. Diagram showing the expected radial locations of stably-stratified

layers in giant planet interiors. Figure adapted from André et al. (2017).

and specific entropy profiles for the basic state. This means that

N2 ∝ ∂r s0. In the next section, we will specify a background profile

of s0(r) that represents a layered profile. For clarity of presentation

and comparison with prior work, we will refer to this as a “density

staircase", which will be represented by a particular choice of ρ0(r),
that is related to the buoyancy frequency in the incompressible limit

by

N2 ≈ − g

ρ0

dρ0

dr
. (15)

However, it should be remembered that we are strictly considering

an “entropy staircase", once we correctly account for the difference

between the density and entropy of the gas.

2.2 Density profile

We illustrate the regions in a giant planet where stable layers could

be present in the top panel of Figure 1. We are mainly interested in

studying wave propagation in either the stable layer near the core of

the planet or one near the H/He molecular to metallic transition ra-

dius where helium rain may occur. We define our (semi-convective)

density staircase to have a typical radius r0 (i.e. 1 in dimensionless

radii) from the centre of the planet, which represents its inner radius.

We consider a staircase like that shown in the bottom panels of

Figure 2, consisting of m steps of well mixed convective fluid layers

with uniform depth d, in which N = 0. These layers are separated

by m+ 1 equal-sized density jumps, ∆ρ. In reality, we might expect

a staircase to possess a range of layer depths and density jumps, but

we will primarily adopt equal sized layers with equal density jumps

to simplify the analysis. Extending our model to explore a range

of layer depths and density jumps is straightforward, and is partly

explored later in § 4.3.2 (see also Sutherland (2016) and André et al.

(2017) in Cartesian geometry). We define a parameter

ǫ =
d

r0
, (16)

which represents the fractional depth of each convective layer rel-

ative to the typical inner radius of the staircase. We usually expect

ǫ ≪ 1 (e.g. Leconte & Chabrier 2012), though this need not be the

case if the layer is close to the centre of the planet.

We will vary the properties of the end regions that connect to

the inner and outer radii of the staircase. First, we will consider an

isolated staircase in which the end regions are well-mixed convective

layers with N = 0, so that gravity waves are evanescent in these

layers. In the absence of a solid core, if we include r = 0, a regularity

condition must be imposed there. We will generally adopt a core

of radius rc ≪ r0, which we will treat as perfectly absorbing for

the purposes of calculating the transmission of waves through the

staircase.

The density profile is modelled as a series of δ-functions at

each interface between adjacent steps, such that the mean buoyancy

frequency is N̄ , i.e.,

N2
=

m∑

n=0

dN̄2δ(r0 + nd − r), (17)

where we define

N̄2 ≡ g∆ρ

ρ0d
, (18)

ρ0 is the (constant) reference density, and ∆ρ is the density jump at

each interface. 1 As previously discussed, we are strictly considering

entropy jumps and would not necessarily expect to have equal-sized

density jumps, but we consider them here for clarity.

In what follows we non-dimensionalise quantities, using a

mean buoyancy frequency N̄−1 as our unit of time, and a typi-

cal radius r0 as our unit of length. However, we choose to retain

(but set to 1 in calculations) N̄ and r0 in some formulae and figures,

even if these strictly should not appear, so that they can be more

easily tracked in the derivations.

2.3 Solutions for the radial displacement in the staircase

When we substitute Eqn. (17) into Eqn. (11) we obtain a discon-

tinuous differential equation, so we may obtain the solution in each

region separately as long as we apply suitable matching conditions

at the interfaces. Within the n-th convective step N2
= 0, so that

d2ξn

dr2
+

4

r

dξn

dr
=

l(l + 1) − 2

r2
ξn, (19)

which has solutions for the radial displacement

ξn = Anrl−1
+ Bnr−l−2. (20)

We have omitted the subscript r from ξr , and replaced it with a new

subscript n to identify the appropriate step number to which the

solution applies. The radial displacement across the entire region is

therefore described by

ξ =




A0rl−1
+ B0r−l−2 rc

r0
< r < 1,

Anrl−1
+ Bnr−l−2 rn−1 < r < rn,

Am+1rl−1
+ Bm+1r−l−2 r > 1 + mǫ,

(21)

where rn = 1 + nǫ , and n = 1, . . . ,m.

If we were to instead consider an extended region with a spa-

tially uniform buoyancy frequency N = N̄ , then Eqn. (11) would

have the solution

ξ = Arλ+ + Brλ−, (22)

1 The factor of d in Eqn. (17) arises from combining the density gradient,
dρ
dr
= −∆ρδ(r − r0 − nd), and the given definition of N̄ . This preserves the

overall dimensions of the quantity as it balances the inverse length units of

the delta function when its argument has units of length.

MNRAS 000, 1–18 (2020)
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(a)
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dρ̄
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∆ρ

d

(b)
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=

g∆ρ

ρ0d

(c)

Figure 2. Illustrations of our model, which consists of m steps of size d, separated by m + 1 interfaces with density jumps of ∆ρ, with initial radius r0. (a)

Amplitudes of the downward (An) and upward (Bn) propagating waves in each layer. (b) Density profile with a mean gradient
∆ρ

d
, shown by the red dashed

line. (c) Corresponding buoyancy frequency squared, consisting of δ-functions with mean value N̄2
=

g∆ρ
ρ0d

. Figures adapted from André et al. (2017).

where A and B denote the amplitude of the downward/upward prop-

agating wave, and

λ± = −3

2
± 1

2

√

1 + 4

(
1 − N̄2

ω2

)
l(l + 1). (23)

We will later use this solution when we consider the transmission

of waves through a staircase sandwiched by two stably-stratified

layers, and also when we compare the frequencies of the free modes

of a staircase with those of a uniformly stably-stratified layer.

2.4 Interface conditions and transfer matrices

Since Eqn. (11) is a second order differential equation in r , we must

apply two boundary conditions at each interface. Here, we generalise

those in André et al. (2017) to spherical geometry. Firstly, we must

ensure that there is no separation of the fluid on either side of each

interface, therefore ξ must be continuous there. This requires

ξn+1(1 + nǫ) = ξn(1 + nǫ), (24)

and using Eqn. (21) we find

An+1 − An +
(
Bn+1 − Bn

) (
1 + nǫ

)−2l−1
= 0. (25)

Our second condition follows from the requirement that the mo-

mentum flux, and therefore the pressure perturbation, is continuous

across each interface. We may obtain this condition by integrating

Eqn. (11) over a small volume of radial extent 2∆ around an inter-

face. We then take the limit of vanishing volume, such that ∆ tends

to 0. For the n-th interface, we obtain

∫ 1+nǫ+∆

1+nǫ−∆
r2 d2ξ

dr2
dr +

∫ 1+nǫ+∆

1+nǫ−∆
4r

dξ

dr
dr =

∫ 1+nǫ+∆

1+nǫ−∆
(l(l + 1) − 2)ξdr −

∫ 1+nǫ+∆

1+nǫ−∆

N2

ω2
l(l + 1)ξdr . (26)

We use integration by parts on the left hand side (LHS) and apply

the continuity of ξ (Eqn. (24)), so that the limit ∆→ 0 leads to

LHS =
(
1 + nǫ

)2
[
dξn+1

dr
− dξn

dr

]

r=1+nǫ

. (27)

On the right hand side (RHS), we also apply the continuity of ξ,

so that on taking ∆ → 0, the first term drops out and substitute

Eqn. (17) to give,

RHS = − N̄2ǫ

ω2
l(l + 1)

∫ 1+nǫ+∆

1+nǫ−∆
δ(1 + nǫ − r)ξdr . (28)

After integration we obtain our second interface condition:

[
dξn+1

dr
− dξn

dr

]

r=1+nǫ

= − N̄2l(l + 1)ǫ
ω2(1 + nǫ)2

ξn

����
r=1+nǫ

. (29)

Using Eqn. (21) we then find

(l − 1)(An+1 − An) − (l + 2)
(
Bn+1 − Bn(1 + nǫ)−2l−1

)

=

−N̄2l(l + 1)ǫ
ω2(1 + nǫ)2

[
An(1 + nǫ) + Bn(1 + nǫ)−2l

]
. (30)

The two interface conditions (Eqns. 25 and 30) allow the solu-

tion in each step to be written in terms of the solution in an adjacent

step. Therefore, with some algebra, the coefficients in adjacent lay-

ers are related by
[
An+1

Bn+1

]
= Tn

[
An

Bn

]
, (31)

where the transfer matrix Tn is defined as,

Tn =



1 − ǫ l(l+1)N̄2

(2l+1)(1+nǫ )ω2

−ǫ l(l+1)N̄2

(2l+1)(1+nǫ )2(l+1)ω2

ǫ l(l+1)(1+nǫ )2l N̄2

(2l+1)ω2 1 +
ǫ l(l+1)N̄2

(2l+1)(1+nǫ )ω2


. (32)

This transfer matrix correctly recovers the Cartesian geometry re-

sults in Belyaev et al. (2015), Sutherland (2016) and André et al.
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(2017), once we take the double limits l ≫ 1 and 1 ≫ nǫ , and we

identify

k2
⊥ =

l(l + 1)
r2
0

. (33)

Note also that Tn reduces to the identity matrix in the limit ǫ → 0.

This formalism allows us to determine the solution in the

(m + 1)-th layer in terms of the solution in the 0-th layer by re-

peatedly applying the transfer matrix. Note that Tn depends on the

radius of the n-th interface, which complicates the following analy-

sis compared with the Cartesian case (even with constant d and ∆ρ)

in André et al. (2017). But we may still define a 2 × 2 matrix such

that,
[
Am+1

Bm+1

]
= X

[
A0

B0

]
, (34)

where

X = TmTm−1 . . .T1T0 (35)

relates the solution in the end regions. With appropriate choices of

the end regions, this formalism allows us to analyse the free modes

of a density staircase (§ 3), as well as the transmission of waves

through a staircase (§ 4).

3 FREE MODES OF A DENSITY STAIRCASE

We begin by deriving a dispersion relation that describes the free

internal modes of a density staircase. We consider the case of a

finite staircase confined between two well-mixed convective regions

followed by a finite staircase with solid walls at either end. Finally,

we consider the case of a finite staircase with a solid wall at the inner

boundary and a well-mixed convective region at the outer boundary,

which could represent a solid core and convective envelope. In each

case we analyse the properties of the free modes and how they

depend on the parameters describing the staircase.

3.1 Finite staircase embedded in a convective medium

Our first example considers a finite staircase embedded in a convec-

tive medium, which could represent a staircase in the helium rain

region, for example. We enforce boundary conditions such that the

solution decays away from the first and last interface, corresponding

with setting B0 = 0 and Am+1 = 0. The top left entry of X is then

required to be 0, i.e.,

X1,1 = 0. (36)

This represents a polynomial in ω2, which is the dispersion re-

lation describing the free modes of the staircase. The polynomial

has degree (m + 1), implying that there are an equal number of

(oppositely-signed pairs of) free modes in the system as there are

interfaces in the staircase (see also Belyaev et al. 2015; André et al.

2017).

3.1.1 Single step (m = 1)

Solving Eqn. (36) for a staircase consisting of a single convective

step and two interfaces (m = 1), gives the dispersion relation

ω2
=

ǫ l(l + 1)N̄2(1 + 2ǫ)−1−l

2(2l + 1)(1 + ǫ)
(
(1 + 2ǫ)l(2 + 3ǫ) ±

√
4(1 + ǫ)2l+2

+ ǫ2(1 + 2ǫ)2l
)
. (37)

1 2 3 4 5 6
l

0.05

0.10

0.15

0.20

0.25

ω /N̄

(a) d = 0.01, r0 = 1, N̄ = 1

0.05 0.10 0.15 0.20
d

0.1

0.2

0.3

0.4

0.5

0.6

ω /N̄

(b) r0 = 1, l = 2, N̄ = 1

Figure 3. Dependence of the mode frequency ω for each mode on the

parameters of the staircase and the boundary conditions on the end regions,

shown for the single step, m = 1, case. The red (thin-dashed) lines show ω

for each mode of a finite staircase embedded in a convective medium, blue

(dashed) lines show a finite staircase with solid wall boundary conditions.

The green (thick-dashed) lines show a finite staircase with a solid wall at the

centre and a convective medium above. Finally, the black (solid) line shows

the solution with a constant stratification between two solid walls. Top:

dependence of ω for each mode on the angular wave number l. Bottom:

dependence on step size d.

This describes the frequencies of two (pairs of oppositely-signed)

free modes. We can further analyse the two solutions by expanding

in the small parameter ǫ . The first solution is

ω2
=

1

2
l(l + 1)N̄2ǫ2 +O(ǫ3), (38)

and therefore ω2 ∝ l2 for large l. This is similar to the behaviour of

an internal gravity wave. The second solution is

ω2
=

2l(l + 1)N̄2ǫ

2l + 1
+O(ǫ2), (39)

so that ω2 ∝ l for large l. This can be compared with the properties

of an interfacial gravity wave. Figure 3 shows the dependence of the

mode frequencies on l and d (red line). To justify our assertions, we

consider that internal gravity waves in spherical geometry are de-

scribed by the following dispersion relation (Christensen-Dalsgaard

1997):

ω2 ≈ N̄2 k2
⊥d2

k2
r d2
+ k2

⊥d2
≈ l(l + 1)

k2
r d2

N̄2ǫ2, (40)
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(a) m = 1, l = 2, r0 = 1, N̄ = 1, d = 0.01
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(b) m = 6, l = 2, r0 = 1, N̄ = 1, d = 0.01
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(c) m = 1, l = 2, r0 = 1, N̄ = 1, d = 0.01
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(d) m = 6, l = 2, r0 = 1, N̄ = 1, d = 0.01

Figure 4. Radial displacement at each interface for the case of a staircase embedded within a convective medium. (a) and (c) show the one step (m = 1) case

where (a) shows the internal wave-like solution with the two interfaces oscillating out of phase, and (c) shows the interfacial wave solution with both interfaces

in phase. (b) and (d) similarly show the interfaces for the six step (m = 6) case.

in the “plane-wave limit" in which kr ≫ k⊥, and we identify

k2
⊥ = l(l + 1)/r2

0
. For large l, we find ω2 ∝ l2, just like in Eqn. (38).

By comparing Eqn. (40) to Eqn. (38), we observe that these are

equivalent if k2
r ≈ 2

d2 . Indeed, we have confirmed numerically that

the free modes in the single step case are well described by Eqn. (40)

if kr ≈ 145, which is just slightly higher than
√

2/d ≈ 141. The

corresponding wavelength λr =
2π
kr
> d, as we would expect for a

mode with the character of an internal gravity wave.

On the other hand, the dispersion relation describing an inter-

facial gravity mode, which is the solution we obtain in the case of a

single interface (m = 0) is

ω2
=

l(l + 1)N̄2ǫ

(2l + 1) =

l(l + 1)
(2l + 1)

g∆ρ

r0ρ0
, (41)

For large l, we find ω2 ∝ l, which behaves similarly to Eqn. (39).

This appears to differ from Eqn. (39) by a factor of 2, but this only

arises because it is the total density jump (across both steps) that is

relevant, and this is twice as large in Eqn. (39).

We show the radial displacement as a function of time at both

interfaces in Figures 4a and 4c for both types of solution. Note

that the overall amplitude is arbitrary but the relative amplitudes

are meaningful. Figure 4a shows the solution corresponding with

Eqn. (38), in which both interfaces oscillate out of phase with each

other, as we would expect if they are located either side of a node in

a corresponding internal gravity mode. Figure 4c shows the solution

corresponding with Eqn. (39). This solution clearly has interfacial

wave character because both interfaces oscillate in phase with one

other, behaving as an “extended interface".

3.1.2 Multiple steps (m > 1)

We can also explore the free modes of an m-step staircase in a similar

way when m > 1, except that we now obtain a polynomial of degree

(m + 1). The solutions are too complicated to gain any insight from

writing them down, but we can use a computer algebra package

(e.g. Mathematica) to analyse their properties. The solutions for

multiple steps exhibit similar behaviour to the case of a single

step. We again find that the highest frequency mode is an interfacial

gravity-like mode, in which all of the interfaces oscillate in phase, so

that the whole staircase behaves like a single extended interface. The

other modes behave more like internal gravity modes, in which the

interfaces do not all oscillate in phase, and the number of interfaces

that are in phase can be related to the number of nodes in the

corresponding gravity mode.

For the case with m = 6 steps, we show the radial displace-

ment at each interface (again, with an arbitrary overall amplitude)

in Figure 4d for the one interfacial mode in which all interfaces

oscillate in phase, and one example (chosen from 6) of an internal

gravity-like mode in Figure 4b. In the latter, the interfaces do not

all oscillate in phase, indicating that this is like an internal gravity

mode (with a continuous uniform stratification) with 3 nodes. For

multiple steps, the dependence on l, d and r0 is qualitatively similar

to that of a single step. Series expansions to explore the dependence

of the frequencies of the waves on the parameters were not carried

out in this case because the behaviour can be obtained qualitatively.

There are two ways to explore how the dispersion relation

depends on the number of steps. If we fix the mean stratification,

the total density jump and total length of the staircase, x, but we

increase the number of steps, then ǫ and ∆ρ will decrease as steps

are added such that, ∆ρ = 1
(m+1)∆ρtotal and ǫ = 1

(m+1) x. The top

panel of Figure 5 shows the interfacial wave solutions dependence
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m

1.00

1.02

1.04

1.06

1.08

1.10

1.12

1.14

ω

ωm=15

(a) x = (m + 1)ǫ = 0.1
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(b) ǫ = 0.01

Figure 5. Dependence of the frequency of the interfacial mode for each step

number m, for l = 2, N̄ = 1. Top: interfacial-like mode for a fixed staircase

size x = (m + 1)ǫ = 0.1, such that the step size ǫ and density jump ∆ρ

decrease as the step number increases. Solid line showing y = 1. Bottom:

interfacial-like mode for a fixed step size ǫ = 0.01, such that the total length

of the staircase and total density jump increase as the step number increases.

Solid line showing y = m + 1.

on m for the case of a staircase with fixed size and total density

jump. All solutions have been normalised by the m = 15 solution

and tend to 1 as m is increased. This suggests that the total density

jump ∆ρtotal is an important quantity for the dispersion relation.

If the step size and mean stratification are maintained, this

will lead to a longer staircase and increased total density jump; the

frequency therefore increases. The bottom panel of Figure 5 shows

the solution for ω for different numbers of steps, which corresponds

to the interfacial wave solution, normalised by the m = 0 solution.

We would expect to see a roughly linear dependence on m. We can

see the trend falls away from the y = m + 1 line for large m. As the

total staircase gets larger we would expect the approximation to one

thin interface to be less accurate and therefore expect the solution

to depart from this prediction.

3.2 Finite staircase with solid walls

We now consider the case of a finite staircase confined between

solid walls at both ends, which might be relevant for the case of a

stably-stratified terrestrial planetary core, for example. In particular,

we consider solid walls at r0 and r0+ (m+2)d, on which we enforce

ξr = 0. The first interface is at r0 + d, and the buoyancy frequency

is defined as,

N2
=

m+1∑

n=1

N̄2ǫδ(1 + nǫ − r). (42)

The interface conditions remain unchanged and, as before, we

construct a transfer matrix to relate our coefficients in the first and

last layer,
[
Am+1

Bm+1

]
= X ′

[
A0

B0

]
, (43)

where

X ′
= Tm+1Tm . . .T1. (44)

Instead of considering decaying solutions we now consider solid

wall boundary conditions such that the radial displacement at either

end of the staircase is zero, i.e.

ξ0(r = 1) = ξm+1(r = 1 + (m + 2)ǫ) = 0. (45)

These combine to give four simultaneous equations,

A0 + B0 = 0, (46)

Am+1(1 + (m + 2)ǫ)l−1
+ Bm+1(1 + (m + 2)ǫ)−l−2

= 0, (47)

Am+1 = A0X ′
1,1 + B0X ′

1,2, (48)

Bm+1 = A0X ′
2,1 + B0X ′

2,2. (49)

We seek non-trivial solutions, which requires

X ′
1,2 + (1 + (m + 2)ǫ)−2l−1X ′

2,2 =

(X ′
1,1 + (1 + (m + 2)ǫ)−2l−1X ′

2,1). (50)

This allows us to determine the dispersion relation describing the

free modes of the staircase. We again obtain a polynomial of degree

(m + 1), and so we obtain (m + 1) (pairs of) free modes.

The solution can be found for the single step case, and we also

expand each solution assuming ǫ ≪ 1 to obtain,

ω2
= l(l + 1)N̄2ǫ2 +O(ǫ3), (51)

and

ω2
=

1

3
l(l + 1)N̄2ǫ2 +O(ǫ3). (52)

Just like in § 3.1.1, we observe that there are modes for which ω2 ∝
l2 for large l, which is the expected behaviour for an internal gravity

wave. However, the highest frequency mode no longer corresponds

with an interfacial wave, and in fact none of the waves have the

dependence ω2 ∝ l for large l expected of such waves. This is

due to the boundary conditions that we have adopted. The highest

frequency mode still has all of its interfaces oscillating in phase, but

it no longer behaves as an interfacial wave. Instead, it behaves more

like a gravity mode with no internal nodes. We show the roots of

the dispersion relation in Figure 3 (blue dashed line).

3.3 Finite staircase with mixed boundary conditions

Finally, we consider the case where the staircase has a solid wall at

the lower boundary and lies below a convective region. This case

might be a better representation of a stratified layer at the edge of

a solid inner core, which connects onto a convective envelope at its

outer radius.

The method used is a combination of the previous two methods,

MNRAS 000, 1–18 (2020)



Wave propagation in density staircases 9

with a solid wall at r0 and modes that decay above the staircase. The

buoyancy profile N2 and matrix X ′ are unchanged from § 3.2.

Considering zero radial displacement at the bottom of the stair-

case to give,

ξ0(r0 = 1) = 0. (53)

And forcing purely decaying solutions at the top of the staircase

requires,

Am+1 = 0. (54)

These combine to give three simultaneous equations,

A0 + B0 = 0, (55)

A0X ′
1,1 + B0X ′

1,2 = 0, (56)

Bm+1 = A0X ′
2,1 + B0X ′

2,2. (57)

Non-trivial solutions require

X ′
1,2 = X ′

1,1. (58)

Similarly to the previous cases this allows us to determine the dis-

persion relation describing the free modes of the staircase. We again

obtain a polynomial of degree (m + 1), and so we obtain (m + 1)
(pairs of) free modes.

Expanding each solution in the single step case, assuming

ǫ ≪ 1, we obtain the two solutions,

ω2
=

1

2
(3 +

√
5)l(l + 1)N̄2ǫ2 +O(ǫ3), (59)

and

ω2
=

1

2
(3 −

√
5)l(l + 1)N̄2ǫ2 +O(ǫ3). (60)

As in § 3.2 we observe only modes where ω2 ∝ l2 for large l, corre-

sponding to internal gravity wave behaviour. The highest frequency

modes with all interfaces oscillating in phase also act as an internal

mode with no nodes instead of an interfacial mode. The roots of

these two solutions are shown in Figure 3 (green thick-dashed line),

which shows that they lie between the two previous cases.

3.4 Comparison with a continuously-stratified medium

Here we compare the frequencies of the free modes of a staircase

with those of a continuously-stratified medium with the same mean

(constant) buoyancy frequency. We choose to compare the case

with solid wall boundary conditions at either end (i.e. ξr (1) =
ξr (1 + (m + 2)ǫ) = 0), which we have already computed for a

staircase in § 3.2. We apply these boundary conditions to the solution

given by Eqns. (22) and (23) to obtain an infinite set of modes in

the continuous case. We index these by a positive integer n which

refers to the number of radial nodes in the solution. The resulting

frequencies are

ω = ±

√
4l(l + 1)N̄2(log(1 + (m + 2)ǫ))2

(2l + 1)2(log(1 + (m + 2)ǫ))2 + 4π2n2
. (61)

For these calculations we fix the total size of the region and the total

density jump across the staircase, and vary the number of steps m.

To compare the infinite set of free modes found in the stratified

case to the free modes of the staircase, we take the first m+1 modes of

the uniformly-stratified layer and compare these to the free modes of

the staircase. The top panel of Figure 6 shows the wave frequencies

for all modes as a function of the number of steps m. It is clear that

as m increases, the difference between the uniformly-stratified case

and the staircase decreases.

5 10 15
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0.06

0.08

ω /N̄

5 10 15
m

0.1

0.2

0.3

0.4

|Δω/ω|

0.2 0.4 0.6 0.8 1.0 1.2
log m

-2

-1

0

1

log |Δω/ω|

Figure 6. Comparison of the frequencies of the free modes of a uniformly-

stratified layer with a density staircase with the same N̄ . Top: frequencies

vs m for a uniformly-stratified layer (orange) and a staircase (blue). Middle:

fractional frequency difference (Eqn. 62) between the modes of a uniformly-

stratified layer and a staircase vs m. Bottom: same, but on a log-log (base 10)

plot. This shows that the frequencies of the modes of a staircase approach

those of a uniformly-stratified layer (behaving like m−2) as the number of

steps is increased, but that there is consistently positive frequency shift.

To more clearly and quantitatively analyse the differences in

frequency between a staircase and a uniformly-stratified medium,

we define the fractional difference as

∆ω

ω
=

ωc − ωs
ωc

, (62)

where ωs is the frequency of the staircase mode and ωc is the

frequency of the constant stratification mode. The magnitude of this

quantity is plotted in the middle panel of Figure 6, and is re-plotted

using a log-log scale (base 10) in the bottom panel to determine
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Figure 7. Comparison of the period spacing of the adjacent free modes for

a uniformly-stratified layer with a density staircase with the same N̄ . Top:

period spacing vs m for a uniformly-stratified layer (orange) and a staircase

(blue). Middle: fractional period difference (Eqn. 65) between the modes

of a uniformly-stratified layer and a staircase vs m. Bottom: same, but on a

log-log (base 10) plot.

its scaling behaviour. We find the mode frequencies in the case

of a uniformly-stratified layer are always smaller than those in the

staircase. Similar results are also expected with mixed boundary

conditions, which might be considered the most astrophysically-

relevant case (e.g. § 3.3).

Figure 6 shows that as the number of steps is increased, the

fractional difference decreases, indicating that the free modes of a

staircase converge to those of a uniformly-stratified medium with

the same mean buoyancy frequency. This agrees with the results

in Cartesian geometry found by Belyaev et al. (2015). As steps are

added, the number of modes in the staircase increases. The frac-

tional difference for each mode with a given number of radial nodes

decreases as we increase the number of steps. However, the lowest

frequency mode with the shortest corresponding radial wavelength

(largest number of radial nodes) is always the most affected by the

staircase, and has the largest fractional frequency difference. This

is expected as when the wavelength is sufficiently large it “sees

the staircase" as a continuous medium with constant buoyancy fre-

quency N̄ .

The dependence of the fractional frequency difference can be

fitted with a power law for the purposes of extrapolation to a staircase

with a large number of steps. We find

∆ω

ω
∝ (m + 1)−α ∼ ǫα, (63)

with a range in exponent α ≈ 1.7 − 2.3 found for the highest fre-

quency modes. This is consistent with Belyaev et al. (2015), who

found in their Cartesian model that α = 2. This power law is use-

ful as it allows us to extrapolate the frequency shifts to a large

number of steps. This is important since the number of steps in a

stably-stratified layer of a giant planet is uncertain (e.g. Leconte &

Chabrier 2012).

The staircase also alters the period spacing between two ad-

jacent modes (Belyaev et al. 2015). This is interesting to analyse

because the period spacing between adjacent internal gravity modes

in a continuously-stratified medium is independent of the number of

nodes (i.e the mode frequency) in the short-wavelength limit. How-

ever, the presence of a staircase may modify this relation and lead

to potentially observable shifts in the period spacings. To analyse

the period spacing between adjacent modes, we define

∆Px = 2π

(
1

ωx,n
− 1

ωx,n+1

)
. (64)

Therefore, the dependence on a staircase can be analysed by con-

sidering the fractional difference,

∆Pf =
∆Pc − ∆Ps

∆Pc
, (65)

where a subscript s refers to a staircase mode, and a subscript c refers

to a continuous stratification mode. The top panel in Figure 7 shows

the staircase decreases the period spacing between adjacent modes

(blue symbols and lines), and the constant stratification result is

independent of node number (orange). As found in the analysis of the

frequency shifts above, the fractional difference between a stably-

stratified medium and a staircase structure decreases as the number

of steps increases, and is largest for the lowest frequency modes

with the shortest wavelengths in each case. The fitted dependence

is also found, for the purpose of extrapolation,

∆Pf ∝ (m + 1)−β ∼ ǫβ, (66)

where β ≈ 1.8−2 for the highest frequency modes. This is also con-

sistent with Belyaev et al. (2015), who found the staircase decreases

the spacing with a squared dependence in ǫ .

4 WAVE TRANSMISSION THROUGH A STAIRCASE

We now turn to explore the transmission of an internal gravity wave

through a density staircase in spherical geometry, which extends

prior work in Cartesian geometry (Sutherland 2016; André et al.

2017). One motivation for these calculations is that if only part of a

stratified layer has a layered density structure, then an internal grav-

ity wave (that may be excited by tidal forcing or by interaction with
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neighbouring convection zones) can propagate in the continuously-

stratified parts. It is important to analyse how the density staircase

affects the transmission of these waves from/to the envelope to/from

the interior of the planet to determine where these waves can prop-

agate, and where they may dissipate.

4.1 Model

We now consider a staircase-like structure embedded within a

stably-stratified layer which permits the propagation of internal

gravity waves. To do so, we must alter the density profile used

in § 2 to have non-zero buoyancy frequency in each end region. We

now define the buoyancy frequency as,

N2
=




N2
a

rc
r0

≪ r < 1,
m∑

n=0

N̄2ǫδ(1 + nǫ − r) 1 < r < 1 + mǫ,

N2
b

r > 1 + mǫ,

(67)

where Na and Nb are assumed to be constants. We continue to

consider a perfectly absorbing core to exist at a small radius rc ≪ r0,

which removes the requirement to impose a regularity condition at

r = 0. If we were to include r = 0, then we would simply be

modelling the transmission of a wave from a radius r0, to the centre,

and back again. Since we neglect dissipative processes, this would

not be an informative calculation.

By combining Eqns. (11) and (67) and solving as before, the

entire solution for the radial displacement is

ξn =




A0rλa+ + B0rλa− rc
r0

≪ r < 1,

Anrl−1
+ Bnr−l−2 rn−1 < r < rn,

Am+1rλb+ + Bm+1rλb− r > 1 + mǫ,

(68)

where rn = 1 + nǫ , n = 1, . . . ,m, and

λa/b± = −3

2
± 1

2

√√√

1 + 4

(

1 −
N2
a/b
ω2

)

l(l + 1). (69)

For the wave to propagate in the end regions, we require

Im[λa/b± ] , 0. Therefore, from Eqn. (69), the following condi-

tion must be satisfied for waves to exist in an end region:

ω2

N2
x

<
4l(l + 1)

4l(l + 1) + 1
, (70)

where Nx takes the appropriate value for the region considered.

This restricts the allowable values of k⊥ and ω that permit wave-

like solutions in the end regions. We will later mark these limits on

our plots showing the transmission of waves.

4.2 Transmission coefficient

We would like to analyse how efficiently an incident internal gravity

wave is transmitted (and how much is reflected) when it propagates

through a staircase. To do so, we define the transmission coefficient

to be the ratio of the radial energy flux of the incident wave (Fin)

with that of the outgoing wave (Ftr),

T =
Ftr

Fin
, (71)

where the energy flux is defined using the standard definition for a

linear wave

F = πr2

∫ π

0
Re[−iωξr p∗] sin θdθ, (72)

where p∗ is the complex conjugate of the pressure perturbation.

We are only concerned with the ratio of the energy flux at different

radial locations, and therefore it is not necessary to evaluate the

energy flux exactly. As a result, we drop unnecessary factors from

this analysis, and hence find

F ∝ Im[ωξ̃r p̃∗]r2. (73)

We then use Eqn. (9) to eliminate p̃∗, so that

F ∝ Im

[

ω3

(

r2 ξ̃r
dξ̃∗r
dr
+ 2r ξ̃r ξ̃

∗
r

)]

r2, (74)

and using Eqn. (68) we find

F ∝ Im

[
r2λ∗± |A/Bn |2r2 Re[λ±]−1

+ 2r |A/Bn |2r2 Re[λ±]
]
r2. (75)

Therefore, the flux in the downward and upward propagating waves

is

Fdown ∝ Im[λ∗
+
]|An |2, (76)

and

Fup ∝ Im[λ∗−]|Bn |2, (77)

which allow us define two different transmission coefficients de-

pending on the direction of propagation of the incident wave. For a

downward propagating wave,

Tdown =
|A0 |2

|Am+1 |2
Im[λ∗a+ ]
Im[λ∗

b+
] , (78)

and for an upward propagating wave,

Tup =
|Bm+1 |2

|B0 |2
Im[λ∗

b−
]

Im[λ∗a− ]
. (79)

These can be shown to be equivalent to the transmission coefficient

obtained in the Cartesian case (André et al. 2017). The transmission

is observed to depend on both the amplitudes and vertical wave

numbers of the solution in the end regions. The wavenumber ratio

arises because the group velocity varies in the end regions if Na ,

Nb .

We employ the same interface conditions as in Section 2, and

the matrix X is constructed as before. If the wave propagates down-

wards, from the top of the staircase towards the centre of the planet,

then we have an incident and a reflected component in each layer,

except that the final layer is defined to have B0 = 0. We must have
[
Am+1

Bm+1

]
= X

[
A0

0

]
, (80)

so that the transmission coefficient becomes

Tdown =
1

|X1,1 |2
Im[λ∗a+ ]
Im[λ∗

b+
] . (81)

For an upward propagating wave, starting near the centre of the

planet and propagating outwards, there is similarly no reflected

wave in the upper layer (Am+1 = 0), so that
[

0

Bm+1

]
= X

[
A0

B0

]
, (82)

giving a transmission coefficient,

Tup =
1

|X−1
2,2

|2
Im[λ∗

b−
]

Im[λ∗a− ]
. (83)

Eqns. (81) and (83) allow us to determine the transmission of an
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m = 1

Tdown

/N̄

m = 5

Tdown

/N̄

m = 10

Tdown

/N̄

Figure 8. Transmission coefficient for a downward propagating waveTdown as a function of incident wave frequency (ω/N̄ ) and scaled horizontal wavenumber

k⊥d =
√
l(l + 1)ǫ , for a range of step numbers and a fixed small staircase size (m + 1)ǫ . Top left panel shows (m + 1)ǫ = 0.01, with m = 1, the top right and

bottom left panels show the same case with m = 5 and m = 10, respectively. Each panel has Na = Nb = N̄ = 1. Over-plotted are the free modes of the same

staircase (blue dashed lines), the frequency limits for wave propagation in the end regions and for the staircase if this was instead uniformly-stratified (red,

close to axis). The bottom right panel shows a 1D profile at ω = 0.5, for m = 1 (black), m = 5 (green) and m = 10 (blue).

incident down-going or up-going wave through a density staircase.

The properties of the staircase enter through the entries of the X

matrix, and that of the incident wave and the end regions enter

through the wavenumber ratio. As a result of the spherical geometry,

it is possible for Tup and Tdown to differ for the same incident wave

and staircase/end region properties, unlike in the Cartesian case.

We expect the transmission to recover the Cartesian results when

ǫ ≪ 1 (and r0 ≫ (m + 1)d), at least for waves with l ≫ 1. On

the other hand, spherical effects are expected to become important

when ǫ ∼ 1 (or r0 ∼ (m + 1)d).

4.3 Results for wave transmission

We present our results for the transmission coefficient as a func-

tion of incident wave frequency ω, and horizontal wavenumber

k⊥ =
√

l(l + 1)/r , where r will take the value of the location of the

first interface for the incident wave, in a series of plots for various

parameter values (varying m, ǫ , Na and Nb). We have treated k⊥d as

a continuous parameter to aid plotting and interpretation, although l

strictly only takes integer values and therefore gives discrete values

for k⊥d. Unless specified otherwise, we show the downward trans-

mission coefficient in these figures, according to Eqn. (81), though

we explore the difference between this and the upward propagation

result in one case below.

In each figure, we also over-plot the frequencies of the free

modes of the staircase computed from Eqn. (36) using blue dashed

lines, in the case where the staircase is sandwiched between two

convective layers (decaying boundary conditions), following sec-

tion 3.1. The frequency cut-off for wave propagation in the end

regions, according to Eqn. (70) is shown by the solid coloured lines.

The yellow and green lines show the criterion for solutions in the top

and bottom layer to be propagative, respectively, while the red line

shows the region in which the wave is propagative in the staircase

if this were instead a uniformly-stratified layer with the same mean

stratification. For cases in which Na = Nb = N̄ only the red line is

shown and for cases where Na = Nb , N̄ only the red and yellow

lines are shown.

We begin by verifying our method by reproducing results from

Cartesian geometry. To do so, we take the double limit l ≫ 1, and
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m = 1

Tdown

/N̄

m = 5

Tdown

/N̄

m = 10

Tdown

/N̄

Figure 9. Same as Figure 8, except that the staircase is larger relative to the radius of the planet such that (m + 1)ǫ = 1.

(m+1)ǫ ≪ 1, where for the latter we simply choose ǫ ≪ 1. Figure 8

shows the transmission through a one (m = 1), five (m = 5), and ten

(m = 10) step staircase, assuming ǫ is small. These agree quantita-

tively with Figures 9a and 18b in André et al. (2017). We observe

that long wavelength (low wavenumber) waves are near-perfectly

transmitted. This limit is when the waves “sees" the staircase as a

continuously-stratified medium, and is little affected by the discrete-

ness of the steps. On the other hand, shorter wavelength waves, such

that k⊥d ∼ 1 are only transmitted when they are resonant with a free

mode of the staircase. As a result, we observe bands of enhanced

transmission that align well with the free modes of the staircase as

calculated in § 3.1.

The number of peaks of enhanced transmission is always one

smaller than the number of free modes of the staircase. The trans-

mission peaks do not lie directly on top of the free modes of the

staircase, with the agreement depending on the parameters adopted.

This is presumably because the stratified end regions modify the

wave frequencies.

4.3.1 Dependence on ǫ (relative step size)

In spherical geometry, the transmission depends on the relative step

size, ǫ , in addition to how this modifies k⊥. This differs from the

Cartesian case (André et al. 2017). First, we explore the dependence

on step size by fixing the total size of the staircase x = (m + 1)ǫ
and increasing the number of steps, m. Figure 8 and Figure 9 show

the overall transmission for x = 0.01 and x = 1 respectively. In

the case of a small staircase (x = 0.01) ǫ remains small for all

panels leading to little change in the region of transmission. The

only observable effects are the additional and narrower bands of

enhanced transmission, reducing the overall transmission. In the

case of the large staircase the variation in ǫ has a greater effect as

the size of the staircase is comparable to the staircase radius r0. We

can see the reduced size of the transmission region as ǫ increases, as

well as the additional bands observed before. The frequency range

in which a wave-like solution can exist (described by Eqn. (70)) also

becomes smaller.

By analogy with Eqn. (13), we expect that as ω increases kr
will decrease, therefore the staircase should have the largest effect

on transmission at high k⊥ and low ω values. This is shown in

Figure 9 by observing that the peaks at the largest k⊥d for a given

ω are affected the most strongly as ǫ is increased.

Additionally we explore how the transmission depends on ǫ

as the step number remains constant. Figure 10 shows transmission

decreasing as ǫ is increased. As ǫ is increased the peaks of trans-

mission at high k⊥ values become sufficiently small that these are
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ǫ = 0.01

Tdown

/N̄

ǫ = 0.1

Tdown

/N̄

ǫ = 1

Tdown

/N̄

Figure 10. Transmission coefficient for a downward propagating waveTdown as a function of incident wave frequency (ω/N̄ ) and scaled horizontal wavenumber

k⊥d =
√
l(l + 1)ǫ , for a range of relative step sizes ǫ . Top left panel shows m = 5 steps, with ǫ = 0.01, the top right and bottom left panels show the same

case with ǫ = 0.1 and ǫ = 1, respectively. Each panel has Na = Nb = N̄ = 1. Over-plotted are the free modes of the same staircase (blue dashed lines), the

frequency limits for wave propagation in the end regions and for the staircase if this was instead uniformly-stratified (red). The bottom right panel shows a 1D

profile at ω = 0.5, for ǫ = 0.01 (blue), ǫ = 0.1 (green) and ǫ = 1 (black).

only visible with extra contours for smaller T values. This behaviour

is due to the fact that, as ǫ is increased (for fixed m, ∆ρ and N̄),

the total size of the staircase increases, thus the total size of the

evanescent layers increases, leading to reduced transmission. An

additional effect of ǫ observed here is that as ǫ is increased, the

transmission peaks shift from lying below to above the free mode

predictions.

4.3.2 Non-uniform step size

In reality, we might expect the sizes and density jumps of the convec-

tive layers to vary. To explore this effect, we consider non-uniformly

sized convective layers by building upon the Cartesian analysis

(Sutherland 2016; André et al. 2017). The location of each interface

is now taken to be

rn = 1 + nǫn, (84)

ǫn = ǫ

(
1 +
γ

n
σn

)
, (85)

where γ is a free parameter taken to be less than 1, and σn is

a random number between −1 and 1 for n = 1, . . . , (m − 1), and

σ0 = 0 and σm = 0.

Figure 11 shows the transmission for two cases with the same

set of σn values with γ = 0.2 and γ = 0.6. We observe the location

of the bands of enhanced transmission have shifted to align with the

now irregular spacing of the free modes. Overall, the transmission

of waves is reduced by the non-uniform step size and continues

to decrease as γ is increased. The bands of enhanced transmission

become narrower. We note that this remains true for a small shift in

the interface locations (γ = 0.2), where the effect on the free modes

is small but the effect on transmission is still significant.

4.3.3 Changing the properties of the end regions (Na, Nb)

The stratification at the bottom and top of the staircase (Na and Nb)

can be varied independently of other staircase properties. Figure 12

shows that as the stratification is altered such that the stratification

is different from the mean stratification of the staircase, the bands of
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γ = 0.2

Tdown

/N̄

γ = 0.6

Tdown

/N̄

Figure 11. Transmission coefficient for a downward propagating waveTdown

as a function of incident wave frequency (ω/N̄ ) and scaled horizontal

wavenumber k⊥d =
√
l(l + 1)ǫ , for non-uniform step size and x = (m +

1)ǫ = 1. Over-plotted are the free modes of the same staircase (blue dashed

lines), the frequency limits for wave propagation in the end regions and for

the staircase if this was instead uniformly-stratified (red). Top: γ = 0.2.

Bottom: γ = 0.6.

enhanced transmission become narrower with reduced transmission

for adjacent non-resonant modes.

As we require wavelike solutions at both the bottom and top of

the staircase, the range of frequencies transmitted are constrained

by the smallest buoyancy frequency in these regions (Na and Nb),

as defined by Eqn. (70). As the wave is always evanescent inside

the staircase the value of N̄ does not restrict the range of frequen-

cies transmitted. This allows the staircase to increase the range of

transmitted waves to frequencies larger than that of the mean strat-

ification, which would not be transmitted by a uniformly-stratified

medium – see the bottom panel of Figure. 12, for example.

4.3.4 Testing up/down symmetry

We always observe that the upward and downward transmission

differs only by the definition of incident k⊥d. This symmetry is

expected in the Cartesian limit due to the up/down symmetry of

the Boussinesq system (e.g. Sutherland 2010). However, this sym-

metry no longer holds in spherical geometry. Figure 13 shows the

Na = Nb = 0.8

Tdown

/N̄

Na = Nb = 1.1

Tdown

/N̄

Na = Nb = 1.5

Tdown

/N̄

Figure 12. Transmission coefficient for a downward propagating waveTdown

as a function of incident wave frequency (ω/N̄ ) and scaled horizontal

wavenumber k⊥d =
√
l(l + 1)ǫ , for a range of stratification values in the

adjacent regions, Na , Nb and a fixed step number, m = 5 and a fixed

staircase size (m + 1)ǫ=0.1. Top, middle and bottom panels show Na =

Nb = 0.8, 1.1, 1.5, respectively. Over-plotted are the free modes of the same

staircase (blue dashed lines), the frequency limits for wave propagation in

the end regions (yellow) and for the staircase if this was instead uniformly-

stratified (red).
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Tdown

/N̄

Tup

/N̄

Figure 13. Comparison of the transmission coefficient for a downward

(Tdown; top panel) and upward (Tup; bottom panel) propagating incident

wave as a function of the scaled wave frequency (ω/N̄ ) and horizontal

wavenumber k⊥ (specified in the text). Both panels have m = 5 steps,

ǫ = 0.1, and Na = Nb = N̄ = 1. Over-plotted are the free modes of

the same staircase (blue dashed lines) and the frequency limits for wave

propagation in the end regions and for the staircase if this was instead

uniformly-stratified (red). This shows the symmetry between upward and

downward propagating waves, even when ǫ is no longer small.

upward and downward transmission, where in both cases k⊥d value

is taken at the top of the staircase, k⊥ =
√
l(l+1)

1+mǫ
. The transmission

is identical in both cases when we scale the y-axis in this way. If

we were instead to plot the same data as a function of the incident

wavenumber, this would only re-scale the y-axis values in the right

panel. This is consistent with the transmission peaks aligning with

the free modes of the staircase, which do not depend on the direction

of propagation of the incident wave.

In Cartesian geometry the transmission is also symmetric with

respect to exchanging Na and Nb , which ultimately results from

the up/down symmetry of the Boussinesq system in that case. This

can be observed when looking at transmission in the Cartesian limit

(with ǫ = 0.01) in Figure 14. On the other hand, when we increase

ǫ , spherical effects become important and the symmetry between

upward and downward propagating waves does not hold when Na

and Nb are swapped. This shows that the Boussinesq symmetry

previously observed no longer holds in the global case. In all cases

the effect of reducing the stratification on the transmission is seen

in agreement with discussion in § 4.3.3.

5 CONCLUSIONS

Recent observations of Jupiter and Saturn with Juno and Cassini

(e.g. Fuller 2014; Wahl et al. 2017; Guillot et al. 2018; Iess et al.

2019; Debras & Chabrier 2019) indicate that the heavy elements in

these planets are probably distributed throughout the gaseous enve-

lope rather than being solely confined to a central core. The resulting

compositional gradients can inhibit ordinary convection but enable

double-diffusive convection (also referred to as semi-convection).

This is thought to readily produce a layered structure in the density

profile (Garaud 2018), consisting of convective regions separated

by thin diffusive stably-stratified interfaces. We refer to such a lay-

ered structure as a density staircase. These have been observed on

Earth in the Artic ocean, in an analogous situation in which there

are competing gradients of both heat and salt (Ghaemsaidi et al.

2016; Shibley et al. 2017).

A layered density structure could play an important role in

affecting the propagation of waves in planetary interiors. Previous

work has analysed the free modes of a density staircase (Belyaev

et al. 2015; André et al. 2017) and quantified the transmission

of waves through such a structure (Sutherland 2016; André et al.

2017). These previous calculations adopted a local Cartesian model

to study a small patch of a density staircase. Such a local model

is a sensible starting point to study this problem because the indi-

vidual steps are believed to be very small relative to the planetary

radius. But such models neglect any global effects that could arise

in spherical geometry. We have built upon these works by adopting

a simplified global (spherical) Boussinesq model. Our model allows

us to analyse the propagation of waves with wavelengths compara-

ble with the radius of the stratified layer, which may be important

for the inner regions of these planets, and also those with small

harmonic degrees that may be the easiest to observe. Global effects

may also be important for the modes of an extended staircase region,

and are likely to be required to study tidal forcing self-consistently

(this is work in progress).

We have presented idealised calculations to study the proper-

ties of waves in stably-stratified planetary layers containing a layered

density structure. As a first step to tackling this problem in a global

model, we have omitted planetary rotation and adopted a simpli-

fied Boussinesq model in spherical geometry. We have analysed the

properties of the free modes as well as the transmission of inter-

nal waves through a density staircase. Our main result is that wave

propagation is strongly affected by the presence of a density stair-

case. This extends and confirms prior work in Cartesian geometry

(Belyaev et al. 2015; Sutherland 2016; André et al. 2017).

We have determined the free modes in a region containing

a density staircase. These consist of both internal and interfacial

gravity waves, with the presence of the latter depending on the

properties of the surrounding fluid. Solid wall boundary conditions

do not exhibit modes with interfacial-like behaviour, whereas a

staircase embedded in a convective medium (decaying boundary

conditions) has a clear interfacial wave solution.

We have compared the free modes in a density staircase with

those of a continuously-stratified layer. In the limit of infinitely many

steps, the frequencies of the free modes converge towards those of

a continuously-stratified medium. However, for a finite number of

steps, the modes of a staircase typically have larger frequencies

than those of a continuously-stratified medium. We have quantified
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Na = 0.8, Nb = 1.2, x = 0.1

Tdown

/N̄

Na = 1.2, Nb = 0.8, x = 0.1

Tdown

/N̄

Na = 0.8, Nb = 1.2, x = 1

Tdown

/N̄

Na = 1.2, Nb = 0.8, x = 1

Tdown

/N̄

Figure 14. Transmission coefficient for a downward propagating waveTdown as a function of incident wave frequency (ω/N̄ ) and scaled horizontal wavenumber

k⊥d =
√
l(l + 1)ǫ , for a range of stratification in the adjacent regions, Na , Nb and a fixed step number, m = 5. Four cases x = 1 and x = 0.1 and Na = 0.8,

Nb = 1.2 and Na = 1.2, Nb = 0.8. Over-plotted are the free modes of the same staircase (blue dashed lines), the frequency limits for wave propagation in

the end regions (yellow for the top region and green for the bottom, respectively) and for the staircase if this was instead uniformly-stratified (red).

this frequency shift due to the presence of a staircase as a function

of its properties, as well as the shift in the period spacing between

adjacent modes. In both cases we find they scale as (m+1)−2, where

m is the number of steps in the staircase. This is consistent with the

Cartesian results of Belyaev et al. (2015). For the largest wavelength

modes with low harmonic degrees, the shift is found to be very small

if there are as many as 106 steps, so this may be difficult to detect

observationally. But if such a signal is detected by analysing the

properties of the mixed f-g modes that are resonant with density

waves in the rings (e.g. Marley & Porco 1993; Fuller 2014; Hedman

& Nicholson 2013; Hedman et al. 2019), for example, then this

could constrain the properties of any stable layer that is present

in the planetary interior. We note that semi-convection in massive

stars (M∗ & 15M⊙) could also produce stable layers that could be

constrained in a similar way using asteroseismology (Schwarzschild

& Härm 1958; Sakashita & Hayashi 1959).

The transmission of internal waves through a density staircase

was shown to be a strong function of the properties of the incident

wave and of the staircase. Waves with large wavelengths are effi-

ciently transmitted, but shorter wavelength waves (comparable with

a step-size) are strongly affected by the staircase. Efficient trans-

mission for short-wavelength waves only occurs when the incident

wave is resonant with a free mode of the staircase. This agrees with

prior results in Cartesian geometry (André et al. 2017). Spherical

geometry introduces an additional frequency cut-off to the propaga-

tion of waves, and affects the transmission when the staircase size

is comparable with the distance from the centre of the planet.

Future work should study the effects of rotation to determine

how inertial waves are affected by a density staircase in spherical

geometry. This will involve two-dimensional numerical computa-

tions (e.g. Ogilvie & Lin 2004, 2007; Rieutord & Valdettaro 2010).

The importance of a density staircase on tidal dissipation in global

models should also be explored, building upon the prior Cartesian

numerical calculations of André et al. (2019). The effects of differ-

ential rotation are also worth exploring (e.g. Baruteau & Rieutord

2013; Favier et al. 2014; Guenel et al. 2016), as are the impact of

magnetic fields (e.g. Barker & Lithwick 2014; Lin & Ogilvie 2018;

Wei 2018), particularly since recent Juno observations indicate the

important role of magnetic fields in controlling the interior differen-

tial rotation (Guillot et al. 2018). Finally, nonlinear effects could be
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analysed, since higher harmonics are generated when a wave passes

through a staircase (Wunsch 2018).
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APPENDIX A: EQUIVALENCE WITH THE BOUSSINESQ

APPROXIMATION

Our model in § 2 is equivalent to taking the Boussinesq approxi-

mation from the outset. Here we outline the derivation of Eqn. (11)

starting from the linearised Boussinesq system (neglecting viscosity

and thermal diffusion)

∂u

∂t
= − 1

ρ0
∇p + br, (A1)

∂b

∂t
+ ur

N2

r
= 0, (A2)

where b = − gρ
rρ0

is a buoyancy variable, N2 is defined in § 2, and

u is incompressible. The radial and horizontal components of the

Eulerian displacement satisfy

∂2ξr

∂t2
= − 1

ρ0

∂p

∂r
+ rb, (A3)

∂2ξh

∂t2
= − 1

ρ0
∇hp. (A4)
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Using incompressibility, together with Eqn. (A4), we can eliminate

ξh , to obtain

1

r2

∂

∂r

(
r2 ∂

2ξr

∂t2

)
− 1

ρ0
∇

2
h

p = 0. (A5)

When perturbations are expanded using spherical harmonics with

harmonic time-dependence (as in § 2), and with some algebra,

Eqns. (A2), (A3), and (A5), can be combined to eliminate b̃ and p̃,

resulting in Eqn. (11).

This paper has been typeset from a TEX/LATEX file prepared by the author.
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