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Introducing a Human-like Planner for Reaching in Cluttered

Environments

Mohamed Hasan 1, Matthew Warburton2, Wisdom C. Agboh1, Mehmet R. Dogar1,

Matteo Leonetti1, He Wang1, Faisal Mushtaq2, Mark Mon-Williams2 and Anthony G. Cohn1

Abstract— Humans, in comparison to robots, are remark-
ably adept at reaching for objects in cluttered environments.
The best existing robot planners are based on random sam-
pling in configuration space- which becomes excessively high-
dimensional with a large number of objects. Consequently,
most of these planners suffer from limited object manipulation.
We address this problem by learning high-level manipulation
planning skills from humans and transfer these skills to robot
planners. We used virtual reality to generate data from human
participants whilst they reached for objects on a cluttered table
top. From this, we devised a qualitative representation of the
task space to abstract human decisions, irrespective of the
number of objects in the way. Based on this representation,
human demonstrations were segmented and used to train
decision classifiers. Using these classifiers, our planner produced
a list of waypoints in task space. These waypoints provide
a high-level plan, which can be transferred to an arbitrary
robot model and used to initialize a local trajectory optimiser.
We evaluated this approach through testing on unseen human
VR data, a physics-based robot simulation and real robot
experiments. We find that this human-like planner outperforms
a state-of-the-art standard trajectory optimisation algorithm
and is able to generate effective strategies for rapid planning,
irrespective of the number of objects in a cluttered environment.
Our dataset and source code are publicly available 1.

I. INTRODUCTION

Imagine grasping a yoghurt tub from the back of a clut-

tered fridge shelf. For humans, this is a trivial task and one

that even very young children are able to perform exquisitely.

Yet, for a robot to be able to execute the same action with

such ease, there are a number of non-trivial questions that

it must resolve. Should the robot try to navigate through

the available free space? Or might it be better to move

obstructing items away first? In which case, which object

should be moved first and where to?

Standard robot motion planning approaches focus on

identifying a collision-free trajectory that satisfies a set of

given constraints [1] and the majority of current planning

techniques are based on random sampling [2], [3], [4], [5] of

the configuration space. A defining feature of these sampling-

based planners (SBPs) is the use of a set of probing samples

drawn to uniformly cover the state space. To accelerate the

planning process, it is thus desirable to devise non-uniform

sampling strategies that favor sampling in regions where an

optimal solution might lie [6]. Finding such regions is non-

1School of Computing, University of Leeds, UK.
2School of Psychology, University of Leeds, UK.
1https://github.com/m-hasan-n/

human-like-planning.git

Fig. 1: Overview of the HLP approach.

trivial, but, as we set out in the opening, humans can find

near-optimal solutions very quickly.

Predicated on human expertise, imitation learning from

demonstration (LfD) techniques are increasingly being

adopted by researchers for robot motion planning [7], [8]

[9], [10]. For example, researchers have demonstrated the use

of neural networks for learning the dynamics of arm motion

from human data [11], whilst others have shown the utility of

combining planning and learning-based approaches to facil-

itate goal-directed behavior during human-robot interactions

[12]. Alternative approaches to learning from human data

include learning qualitative task representations. Evidence

indicates that humans recognize and interact with spatio-

temporal space in a more qualitative rather than quantitative

manner [13], [14], [15]. As such, previous work integrated

qualitative spatial representations (QSRs) with manipulation

planning at different levels [16], [17]. Importantly, these

approaches avoid the pitfalls of SPBs [18], [19], [20] - which

only allow a small number of objects due to the curse of

dimensionality,

We propose a novel approach to the problem of reaching

through a cluttered environment based on geometric rea-

soning and workspace partitioning [1] (similar to cell de-

composition) augmented by QSRs [14]. To achieve this, we

collected data from human participants for our scenario using

virtual reality (VR)[21]. Demonstrations were segmented

based on a spatial model of the task space. This segmentation

resulted in a set of state-action pairs used to train classifiers

via standard machine learning techniques. These trained

classifiers are used by a human-like planner (HLP) which,

during testing, generates a high-level plan in task space.

Finally, the generated high-level plan was forwarded to a

robot-specific low-level controller for inverse kinematics (IK)

and local optimisation if required. The resulting method is

a human-like planning (HLP) algorithm for reaching objects

in cluttered environments (see Fig. 1 for an overview of this
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framework).

Our novel contributions include:

• the development of a high-level planning algorithm that

learns from human participants interacting in VR;

• a new qualitative space/action representation to mitigate

the problem of high dimensionality; and

• empirical demonstrations of the utility of this high-level

planner – showing that it is scalable and can work in

conjunction with any existing low-level planner in a

seamless manner.

II. AN OVERVIEW OF THE HLP

Given a cluttered environment ξ = {Xs, Xt, Xo
i } rep-

resented by a start position Xs , a target position Xt

and positions of N movable objects Xo
i , i = 1, ..., N , we

consider the problem of planning a high-level path ρ from

Xs to Xt that is most likely to be planned by a human.

A high-level plan ρ = {Xk
i , a

k
i } is represented by a set

of M keypoints Xk
i labeled by a set of associated actions

aki , i = 1, ...,M .

Our framework (Fig. 1) starts by learning from human

demonstrations collected through VR. Each demonstration is

given in the form of an environment representation ξ in ad-

dition to an associated human trajectory τh. This framework

runs in two phases, training and testing. In the training phase

(green arrow path of Fig. 1): given pairs of {ξtrain, τ
h},

demonstrations are segmented into abstracted state-action

pairs {S,A} that are used to train decision classifiers. In

the testing phase, given ξtest of a new scene, the HLP uses

the trained decision models to generate ρ. The generated

high-level plan can then be transferred to an arbitrary robot

model. A robot-specific low-level controller solves for IK

and performs local optimisation if required.

Demonstration segmentation is based on our modeling of

the task space in order to extract required state-action pairs.

Modeling of the task space is detailed in Sec. IV. Feature

extraction and decision classifiers are explained in Sec. V

whilst the planning algorithm used in the testing phase is

given in Sec. VI. Demonstration of the transfer from high-

level planing to robot control is provided in the Experiments

section.

III. VR DATASET COLLECTION

A dataset 2 of human demonstrations was collected by

asking 24 participants to perform 90 reaching trials towards

objects placed on a cluttered table top in a virtual envi-

ronment (Fig. 2). The table top surface was surrounded by

transparent screens from all but the front side and the work

space dimensions were tailored to suit human arm movement.

The position and rotation of the hand, elbow and upper

arm (nearest point to shoulder) were tracked and sampled

at 90Hz.

Participants were asked to initiate each trial by first

moving towards a home position, which was indicated by

a transparent pink ball. After onset, a target end-point a

2https://doi.org/10.5518/780

red-coloured can appeared along with a total of 6 obstacles

placed on two rows. Participants were instructed to interact

with the scene to pick up the can and move it to the start

point. Participants could achieve this by either navigating

around the obstacles or picking up and moving the obstacles

to a new position. Trials were failed if any part of the arm

interacted with the obstacles, if any moved object hit the edge

of the workspace, if the can touched any of the obstacles or

if participants knocked over an obstacle with their hand.

IV. MODELING THE TASK SPACE

Devising a model of the task space that enables one

to learn from demonstrations and generalize with different

environment settings is of critical importance. To this end,

we designed the row-based structure shown in Fig. 1 and Fig.

3, with two rows each containing three objects and aligned

start-target positions. This structured environment helped

model the task space and train decision learners. All VR

demonstrations used for training were generated according

to this structure and we show in the Experiments section

how the HLP is able to generalize to different environment

settings.

We model the environment task space ξ qualitatively as

a union of three disjoint sets: ξo representing the occupied

space while the free space is given by the union of gaps

ξg and connecting space ξc sets. Occupied space represents

all objects in the scene in addition to walls3 of the surface

on which objects rest. A gap gi ∈ ξg is a qualitative

representation of the free space existing between two objects

oj and ok, j 6= k at the same row. The connecting space

models the remaining free space used to connect from start

to first row, between rows and from second row to target.

Based on this representation of the task space, the action

space A is discretized into two primitive actions: Ao moving

an object and Ag going through a gap (Fig. 2). A primitive

action occurs at a keypoint in the ξo∪ξg space, i.e. an action

applies to an object or a gap at a specific row. Actions at

different rows are connected through the connecting space

ξc.

Keypoints at objects and gaps are conceptually analogous

to the idea of keyframe-based learning from demonstration

[22]. They are also comparable to nodes in RRTs and PRMs

[23], [19]. Similar to interpolation between keyframes or

connecting graph/tree nodes, keypoints are locally connected

in ξc.

The high-level plan is generated hierarchically in three

levels: path, segment and action. At the top level, a path ρ

comprises a sequence of consecutive segments. Each segment

is a qualitative description of a subset of ξc in which

the planner (connects) interpolates between two consecutive

actions. Finally, an action is one of the two primitive actions

in A. For example, considering an environment structured in

NR rows, a path consists of NR-1 segments. Each segment

connects between a pair of consecutive rows. One action

3A set of four virtual objects are used to represent top, left, right and
bottom walls and added to the occupied space to avoid slipping objects off
the surface.



Initial scene Moving an object Going through a gap Approaching the target

Fig. 2: Sample keyframes in a VR trial. This structure of two rows with three obstacles in each row is fixed among all trials.

However, our approach can generalize to different structures as seen in Sec. VII

takes place at a row and applies to a gap or an object. Start

and target points are directly connected to the actions at first

and last rows respectively.

V. DECISION CLASSIFIERS

Decision learners are used to locally capture rules un-

derlying human planning skills. We design such learners

as classifiers that map from state (feature) domain X to

action (class) domain Y . Training examples are drawn from

a distribution D over X×Y where the goal of each classifier

[24], [25], [26] is finding a mapping C : X 7→ Y that

minimizes prediction errors under D. The classifier output

may be represented by the posterior probability P (Y |X).

In this section, we introduce the features extraction re-

quired for decision classifiers. Features4 are extracted based

on the spatial representations used by humans to recognize

the task space. We heavily use relational spatial represen-

tations like distance, size, orientation and overlap. In our

working scenario, there are four main decisions during a

plan: (1) which gap to go through? (2) which object to move?

(3) to which direction the object should be moved? (4) which

segment to connect two consecutive actions? Except for the

object-moving direction, we designed our learners as binary

classifiers.

4Features are appropriately normalized to relevant factors like surface
size, objects area, number of objects and arm dimensions.

Fig. 3: Modeling the task space. A 2D projection is shown

for a structure defined by two rows with three objects (and

hence four gaps) each, start location and target object. Space

around an object is discretized into eight direction classes.

Size of each direction block depends on the object size and

a scaling factor α.

A. Gaps and Objects Classifiers (Cg, Co)

These classifiers have a binary output defining the prob-

ability of either selecting or rejecting a gap or an object.

Intuitively, humans prefer gaps close to their hand, having

proper size, leading to the target and not requiring acute mo-

tions. Hence, the features vector, Xg , input to gap classifier

Cg is defined by the distances from gap to initial dxg,xs and

target dxg,xt positions, gap (size) diagonal lg , orientation of

the gap-to-start θg,s and gap-to-target θg,t lines.

Xg = [dxg,xs , dxg,xt , lg, θg,i, θg,t]
T (1)

Similarly, object features are given by distances dxo,xs and

dxo,xt , object diagonal lo, the orientation angles θo,s, θo,t in

addition to object’s overlap with the target lo,t and a measure

of the free space volume/area around object aofs
.

Xo = [dxo,xs , dxo,xt , lo, θo,i, θo,t, lo,t, aofs
]T (2)

Space around a given object is discretized into a set ∆ of

eight classes (forward FF, forward left FL, left LL, back left

BL, back BB, back right BR, right RR and forward right FR)

covering object’s neighborhood (Fig. 3). The size of each

direction block depends on the object size and an arbitrary

scaling factor. The free space in each block is computed and

aofs
is given by the sum of free space in the eight blocks.

B. Object Direction Classifier (Cd)

If the action is to move an object, we learn appropriate

moving direction from human data. To estimate the moving

direction, an object is described by the direction of human

hand hd ∈ ∆ when approaching the object, orientation of

an object-to-target line θo,t and amount of free space afs
in each surrounding direction around the object. This is a

multi-class classifier whose output Yd = ∆.

Xd = [hd, θo,t, afs]
T (3)

C. Connecting Segments Classifier (Cc)

Each segment connects two actions applied on gaps and/or

objects. Let e1 and e2 denote the elements representing

these gaps/objects at the first and second rows respectively.

It is desirable to avoid actions that are considerably apart

from each other, having no or small overlap with target

and expected to result in large collision. Hence, a segment

feature vector consists of the signed horizontal d(e1,e2)x and

vertical d(e1,e2)y distances, overlap lc,t between d(e1,e2)x and



the target object, segment orientation θc w.r.t a straight line

connecting initial and target positions and the collision cζ
expected to accompany motion through this segment.

Segment collision is computed as the overall overlapping

volume (area) between human forearm (link) and ξo. The

overlapping area is approximated by the intersection polygon

area and found by scanning the surrounding area using

sampling lines. 5

Xc = [d(e1,e2)x , d(e1,e2)y , lc,t, θccs]
T

(4)

VI. HLP ALGORITHM

The HLP algorithm uses the trained classifier models

explained in the previous section to generate the high-level

plan in the testing phase. The algorithm starts by locating

rows Ri, i = 1, ..., NR and gaps ξg in the scene.

For each i-th row, objects and gaps classifiers are called

(Lines 2-3) to identify the best Nio objects and Nig gaps

respectively. Selected gaps and objects in (i)-th row are con-

nected to their counterparts in the next (i+1)-th row through

connecting segments. Selecting a total Ng =
∑i+1

j=i Njg gaps

and No =
∑i+1

j=i Njo objects at a pair of consecutive rows

results in NgNo segment combinations. These combinations

are constructed and passed to the segments classifier that

selects the best Nc connecting segments (Lines 4-6).

Algorithm 1 The Human-Like Planner (HLP)

Input: Environment representation ξ = {Xs, Xt, Xo
i }

Output: High-level path ρ

Locate rows R and gaps ξg

1: for all R do

2: Compute gaps feature vector Xg

Gselected ← Cg(Xg)
Compute objects feature vector Xo

Oselected ← Co(X
o
i )

3: end for

4: for all pairs of consecutive rows do

5: C ← Segment Constructor (Gselected, Oselected)
Compute segments feature vector Xc

Cselected ← Cc(Xc)
6: end for

7: for all Cselected do

8:

9: if ao ∈ Cselected then

10: Compute object-direction feature vector Xd

Object direction = Cd(Xd)
Augment Cselected by expected object’s location

11: end if

Compute arm configuration feature vector Xa

Estimate arm configuration: Ra(Xa)
Compute expected path collision ρζ

12: end for

Select the path with minimum collision score

5Although there are standard graphics polygon clipping algorithms to
solve this kind of problems, we preferred an approximate but faster line-
sampling approach.

A segment connects two actions, one of which may belong

to the moving-object class. Hence, the object moving direc-

tion is estimated by the Cd classifier using same convention

of space discretization in Sec. V-B. The expected object

location after moving is found and added to the segment’s

sequence of keypoints (Lines 7-11).

Next, the human-arm configuration is estimated (explained

in next section) at each keypoint and estimated configura-

tions are used to evaluate the overall expected collision of

each segment (Lines 11-12). To this end, we get candidate

segments between rows that are labeled by a measure of their

overall expected collision. For a two-row structure, the best

segment is picked as the one with least likely collision.

A. Arm Configuration and Collision Detection

In the 2-row structure, a candidate path has one segment

that is connected to the start and target points. Having a num-

ber of candidate paths, we selected the one with minimum

overall expected collision. Overall expected path collision is

found by computing collision of full-arm motion with ξo

between path keypoints. Therefore, arm configurations are

firstly estimated at each keypoint and then expected arm

collision is computed.

A human arm is modeled as a planar arm with four joints

at neck, shoulder, elbow and hand. The arm configuration is

represented by two angles: θsh between neck-shoulder and

upper arm links and θel between upper arm and forearm

links. The arm configuration at a given keypoint Kt is

estimated by regression. Input features to the configuration

regression model Ra are: hand direction hd ∈ ∆ when

approaching Kt, arm configuration at the previous keypoint

Kt−1 and signed horizontal and vertical distances between

the two keypoints.

Xa = [hd, θsht−1
, θelt−1

, d(k1,k2)x , d(k1,k2)y ]
T

(5)

By estimating arm configurations at keypoints and hence

joint positions, full arm collision is computed as sum of its

links collision during motion along keypoints from start to

target. Collision of each link is computed using the same

approach as in Sec. V-C. Intersections between sampling

lines and objects are found and the area of the resulting

intersection polygon defines the collision amount. To this

end, a number of candidate paths are generated, each labeled

with a measure of its overall expected collision ρζ . This step

completes the HLP algorithm and generates a plan defined

by the path having minimum expected overall collision.

VII. EXPERIMENTS AND RESULTS

The HLP approach was tested through three protocols:

human VR data, robot simulation and real-robot experiments.

The VR dataset was randomly split into two disjoint sets:

approximately 80% (19 subjects and 1710 trials) for training

and 20% (5 subjects and 450 trials) for testing. This cross-

subject splitting, (i.e. no overlap between training and testing

data in terms of subjects) allowed us to test the generalization

of the proposed approach with subjects who had never

seen during training. This splitting was repeated for five



Fig. 4: A human-like manipulation plan for reaching a target amongst 8 obstacles. Note that the testing environment is

different from the training one in terms of the number and shape of obstacles.

folds of randomly selected subjects for both sets. Standard

(MATLAB) support vector machines with Gaussian kernel

and Gaussian process regression were used to implement

classifiers and regression models respectively. The same

trained models and planning algorithm were used for all

experiment protocols.

A. Experiments on VR Data

This protocol tested the HLP on unseen, but similarly

distributed data to the training set. The objective was to

measure the similarity of the generated plans to the “ground

truth” human plans. This similarity was computed for a scene

having NR rows by the following metric:

sHLP =
1

2NR

NR∑

n=1

I(Dn)(I(Dn) + I(En)) (6)

where I(.) is the indicator function which is 1 when its

argument is true and 0 otherwise, Dn is a Boolean variable

that is true if HLP action is same as human action at the

n-th row and En is a Boolean variable that is true if the

same element (gap or object) is selected by both HLP and

human action. To illustrate, if both the HLP and the human

participant decided to move an object at the first row and

then go through a gap at the second row, then this would be

quantified as a 50% similarity rate. This could increase to

100% if both selected the same object and the same gap.

Mean and standard deviation of the 5-fold results are

shown in Table I. Accuracy of the gaps and objects classifiers

are 95% and 85% respectively. It is worth noting that

we compared similarity of the HLP output to a specific

participant’s plan at a time and then reported the mean

similarity. This means that HLP similarity is counted if it

exactly matches a specific testing subject who was never seen

during training. On average, our planner was 70% similar to

the test participant plans. More specifically, the HLP decided

the same action as a human plan 79% of the time, while it

selected the same element (specific gap or object) 67% of

the time.

B. Robot Experiments

Through robot experiments, we compared the HLP with

a standard physics-based stochastic trajectory optimisation

(STO) approach [27], [28], [29]. These algorithms were

implemented using the Mujoco [30] physics engine and the

Deepmind control suite [31]. We assumed a world consisting

of objects on a table with a 10-DOF robot as shown in Fig. 4.

As a baseline algorithm, we used a state-of-the-art physics-

based stochastic trajectory optimiser [27], initialized with a

straight line control sequence from the end-effector’s start

pose to the target object.

IK solutions for the high-level plan keypoints were found

and connected with straight lines in robot’s configuration

space to generate a control sequence. This was passed to a

trajectory optimiser as an initial candidate control sequence.

Therefore, for the HLP, the number of actions in a given

control sequence varied depending on the high level plan.

In contrast, the baseline approach (STO) initialized the

trajectory optimiser using a straight line control sequence

to the goal.

We compared performance of the HLP and STO quantita-

tively through success rates and planning times of simulation

experiments and qualitatively through visual inspection of

manipulation plans in real robot experiments.

1) Robot Simulation Experiments: Simulation experi-

ments evaluated the performance of our planner in scenes

generated from a distribution considerably different to that

of the training data. Generalization was investigated across

different numbers, sizes and types of objects. A plan was

classified as being successful if at the final state the target

object was inside the gripper’s pre-grasp region and if no

other object dropped off the table during the trial. We

recorded the total planning time for successful trials of each

planner. Planning time which comprised an initial time used

to generate the high level plan (straight line for STO),

and an optimisation time. Two simulation categories were

considered:

Generalization I– Performance of the HLP was tested

in simulation scenes with the same two-row structure used

in the VR demonstrations. Here, the generalization element

involved varying the dimensions of the table and objects.

Table II summarizes results of 100 scenes from this category.

The planner HLP substantially outperformed the STO by a

large margin, indexed through success rates and a reduction

TABLE I: Results (mean and standard deviation) of the 5-

fold VR test experiment.

Metric Mean STD

Cg accuracy 0.95 0.002
Co accuracy 0.85 0.005

sHLP (overall) 0.70 0.011
sHLP (I(Dn)) 0.79 0.016
sHLP (I(En)) 0.67 0.012
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Fig. 5: Human-like Manipulation (HLP) plan (top), and Baseline (STO) plan (bottom). HLP algorithm can reason over the

task space and navigate through the free space around the obstacles similar to what people may do. On the other hand, STO

is biased towards its straight-line initialization and hence had to push objects around which made it 1.5 times slower than

HLP.

TABLE II: Generalization I Simulation Scenes Results

Success rate(%) Init. time(s) Opt. time(s) Total time(s)

HLP 94 0.59 0.97 1.56

STO 84 0.04 17.84 17.88

TABLE III: Planning times (mean) for Generalization II.

Note that the actual planning time of HLP (Init. time) is

approx. fixed irrespective of the number of obstacles.

No. of Objects
HLP STO

Init. time(s) Opt. time(s) Total(s) Total(s)

5 0.60 1.70 2.30 1.85
7 0.61 2.65 3.26 3.68
9 0.63 5.90 6.53 4.98

in planning time.

Generalization II– Our second test involved investigating

how our approach would fare when generalizing to different

numbers of objects, different types of objects and different

environment settings. We considered conditions with 5, 7

and 9 objects with two shape classes: cylinders and boxes.

Importantly, the start and target positions were no longer

aligned in this experiment. 100 randomly sampled scenes

were generated for each object-number condition. For each

random scene, we selected a random6 initial robot configu-

ration.
The success rates for 100 random scenes for each of the

three object categories were computed. The rates for both

planners were relatively similar, (93%, 93% and 95% ) for

HLP and (96%, 96% and 98% ) for STO for 5, 7 and 9 objects

respectively. Results of planning time comparison are given

in Table III. The time required for generating a high-level

plan by HLP (Init. Time) is fixed irrespective of number of

objects.

6We uniformly sampled a start point along the front edge of the table, and
a corresponding random end-effector orientation (in the plane) and found
the initial robot configuration using inverse kinematics

2) Real Robot Experiments: In a set of real robot exper-

iments, we used a Robotiq two finger gripper attached to

a UR5 arm mounted on an omnidirectional robot (Ridge-

back). We obtained object positions using a depth camera

mounted above the table. We conducted a limited number of

experiments- 4 sample scenes per 7, 9 and 11 objects. We

then ran both the HLP and the STO producing a total of 24
robot runs 7. Sample results are shown in Fig. 5 where the

HLP favored going through the free space avoiding pushing

objects while the STO was biased to its initialized straight-

line path. Other scenes can be found in the attached video
8.

VIII. DISCUSSION

This work addresses the challenge of human-like com-

puting i.e. the endowment of systems with capabilities

derived from modelling human perception, cognition and

action. Humans are known to recognize the spatio-temporal

world in a qualitative manner. Hence, instead of cloning

the human behavior from demonstrations, we used QSR

in order to segment demonstrations in the action space.

Extracting human skills at such a high level helps to model

a planner that can: (1) generalize to different number of

objects without increasing the actual planning time and (2)

seamlessly connect with an arbitrary robot model.

Many cluttered environments can be clustered into regions

that geometrically approximate to our definition of rows. For

an arbitrary number of rows, the HLP can be run recursively

for row pairs by defining a set of sub-targets. Moreover,

generalization may be improved by augmenting training

data with more generalized scenes, using more powerful

classifiers and running in a closed-loop manner. These topics

will be addressed in our future work.

7Four scenes, three number-of-object categories, and two methods.
8https://youtu.be/aMIZP_SYa0I



IX. CONCLUSIONS

We used VR to collect data from human participants

whilst they reached for objects on a cluttered table-top.

From this data, we devised a qualitative representation of

task space to segment demonstrations into keypoints in the

action space. State-action pairs were used to train decision

classifiers that constituted the building blocks of the HLP

algorithm. Through testing in VR, robot simulation and real

robot experiments against a state-of-the-art planner, we have

shown that this HLP is able to generate effective strategies

for planning, irrespective of the number of objects in a

cluttered environment. We conclude that the optimisation

of robot planning has much to gain by extracting features

from understanding the processes underlying human action

selection and execution.
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