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ABSTRACT 

Background: Height and body mass index (BMI) have both been positively associated with 

melanoma risk, although findings for BMI have been less consistent than height. It remains unclear, 

however, whether these associations reflect causality or are due to residual confounding by 

environmental and lifestyle risk factors. We re-evaluated these associations using a two-sample 

Mendelian randomization (MR) approach.

Methods: We identified single nucleotide polymorphisms (SNPs) for BMI and height from separate 

genome-wide association study (GWAS) meta-analyses. We obtained melanoma SNPs from the 

most recent melanoma GWAS meta-analysis comprising 12,874 cases and 23,203 controls. We 

used the inverse variance-weighted estimator to derive separate causal risk estimates across all SNP 

instruments for BMI and height.

Results: Based on the combined estimate derived from 730 SNPs for BMI, we found no evidence 

of an association between genetically predicted BMI and melanoma (OR per 1SD [4.6 kg/m2] 

increase in BMI 1.00, 95% CI: 0.91-1.11).  In contrast, we observed a positive association between 

genetically-predicted height (derived from a pooled estimate of 3,290 SNPs) and melanoma risk 

(OR 1.08, 95% CI: 1.02-1.13, per 1SD [9.27 cm] increase in height). Sensitivity analyses using two 

alternative MR methods yielded similar results.

Conclusions: These findings provide no evidence for a causal association between higher BMI and 

melanoma, but support the notion that height is causally associated with melanoma risk. 

Mechanisms through which height influences melanoma risk remain unclear, and it remains 

possible that the effect could be mediated through diverse pathways including growth factors and 

even socioeconomic status. 

Key words: body mass index; height; body size; skin cancer; melanoma; causality; Mendelian 

randomization
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Key Messages

 Observational studies examining the association between BMI and height and 

melanoma risk have yielded inconsistent findings. 

 To resolve this inconsistency, we conducted Mendelian randomization analyses 

using large GWAS datasets.

 We found no evidence to suggest that the association between higher BMI and 

melanoma risk is causal but, height was found to be associated with melanoma.

 Mechanisms through which height influences melanoma risk remain unclear; 

numerous pathways have been proposed.
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INTRODUCTION 

Exposure to ultra-violet radiation and having a sun-sensitive phenotype are established risk factors 

for cutaneous melanoma (hereafter referred to as melanoma) among susceptible people 1, 2. The 

associations with other factors are less clear, although some studies suggest a possible link between 

anthropometric factors and melanoma risk 3-5. Previous observational studies have reported positive 

associations with body mass index (BMI) and height, but findings varied across studies. Positive 

associations between high BMI and melanoma have been reported in some 4, 6 but not all 7-9 cohort 

studies. With regard to height, most previous observational studies of melanoma have reported an 

increased risk among taller people 4, 5, 10-13.

It remains unclear whether the reported associations represent true causal relationships or are 

explained by bias or confounding by other factors simultaneously associated with BMI, height and 

melanoma risk. For example, some studies have speculated that obesity and height might be 

causally associated with melanoma through increased body surface area and larger number of target 

cells at risk 14, 15  or, conversely, that melanoma risk might be decreased among obese people 

through limited outdoor recreational activities and difference in sun-seeking behaviours compared 

to their non-obese counterparts. Obesity may also be associated with other unknown or unmeasured 

lifestyle factors, and the possibility of residual confounding by such factors remains a limitation of 

all observational studies. Finally, information regarding childhood illness and nutrition status, 

which are potential modifiable factors of height, have not been assessed in previous studies. 

One approach to circumvent some of the threats to validity and limitations found in conventional 

observational studies is to conduct instrumental variable analyses using genetic variants as proxy 

markers for risk factors, a technique known as Mendelian randomization (MR) 16. MR uses genetic 
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variants associated with an exposure (or a biological intermediate) to estimate its effects on the 

outcome 17. Because genetic variants associated with adult BMI and height are randomly assigned 

from parents to their offspring at conception, MR studies are closer to the random assignment of 

exposure in a randomized controlled trial, in which known and unknown genetic confounders are 

randomly distributed across different treatment arms, assuming various MR assumptions are met. 

We conducted MR analyses of BMI and height in relation to the risk of  melanoma using the very 

large international genome-wide association (GWAS) datasets from the Genetic Investigation of 

ANthropometric Traits (GIANT) consortium 18 and consortium data from the melanoma GWAS 

meta-analysis 19.

METHODS

We applied a two-sample Mendelian randomization approach to evaluate whether genetically 

predicted BMI and height are risk factors for melanoma using publically available summary data 

from the meta-analyses of genome-wide association studies (GWAS).

Instrumental variables 

Single nucleotide polymorphisms (SNPs) were identified from the largest 2018 GWAS meta-

analysis of measured BMI and height in adulthood from the GIANT consortium 18. This meta-

analysis included data from a total of ~700,000 participants of European descent, comprising 

~250,000 participants from the earlier GWAS meta-analyses (conducted in 2014 and 2015) 20, 21, 

and new GWAS data from ~450,000 participants in the UK Biobank (UKBB). In total, 754 and 

3290 independent SNPs known to be associated at P < 5 x 10-8 with BMI and height, respectively, 

were used as instruments for these analyses. Detailed information regarding sample and SNP 

selection, summary statistics, quality control and meta-analyses have been reported previously 18. 
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We extracted data on major and minor alleles for each SNP together with the allele frequencies, 

beta coefficient, standard error (SE) of the beta coefficient and p-value for the relevant association. 

We tested the validity of the BMI and height instrumental variables in an independent dataset of 

17,965 participants in the QSkin cohort.  The QSkin Sun and Health Study is a population based 

cohort consisting of 43,794 men and women aged between 40-69 years who were randomly 

sampled from the Queensland population 22. The study was approved by the Human Research 

Ethics Committee of the QIMR Berghofer Medical Research Institute and each participant provided 

written informed consent. Genome-wide polygenic risk scores (PRS) for BMI and height were 

calculated for eligible cohort participants who provided a DNA sample (n=17,222). We generated 

the PRS using summary statistics from the same set of SNPs as used for MR analyses. PRS were 

generated using the --score function of plink V1.90b6.6 23. 

Association of BMI and height genetic variants with cutaneous melanoma

We obtained GWAS summary statistics on melanoma from the largest meta-analysis of GWAS on 

cutaneous melanoma to date which included 12,874 histologically confirmed cases and 23,203 

controls from 11 independent GWAS in people of European ancestry in UK, Australia, USA, 

Germany, France and Greece 19. Details regarding GWAS quality control and study samples have 

been published previously 19. For each identified BMI or height SNP instrument, we extracted the 

per allele log odds ratio (OR) for melanoma together with its SE and allele frequencies from the 

melanoma GWAS meta-analysis. Since the two-sample MR involves combining data from two 

independently-generated datasets, we harmonised the data by comparing allele frequencies between 

the BMI, height and melanoma datasets, thereby ensuring that reference alleles for each locus were 

concordant across the datasets. Palindromic strands with minor allele frequency threshold for 

alignment above 0.3 are non-inferable and hence were excluded from the analyses. 
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Two-sample Mendelian randomization methods

In contrast to traditional 2-stage least squares MR, whereby individual level genotype and 

phenotype data are obtained from the same sample, we used a two-sample MR strategy in which the 

SNP exposure and SNP outcome associations are estimated using summary statistics from 

independent samples 24. The two-sample method typically offers greater statistical power than the 

one-sample method, because one can use large, independent datasets to firstly derive the 

instruments, and then to test the associations.  The association between genetically predicted BMI 

or height and melanoma risk per SNP was evaluated using a Wald-type ratio estimator 25. The 95% 

confidence intervals (95% CIs) were calculated from the SE of each Wald ratio. We combined 

individual Wald ratio estimates for all SNPs for each trait (i.e. BMI or height) using the inverse 

variance-weighted method (IVW) to obtain a weighted average of the effect estimates 25. We tested 

for heterogeneity in Wald ratios using Cochran's Q statistic 26. 

Sensitivity analyses 

The IVW method assumes that there is no horizontal pleiotropy for all SNPs (that is, that the effect 

of genetic variants on the outcome operates entirely via the exposure of interest), and that all SNPs 

are valid instruments. However, because testing the validity of these assumptions is difficult in 

practice, two additional MR analyses, namely MR-Egger regression 27 and weighted median 

estimator 28 were conducted to check for robustness of the estimates from IVW 27. MR-Egger 

regression is similar to IVW except that the intercept is not constrained to pass through the origin, 

with a non-zero intercept suggesting possibility of directional pleiotropy. The weighted median 

estimator method has the advantage that it is possible to estimate the effect as long as at least 50% 

of the variants in the analysis come from SNPs that satisfy the MR assumptions. While these 
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techniques address potential concern on the causal estimate due to weak violation of MR 

assumptions, they require large sample sizes to detect effects. 

Because deriving BMI and height instruments from datasets which include patients with melanoma 

could conceivably induce bias in odds ratios, we performed an additional sensitivity analysis 

restricted to 390,628 cancer-free white British participants in the UKBB only. For this analysis we 

used 520 and 2059 independent SNPs that were associated with BMI or height respectively at 

genome-wide significance as previously described 29, 30. Cancer-free participants were defined as 

any individual without cancer, or benign or in situ tumours, recorded in the cancer registry using the 

International Classification of Disease, 10th edition (ICD10). Prevalent and incident cancer cases in 

the UK Biobank were identified through linkage to the national cancer registries and hospital in-

patients data. To assess whether our estimates were sensitive to the choice of instrument, we also 

conducted a separate analysis restricted to 97 BMI-associated SNPs and 697 height-associated 

SNPs identified in earlier published studies in the GIANT consortium only 20, 21. We used R 

software (TwoSampleMR package) for Mendelian randomization analyses 31.  

RESULTS 

Mendelian randomization analyses of the association between BMI and melanoma risk

The primary analyses included 754 independent genetic variants obtained from the UKBB and the 

GIANT consortia as instruments for BMI. Five variants that were not available in the melanoma 

GWAS dataset and 19 that were palindromic strands were excluded, leaving 730 variants for 

analysis [Table 1]. These variants explained approximately 8% of the variance in BMI in the UKBB 

and GIANT [Table 1]. In an independent cohort (QSkin), a PRS derived from these variants 

explained ~5% of the variance in BMI (Supplementary Figures 1 and 2).
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We estimated the overall odds ratio of developing melanoma per one SD increase in BMI (1 

SD=4.6 kg/m2). Based on the combined estimate derived from 730 genetic variants for BMI, we 

found no evidence of an association between higher genetically predicted BMI and melanoma (OR 

per 1SD increase in BMI 1.00, 95% CI: 0.91-1.11) [Table 2] [Figure 1]. 

We performed sensitivity analyses to check whether the null association might have arisen through 

violations of the MR assumptions. We found no evidence that our risk estimates were influenced by 

directional pleiotropy, as the average pleiotropic effect of the MR-Egger regression intercept was 

close to null (MR-Egger intercept: 0.0001, p-value=0.9 [Table 3] . Graphical assessment of bias in 

the MR funnel plot suggested that the dispersion of individual estimates was symmetrical 

[Supplementary Figure 3], indicating that our estimates were not driven by individual outliers. 

Taken together, the sensitivity analyses suggest that the null findings were very unlikely to be due 

to violating the assumption imposed by the exclusion restriction criterion. Finally, we checked 

whether our inferences were influenced by the choice of instruments by repeating the analyses using 

79 of the 97 BMI-associated variants identified by the GIANT consortium. We also repeated the 

same analysis using the 495 of the 520 BMI variants identified from the UKBB. The results were 

essentially the same regardless of the source of instrument [Table 2].

Mendelian randomization analyses of the association between height and melanoma risk

We obtained data for a total of 3,290 height-related genetic variants from UKBB and the GIANT 

consortium as potential instrumental variables. However, 117 of these 3,290 variants were not 

available in the melanoma GWAS dataset and 10 variants were palindromic, so were excluded from 

the analysis.  The remaining 3163 variants explained ~19% of variance in height in UKBB and 
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GIANT [Table 1]. A PRS derived from these height variants, explained ~12% of variance in height 

in the QSkin cohort [Supplementary Figures 4 and 5]. Using the IVW method to pool estimates 

from individual variants, genetically-predicted height was statistically significant associated with 

increased melanoma risk (OR 1.08, 95% CI: 1.02-1.13, per 1SD (9.27 cm) increase in height) 

[Table 2] [Figure 2]. 

After excluding non-inferable palindromic SNPs and SNPs that could not be obtained from the 

melanoma GWAS dataset, we performed sensitivity analyses initially using 1810 height-associated 

SNPs from the UKBB only, and secondly using a restricted list of 360 height-associated SNPs from 

the earlier GIANT consortium analysis 21.  These analyses made little difference to the main 

findings [Table 2]. Additional sensitivity analysis using MR-Egger regression to assess whether the 

causal estimates could have been affected by directional pleiotropy showed no such evidence 

(intercept=-0.001, p-value=0.6) (Table 3). Visual assessment of directional pleiotropy using a 

funnel plot showed that variants were symmetrically distributed [Supplementary Figure 6].

We observed evidence of heterogeneity across SNP estimates (Q=937, p<0.0001 for BMI; Q=2757, 

p<0.0001 for height (Supplementary Table 1)). SNPs that showed strong evidence of heterogeneity 

(Q>3.84) were removed and the analyses were repeated. The adjusted MR estimates showed no 

evidence of heterogeneity. However, the effect estimates were generally unchanged.
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DISCUSSION

We conducted two-sample MR analyses using summary statistics from the largest GWAS meta-

analyses of BMI, height and melanoma. Overall, we found no evidence that genetically predicted 

BMI was associated with increased risk of melanoma, but found evidence to suggest that 

genetically-predicted height conferred increased risk of melanoma.

Investigating a possible causal association between obesity and melanoma is relevant given the 

heterogeneity observed across previous observational studies, the substantial increase in obesity 

prevalence worldwide 32, and the rapid increases in melanoma incidence observed in many 

populations 33. To our knowledge, this is the first analysis to use MR techniques. While 

observational studies can identify associations, they cannot always establish whether relationships 

are causal, notably in instances where confounding is believed to be present but not fully controlled. 

For example, many epidemiological studies rely on self-reported weight and height measurements 8, 

12, 34 which are subject to misclassification 35, 36. In addition, few studies adjusted for confounding 

effect of the sun exposure 6, 37, the major risk factor for melanoma. 

Our null findings suggest that the increased risk of melanoma among overweight and obese people 

reported in previous epidemiological studies 3, 4, 38, 39, may be due to other, non-causal explanations 

such as ascertainment biases, misclassification or residual confounding inherent to observational 

studies. Earlier experimental studies had suggested that an association between BMI and melanoma 

might be plausible. For example, there were reports that obese mice exposed to UVB radiation had 

higher levels of proinflammatory cytokines in their skin than their non-obese counterparts 40. Those 

laboratory findings gave some credence to a possible link between obesity and skin cancer, on the 

basis that inflammatory responses in the skin might increase the risk of neoplasia 41, 42. Our data 
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indicate that even if obesity modifies cutaneous responses to sunlight in some animal models, the 

effects do not necessarily translate into measurable changes in melanoma risk in humans. 

In contrast to the lack of association between BMI and melanoma, the MR findings in relation to a 

positive association between height and melanoma is broadly consistent with  the observational 

literature, albeit a smaller effect  size estimate from MR. For instance, the UK Million Women 

Study, with ~3,500 melanoma cases, reported a 30% increased melanoma risk per 10cm increase in 

height 5. Subsequently, in a large population-based cohort in Norway, including  more than 3,000 

melanoma cases among ~300,000 men and women, a 50% increased melanoma risk was observed 

for men and women in the fifth versus first quintile of height 4. Increased risk of melanoma with 

greater height was also reported in a study conducted in a high ambient sunlight setting 

(Queensland, Australia), although the estimates lack precision due to low sample size 9. Finally, the 

evidence from a pooled analysis including 8 case-control studies provides additional support for an 

association between height and melanoma in women 11.

The MR findings described in this study in relation to the two-sample MR generally agree with 

previously reported findings from one-sample MR analyses conducted in the UK Biobank. In those 

analyses, no association between genetically determined higher BMI and melanoma was found 

(OR: 0.98, 95% CI: 0.85-1.14)43, but a 12% increase in melanoma risk was reported per 10 cm 

increase in genetically predicted height (OR: 1.12, 95% CI: 1.001 - 1.26)29. Height has also been 

reported as a risk factor for other types of cancer in other MR studies, although the effect of height 

on melanoma reported in our study was relatively lower for some cancer types, but similar for 

others. For example, previous research has reported that for every 10 cm increase in genetically 

predicted height, the risk ratio was 1.22 (95% CI: 1.13-1.32) for breast cancer 44, 1.07 (95% CI: 
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1.01-1.14) for colorectal cancer45, 1.23 (95% CI 1.06-1.42) for endometrial cancer 29 and 1.12 (95% 

CI: 1.02-1.23) for ovarian cancer46.

Adult height is determined by various growth mechanisms, childhood environment, and possibly by 

epigenetic factors, any of which may influence melanoma risk.  Previous investigators have 

speculated that height is a proxy for the total number of cells (including stem cells) in the body, and 

that this presumably increases the probability of mutations and hence malignancy 14, 15. However, 

this hypothesis does not accord with the higher rates of malignancy observed across species (for 

example, between mice and humans which differ in volume by orders of magnitude) 47. The lack of 

relationship between body size and cancer risk across species, known as Peto’s Paradox 48, suggests 

that larger organisms might have evolved cancer-suppressing mechanisms in order to live longer 49. 

For example, a recent study has shown that the genome of an elephant has 20 copies of the P53 

tumour suppressor gene whereas humans have only one copy 50. Thus, body size is an imperfect 

predictor of cancer risk in an organism across species, but body size and cancer risk are positively 

correlated within members of the same species [7-10]. While BMI is a reliable measure of body 

size, mature adipocytes do not undergo mitoses as they are fully differentiated cell type and thus, 

provide fewer targets for oncogenic mutations. 

An earlier study also reported a positive association between the number of naevi and height but not 

weight 51. The study argued that both naevi count and melanoma are associated with longer 

telomeres. Telomere length has been reported as a genetic marker of reduced senescence and 

increased growth 52, and is believed to play important roles in carcinogenesis 53. Various hormones 

implicated in childhood growth, such as insulin-like growth factor (IGF)-I  54, also regulate cell 

turnover, apoptosis and tumour progression 55, and thus could be implicated in cancer development. 
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These mechanisms are presumably largely under genetic control, and the genetic associations 

between height and melanoma might be mediated through these pathways. 

While biological mechanisms to explain the association between height and melanoma have 

intuitive appeal, it is also possible that height might mediate its effects on melanoma risk through 

other pathways, at least in some populations. Recently, a Mendelian randomization study conducted 

within the UK BioBank (using very similar instruments to those that we used) reported that 

genetically-predicted height was significantly associated with four different measures of 

socioeconomic status (SES), with strong positive associations observed for job class and annual 

household income 56. Previous observational studies, particularly those conducted in settings of low 

ambient sunlight (such as northern Europe), have reported significantly higher melanoma incidence 

among people in high SES categories compared to those in low SES categories. In those settings, it 

has been postulated that greater affluence has given greater access to holidays in sunny locations 

and sunburns, thereby conferring an increased risk of melanoma 57-59.  Occupational studies from 

the UK 60 and Sweden 61 corroborate this hypothesis, showing that indoor workers have 

significantly higher risks of melanoma than outdoor workers in those countries. Thus, at a 

population-level, genetically determined height is possibly causally associated with melanoma 

through a pathway of social class and sun exposure. 

A limitation common to all MR analyses relates to potential pleiotropy, whereby a genetic variant is 

independently associated with the outcome, but not through the exposure of interest. We assessed 

potential pleiotropy using the MR-Egger method and observed no evidence that the exclusion 

restriction criteria assumption was violated. While it is also possible that some of the variants used 

in the analysis might be associated with confounders of the height and melanoma association, such 
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an effect would likely be small because our genetic instrument was generated from more than 3000 

variants explaining ~19% of variance in height, which further reduces the likelihood of bias from 

violating MR assumptions 62. Our analyses also intrinsically assume a linear relationship between 

BMI/height and the log(OR) on melanoma. Here, the MR estimates capture a population averaged 

effect across different strata of exposure, which might differ from the association of BMI/height on 

melanoma for individuals at extreme ends of the distribution. We argue that this is unlikely a major 

concern for our analyses given the overall null finding for BMI (except for extreme circumstances 

where the opposing direction of effect across two ends of a stratum directly cancel out), however a 

larger sample size will be required to comprehensively evaluate any non-linear relationships 

between height and melanoma. 

In conclusion, these large-scale Mendelian randomization analyses found little evidence to suggest 

that the association between higher BMI and melanoma risk is causal but, in accord with earlier 

observational studies, height was found to be associated with melanoma. Mechanisms through 

which greater height might lead to increased risk of melanoma remain unclear, and it is possible that 

the effect is mediated through various pathways, ranging from direct hormonal effects through to 

social class and sun exposure. While the most effective way to reduce cancer risks involves 

elimination of the causal risk factor, it is not feasible to modify adult height. However, the specific 

mechanisms (which might be modifiable) underlying this association may provide valuable insights 

into carcinogenesis. It is also possible that height may contribute to future risk stratification 

algorithms which could be used to target people for early detection activities. 
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Table 1. The characteristics and source of genetic instruments used in Mendelian randomisation (MR) analyses 

Instruments from Body mass index Height

Sample size Number of 

SNPs obtained

Number of 

SNPs used

Total variance

Explained(r2)*

Sample size Number of 

SNPs obtained

Number of 

SNPs used

Total variance

 Explained (r2)*

UK Biobank + GIANT 681,275 754 730 7.8% 693,529 3,290 3,163 19%

GIANT only 339,224 97 79 2.7% 253,288 697 360 13%

UK Biobank only 390,628 520 495 7% 310,793 2,059 1810 17%

SNP: single-nucleotide polymorphism; GIANT: Genetic Investigation of ANthropometric Traits

*Total variance explained by instrument is computed based on the genetic influence of the BMI or height SNPs instruments  on measured BMI or height from the 

white-British participants from the UK Biobank cohort.
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Table 2. Association between increased BMI and height and risk of melanoma using two-sample Mendelian randomisation (MR)1

SNP: single-nucleotide polymorphism; CI: confidence interval; UKBB: UK Bio-bank; GIANT: Genetic Investigation of ANthropometric Traits; IVW: inverse variance 

weighted
1The estimates are given per one SD increase in BMI (1 SD=4.6 kg/m2) and per one SD increase in height (1SD=9.27 cm)
2UKBB + GIANT: Genetic variants obtained from the 2018 BMI and height GWAS meta-analysis in the GIANT consortium 
3GIANT only: Genetic variants obtained from the 2015 BMI GWAS meta-analysis and from 2014 height GWAS meta-analysis in the GIANT consortium 
4UK Biobank only:  BMI and height genetic variants obtained from the UKBB only.
5For MR-Egger analyses, the standard error (SE) for each exposure-outcome estimate was obtained by bootstrapping the distributions of the SNP effect estimates for 

both exposure and outcome 1000 times.

Instruments from MR method Body mass index Height

Odds ratio 95% CI P-Value Odds ratio 95% CI P-Value

IVW 1.00 0.91-1.11 0.99 1.08 1.02-1.13 0.004

MR-Egger5 0.99 0.74-1.33 0.97 1.05 0.96-1.14 0.14

Weighted Median 1.01 0.86-1.17 0.92 1.11 1.02-1.20 0.02

Simple Mode 0.85 0.51-1.43 0.55 1.07 0.80-1.45 0.61

UK Biobank + GIANT2

Weighed Mode 0.98 0.73-1.32 0.89 1.13 0.95-1.36 0.15

IVW 0.96 0.80-1.15 0.66 1.09 1.02-1.18 0.01

MR-Egger5 0.99 0.56-1.73 0.25 1.02 0.84-1.25 0.8

Weighted Median 0.86 0.66-1.11 0.82 1.14 1.02-1.27 0.02

Simple Mode 0.78 0.45-1.34 0.36 1.14 0.81-1.60 0.44

GIANT only3

Weighed Mode 0.99 0.72-1.38 0.98 1.14 0.87-1.49 0.34

IVW 1.01 0.98-1.03 0.76 1.07 1.01-1.13 0.01

MR-Egger5 1.03 0.96-1.11 0.31 1.04 0.87-1.25 0.25

Weighted Median 1.00 0.97-1.04 0.81 1.07 0.99-1.16 0.08

Simple Mode 0.95 0.86-1.07 0.45 1.03 0.97-1.07 0.33

UK Biobank only4

Weighed Mode 1.01 0.93-1.08 0.83 1.02 0.98-1.04 0.26
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Table 3. Estimates of Egger intercept to evaluate evidence for directional pleiotropy in MR association

Instruments from Body mass index Height

Egger intercept SE of Egger 

intercept

P-value Egger intercept SE of Egger 

intercept

P-value

UKBB + GIANT 0.0001 0.002 0.9 0.001 0.0008 0.6

UKBB only -0.002 0.02 0.3 0.003 0.001 0.5

GIANT only -0.005 0.005 0.4 0.004 0.003 0.2

Here, p-value refers to the p-value of the estimated Egger intercept being null. A significant p-value (P<0.05) would present evidence that the MR causal estimates 

derived via the inverse-variance weighted model were biased by directional pleiotropy.
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Association of individual SNPs with BMI and melanoma risk. Instrumental variable estimates were derived 

from 730 BMI SNP instruments identified in the BMI GWAS meta-analyses using samples from GIANT and 

the UKBB cohort. Error bars represent 95% confidence intervals. The gradients of regression lines colors 

correspond to the instrumental variable estimates of the effect of BMI on melanoma risk with different MR 

methods compared. 
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Association of individual SNPs with height and melanoma risk. Instrumental variable estimates were derived 

from 3290 height SNP instruments identified in the height GWAS meta-analysis using samples from GIANT 

and the UKBB cohort. Error bars represent 95% confidence intervals. The gradients of regression lines colors 

correspond to the instrumental variable estimates of the effect of height on melanoma risk with different MR 

methods compared. 
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