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ABSTRACT  

This study combines data from many published case studies to undertake a quantitative characterization 
of clastic parasequences, with the aim to determine how accommodation, sediment supply and 
autogenic sediment-storage dynamics are recorded in their sedimentary architecture and stacking 
patterns. Results of this study are used to critically evaluate the validity of paradigms and models that 
are routinely used to explain and predict trends in the anatomy and arrangement of parasequences. Data 
on 957 parasequences from 62 case studies of clastic, shallow-water successions were coded in a 
relational database, which includes outcrop and subsurface datasets of ancient and Quaternary 
examples. These units cover the preserved records of both river-dominated deltas and wave-dominated 
coasts, representing shoreline transits over a breadth of timescales, likely of both local and regional 
extent. The role of extant accommodation, rates of creation of accommodation (A) and rates of sediment 
supply (S) in determining parasequence architecture is assessed through analysis of relationships 
between (i) proxies of these variables at different scales (rates of aggradation and progradation, facies-
belt shoreline trajectories, systems-tract type, parasequence-set stacking patterns, parasequence 
progradation angle and stratigraphic rise, size of feeder rivers), and (ii) parameters that describe the 
geometry and stacking style of parasequences, and associated shallow-water sand bodies. Statistical 
analyses of database outputs indicate which proxies of accommodation, sediment supply and A/S ratio 
are significant as predictors of parasequence architecture, and which allow for interpretations of the 
importance of allogenic and autogenic factors. The principal results of this study reveal the following: 
(i) parasequence thickness varies as a function of water depth, accommodation generation and erosional 
truncation, and these variations are also reflected across types of systems tracts and parasequence sets; 
(ii) the dip length of parasequence sand bodies demonstrates scaling with measures of A/S ratio at 
multiple scales, partly in relation to the possible effect of sediment supply on progradation rates; (iii) in 
systems tracts, stratigraphic trends in parasequence stacking due to autogenic mechanisms or to 
acceleration or deceleration in relative sea-level fluctuations are not revealed quantitatively; (iv) some 
association is seen between the abundance of deltaic or river-dominated parasequences and 
progradational stacking; (v) positive but modest correlation is observed between measures of river-
system size and the dip length of shallow-marine parasequence sand bodies. The resulting insights can 
be applied to guide sequence stratigraphic interpretations of the rock record and the characterization of 
sub-seismic stratigraphic architectures of subsurface successions. 

Keywords: sequence stratigraphy; shallow marine; sand body; shoreline; shelf; sedimentary 
architecture. 

 

INTRODUCTION 

Parasequences are widely applied in the description of clastic shallow-marine strata and are commonly 
regarded as the fundamental building blocks of sequence-stratigraphic interpretations. Current 
knowledge of geological controls on parasequence architectures is supported by empirical 
understanding originating from studies of the rock record (e.g., Garrison & van den Berg, 2004; Olariu 
et al., 2012; Hampson, 2016), and by insight from physical or numerical experiments (e.g., Ross et al., 
1995; Charvin et al., 2011; Straub et al., 2015). Yet, interpretations of shallow-marine successions are 
still largely guided by basic thought experiments, typically depicted as idealized cartoons (e.g., 
Posamentier et al., 1988; Van Wagoner et al., 1988; Embry, 2009). It is widely assumed that 
parasequence architectures are influenced by accommodation and rates of creation thereof, by rates of 
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sediment supply to formative palaeo-shorelines, and by autogenic processes, but the relative importance 
of these different factors still needs to be elucidated. Furthermore, factors other than accommodation 
and sediment-supply rates (e.g., process regime, grainsize calibre) are likely to affect resulting 
architectures (cf. Swift & Thorne, 1991; Swift et al., 1991; Rodriguez & Meyer, 2006; Reynolds, 2009; 
Patruno & Helland-Hansen, 2018). 

Further investigation of controls on parasequence architectures is therefore warranted, and quantitative 
assessments undertaken on large datasets and with consideration of the origin and geological context of 
parasequences can improve understanding of the significance of controlling factors (cf. Ainsworth et 
al., 2018, 2020; Colombera & Mountney, 2020). 

The aim of this work is to investigate how accommodation and sediment supply are recorded in the 
parasequence architecture of clastic successions at multiple scales. Specific research objectives are as 
follows: (i) to present a synthesis of properties that describe the geometry, lithology, stacking pattern, 
interpreted origin, and rates of evolution of clastic parasequences described in the scientific literature, 
(ii) to test hypotheses on the importance of controlling factors by means of a statistical approach, and 
(iii) to discuss the applied significance of the findings in view of their possible predictive use in 
subsurface studies. 

First, this work provides a brief synopsis of current views on controls on parasequence architectures. 
The work then presents the results of a meta-study of published datasets so as to attempt to ascertain 
and elucidate the role of accommodation and sediment supply in controlling the stratigraphic record of 
shallow-marine successions. 

 

BACKGROUND 

Parasequences: definitions and application 

The progradation of linear coasts and deltas into shallow open seas is typically recorded as a succession 
of offshore to littoral deposits arranged into a coarsening- and shoaling-upward trend (Fig. 1A). 
Resulting regressive packages are commonly capped by flooding surfaces and may be overlain by 
transgressive deposits, which together represent a response to increases in water depth that may be 
widespread and allogenic in origin (e.g., eustatic) or local and autogenic (e.g., due to delta drowning 
driven by river avulsion) (Reading & Collinson, 1996, and references therein). The recognition and 
correlation of apparently cyclically arranged stratal packages of shallow-marine sand or sandstone 
tongues encased in marine muds or mudstones and bounded by surfaces recording marine flooding 
predates the advent of sequence stratigraphy as a recognized discipline (e.g., Hollenshead & Pritchard, 
1961; Coleman & Gagliano, 1964; Harms et al., 1965; Frazier, 1974). However, the formalization of 
units of this type in sequence-stratigraphic practice was first proposed by Van Wagoner (1985), who 
defined a parasequence as “a relatively conformable succession of genetically related beds or bedsets 
bounded by marine flooding surfaces and their correlative surfaces”, and a flooding surface as a surface 
“across which there is evidence of an abrupt increase in water depth” (Van Wagoner et al., 1988, p. 39). 

Parasequences were considered to arise from variations in the balance between sediment supply and 
relative sea-level change, but were originally defined as units that only develop under conditions of 
non-negative accommodation (Van Wagoner et al., 1990; Kamola and Van Wagoner, 1995), i.e., that 
are the product of sedimentation during a sea-level stillstand (a ‘paracycle’ sensu Vail et al., 1977) or 
during a phase when the rate of sediment supply outpaces the rate of accommodation generation. Thus, 
by their original definition, parasequences record normal regression (Fig. 2A). Notwithstanding, 
shoaling-upward packages have sometimes been termed ‘parasequences’ despite being part of 
successions accumulated during forced regression (Fig. 2A) and having characters that contrast with 
the definition of a parasequence sensu Van Wagoner (1985): where shallowing-upward units – 
organized in down-stepping patterns – record shelf transit during stillstands of falling stages, flooding 
surfaces should not develop between consecutive instances of these. Furthermore, the term has even 
been used to refer to units developed during relative sea-level fall (cf. Plint, 1991; Catuneanu et al., 
2010; Li et al., 2011a). Uncertainty on whether a sedimentary unit represents a true parasequence is 
also caused by criteria for identifying forced regression, such as downstepping stratal geometries, since 
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these may be difficult to recognize in outcrop and across wells and below the resolution of seismic 
datasets. Other issues with the definition and diagnostic criteria of parasequences, discussed in detail 
elsewhere (Swift et al., 1991; Posamentier and James, 1993; Arnott, 1995; Christie-Blick & Driscoll 
1995; Kamola & Van Wagoner, 1995; Zecchin, 2007, 2010; Embry & Johannessen, 2017; Catuneanu, 
2019a, 2019b; Colombera & Mountney, 2020), make the recognition of parasequences partly 
subjective: resulting inconsistencies in their application must be acknowledged when adopting these 
units as the basis for interpreting controls on the stratigraphic record. An issue that is of particular 
significance to the analyses presented below is the fact that parasequences can be defined for stratal 
patterns that develop at different scales, in sedimentary units that can be nested hierarchically, even in 
the same succession (cf. Fig. 1B; Ainsworth et al., 2019; Colombera & Mountney, 2020; and references 
therein). 

Nonetheless, clastic parasequences are considered here because they enable, in principle, a comparative 
analysis of many shallow-marine regressive tongues. By adhering to the original broad definition of 
parasequence (Van Wagoner et al., 1988), insight can be derived from meta-analysis that is relevant to 
situations where a more detailed classification of sedimentary units cannot be made with confidence 
(e.g., in subsurface interpretations supported by limited datasets, where parasequences may be varied 
in origin and sedimentary hierarchy). Herein, the focus is particularly on the role of accommodation 
and sediment supply as controls on parasequence architectures. A synthesis of many examples of 
parasequences aiming to offer some insight into their geological significance is presented in a 
companion paper (Colombera & Mountney, 2020). 

 

 

Figure 1: Definition and architecture of shoreface and deltaic parasequences (A). Part B illustrates a planview 

map and a cross-section of the accretionary history of the Yellow River delta (China), which serves as an example 

of how the sedimentary architecture of deltaic successions could be variably formalized into parasequences. The 

planform extent of deltaic constructional units of different hierarchies (delta complex, delta superlobe, and delta 

lobe, in order of descending scale; Xue, 1993; Wang et al., 2016, and references therein) on the delta plain is 

shown in map, together with the location of their now abandoned feeder channel belts. The idealized vertical log 

exemplifies the possible facies sequence of these units (C = complex; S = superlobe; L = lobe), which may variably 

be treated as deltaic parasequences, to highlight the challenge of defining parasequences in datasets with limited 

observations (cf. Fig. 2 in Ainsworth et al., 2019). Arabic numerals indicate delta ‘lobes’ (Wang et al., 2016); 
Roman numerals indicate delta ‘superlobes’ (Xue, 1993). 

 

Parasequence controls: accommodation and sediment supply 

Inferences of the controls exerted by accommodation and sediment supply based on sequence 
stratigraphic interpretations are commonly guided by theoretical predictions of how these factors affect 
stratal architectures at the scales of parasequences and parasequence sets (e.g., Posamentier et al., 1988; 
Galloway, 1989; Van Wagoner et al., 1990; Schlager, 1993; Wehr, 1993; Soreghan & Dickinson, 1994; 
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Posamentier & Allen, 1999). Some of these basic concepts have been substantiated in the following 
ways: (i) by outcrop and subsurface studies of the stratigraphic record where variations in 
accommodation and sediment supply can be constrained or inferred and compared with parasequence 
architectures, (e.g., Kidwell, 1993; van den Berg & Garrison, 2004; Aschoff & Steel, 2011; Carvajal & 
Steel, 2012; Hampson, 2016); (ii) by results of physical experiments and of process-based or geometric 
numerical-modelling exercises (e.g., Burgess & Allen, 1996; Houston et al., 2000; Kim et al., 2006; 
Charvin et al., 2011; Burpee et al., 2015); and (iii) by studies of the evolution of modern shoreline-shelf 
systems (e.g.,  Rodriguez & Meyer, 2006; Wolinsky et al., 2010; Tamura, 2012; Hein et al., 2016). 

Accommodation is recognized to control the geometry of individual parasequences (Fig. 2B). At a 
fundamental level, the water-depth and gradient of the shelf or ramp into which a shoreline builds out 
determine the (decompacted) thickness of a parasequence and influence the rate and amount of shoreline 
progradation it records (Heward, 1981; Jervey, 1988; Emery & Myers, 2009; Reynolds, 2017; 
Ainsworth et al., 2018, 2020). The seabed bathymetry is itself a function of the rate at which 
accommodation is generated and of spatial variations thereof, and is also influenced by the rate of 
sediment supply and by type and energy of the process regime operating therein (Swift & Thorne, 1991). 
In some cases the three-dimensional nature of the pre-existing accommodation into which 
parasequences develop may be complex, for example where parasequences are generated as bayhead-
delta cycles within the confines of incised valleys (cf. Thomas & Anderson, 1994; Bartek et al., 2004; 
Amorosi et al., 2008; Simms & Rodriguez, 2015). In these cases palaeo-topographies will control how 
sediment is distributed to a shoreline and the resulting lateral and downdip extent of parasequences, and 
can even act to determine or prevent autogenic parasequence generation, for example by dictating 
accommodation changes through progressive flooding of terraced profiles (cf. Rodriguez et al., 2005) 
and by suppressing trunk-river avulsion (Bhattacharya et al., 2019), respectively. 

At parasequence scale, the rates of creation of accommodation resulting from subsidence and eustatic 
fluctuations control the thickness of parasequences by driving aggradation and causing burial of older 
deposits (Wehr, 1993; Emery & Myers, 2009; Ainsworth et al., 2018; Fig. 2B). However, when an 
increase in accommodation outstrips sediment supply leading to transgression, reduction of 
parasequence thickness can occur in the form of erosional beheading by wave or tidal ravinement 
(Posamentier & Allen, 1999; Cattaneo & Steel, 2003; Jordan et al., 2016; Zecchin et al., 2019). 

Temporal changes in rates of creation of accommodation through a relative sea-level cycle are expected 
to determine variations across systems tracts and parasequence sets, with regards to the likelihood of 
development of units classifiable as parasequences and to their geometry. For example, paracycles are 
thought to be more likely during highstand and under conditions of overall shoreline progradation 
(Carter et al., 1998; Helland-Hansen & Hampson, 2009). Parasequences are also thought to be thicker 
on average in transgressive systems tracts because of the relatively higher rate of accommodation 
generation under which they form (Reynolds, 2017). In a basin, spatial variability in rates of creation 
of accommodation is expected to simultaneously affect parasequence geometry and stacking style (i.e., 
whether a parasequence set is ‘progradational’, ‘aggradational’, or ‘retrogradational’, according to the 
definitions by Van Wagoner et al., 1988); this could be expressed, for instance, in the lateral along-
strike transition from thicker parasequences organized in an aggradational set to a progradational set of 
thinner parasequences towards regions undergoing slower subsidence (Fig. 2C; cf. Van Wagoner et al., 
1990; Wehr, 1993; Martinsen & Helland-Hansen, 1994; Krystinik & DeJarnett, 1995; Zecchin et al., 
2006; Madof et al., 2016). Modes of sediment accommodation also vary across types of basins in 
relation to the magnitude and direction of subsidence gradients. Whether a sedimentary basin undergoes 
back-tilting or fore-tilting, or whether it presents syndepositional flexural bulges, will have an influence 
on sediment distribution and therefore on parasequence thickness, progradation distance and style of 
stacking (cf. Bhattacharya & Posamentier, 1994; Herbert, 1997; Emery & Myers, 2009; Hajek et al., 
2014; Leva López et al., 2014). 
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Figure 2: Accommodation and sediment-supply controls on the architecture of shoreface and deltaic 

parasequences. Part A illustrates stacking styles associated with normal and forced regression. Part B 

summarizes the expected influence of extant shelf accommodation (water depth) and rates of accommodation 

creation (aggradation rate) on parasequence thickness. Part C shows along-strike variation in parasequence 
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stacking patterns, from aggradational (A) to progradational (P), and the associated change in parasequence 

thickness resulting from spatial decrease in rate of creation of accommodation in extensional basins (Zecchin et 

al., 2006). Part D shows spatio-temporal changes in parasequence stacking patterns arising from progressive 

displacement of the position of a sediment entry point feeding a fan-delta system undergoing progradation, in 

response to strike-slip tectonics (Martinsen & Helland-Hansen 1995; cf. Steel, 1988). Part E shows parasequence 

thickness trends that can be predicted to develop in systems tracts based on acceleration or deceleration in the 

rate of relative sea-level rise. Parts F and G illustrate how concave-seaward (E) or concave-landward (F) 

shoreline trajectories can develop across sets of parasequences under constant rates of sediment supply, 

specifically in relation to decreasing rates of sea-level rise and to autogenic dynamics of linked depositional 

systems. Key shown in Fig. 1A applies to all parts of figure. See text for details. 

 

The control operated by the rate of sediment supply to depositional shorelines (S) is commonly 
considered relative to that of the rate of creation of accommodation (A), and expressed in terms of A/S 
ratio. The stratigraphic record of changes in A/S ratio is manifested over a range of scales. Variations 
in A/S ratio during deposition of a parasequence are expected to affect its geometry and internal 
anatomy. Temporal changes in sediment influx affect accretion dynamics in the nearshore, which 
should control the amount of progradation experienced by the shoreline during the geological history 
of the parasequence, as well as its internal bedset architecture (cf. Houston et al., 2000; Storms & 
Hampson, 2005; Forzoni et al., 2014; Li et al., 2015). Accordingly, the magnitude of A/S, by regulating 
the relative amount of nearshore aggradation and shoreline progradation, should be reflected in the 
regressive shoreline trajectory of a parasequence (Helland-Hansen & Martinsen, 1996; Hampson, 2000; 
Løseth et al., 2006; Helland-Hansen & Hampson, 2009). It is also postulated that rates of sediment 
supply might control the fraction of sand or sandstone of a parasequence, and that, therefore, the ratio 
between parasequence thickness and sand fraction (T/SF ratio) should represent a proxy of A/S 
(Ainsworth et al., 2018; 2020). Moreover, the A/S ratio determines the preservation potential of normal-
regressive units (Cattaneo & Steel, 2003; Zecchin et al., 2019), and is also thought to control the 
proportions and vertical trends of lithofacies and facies associations in parasequences, by affecting the 
relative degree of preservation of different facies belts (Swift et al., 1991; Cant, 1993; Helland-Hansen 
& Hampson, 2009). At the scale of multiple genetically related parasequences, temporal variations in 
A/S ratio are recorded in the stratigraphy in the form of changes of stacking pattern, which is itself a 
defining attribute of parasequence-set and systems-tract types (Van Wagoner et al., 1990; Wehr, 1993; 
Neal et al., 2016; Catuneanu, 2019a). Similarly, strike-oriented spatial variations in A/S associated with 
along-shore gradients in the rate of sediment supply can determine lateral changes in type and timing 
of development of parasequence stacking patterns (Fig. 2D; Van Wagoner et al., 1990; Schlager, 1993; 
Martinsen & Helland-Hansen, 1995; Forzoni et al., 2015). 

Parasequence architectures are also controlled by inherent dynamics in the way accommodation and 
sediment supply change through time. Under conditions of sinusoidal sea-level fluctuations, the rate of 
sea-level rise is expected to be typically accelerating through late lowstand and transgressive conditions 
and decelerating through highstand (cf. Posamentier et al., 1988; Catuneanu, 2019a). Notwithstanding 
possible variations in sediment supply, this should result in predictable parasequence arrangements and 
stacking patterns, by determining stratigraphic variations in the amount of aggradation recorded in 
consecutive parasequences and in their regressive shoreline trajectories. So, for example, parasequence 
aggradation is expected to progressively increase through transgression and progressively decrease 
through highstand (Ainsworth et al., 2018; Fig. 2E), whereas the regressive shoreline trajectories of 
successive parasequences are expected to portray a concave-seaward trajectory in highstand systems 
tracts and a concave-landward trajectory in lowstand systems tracts (Posamentier et al., 1988; 
Posamentier & Allen, 1999; Catuneanu, 2019a; Fig. 2F). Parasequence characteristics may also be 
controlled by autogenic behaviours related to coastal progradation. Continental environments that 
increase in extent because of delta growth sequester a progressively larger volume of sediment inducing 
a decrease in sediment influx to the deltaic shoreline, which itself requires more sediment to maintain 
the rate of offshore progradation if the delta builds out into deeper waters and its subaqueous portion 
increases in area. An autogenic decrease in rate of progradation is therefore expected in deltas subject 
to constant accommodation and sediment-supply rates, and this should be reflected in a concave-
landward shoreline trajectory (Jervey 1988; Muto & Steel, 1992, 1997, 2002; Fig. 2G). It is then 
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assumed that a concave-landward shoreline trajectory may also develop in parasequence sets and 
systems tracts arranged according to a progradational stacking pattern (Hampson, 2016). Potentially, a 
positive feedback may also exist whereby relative sea-level rise, by driving floodplain aggradation and 
thereby reducing the rate at which sediment reaches the shore, progressively enhances the rate of 
transgression (Kamola & Van Wagoner, 1995). 

These considerations are not necessarily comprehensive of all possible ways in which accommodation 
and sediment supply are believed to control the geometry and arrangement of parasequences, but are 
particularly important because they are widely considered in interpretations of the stratigraphic record. 
These assumptions form testable hypotheses, whose investigation is rendered possible by geological 
data arising from the description of parasequences in subsurface and outcrop studies conducted in the 
last four decades, and which lend themselves to a quantitative assessment through a meta-analysis. 

 

DATA AND METHODS 

A compound analysis has been undertaken of many datasets collated from the scientific literature, and 
stored in a SQL relational database, the Shallow-Marine Architecture Knowledge Store (SMAKS; 
Colombera et al., 2016). SMAKS stores data on sedimentary units of different types, for marine and 
lacustrine shallow-water and paralic depositional systems, and on the depositional context, geological 
boundary conditions, and metadata of datasets and systems. SMAKS includes data on sequence 
stratigraphic units and surfaces, among other entities (Colombera et al., 2016). As of November 2019, 
SMAKS contained data on tens of thousands of sedimentary units, including over 2,000 sequence-
stratigraphic units, of which 1,163 were parasequences that had originally been detailed in 64 case 
studies (Colombera & Mountney, 2020). Data on 957 parasequences from 62 case studies (Tab. 1) are 
used in this work. These units are recognized in sedimentary basins that collectively cover a range of 
tectonic and physiographic settings. 

Parasequences defined according to the definition of Van Wagoner et al. (1990) are coded in SMAKS 
following the interpretations provided in the original literature sources. No reinterpretation is attempted 
of the original datasets by defining flooding surfaces, parasequences or other sequence stratigraphic 
units. The main implication of this approach is that the collated data are geologically heterogeneous 
(see below; cf. Fig. 1B). For datasets released over multiple publications, more recent interpretations 
are favoured over older ones (e.g., Simpson & Eriksson, 1990; Eriksson et al., 2019). Original 
interpretations are discarded if they contrast with the database standard; so, for example, units termed 
‘parasequences’ in the literature sources but recognized to record shallowing-deepening cycles (e.g., 
Bowman, 2003) or displaying deepening-upward trends (e.g., Blondel et al., 1993) are not considered 
herein. 

In SMAKS, hierarchical and spatial relationships between different types of genetic units are recorded 
(Colombera et al., 2016). This allows tracking the relative containment of parasequences into parent 
sequence stratigraphic units, including parasequence sets and systems tracts (cf. Fig. 1D), and to 
characterize spatial trends. Where multiple orders of systems tracts and parasequence sets are 
recognized in the original literature sources, parent systems tracts and parasequence sets employed in 
the analyses represent units that build third-order sequences sensu Vail et al. (1977). The hierarchical 
containment of parasequence bounding surfaces, typically flooding surfaces, into large-scale facies 
belts, termed ‘depositional tracts’ (Colombera et al., 2016), allows querying relationships between 
attributes of both types of units. 

In SMAKS, parasequences are characterized employing several attributes, including genetic 
classifications of their deposits (Colombera & Mountney, 2020); interpretations by the original authors 
are relied upon. The interpreted depositional environment of parasequences is classified as ‘deltaic’, 
‘shoreface’ sensu lato (i.e., the preserved expression of non-deltaic linear coasts, such as those of 
strandplains or barrier systems), or as ‘deltaic-shoreface’ (in cases where both deltaic and shoreface s.l. 
systems are interpreted to have formed the units; cf. Fig. 1A). SMAKS parasequences are also classified 
on the interpreted dominant process regime, according to classes that define the interpreted relative 
importance played by wave, tidal and fluvial processes on their accumulation, largely based on the 
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scheme by Ainsworth et al. (2011; e.g., ‘F’ = river dominated; ‘Wf’ = wave dominated, river influenced; 
‘Twf’ = tide dominated, wave influenced, river affected). Deposits of uncertain attribution are left 
unclassified. 

 

 

Figure 3: Definition diagram for quantities discussed in this article. (A) Parameters recorded in SMAKS 

(Colombera et al., 2016) to describe the anatomy of parasequences and of associated shallow-water sand belts. 

(B) Idealized examples illustrating shoreline trajectories (Helland-Hansen & Martinsen, 1996) for SMAKS 

depositional tracts across which multiple parasequences are recognized (Colombera et al., 2016). Labels ‘PS’ 
and ‘fs’ indicate parasequences and flooding surfaces, respectively. 

 

Quantitative data on the geometry of parasequences (Fig. 3A), extracted from the original sources, 
include: the thickness of the parasequence, the thickness and downdip length of its shallow-water sand 
belt, and quantities that describe its regressive evolution, consisting of its progradation distance (i.e., 
the length of shoreline progradation recorded in the parasequence), its stratigraphic rise (i.e., the amount 
of aggradation at the shoreline) and the resulting progradation angle (i.e., the angle that tracks the 
direction of progradation of the parasequence relative to the palaeo-horizontal, that is, its regressive 
shoreline trajectory; Cant, 1991; Helland-Hansen & Martinsen, 1996). Values of thickness and dip 
length are classified by observation type, as ‘true’, ‘apparent’, ‘partial’ (when the location of termination 
of a unit at one end is unknown), or ‘unlimited’ (when the location of termination of a unit at both ends 
is unknown; Geehan & Underwood, 1993). This allows for analyses to be performed with consideration 
of possible bias arising from differences in observation types. No correction for sediment compaction 
has been applied to the thickness of sedimentary units. The estimated length of time (duration) and 
order of magnitude in timescale over which parasequences were accumulated are recorded, considering 
chronostratigraphic frameworks reported by the original authors and based on radiometrically dated 
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horizons within the successions or correlated through biostratigraphy. 

 

Table 1: Summary of the 62 case studies of sequence stratigraphic interpretations considered in this work. A 

case study is a dataset on a particular succession, by some author or research group, as presented in a 

published source or Thesis (or in a set of related publications). References to the consulted literature sources 

that contain the sequence-stratigraphic interpretations and associated data are reported. The asterisk denotes a 

lacustrine succession; all other successions are paralic to shallow marine in origin. N indicates the number of 

parasequences considered in this work for each case study; a larger number of parasequences may be described 

in each case study. The data from each of these studies are recorded in the Shallow-Marine Architecture 

Knowledge Store (SMAKS) database, the structure of which allows for sophisticated querying to examine 

possible relationships (see Colombera et al., 2016). 

Succession Location Age Data types N Sources 
Battfjellet 
Formation 

Spitsbergen, Norway Eocene Outcrop 15 Gjelberg (2010); Helland-
Hansen (2010) 

Bell Island Group Newfoundland, Canada Lower 
Ordovician 

Outcrop 8 Brenchley et al. (1993) 

Blackhawk 
Formation 

Utah, USA Upper 
Cretaceous 

Outcrop 38 Reynolds (1999); data from: 
Balsley (1982); Taylor & 
Lovell (1992); Van Wagoner 
(1992); O'Byrne & Flint 
(1993) 

Bouzergoun 
Formation 

Morocco Lower 
Cretaceous 

Outcrop 3 Nouidar & Chellaı̈ (2002) 

Cliff House 
Sandstone 

New Mexico, USA Upper 
Cretaceous 

Outcrop 11 Jordan et al. (2016) 

Ferron Sandstone 
'Last Chance Delta' 

Utah, USA Upper 
Cretaceous 

Outcrop 44 Garrison & van den Bergh 
(2004); van den Bergh & 
Garrison (2004) 

Ferron Sandstone 
'Notom Delta' 

Utah, USA Upper 
Cretaceous 

Outcrop 43 Li et al. (2010, 2011a, 2011b, 
2012); Zhu et al. (2012) 

Foreknobs 
Formation 

Virginia/West Virginia, 
USA 

Upper 
Devonian 

Outcrop 5 McClung et al. (2013, 2016); 
Eriksson et al. (2019) 

Frontier Formation Wyoming, USA Upper 
Cretaceous 

Outcrop 8 Feldman et al. (2014) 

Gallup Formation New Mexico, USA Upper 
Cretaceous 

Outcrop 61 Lin et al. (2019) 

Gelincik Formation Turkey Miocene Outcrop 32 Ilgar (2015) 

Gros Morne 
Formation 

Trinidad Pliocene Outcrop 13 Bowman (2003) 

Hosta Tongue New Mexico, USA Upper 
Cretaceous 

Outcrop 1 Sixsmith et al. (2008) 

Jurassic of East 
Greenland 

Greenland Lower to 
Upper 
Jurassic 

Outcrop 13 Surlyk (1991); Dam & 
Surlyk (1995); Larsen & 
Surlyk (2003); Engkilde & 
Surlyk (2003); Vosgerau et 
al. (2004) 

Lajas Formation Argentina Middle 
Jurassic 

Outcrop 7 McIlroy et al. (2005) 

Mayaro Formation Trinidad Pliocene Outcrop 16 Bowman (2003, 2016); 
Bowman & Johnson (2014) 

Mesaverde Group Wyoming, USA Upper 
Cretaceous 

Outcrop 9 Fitzsimmons & Johnson 
(2000) 

Mulichinco 
Formation 

Argentina Lower 
Cretaceous 

Outcrop 19 Wesolowski et al. (2018) 

Neill Klinter Group Greenland Lower 
Jurassic 

Outcrop 8 Eide et al. (2016) 

Oligocene-Early 
Miocene of northern 
Taiwan 

Taiwan Oligocene to 
Miocene 

Outcrop 55 Teng & Tai (1996) 

Pilmatué Member, 
Agrio Formation 

Argentina Lower 
Cretaceous 

Outcrop 11 Isla et al. (2018); Schwarz et 
al. (2018) 

Pliocene of Dacian Romania Pliocene Outcrop 10 Jorissen et al. (2018) 
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Basin 

Pliocene of Val 
d'Orcia Basin 

Italy Pliocene Outcrop 4 Ghinassi (2007) 

Point Lookout 
Sandstone 

Colorado, USA Upper 
Cretaceous 

Outcrop 16 Crandall (1992); Katzman & 
Wright-Dunbar (1992); 
Wright-Dunbar et al. (1992) 

Potrerillos 
Formation of 
Mexico 

Mexico Paleocene Outcrop 29 Shelley & Lawton (2005) 

Star Point 
Sandstone 

Utah, USA Upper 
Cretaceous 

Outcrop 5 Hampson et al. (2011) 

Straight Cliffs 
Formation 

Utah, USA Upper 
Cretaceous 

Outcrop 11 McCabe & Shanley (1992) 

Uppermost Kubang 
Pasu Formation 

Malaysia Cisuralian Outcrop 8 Hassan et al. (2013, 2017) 

Yenimahalle 
Formation* 

Turkey Miocene Outcrop 12 Ilgar & Nemec (2005) 

Battfjellet 
Formation 

Spitsbergen, Norway Eocene Outcrop and 
subsurface 

19 Grundvåg et al. (2014) 

Blackhawk 
Formation and 
Castlegate 
Sandstone 

Utah, USA Upper 
Cretaceous 

Outcrop and 
subsurface 

29 Hampson & Storms (2003); 
Hampson & Howell (2005); 
Hampson et al. (2008); 
Charvin et al. (2010); 
Hampson (2010) 

Blackhawk 
Formation and 
Castlegate 
Sandstone 

Utah/Colorado, USA Upper 
Cretaceous 

Outcrop and 
subsurface 

29 Pattison (2010, 2018, 2019a, 
2019b) 

Brejning Formation 
and Ribe Group 

Denmark Miocene Outcrop and 
subsurface 

6 Rasmussen et al. (2004); 
Rasmussen & Dybkjær 
(2005); Hansen & 
Rasmussen (2008); 
Rasmussen (2009) 

Cozzette Sandstone Utah/Colorado, USA Upper 
Cretaceous 

Outcrop and 
subsurface 

6 Madof et al. (2015, 2016) 

Emery Sandstone Utah, USA Upper 
Cretaceous 

Outcrop and 
subsurface 

17 Edwards et al. (2005) 

Fox Hills Formation Wyoming, USA Upper 
Cretaceous 

Outcrop and 
subsurface 

10 Carvajal & Steel (2009); 
Olariu et al. (2012) 

Frontier Formation Utah/Colorado/Wyomin
g, USA 

Upper 
Cretaceous 

Outcrop and 
subsurface 

7 Hutsky et al. (2016); Hutsky 
& Fielding (2016, 2017) 

Mesaverde Group Wyoming, USA Upper 
Cretaceous 

Outcrop and 
subsurface 

17 Klug (1993) 

Muskiki and 
Marshybank 
formations 

Alberta, Canada Upper 
Cretaceous 

Outcrop and 
subsurface 

15 Plint (1990, 1991); Plint & 
Norris (1991) 

Point Lookout 
Sandstone 

New Mexico, USA Upper 
Cretaceous 

Outcrop and 
subsurface 

9 Devine (1991) 

Quaternary of 
Paraná coastal plain 

Brazil Pleistocene to 
Holocene 

Outcrop and 
subsurface 

2 Angulo et al. (2009); Souza 
et al. (2012); Berton et al. 
(2019) 

Rio Bonito and 
Palermo formations 

Brazil Cisuralian Outcrop and 
subsurface 

9 Holz (2003); Ketzer et al. 
(2003); Holz & Kalkreuth 
(2004); Holz et al. (2006) 

Second Frontier 
sandstone, Frontier 
Formation 

Wyoming, USA Upper 
Cretaceous 

Outcrop and 
subsurface 

7 Vakarelov & Bhattacharya 
(2009) 

Upper Almond 
Formation 

Wyoming, USA Upper 
Cretaceous 

Outcrop and 
subsurface 

21 Merletti et al. (2018) 

Upper Sego 
Sandstone and Iles 
Formation 

Colorado, USA Upper 
Cretaceous 

Outcrop and 
subsurface 

24 Kirschbaum & Hettinger 
(2004); Kirschbaum & 
Cumella (2015) 

Wall Creek 
Member, Frontier 
Formation 

Wyoming, USA Upper 
Cretaceous 

Outcrop and 
subsurface 

9 Lee et al (2005, 2007a, 
2007b); Gani & Bhattacharya 
(2007); Sadeque et al. (2009) 

22 Sand of Trinidad Pliocene Subsurface 15 Bowman (2003) 
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Columbus Basin 

Arida and Diba 
formations 

Libya Oligocene Subsurface 7 Gruenwald (2001) 

Barrow Group Northwest Shelf, 
Australia 

Lower 
Cretaceous 

Subsurface 40 Ainsworth et al. (2018) 

Brigadier Formation Northwest Shelf, 
Australia 

Upper 
Triassic 

Subsurface 16 Ainsworth et al. (2016, 2018) 

Calcasieu incised 
valley 

Louisiana, USA Pleistocene to 
Holocene 

Subsurface 3 Nichol et al. (1996) 

Dunvegan 
Formation 

Alberta, Canada Upper 
Cretaceous 

Subsurface 19 Bhattacharya (1989, 1992); 
Bhattacharya & Walker 
(1991a, 1991b); 
Bhattacharya & MacEachern 
(2009) 

Gulf of Cádiz shelf Spain Pleistocene to 
Holocene 

Subsurface 4 Lobo et al. (2001); Gonzales 
et al. (2004) 

Gulf of Lion, inner 
shelf and Rhone 
Delta 

France Pleistocene to 
Holocene 

Subsurface 10 Boyer et al. (2005); Labaune 
et al. (2005; 2008); Berné et 
al. (2007); Jouët (2007) 

Gulf of Lion, outer 
shelf 

France Pleistocene Subsurface 7 Berné et al. (1998); Rabineau 
et al. (2005); Jouet et al. 
(2006); Bassetti et al. (2006; 
2008) 

Hazad Member, 
Ankleshwar 
Formation 

India Eocene Subsurface 21 Jaiswal et al. (2018) 

Holocene of the Po 
Plain 

Italy Holocene Subsurface 8 Amorosi et al. (2005, 2017); 
Campo et al. (2017) 

Krossfjord and 
Fensfjord 
formations 

Norway Middle 
Jurassic 

Subsurface 8 Holgate et al. (2013, 2015); 
Holgate (2014) 

Late Quaternary of 
Tuscany 

Italy Pleistocene Subsurface 3 Amorosi et al. (2008, 2013); 
Rossi et al. (2017) 

Palaeo-Changjiang 
delta 

China Pleistocene to 
Holocene 

Subsurface 3 Zhang et al. (2017) 

Plover and 
Laminaria 
formations 

Timor Sea Middle 
Jurassic 

Subsurface 23 Ainsworth (2005); Ainsworth 
et al. (2008) 

Viking Formation Alberta, Canada Lower 
Cretaceous 

Subsurface 19 Boreen & Walker (1991), 
Pattison (1991, 1992) 

 

Values of parasequence ‘sand fraction’ (cf. Ainsworth et al., 2018, 2020) are computed based on the 
ratio between the maximum observed thickness of the parasequence shallow-water sand belt and the 
maximum observed thickness of the parasequence (Fig. 3A). Because these thickness values might have 
been observed at different locations, the parasequence ‘sand fraction’ does not necessarily correspond 
to the value of actual sand or sandstone proportion at either location, and is not necessarily an accurate 
measure of the global proportion for the parasequence. Values of parasequence thickness-to-sand-
fraction ratios (cf. T/SF ratio of Ainsworth et al., 2018, 2020) are also computed accordingly, meaning 
that these metrics differ substantially from the T/SF ratios of Ainsworth et al. (2018, 2020), in two 
ways: (i) the downdip variability in volumetric sand fractions within individual parasequences is not 
characterized: estimations of sand fractions are less accurate than they would be if it was (as done by 
Ainsworth et al., 2018, 2020); (ii) the maximum, rather than the mean, parasequence thickness is 
considered. 

In SMAKS, units termed ‘depositional tracts’ are defined that represent large-scale facies belts (e.g., 
shallow-marine sand belts); these units, which may span several stacked parasequences, are 
characterized based on several attributes (Colombera et al., 2016). The only parameter employed in this 
work is the depositional-tract ‘shoreline trajectory’, i.e., the angle that defines the direction of migration 
of a depositional shoreline-break relative to the palaeo-horizontal (cf. Helland-Hansen & Martinsen, 
1996), over the entire vertical extent of the depositional tract (Fig. 3B). This allows a quantitative 
description of parasequence stacking patterns, even in cases where parasequence sets are not formally 
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defined in the original literature datasets. 

Statistical analyses of the data were conducted in R 3.5.1 (R Core Team, 2018). Transformations of 
variables are sometime applied to meet assumptions of normality or to assess relationships that may be 
non-linear. Pearson’s correlation coefficients are used to quantify sign and magnitude of linear 
correlation. To test for statistical significance of differences among groups, analysis of variance 
(ANOVA) with Welch’s correction is applied, followed by non-parametric Games‐Howell post-hoc 
tests (Welch, 1951; Games & Howell, 1976). An alpha value of 0.05 is considered when testing 
statistical significance, unless stated otherwise. 

 

Limitations 

Some limitations to the current study that should be remarked before presenting the results are briefly 
summarized as follows. 

- All sequence-stratigraphic categories used in this article are interpretive, and the segmentation 
of a succession into parasequences is a heuristic process and is to some degree arbitrary. The 
parasequences considered in this study may vary widely with respect to their original formative 
mechanisms, and may represent different hierarchies of stratal packages (cf. Fig. 1B). These 
units are interpreted to represent pulses of shoreline progradation at both local and regional 
scales, and covering a broad spectrum of timescales. A discussion of how geological variability 
can affect the studied properties is offered by Colombera & Mountney (2020). 

- The present compilation includes both outcrop and subsurface case studies, and for each of 
these data types the datasets vary with respect to data dimensionality, density, and geographic 
coverage. Physical correlation of parasequences and bounding surfaces is inherently uncertain, 
especially across wells, and this might affect parasequence definition in studies that employ 
subsurface data. The orientation and extent of outcrop exposures is variable across the 
considered outcrop studies, which affects parasequence characterization. A discussion of how 
the studied attributes are seen to vary across datasets of different types, with consideration of 
how the architecture of parasequences varies along their depositional dip profile, is provided 
by Colombera & Mountney (2020). 

- Any error that affects the primary data sources (e.g., error in radiometric dating and in 
correlation of dated horizons, error in depth conversion) is inherited by the meta-analysis. In 
particular, estimations of parasequence durations are likely affected by age extrapolation being 
attempted without constraints on the duration of hiatuses (cf. Sadler, 1981; Colombera & 
Mountney, 2020). 

- In parasequences, the transition between offshore or prodeltaic muds or mudstones and 
shallower-water sands or sandstones is commonly gradational. For attributes of parasequence 
sand belts, corresponding to littoral or delta-front deposits, the sand-mud boundaries placed in 
the original works were considered, but criteria for their placement may vary across datasets. 

- Uncertainty in the recognition of the true orientation of a depositional-dip profile (cf.,  Fielding, 
2011 vs Zhu et al., 2012) affects quantification: apparent measures of dip length and 
progradation distance overestimate true values whereas apparent progradation angles 
underestimate true values. 

- Depositional-tract shoreline trajectories and parasequence progradation angles are also affected 
by problems relating to variability in data types and density, choice of datum in actively 
deforming basins, parasequence-top erosion, differential sediment compaction, and along-
strike variations in sedimentary architectures (see discussions in: Hampson et al., 2009; 
Helland-Hansen & Hampson, 2009; Bhattacharya, 2011; Jordan et al., 2016; Madof et al., 2016; 
Hutsky & Fielding, 2017; Pattison, 2020). 

- Although the case studies considered in this meta-analysis are globally distributed and cover 
Phanerozoic successions of different ages, there exists bias towards Upper Cretaceous 
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successions of the Western Interior Seaway of North America (48% of the studied 
parasequences). This reflects how research delivering data suited to this study has been 
conducted to date by the wider community. 

 

RESULTS 

Parasequence geometries and stacking patterns 

Differences in the characteristics of parasequences across parasequence-set types are assessed first. 
Parasequence sets are successions made of genetically related parasequences arranged in a distinctive 
stacking pattern (Van Wagoner et al., 1988). Only parasequence sets classified as ‘progradational’, 
‘aggradational’, or ‘retrogradational’, according to the definitions by Van Wagoner et al. (1988) are 
employed for this analysis; other denominations (e.g., ‘aggradational to progradational set’) are 
excluded. 

In total, the database contains data on 416 parasequences contained in 120 classified parasequence sets 
suitable for this part of the analysis. The majority of parasequences assigned to classified parasequence 
sets (ca. 58%) are arranged according to a progradational stacking pattern, whereas ca. 26% of 
parasequences are from sets with backstepping pattern and ca. 16% from aggradational parasequence 
sets (Fig. 4A). 

Some observations can be made on distributions of parasequence parameters for parasequence-set 
stacking patterns (Fig. 4B-G, Tab. 2). Parasequences in progradational sets are on average thicker than 
those in aggradational or retrogradational sets, to a level that is statistically significant based on results 
of Welch's one-way ANOVA with Games-Howell post-hoc tests (Fig. 4B, Tab. 2). Parasequence sand 
belts in progradational sets are on average thicker and longer along the depositional dip profile than 
those in aggradational or retrogradational sets, to a statistically significant level (Fig. 4C-D, Tab. 2). 
The stratigraphic rise of parasequences in progradational sets is on average larger than that of 
aggradational or retrogradational sets; differences in mean stratigraphic rise between progradational and 
retrogradational sets are statistically significant (Fig. 4E, Tab. 2). The progradation distances of 
parasequences in progradational sets are on average larger than those of aggradational sets, themselves 
larger than those of retrogradational sets; differences are statistically significant (Fig. 4F, Tab. 2). The 
progradation angles of parasequences in aggradational sets are on average steeper than those of 
retrogradational sets, whereas progradational sets display progradation angles that tend to be the 
smallest; however these differences are not statistically significant (Fig. 4G, Tab. 2). 

 

Table 2: Descriptive statistics for parasequences grouped by parasequence-set type and results of statistical 

tests. St. dev.: standard deviation; N: number of parasequences; ANOVA: analysis of variance; psT: 

parasequence thickness; sstT: parasequence sand-belt thickness; sstL: parasequence sand-belt dip length; sR: 

parasequence stratigraphic rise; pD: parasequence progradation distance; α: parasequence progradation 

angle; F: F-value, p: p-value. (*) For progradation angles, values of circular mean and circular standard 

deviation are reported, and ANOVA is performed on corresponding gradient values. 

 
Progradational set Aggradational set Retrogradational set 

Welch's  
one-way ANOVA Mean 

St. 
dev. 

N Mean 
St. 

dev. 
N Mean 

St. 
dev. 

N 

psT (m) 17.2 12.8 221 10.1 6.6 56 11.7 9 109 
F[2, 185.9] = 

18.57, p<0.001 

sstT (m) 13.8 8.2 156 8.6 6.1 44 6.2 4.7 45 
F[2, 103.8] = 

33.05, p<0.001 

sstL (km) 23.0 25.7 150 11.6 20.4 31 10.9 10.0 37 
F[2, 76.4] = 

10.75, p<0.001 

sR (m) 8.1 6.6 58 5.2 4.9 14 3.6 1.9 7 
F[2, 25.6] = 7.78, 

p = 0.002 

pD (km) 11.2 10.9 63 5.0 3.1 11 1.9 1.0 7 
F[2, 27.6] = 

24.07, p<0.001 

α (°)* 0.091 0.099 62 0.193 0.443 14 0.140 0.082 7 
F[2, 13.1] = 1.12, 

p = 0.355 
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Figure 4: Comparison of parasequence characteristics across different parasequence-set types. (A) Relative 

proportion of parasequences by type of parent parasequence set. (B-D) Combined violin-box plots of the 

distribution of parasequence thickness (B), sand-belt thickness (C), and sand-belt dip length (D) in different types 

of parasequence sets. (E-G) Box plots of the distribution of parasequence stratigraphic rise (E), progradation 

distance (F), and progradation angle (G) in different types of parasequence sets. Mean values, outliers and kernel 

densities are computed after log-scale transformations were applied for parts D and F. ‘N’ denotes the number 
of parasequences. In box plots, boxes represent interquartile ranges, crosses represent mean values (back-

transformed means in parts D and F), horizontal bars represent median values, and dots represent outliers (values 
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larger than 1.5 times the interquartile range). Violin plots also display kernel density estimates. In parts B, C, D 

and G, pie charts are included that report the relative proportion of data from outcrop (O), subsurface (S) and 

mixed outcrop-subsurface (O/S) examples. In part D a pie chart is included that shows the relative proportion of 

observations on sandstone dip length classified as ‘true’ (T), ‘apparent’ (A), ‘partial’ (P), and ‘unlimited’ (U) 
measurements, for outcrop datasets. See Table 2 for a breakdown of dataset size. 

 

Parasequence geometries and systems tracts 

A corresponding analysis is undertaken for characteristics of parasequences across different types of 
systems tracts. Only successions classified as lowstand systems tracts (LSTs), transgressive systems 
tracts (TSTs), highstand systems tracts (HSTs) or falling-stage systems tract (FSSTs), based on 
established definitions (cf. Van Wagoner et al., 1988; Hunt & Tucker, 1992; Catuneanu et al., 2009), 
are considered. 

In total, the database contains data on 618 parasequences contained in 153 classified systems tracts 
suitable for this analysis. Of parasequences assigned to systems tracts, ca. 17% are from LSTs, ca. 24% 
are from TSTs, ca. 55% are from HSTs, and ca. 4% are from FSSTs (Fig. 5A). 

Parasequences tend to be thicker on average (i.e., their mean thickness is larger) in HSTs and LSTs, 
and particularly thickest in HSTs and thinnest in FSSTs, with differences between HST parasequences 
and FSST or TST parasequences that are statistically significant, based on Welch's one-way ANOVA 
and Games-Howell post-hoc tests (Fig. 5B, Tab. 3). Parasequence sand belts tend to be thickest in HSTs, 
and thicker in LSTs than in TSTs or FSSTs; these differences are statistically significant (Fig. 5C, Tab. 
3). The dip length of parasequence sand belts tends to be larger on average in HSTs and LSTs, largest 
for HSTs, and shortest for FSSTs; differences in mean sand length seen between HST parasequences 
and those in FSSTs and TSTs are statistically significant at alpha = 0.1 (Fig. 5D, Tab. 3). The 
stratigraphic rise and progradation angle of parasequences are necessarily negative in FSSTs, and larger 
in HST or LST parasequences than in TST parasequences; only the stratigraphic rise and progradation 
angle of FSST parasequences differ to a statistically significant level from those of parasequences in 
other systems tracts (Fig. 5E, 5G, Tab. 3). The progradation distance of parasequences tend to be largest 
in FSSTs and smallest in TSTs, but differences in progradation distance between TST and HST 
parasequences are also statistically significant (Fig. 5F, Tab. 3). 

For LSTs and HSTs, changes in progradation angle and progradation distance seen across pairs of 
adjacent successively stacked parasequences contained in the same systems tract are assessed (Fig. 6). 
Descriptive statistics of differences in progradation distance and angle quantify the tendency to which 
systems tracts record variations in shoreline progradation. In particular, differences in progradation 
angle quantify the development of concave-landward or concave-seaward shoreline trajectories, which 
might arise from acceleration or deceleration in rates of creation of accommodation or from autogenic 
dynamics. Dominance of positive differences in progradation angle will reflect a tendency to develop 
concave landward systems-tract shoreline trajectories (progressive rise). Dominance of positive 
differences in progradation distance might reflect an increase in shoreline progradation rates or longer 
parasequence duration (progressive lengthening). This type of quantification describes trends in 
parasequence regression, but ignores potential trends in transgressive histories. If LSTs and HSTs are 
considered jointly, differences in the progradation angle of successive parasequences are positive in 
44% of the cases, whereas differences in progradation distance are positive 51% of the times. Mean 
values of progradation distance and angle (circular mean) are both negative (–126 m, –0.030°; Fig. 6), 
but neither means are significantly different from zero based on one-sample t-tests returning p-values 
of 0.873 and 0.339 (on equivalent gradients), respectively. Across the studied systems tracts, the sum 
of differences in progradation angle of successive parasequences within each are positive in four cases 
out of nine, whereas the sum of differences in progradation distance are positive in three cases out of 
nine. If LSTs and HSTs are considered separately, differences in the progradation angle of successive 
parasequences are positive in 41% of the cases in HSTs (circular mean: –0.041°) and in half of the cases 
in LSTs (circular mean: –0.007°). Differences in progradation distance are positive in 52% of 
parasequence pairs in HSTs (mean: 127 m) and in half of the cases in LSTs, where their mean value is 
however negative (mean: –810 m). In SMAKS, 28 highstand and lowstand systems tracts are included 
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that were originally recognized as displaying aggradational-to-progradational or progradational-to-
aggradational stacking patterns: of these, the majority (64%) exhibit aggradational-to-progradational 
stacking. None of the HSTs (N = 16) was originally classed as demonstrating progradational-to-
aggradational stacking; only 17% of these LSTs (N = 12) were recognized as having aggradational-to-
progradational stacking. 

Similarly, differences in parasequence thickness across consecutive stacked parasequences can be 
assessed. The difference in parasequence thickness is on average negative for both HSTs (mean: –0.67 
m, standard deviation: 8.1 m, N = 229) and LSTs (mean: –0.85 m, standard deviation: 9.3 m, N = 229), 
i.e., parasequences tend to become thinner through time in both types of systems tract. Instead, the 
difference in parasequence thickness is on average positive for TSTs (mean: 0.37 m, standard deviation: 
6.7 m, N = 112). Nevertheless, these differences are not statistically significant (Welch's one-way 
ANOVA: F[2, 180.2] = 0.94, p = 0.393). Also, stratigraphic transitions to thinner parasequences are 
only marginally more common than transitions to thicker parasequences in HSTs (54% vs 46 %, N = 
229) or LSTs (55% vs 45 %, N = 76), and transitions to thicker parasequences are as common as 
transitions to thinner parasequences in TSTs (50% vs 50%, N = 112). 

 

Table 3: Descriptive statistics for parasequences grouped by type of systems tract and results of statistical tests. 

St. dev.: standard deviation; N: number of parasequences; ANOVA: analysis of variance; psT: parasequence 

thickness; sstT: parasequence sand-belt thickness; sstL: parasequence sand-belt dip length; sR: parasequence 

stratigraphic rise; pD: parasequence progradation distance; α: parasequence progradation angle; F: F-value, 

p: p-value. (*) For progradation angles, values of circular mean and circular standard deviation are reported, 

and ANOVA is performed on corresponding gradient values. 

 
LST TST HST FSST Welch's  

one-way 
ANOVA 

Mean 
St. 

dev. 
N Mean 

St. 
dev. 

N Mean 
St. 

dev. 
N Mean 

St. 
dev. 

N 

psT 
(m) 

14.0 10.3 109 11.1 8.2 154 15.2 12.1 328 9.8 4.4 21 
F[3, 109.3] = 

10.03, 
p<0.001 

sstT 
(m) 

9.3 6.0 71 6.3 5.2 63 11.7 8.7 239 6.2 2.6 20 
F[3, 101.8] = 

21.62, 
p<0.001 

sstL 
(km) 

15.4 13.4 48 13.2 13.9 46 19.8 20.3 181 10.1 7.5 20 
F[3, 85.7] = 

6.43, p<0.001 

sR 
(m) 

5.9 7.2 18 3.9 3.7 11 7.8 7.1 56 –24.4 5.3 4 
F[3, 12.9] = 

40.27, 
p<0.001 

pD 
(km) 

7.1 8.4 18 3.0 3.1 11 9.4 11.3 59 10.7 7.8 4 
F[3, 13.1] = 

5.02, p = 
0.016 

α (°)* 0.159 
0.41

5 
18 0.116 

0.10
0 

11 0.136 
0.16

5 
56 

–
0.226 

0.16
9 

7 
F[3, 19.8] = 

7.90, p = 
0.001 

 

Parasequence geometries, aggradation and progradation 

Relationships are assessed that may exist between parameters that describe parasequence geometry and 
measures of the style of parasequence aggradation and progradation, consisting of stratigraphic rise, 
progradation distance, the resulting progradation angle, and associated rates of shoreline progradation 
and aggradation at the shoreline. 

Moderate direct correlations are seen between positive values of parasequence stratigraphic rise and 
thickness (Pearson’s R = 0.526, p<0.001; Fig. 7A) and between progradation distance and thickness (R 
= 0.546, p<0.001; Fig. 7C). Modest positive correlation is also seen between stratigraphic rise and 
progradation distance for normal-regressive parasequences (R = 0.406, p<0.001). 
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Figure 5: Comparison of parasequence characteristics across different types of systems tracts. (A) Relative 

proportion of parasequences by type of systems tract. (B-D) Combined violin-box plots of the distribution of 

parasequence thickness (B), sand-belt thickness (C), and sand-belt dip length (D) in different types of systems 

tracts. (E-G) Box plots of the distribution of parasequence stratigraphic rise (E), progradation distance (F), and 

progradation angle (G) in different types of systems tracts. Mean values, outliers and kernel densities are 

computed after log-scale transformations were applied for parts D and F. ‘N’ denotes the number of 
parasequences. In box plots, boxes represent interquartile ranges, crosses represent mean values (back-
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transformed means in parts D and F), horizontal bars represent median values, and dots represent outliers (values 

larger than 1.5 times the interquartile range). Violin plots also display kernel density estimates. In parts B, C, D 

and G, pie charts are included that report the relative proportion of data from outcrop (O), subsurface (S) and 

mixed outcrop-subsurface (O/S) examples. In part D a pie chart is included that shows the relative proportion of 

observations on sandstone dip length classified as ‘true’ (T), ‘apparent’ (A), ‘partial’ (P), and ‘unlimited’ (U) 
measurements, for outcrop datasets. See Table 3 for a breakdown of dataset size. 

 

 

Figure 6: Stratigraphic changes in parasequence progradation in lowstand and highstand systems tracts. 

Distributions of the difference in progradation angle (A) and progradation distance (B) between pairs of 

successive parasequences contained in the same systems tract. Distributions are plotted separately for lowstand 

(blue, transparent) and highstand (green) parasequences. Overall mean values of the parameters are represented 

as vertical bars. 

 

Parasequence aggradation and progradation rates are affected by so-called Sadler effect (Sadler, 1981), 
i.e., vary as a function of the length of time over which they are evaluated, in relation to increased 
average duration of gaps in sedimentation with increasing length of time (Colombera & Mountney, 
2020). Thus, relationships between mean parasequence aggradation or progradation rates and 
parasequence geometries should be assessed with consideration of the timescale of parasequence 
development (Figs. 7 and 8). Thus, although only weak positive correlation is seen between the 
thickness of parasequences and their log-transformed mean aggradation rate for the entire data pool 
(Pearson’s R = 0.292, p = 0.058), stronger positive relationships are separately seen between the same 
variables for groups of parasequences developed over 103 yr and 104 yr timescale (103 yr: R = 0.950, 
p<0.001; 104 yr: R = 0.793, p<0.001; Fig. 7B). Correspondingly, a direct correlation is seen between 
parasequence thickness and log-transformed mean progradation rate that is weak overall (Pearson’s R 
= 0.381, p = 0.006), but stronger when evaluated for groups of parasequences of comparable timescales 
(104 yr: R = 0.671, p<0.001; 105 yr: R = 0.610, p = 0.108; Fig. 7D). Similarly, no correlation is seen 
between the log-transformed mean progradation rate and parasequence sand or sandstone dip length for 
the entire data pool (Pearson’s R = –0.048), but positive relationships are seen between the same 
variables for groups of parasequences classified on order of magnitude in timescale (103 yr: R = 0.833, 
p<0.001; 104 yr: R = 0.621, p = 0.002; 105 yr: R = 0.697, p = 0.082; Fig. 8). 

For stratigraphic intervals for which basin-wide average aggradation rates can be estimated (e.g., 
Garrison & van den Bergh, 2004; Zhu et al., 2012; Lin et al., 2019), relationships between the mean 
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aggradation rate of the intervals and the average thickness of the parasequences they contain can be 
assessed. A moderate and non-significant positive correlation is seen between aggradation rate and 
mean parasequence thickness for intervals that encompass orders of magnitude in temporal duration of 
106 yr (R = 0.563, p = 0.244, N = 6), whereas a weak positive relationship is seen for successions 
accumulated over 105 yr timescales (R = 0.204, p = 0.571, N = 10). 

For ‘parasequences’ that record forced regression (and which therefore do not strictly conform to the 
definition of parasequence sensu stricto; Kamola & Van Wagoner, 1995), characterized by negative 
progradation angles, moderate positive relationships are seen between their progradation angle and their 
overall thickness (Pearson’s R = 0.535, p = 0.138; Fig. 9A), the thickness of their shallow-water sand 
belts (R = 0.537, p = 0.136; Fig. 9B), and the true or apparent down-dip length of the sand belts (R = 
0.711, p = 0.032; Fig. 9C). Thus, forced-regressive parasequences tend to be thicker and display thicker 
and longer sand belts for flatter progradation trajectories. However, the dataset size is limited, and direct 
scaling between negative progradation angle and parasequence sand-belt dip length might reflect 
spurious correlation due to measurements taken along sections that are variably oblique to the 
depositional-dip direction. 

 

 

Figure 7: Scatter plots of parasequence thickness against parasequence stratigraphic rise (A), mean nearshore 

aggradation rate (B), shoreline progradation distance (C) and mean progradation rate (D); spots are colour-

coded by the timescale over which parasequences were deposited and rates estimated. 

 

For parasequences that record normal depositional regression, i.e., with positive progradation angle, 
weak negative relationships are seen between their progradation angle and either their overall thickness 
(Pearson’s R = –0.190, p = 0.042; Fig. 9A) or the thickness of their sand belts (R = –0.171, p = 0.055; 
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Fig. 9B). A moderate negative relationship is between log-transformed parasequence progradation 
angle and sand-belt down-dip length (R = –0.463, p<0.001; Fig. 9D). In part this can be explained by 
underestimation of dip lengths for partial and unlimited observations (see Fig. 9D) and by inverse 
scaling between apparent values of progradation angle and dip length associated with measurements 
taken along sections that are oblique to the true depositional dip; the strength in correlation is slightly 
lower when considered for true dip-length values only (R = –0.385, p<0.001, N = 90). Overall, this 
means that also normal-regressive parasequences tend, on average, to be thicker and contain thicker and 
longer sand belts for flatter progradation trajectories. As expected, the relationship between log-
transformed positive parasequence progradation angle and progradation distance is negative (R = –
0.678, p<0.001). The relationship between log-transformed positive parasequence progradation angle 
and the difference between sand-belt dip length and progradation distance (a measure of the sand-belt 
‘pinchout distance’ sensu Løseth & Helland-Hansen, 2001) is also negative but very weak (R = –0.177, 
p=0.072). 

 

 

Figure 8: Scatter plot of the downdip length of 

parasequence shallow-water sand belts against the 

mean rate of progradation of the parasequence, 

colour-coded by the timescale over which the 

parasequence was deposited and the progradation 

rate estimated. Power-law regressions are shown for 

parasequences of 103 yr (R2 = 0.755), 104 yr (R2 = 

0.534) and 105 yr (R2 = 0.789) timescales. 

 

 

 

 

 

 

Positive shoreline trajectories of SMAKS nearshore depositional tracts portray normal depositional 
regression at a scale comparable to that of parasequence sets, but exclusively for parasequence sand 
belts that are laterally amalgamated. A positive relationship is seen between the log-transformed values 
of shoreline trajectories of normal regressive depositional tracts and of the mean progradation angle of 
their associated parasequences (R = 0.722, p = 0.001, based on 142 parasequences and 18 depositional 
tracts); this quantifies the degree to which parasequence-scale shoreline advances, of possible local and 
more temporally restricted significance, map onto larger-scale progradational trends. A moderate 
negative relationship is seen between log-transformed depositional-tract shoreline trajectories and the 
mean down-dip length of the parasequence sand belts that form each depositional tract (R = –0.402, p 
= 0.057; Fig. 10). 

Parasequence thickness and top type 

Top-truncated parasequences are on average thinner than others with non-erosional or unclassified tops 
(mean values of 13.8 m vs 15.7; Fig. 11), but this difference is only statistically significant at alpha = 
0.1 based on two-sample t-test (T-value = 1.92, p-value = 0.057, d.f. = 152). Parasequences that are 
truncated at their top by ravinement surfaces tend to be more markedly thinner on average (mean value 
of 9.7 m; Fig. 11); their difference with other parasequences is statistically significant (two-sample t-
test: T = 6.57, p<0.001, d.f. = 64). 
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Figure 9: Relationships between metrics of parasequence progradation style and morphometric parameters. (A-

B) Scatter plots of parasequence thickness (A) and parasequence sand-belt thickness (B) against parasequence 

progradation angle. (C-D) Scatter plots of parasequence sand-belt down-dip length against negative (C) and 

positive (D) regressive progradation angles. For sand-body length values, complete (true or apparent) and 

incomplete (partial or unlimited, sensu Geehan & Underwood, 1993) observations are differentiated. The data 

are from the Battfjellet Formation, Blackhawk Formation, Castlegate Sandstone, Cliff House Sandstone, Cozzette 

Sandstone, Ferron Sandstone ('Last Chance Delta' and ‘Notom Delta’ intervals), Fox Hills Formation, Frontier 
Formation, Gallup Formation, Hosta Tongue, Iles Formation, Star Point Sandstone, and from the Quaternary of 

the Paraná coastal plain (see Table 1). R indicates the Pearson’s correlation coefficient and p its p-value for the 

reported variables (C) or their log-transformed values (D). 

 

Parasequence thickness-to-sand-fraction ratio and A/S proxies 

Values of parasequence thickness-to-sand-fraction ratios (T/SF ratios) can be obtained from recorded 
thicknesses of parasequences and of their sand belts of shallow-water origin. The terms ‘sand fraction’ 
is used in the sense of Ainsworth et al. (2018, 2020): it is the ratio between sand-belt thickness and 
parasequence thickness, and as such it is an estimate of the fraction of sand for the part of parasequence 
containing nearshore deposits. The way these ratios are computed in this work differ from the 
quantification that is recommended for the so-called T/SF analysis, a technique that can be employed 
to reveal parasequence stacking patterns quantitatively based on changes in T/SF in 1D datasets 
(Ainsworth et al. 2018), in part because the scope of this work is not to assess the predictive power of 
this method, but rather to determine the sensibility of considering the T/SF ratio as a proxy for A/S at 
parasequence scale. Unlike Ainsworth et al. (2018, 2020), thickness-to-sand-fraction ratios are based 
on single values of maximum observed thicknesses, which may be measured at different locations. It 
should be noted that estimations of sand or sandstone fractions based on multiple measurements over 
the dip profile of a parasequence (cf. Ainsworth et al. 2018) are necessarily more accurate than the 
estimations employed in this work. Notwithstanding, values of parasequence thickness-to-sand-fraction 
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ratios used in the following results are closely correlated to T/SF ratios computed as recommended for 
scopes of T/SF analysis, based on a comparison of the two metrics in corresponding datasets (R = 0.836, 
p<0.001, N = 57). 

 

 

Figure 10: Scatter plot of mean dip length of 

parasequence shallow-water sand belts in 

SMAKS depositional tracts (i.e., facies belts) 

against positive regressive (i.e., <90°) 

depositional-tract shoreline trajectories. Each 

spot represents a SMAKS depositional tract 

(see Colombera et al., 2016). R indicates the 

Pearson’s correlation coefficient and p its p-

value for log-transformed values. 

 

 

 

 

 

 

Figure 11: Combined violin-box plots of 

the distribution of parasequence 

thickness for parasequences that are 

truncated at the top by erosional surfaces 

(wave or tidal ravinements, sequence 

boundaries, or regressive surfaces of 

marine erosion), in green, 

parasequences that are specifically 

topped by ravinement surfaces, in 

orange, and parasequences with non-

erosional or unclassified tops, in brown. 

‘N’ denotes the number of 
parasequences. Boxes represent 

interquartile ranges, crosses represent 

mean values, horizontal bars represent 

median values, and dots represent 

outliers (values larger than 1.5 times the 

interquartile range); kernel density is 

displayed on the sides of box plots. 

 

For parasequences that record normal depositional regression, i.e., with positive progradation angle, a 
weak negative relationship is seen between their log-transformed progradation angle and their 
thickness-to-sand-fraction (T/SF) ratios (Pearson’s R = –0.263, p = 0.005; Fig. 12A). A moderate 
positive relationship is seen between parasequence progradation distance and T/SF ratio (R = 0.646, 
p<0.001, N = 114), whereas no significant correlation exists between progradation distance and sand 
fraction (R = –0.160, p = 0.090). No relationship is seen between the log-transformed shoreline 
trajectory of depositional tracts that contain parasequence sand belts and the mean T/SF ratio of the 
parasequences (R = –0.079, p = 0.734; Fig. 12B). It could be argued that a direct measure for the rate 
of creation of accommodation, at least for the regressive evolution of a parasequence, is given by its 
stratigraphic rise (Fig. 3A), i.e., by the amount of aggradation taking place at the shoreline during 
regression (albeit not corrected for compaction). A possible rough estimator for the rate of sediment 
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supply is instead given by the product of parasequence thickness and progradation distance (Fig. 3A), 
which crudely approximates the volume of sediment (per unit shoreline length) accreting in the 
nearshore during the parasequence history. Where these quantities and sand-belt thickness can all be 
constrained, the ratio between stratigraphic rise and the product of parasequence thickness and 
progradation distance does not demonstrate any significant correlation with the thickness-to-sand-
fraction ratio (R = –0.140, p = 0.153, N = 106). 

 

 

Figure 12: elationships between metrics of 

progradation style and parasequence 

thickness-to-sand-fraction ratio, computed 

on the basis of maximum observed thickness 

values (see text). (A) Scatter plot of 

parasequence thickness-to-sand-fraction 

ratio against positive regressive (i.e., <90°) 

progradation angle. (B) Scatter plot of mean 

parasequence thickness-to-sand-fraction 

ratio in SMAKS depositional tracts (i.e., 

facies belts) against positive regressive (i.e., 

<90°) depositional-tract shoreline 

trajectories. Quantities psT and sstT 

indicate parasequence thickness and 

shallow-marine sandstone thickness, 

respectively (see Fig. 3). R indicates the 

Pearson’s correlation coefficient and p its p-

value for log-transformed values. 

 

 

 

 

 

 

 

 

 

 

Across parasequence sets classified on their stacking pattern (Fig. 13A), the parasequence T/SF ratio is 
on average largest for progradational sets (mean: 30.6 m, standard deviation: 32.6 m, N = 143) and 
smallest for retrogradational set (mean: 19.4 m, standard deviation: 20.0 m, N = 45). Differences in 
mean T/SF ratio between progradational and retrogradational sets are significant, based on Welch's one-
way ANOVA with Games-Howell post-hoc tests (F[2, 91.5] = 3.98, p = 0.022). 

Across classified systems tracts (Fig. 13B), the parasequence T/SF ratio is on average largest for HSTs 
(mean: 34.8 m, standard deviation: 44.8 m, N = 196) and smallest for FSSTs (mean: 13.4 m, standard 
deviation: 8.3 m, N = 19). LST and TST parasequences have similar mean values of T/SF ratio (23.9 m 
and 22.0 m, respectively), which differ significantly from those of HST and FSST parasequences 
(Welch's one-way ANOVA with Games-Howell post-hoc tests; F[3, 109.3] = 12.13, p<0.001). 

When variations in T/SF ratios across stacked consecutive parasequences are considered in HSTs and 
TSTs (cf. Ainsworth et al., 2018), the difference in parasequence T/SF ratio is on average negative for 
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HSTs (mean: –7.8 m, standard deviation: 49.9 m, N = 106), i.e., parasequences tend to have lower T/SF 
ratios than underlying ones, whereas the difference in T/SF ratio is on average positive for TSTs (mean: 
5.6 m, standard deviation: 18.3 m, N = 35). This difference is statistically significant (two-sample t-
test: T = –2.33, p-value = 0.021, d.f. = 137). In HSTs, stratigraphic transitions to parasequences with 
lower T/SF ratios are more common than transitions to parasequences with higher T/SF ratios (61% vs 
39 %, N = 106). In TSTs, stratigraphic transitions to parasequences with higher T/SF ratios are instead 
more common (63% vs 37 %, N = 35). Differences in sand fraction across stacked consecutive 
parasequences are also separately considered: these differences are on average close to zero for both 
HSTs (mean: 0.035, standard deviation: 0.261, N = 106) and TSTs (mean: 0.035, standard deviation: 
0.292, N = 35). 

 

 

Figure 13: Comparison of distributions in parasequence thickness-to-sand-fraction ratios, computed on the basis 

of maximum observed thickness values (see text), across different types of parasequence sets and systems tracts. 

(A) Combined violin-box plots of the distribution of parasequence thickness-to-sand-fraction ratio in 

parasequence sets classified on stacking pattern. (B) Combined violin-box plots of the distribution of 

parasequence thickness-to-sand-fraction ratio in different types of systems tracts (cf. results in Fig. 9 in Ainsworth 

et al., 2018). See text for discussion of stratigraphic changes in parasequence thickness-to-sand-fraction ratios 

within systems tracts. Kernel density estimates are displayed on the sides of the box plots. Mean values, outliers 

and kernel densities shown here are computed after log-scale transformations were applied. ‘N’ denotes the 
number of parasequences. Boxes represent interquartile ranges, crosses represent back-transformed mean values, 

horizontal bars represent median values, and dots represent outliers (values larger than 1.5 times the interquartile 

range). Quantities psT and sstT indicate parasequence thickness and shallow-marine sandstone thickness, 

respectively (see Fig. 3). 

 

Parasequence origin, process dominance and sequence-stratigraphic architectures 

Differences in the abundance of clastic parasequences associated with different formative environments 
and processes can be assessed across types of parasequence sets and systems tracts.  

Wave-dominated parasequences are the most common in the database (ca. 67% of classified 
parasequences; Colombera & Mountney, 2020), as well as in the studied parasequence sets and systems 
tracts (ca. 70% of classified parasequences; Fig. 14A). In parasequence sets with progradational 
stacking patterns, river-dominated parasequences are markedly more common (ca. 28%, and ca. 32% 
of classified parasequences; Fig. 14A) than in aggradational or retrogradational sets (<2%, and <3% of 
classified parasequences; Fig. 14A). River-dominated parasequences are also most abundant in the 
studied HSTs (ca. 21%, and ca. 31% of classified parasequences; Fig. 14B), and more common in LSTs 
(ca. 13%) than in FSSTs or TSTs (<7%). 
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Shoreface parasequences are slightly more common than deltaic ones across the database (42% vs 34% 
of all parasequences in SMAKS; Colombera & Mountney, 2020), but markedly more abundant than 
deltaic ones in the studied parasequence sets (ca. 46% vs ca. 26%) and systems tracts (ca. 46% vs ca. 
29%). Deltaic parasequences are more common in progradational parasequence sets (ca. 33%, and ca. 
41% of classified parasequences; Fig. 15A) than in aggradational or retrogradational sets (ca. 17%, and 
ca. 21% of classified parasequences; Fig. 15A). Deltaic parasequences are also most abundant in the 
studied LSTs (ca. 32%, and ca. 44% of classified parasequences; Fig. 15B), and more common in HSTs 
(ca. 29%) and TSTs (ca. 27%) than in FSSTs (12%). 

The dip length of shallow-water sand belts is larger on average for deltaic parasequences (means: 21.4 
km vs 18.1 km, N = 358), but not to a statistically significant level (two-sample t-test: T = 1.08, p = 
0.283, d.f. = 163), and the shoreline progradation distance is larger on average for shoreface 
parasequences instead (means: 12.7 km vs 4.7 km, N = 91; Colombera & Mountney, 2020). For normal-
regressive conditions, deltaic parasequences tend to display steeper progradation angles than shoreface 
ones (circular means: 0.30° vs 0.10°, N = 89); this difference is statistically significant (two-sample t-
test on equivalent gradients: T = 2.15, p-value = 0.040, d.f. = 30). 

 

 

Figure 14: Proportions of parasequences classified on dominant process regime in different types of 

parasequence sets and systems tracts. (A) Pie charts of the proportion of parasequence types in parasequence 

sets classified on stacking pattern. (B) Pie charts of the proportion of parasequence types in different types of 

systems tracts. The parasequences are classified on a scheme that includes the 15 categories of Ainsworth et al. 

(2011; e.g., ‘W’ = wave dominated; ‘Wt’ = wave dominated, tide influenced; ‘Ftw’ = river dominated, tide 
influenced, wave affected) together with three generic categories that are used when only the main dominant 

process is inferred (i.e., ‘W-’ = wave dominated; ‘T-’ = tide dominated; ‘F-’ = fluvial dominated; each possibly 
recording the influence of other processes). Other labels in charts are as follows: ‘F’ = river dominated; ‘Fw’ = 
river dominated, wave influenced; ‘Ft’ = river dominated, tide influenced; ‘Fwt’ = river dominated, wave 

influenced, tide affected; ‘Wf’ = wave dominated, river influenced. ‘N’ denotes the number of parasequences. 

 

Parasequence geometries and river-system size 

Where shallow-marine successions can be related to up-dip broadly coeval alluvial and river-dominated 
coastal-plain successions, relationships between the dip length of shallow-marine sands and the size of 
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associated river systems can be investigated. These relationships are studied here for parasequences 
recognized in the shallow subsurface of two active deltas (rivers Po and Rhône) and in ancient 
successions from the Cretaceous of the Western Interior Seaway (WIS) that are correlative to time-
equivalent strata representing the preserved record of coastal plains traversed by rivers of variable size. 
Although temporal variations in tectonic forcing on parasequence architectures may have been 
important (cf. Aschoff & Steel, 2011; Fielding, 2011), limiting the analysis to data from the same 
tectonic context, by focussing on examples from the WIS, makes the comparison meaningful. However, 
by exclusively considering WIS successions, the range in river-system scales that is taken into account 
is limited, since it reflects the relatively limited distance of the seaway margin from the source orogen 
and does not encompass continental-scale catchments and rivers. 

 

 

Figure 15: Proportion of parasequences, 

classified according to their interpreted 

formative littoral depositional environment, 

in different types of parasequence sets and 

systems tracts. (A) Bar charts of the 

proportion of parasequence types in 

parasequence sets classified on stacking 

pattern. (B) Bar charts of the proportion of 

parasequence types in different types of 

systems tracts. The term ‘shoreface’ is used to 
refer generally to deposits of non-deltaic 

linear coasts (e.g., strandplains, barriers). 

‘D/S’ identifies ‘deltaic-shoreface’ 
parasequences, which are interpreted to have 

been deposited by both shoreface (sensu lato) 

and deltaic systems. ‘Undef.’ = undefined. 
‘N’ denotes the number of parasequences. 

 

 

 

 

 

 

 

 

Existing estimates of the size of drainage areas feeding the palaeo-shorelines based on palaeogeographic 
reconstructions (Bhattacharya & Tye, 2004; Bhattacharya & MacEachern, 2009; Carvajal & Steel, 
2012; Szwarc et al., 2015; Bhattacharya et al., 2016; Hutsky & Fielding, 2016; Lin & Bhattacharya, 
2017) can be related to the down-dip length of shallow-marine sand belts in groups of parasequences 
(Fig. 16A). Overall, a modest positive relationship is seen between estimated catchment areas (or the 
mid value of the range of estimations in catchment size) and mean parasequence sand-belt dip lengths 
(Pearson’s R = 0.551, p = 0.063, N = 12). Correlation between the same variables is only marginally 
stronger and not statistically significant if separately considered for outcrop (R = 0.574, p = 0.312, N = 
5) and subsurface (R = 0.669, p = 0.217, N = 5) WIS examples. 

The mean dip length of shallow-marine sand belts in parasequences can also be related to measures of 
central tendency in channel maximum bankfull depth (either the mean value or the mid value of a range; 
Fig 16B). Data on inferred maximum bankfull depths of channels of coastal or alluvial rivers are based 
on observation of the thickness of architectural elements interpreted as preserved macroforms or 
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channel fills (cf. Bridge & Tye, 2000; Mohrig et al., 2000; Hajek & Heller, 2012); the resulting figures 
are sometime corroborated by inferences of mean bankfull depths based on application of empirical 
relationships relating flow depth to dune-scale cross-set thicknesses (cf. Leclair & Bridge, 2001). Data 
on estimated channel depth employed in this analysis (Shanley & McCabe, 1993; Plint, 2002; Plint & 
Wadsworth, 2003; Adams & Bhattacharya, 2005; Garrison and van den Bergh, 2006; McLaurin & Steel, 
2007; Li et al., 2010; Hampson et al., 2012, 2013; Bhattacharyya et al., 2015; Chentnik et al., 2015; 
Flood & Hampson, 2015; Bhattacharya et al., 2016; Gooley et al., 2016; Lin & Bhattacharya, 2017, 
2020; Wang & Bhattacharya, 2017; Shiers et al., 2019) may variably relate to trunk rivers, tributaries, 
or distributaries and to rivers with both single-thread and braided planform. These quantities may 
therefore not represent accurate proxies for the bankfull discharge of rivers draining into the WIS. For 
the Cretaceous successions, the correlation between measures of central tendency in maximum bankfull 
depth and mean parasequence sand-belt dip lengths is positive, but weak and not statistically significant 
(Pearson’s R = 0.351, p = 0.263, N = 12), even if the analysis is restricted to the parasequences 
characterized in outcrop (R = 0.140, p = 0.700, N = 10). 

Corresponding analyses of relationships between river-system scale and parasequence progradation 
distance or angle have not been undertaken because of data paucity. 

 

 

Figure 16: Relationships between 

river-system size and parasequence 

nearshore sand-belt length, for 

successions from the Cretaceous 

Western Interior Seaway and for the 

shallow subsurface of the Po and 

Rhône deltas. (A) Scatter plot of mean 

dip length of parasequence shallow-

marine sand belts in different 

successions against the drainage area 

of the river systems that directly fed 

the formative coasts. Horizontal bars 

represent ranges of estimated 

catchment sizes, and associated data 

points represent mid values of the 

range. (B) Scatter plot of mean dip 

length of parasequence shallow-

marine sand belts in different 

successions against the depth of the 

rivers that directly fed the formative 

coasts. Depth values for data points 

relating to ancient successions 

represent either means of estimated 

maximum bankfull depths or mid 

values of ranges in estimated 

maximum bankfull depths; depth 

values for data points relating to 

modern deltas represent mean values 

of mean bankfull depths. Horizontal 

bars represent ranges of channel 

depth. Dashed lines indicate linear (A) 

and power-law (B) best-fit curves. 
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DISCUSSION 

Analyses of parameters that describe parasequences and associated shallow-marine sand belts can be 
interpreted with respect to how parasequence properties are controlled by accommodation and rates of 
sediment supply. The possibility of using inferences of geological controls to attempt predictions of 
parasequence architectures in the subsurface is also discussed. 

Controls on parasequence geometries and stacking patterns 

The thickness of parasequences is expected to reflect a number of factors: (i) the accommodation 
provided by the pre-existing bathymetry into which a coastal system builds out, (ii) the amount of 
aggradation taking place along the dip profile of the parasequence during its deposition in response to 
accommodation generation (quantified by the stratigraphic rise in the nearshore), (iii) possible partial 
erosion, and (iv) sediment compaction (cf. Driscoll & Karner, 1999; Lee et al., 2007b; Emery & Myers, 
2009; Ainsworth et al., 2020; Fig. 1C). 

Pre-existing accommodation is a primary control on parasequence thickness: parasequences are 
expected to typically record shoreline progradation into progressively deeper shelf areas, and as such 
parasequences embodying depositional systems that have prograded further offshore are expected to be 
thicker on average (Emery & Myers, 2009; Ainsworth et al., 2020). This behaviour appears to be 
reflected in relations between parasequence thickness and progradation distance, and between 
parasequence thickness and rates of progradation for units of comparable timescale (Fig. 7C-D). The 
positive relationship between parasequence thickness and progradation distance is statistically 
significant, but not strong: the weakness in correlation might be due to (i) the limiting effect of 
bathymetry on rates of shelf transit, whereby steeper continental shelves – typically with deeper margins 
– generate thicker parasequences but arising from slower rates of shoreline advance (Bijkerk et al., 
2016; Ainsworth et al., 2020), and/or (ii) to the fact that higher rates of sediment delivery over 
timescales longer than that of a single parasequence may result in a shallower receiving shelf (Swift & 
Thorne, 1991). The positive correlation between parasequence progradation distance and thickness 
might also in part reflect the observed scaling between progradation distance and stratigraphic rise (i.e., 
aggradation), since both quantities depend on the length of time recorded in a parasequence; however, 
the same observations may otherwise be due to unrecognized lateral and vertical amalgamation of 
shingled units that are not differentiatied as parasequences, especially for subsurface datasets (see 
Colombera & Mountney, 2020). 

The role of the increase in accommodation space in controlling parasequence thickness (Posamentier 
& Allen, 1999; Emery & Myers, 2009; Ainsworth et al., 2018) is reflected in relationships between 
parasequence thickness and stratigraphic rise, and between parasequence thickness and rates of 
aggradation evaluated across groups of units deposited over a comparable timescale (Fig. 7A-B). 
However, parasequences tend to be thinner than average in TSTs and retrogradational parasequence 
sets, i.e., for conditions under which rates of accommodation creation should be largest (Figs. 4C and 
5C). This may reflect the anticipated role of transgressive marine erosion of the upper portions of 
parasequences on their preserved thickness (as also observed in the data pool of parasequences with 
classified tops; Fig. 11), more limited progradation into deeper shelf areas (Figs. 4F, 5F; see below), 
and/or a characteristically reduced bathymetry of transgressive seas (cf. Cross & Lessenger, 1997). 

Rates of creation of accommodation can also be considered with respect to how accommodation varies 
relative to changes in rates of sediment supply to depositional shorelines. The parasequence 
progradation angle represents the net effect of the ratio between the rate of aggradation in the nearshore 
and the rate of shoreline progradation, as recorded during the regressive evolution of a parasequence, 
and can therefore be employed as a proxy for the ratio between rate of creation of accommodation and 
rate of sediment supply (at least for a given shelf depth) at parasequence scale (A/S; Helland-Hansen & 
Martinsen, 1996; Helland-Hansen & Hampson, 2009). For both normal-regressive parasequences and 
units termed parasequences but recording forced-regressive progradation (and thus not parasequences 
sensu stricto; Kamola & Van Wagoner, 1995), weak but statistically significant relationships are 
observed between thickness and progradation angle (Fig. 9A), according to which parasequences with 
flatter progradation trajectories tend to be thicker. This observation suggests that the rate of shore 
migration into deeper shelf areas may be more important than the rate of aggradation in the nearshore 
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domain in determining parasequence thickness. On this basis, rates of sediment supply may act as a 
stronger control on parasequence thickness than rates of accommodation creation, contrary to what 
might be expected (cf. Løseth & Helland-Hansen, 2001; Emery & Myers, 2009). 

Differences in stratigraphic trends of parasequence thickness are seen between HSTs (dominantly 
thinning upward) and TSTs (dominantly thickening upward), which are overall consistent with 
variations in accommodation through a cycle that might be expected theoretically (i.e., respectively 
undergoing decreasing and increasing rates of accommodation generation; Posamentier & Allen, 1999; 
Ainsworth et al., 2018); however, these differences are typically modest, and frequently opposite to 
what is anticipated. The notion that parasequences in LSTs might typically be arranged in thickening-
upward fashion in response to accelerating rates of accommodation creation (Posamentier et al., 1988; 
Emery & Myers, 2009) is not supported by the data, since a dominance of upward-thinning transitions 
is seen instead. It is likely that discrepancies between models and observations arise in part because of 
the variability in the length of time over which successive parasequences are generated (cf. Colombera 
& Mountney, 2020) and because of irregular (non-sinusoidal) relative sea-level change. 

In the same way as the parasequence thickness, the thickness of shoreline-shelf parasequence sand belts 
is also limited by the pre-existent accommodation (shelf depth) and affected by erosive processes, but 
is additionally determined by the depth of sand-mud transition on the shelf, itself a function of the 
grainsize distribution of the sediment that reaches the shelf and of the process regime controlling 
sediment dispersal and offshore sand advection (Niedoroda et al., 1985; Hampson & Storms, 2003; 
Dunbar & Barrett, 2005; Storms & Hampson, 2005; George & Hill, 2008; and references therein). 

Parasequence shallow-marine sands or sandstones are thinner on average in retrogradational 
parasequence sets and in FSSTs and TSTs (Figs. 4C, 5C), likely in relation to erosion by ravinement 
processes (Fig. 11) and during forced regression. No significant relationships are seen between the 
thickness of sand belts and the progradation angle of their parasequences, which indicates that A/S 
variations are not important in controlling sand-belt thickness. 

The length of parasequence sand-belts along the depositional dip profile is expected to result from the 
interplay of three factors: (i) the amount of continuous progradation experienced by the shoreline during 
deposition of the parasequence (i.e., the progradation distance; cf. Ainsworth et al., 2020), (ii) the 
distance of the shelf sand-mud transition from the shoreline (cf. ‘pinchout distance’ of Løseth & 
Helland-Hansen, 2001), and (iii) possible erosional truncation. 

Parasequence sand belts are on average narrower in sets with retrogradational stacking pattern and in 
TSTs or FSSTs, compared to those of aggradational or progradational sets and of HSTs and LSTs (Figs. 
4D, 5D). The progradation distance of parasequences also tends to be lower in retrogradational sets and 
in TSTs; however, FSST parasequences display on average the longest progradation distance, albeit 
based on a very limited dataset (Figs. 4F, 5F). In part, these observations suggest that rapid shifts in 
shoreline position are likely to determine punctuation in parasequence organization that affects the dip 
length of parasequence sand bodies (cf. Cant, 1989; Hunt & Tucker, 1992; Cattaneo & Steel 2003), and 
that transgressive and regressive marine erosion may be responsible for significant cannibalization of 
nearshore sand belts (cf. Posamentier & Allen, 1999). 

Results indicate that normal-regressive parasequences with flatter progradation trajectories tend to have 
more extensive sand belts particularly because of increased progradation, and not as a result of sand-
mud transitions being deeper (and resulting pinchout distances longer) on average. This is in agreement 
with positive relationships between parasequence sand-belt dip length and rates of progradation, when 
evaluated for units of comparable timescale (Fig. 8), and can be explained by controls exerted by 
sediment-supply rates and shelf bathymetry, whereby both shallower shelves and faster sediment-
delivery rates can drive more rapid progradation. Results relating sand-body length to both 
parasequence progradation angles and depositional-tract shoreline trajectories (Figs. 9 and 10) can be 
interpreted in terms of these controls, which appear to be expressed over a range of spatial and temporal 
scales. Similarly, for forced-regressive parasequences, positive scaling between sand-body dip length 
and progradation angle (Fig. 9C) could reflect the effect of progradation driven by sediment supply 
(leading to increased progradation distance and therefore to gentler negative progradation angle) 
superimposed on forced regression; it is also possible however that this direct scaling is merely due to 
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the variable orientation of observation windows at an angle with the depositional dip direction.  

These results show that where shoreline trajectories of facies belts and of sets of clinothems can be 
observed in seismic data, or progradation angles of parasequences can be inferred in subsurface 
successions, predictions can be attempted of the likely range of dimensions of parasequence-scale 
stratigraphic compartments in shallow-marine hydrocarbon reservoirs and in successions targeted for 
carbon-dioxide sequestration by underground storage. 

Data on parasequence progradation angles can also provide insight into whether parasequence stacking 
in systems tracts is sensitive to forms of self-organization or to intrinsic behaviours in the variations of 
allogenic controls. It is claimed that the progradation angles of successive parasequences should portray 
concave-landward shoreline trajectories in response to the autogenic dynamics that drive shoreline 
autoretreat, and which occur in relation to temporal variations in sediment storage on coastal plains and 
in sediment volumes required to sustain shore progradation (Jervey 1988; Muto & Steel, 1992, 1997, 
2002, 2014; Muto et al., 2007; Hampson, 2016; Ainsworth et al., 2020; Fig. 1F). In LSTs, similar 
concave-landward shoreline trajectories may also develop in response to inherently accelerating relative 
sea-level rise, under the assumption of simple sinusoidal cycles of variations in sea level (Catuneanu, 
2019a). On the contrary, concave-seaward shoreline trajectories are expected to develop in HSTs in 
response to decelerating relative sea-level rise (Posamentier et al., 1988; Posamentier & Allen, 1999; 
Catuneanu, 2019a; Fig. 1E). However, the presented quantitative assessments of variations in 
progradation angles for parasequences in HSTs and LSTs, where autoretreat behaviours might be 
expected to emerge, indicate that there is no evident preferential pattern of shoreline trajectory (Fig. 6). 
Meanwhile, only a weak tendency to develop concave-seaward shoreline trajectories is seen for 
parasequences in HSTs. These observations could reflect the interference of these intrinsic dynamics, 
the overwhelming control of sediment supply, non-sinusoidal variations in accommodation generation, 
and/or variance in the temporal duration of parasequences. Equally, it is possible that these results 
merely reflect the difficulty in accurately constraining parameters that describe parasequence accretion 
histories in a quantitative manner: where qualitative descriptors are used, propensity towards 
aggradational-to-progradational or progradational-to-aggradational stacking are seen in HSTs and LSTs 
respectively. 

Parasequence thickness-to-sand-fraction ratio as A/S predictor 

Thickness-to-sand-fraction (T/SF) analysis is a technique that employs stratigraphic variations in T/SF 
ratios, as evaluated based on estimated values of mean parasequence thickness and sand fraction, to 
make inferences of parasequence stacking patterns (and, implicitly, of A/S across groups of 
parasequences); this type of analysis is particularly useful for 1D datasets (Ainsworth et al., 2018, 2020). 
It is however also claimed (Ainsworth, 2005; Ainsworth et al., 2018, 2020) that the thickness-to-sand-
fraction (T/SF) ratio of parasequences acts – of itself, not just as variation thereof – as a direct measure 
of the ratio between rates of creation of accommodation and rate of sediment supply (A/S), where 
accommodation generation is considered for both the transgressive and regressive history of a 
parasequence (Ainsworth et al., 2018), since “parasequence thickness can be used as a proxy for 
accommodation at the time of deposition and parasequence sandstone fraction can be used as a proxy 
for sediment supply” (Ainsworth et al. 2018, p. 1915). This assumption is being specifically examined 
here. The current analysis supports the view that the thickness of a parasequence does not just reflect 
variations in accommodation generation (Ainsworth et al., 2018) but also any extant accommodation 
relating to seabed bathymetry, as recognized by Ainsworth et al. (2020). Also, there is no process-
oriented justification for considering the sand fraction indicative of the rate of sediment supply 
(Ainsworth, 2005; Ainsworth et al., 2018, 2020), since the sand-belt thickness depends on the calibre 
of sediment being supplied, on its fractionation through subenvironments (cf. Anthony, 2015; Korus & 
Fielding, 2015; van der Vegt et al., 2020), and on the sand-mud transition depth (Dunbar & Barrett, 
2005; George & Hill, 2008), that is, it depends on the process regime that operates in marine 
environments. From this perspective, it is also necessary to consider how parasequence thickness and 
sand fraction could covary because of relationships that exist between shelf depth and sand-dispersal 
mechanisms, for example in relation to the fact that typically the coasts of shallower shelves are exposed 
to less energetic waves but experience larger storm surges (Resio & Westerlink, 2008; Immenhauser, 
2009). Furthermore, our analysis indicates that higher rates of sediment supply, by driving more rapid 
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progradation into deeper water, ultimately recorded as thicker parasequences, could even determine 
inverse proportionality between A/S and T/SF ratio. Positive correlation between parasequence 
progradation distance (a proxy for progradation rate and proportional to the rate of sediment supply) 
and thickness-to-sand-fraction ratio is indeed seen, and our analysis shows that this likely reflects the 
positive relationship between parasequence progradation distance and thickness (Fig. 7C). More 
fundamentally, no correlation exists between potential indicators of A/S ratio at parasequence scale (at 
least for their regressive part) and depositional-tract scales, respectively given by parasequence 
progradation angles and depositional-tract shoreline trajectories (Fig. 12). At the parasequence-set and 
systems-tract scale, mean values of thickness-to-sand-fraction ratios are smaller on average for 
conditions under which A/S ratio is expected to be highest (TSTs and retrogradational sets), contrary to 
what might be expected if the absolute value in T/SF ratio had the supposed predictive power as direct 
A/S proxy (Fig. 13).  

It is also useful to consider stratigraphic variations in thickness-to-sand-fraction ratios, in view of their 
use for T/SF analysis. Thickness-to-sand-fraction changes across successive parasequences are on 
average consistent with what is predicted in Ainsworth et al. (2018, 2020; Fig. 1D): dominantly 
increasing in TSTs and dominantly decreasing in HSTs; our analysis suggests that this behaviour 
reflects exclusively variations in parasequence thickness, and not variations in sand fraction. These 
variations in parasequence thickness may indeed reflect variations in accommodation as theorized by 
Ainsworth et al. (2018; Fig. 1D), supporting the application of T/SF analysis for revealing stacking 
patterns, but are frequently limited in magnitude or opposite in sign: the uncertainty in systems-tract 
classification based on related observations from well data may be significant.  

Parasequence architecture and depositional-system configuration 

In view of results demonstrating emerging relationships between parasequence sand-body dip length 
and proxies for rates of sediment delivery to ancient shorelines or parasequence-scale A/S ratio, the 
predictive value of metrics that describe controls on the sediment budget of a shoreline-shelf system on 
parasequence architectures can be considered. 

For Cretaceous examples from the North-American western interior, the weak positive relationships 
that are seen between the length of parasequence sandstones in shoreline-shelf successions and 
estimates of hydraulic geometry and catchment size for river systems that fed the palaeo-shorelines 
could represent a signature of the control exerted by sediment flux on sediment supply and shoreline 
shelf transit (cf. Swift & Thorne, 1991; Aadland & Helland-Hansen, 2019). The weakness in scaling 
between river systems and parasequence sand bodies could be due to inherent error in the data 
(particularly in interpretations and estimations; Colombera & Mountney, 2020) and to interference of 
other geological controls on sediment supply and sedimentary architectures (e.g., shelf physiography, 
temporal variations in longshore drift, processes controlling sand-mud transition depth). Because of the 
narrow focus of this analysis and the limited strength of the observed scaling relationships, predictive 
tools suitable for subsurface characterization, which could be applied based on insight from source-to-
sink studies and river palaeohydrology, cannot yet be proposed. Exploration of relationships based on 
a larger database covering a wider range of scales of linked depositional systems is necessary, and 
should be undertaken with consideration of the autogenic or allogenic origin of the units and of their 
timescale and hierarchy. 

Realistically, a control by sediment-supply rates should translate to differences in parasequence 
architecture between deltaic depositional systems and littoral systems associated with linear coasts, 
based on the intuition that sediment supply rates to deltaic systems should be typically higher, although 
perhaps also more variable in time and space. At the scale of individual parasequences, however, this 
assumption is at odds with data on progradation distance and angles and not evidently reflected in data 
on sand dip length, even though these observations might partly be affected by the fact that the studied 
deltaic parasequences embody shorter development time on average, possibly because of influence by 
autogenic mechanisms of parasequence generation (e.g., trunk-river avulsion; Colombera & Mountney, 
2020). At the scale of groups of parasequences (sets and systems tracts) though, some association seems 
to exist between stacking patterns and shoreline type, whereby deltas and river-dominated systems are 
more commonly associated with progradational patterns. In part, these results may reflect the supposed 
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intimate relationship between shoreline type and relative-sea level state (Heward 1981; Boyd et al., 
1992; James & Dalrymple, 2010), and/or the fact that increased sediment flux favours the development 
of fully developed river deltas while simultaneously acting as a driver of depositional regression 
(Caldwell et al., 2019). At the same time, these results support the idea that intrinsic along-strike 
variations in sediment supply and associated differences in depositional-system type can cause lateral 
variability in parasequence architecture that may affect the application of sequence stratigraphic 
categories (cf. Wehr, 1993; Martinsen & Helland-Hansen, 1995; Krystinik & DeJarnett, 1995; Madof 
et al., 2016). 

 

CONCLUSIONS 

With the caveat that any such analysis is affected by the varied geological significance of parasequences 
and by subjectivity in their definition, a statistical analysis of the properties of parasequences from many 
siliciclastic successions has been attempted to infer the record of accommodation, sediment supply, and 
autogenic behaviours as controls on parasequence architecture, considering how these factors vary 
across depositional settings and over multiple scales.  

Selected findings of this quantitative assessment can be summarized as follows: 

­ Parasequence thickness – a partial record of shelf or ramp bathymetry – is related to rates of 
accommodation generation, but may be especially influenced by the degree of shore 
progradation into deeper waters, and is also affected by top truncation, especially by 
ravinement. These factors also explain observed variations in parasequence thickness across 
systems tracts and parasequence sets of different types. 

­ Inverse proportionality between the dip length of parasequence sand bodies and proxies of A/S 
ratio at parasequence and ‘depositional-tract’ (i.e., large-scale facies belt) scales is interpreted 
to reflect the influence of sediment-supply rates on progradation rates; this control also seems 
to be expressed in stacking patterns. 

­ In systems tracts, stratigraphic trends in parasequence progradation angles that could be 
interpreted as due to autogenic dynamics or to predictably varying rates of relative sea-level 
change are not seen. Qualitative classifications of stacking patterns, however, indicate that 
further study based on a larger dataset is desired. 

­ Associations exist between deltaic or river-dominated parasequences and progradational 
stacking, but correlation between metrics of river-system size and dip lengths of shallow-
marine parasequence sand bodies is modest. 

The quantification presented in this work can be referred to when attempting predictions of likely 
volume, geometry and compartmentalization of shallow-marine sand bodies, on the basis of constraints 
of accommodation and sediment supply that may be available in subsurface studies, particularly from 
those based on regional seismic stratigraphy and source-to-sink analyses.  

There is scope for future work, which could focus on complementary analyses to be undertaken with 
improved consideration of tectonic setting, sediment-delivery mechanisms and the type of shoreline 
dynamics (autogenic vs allogenic, local vs regional) recorded in the parasequences. 
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