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Highlights:  11 

• PuO2 was encapsulated in BFS / PFA blended cements used for nuclear waste disposal 12 

• Cellulose was added to the systems to investigate the effects of organics.  13 

• No large scale microstructural defects were observed and good physical contact between the 14 

PuO2 and grout was seen. 15 

• Changes to the phase assemblage were noted in BFS containing grouts. 16 

• Radiolytic gas evolution was consistent with expectations, with increased values observed for 17 

samples containing cellulose. 18 
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Abstract 20 

The effects of alpha radiation on cementitious systems used for nuclear waste encapsulation, and the 21 

subsequent physico-chemical properties, have been subject to limited investigation comparative to 22 

the effects of gamma and neutron irradiations. This paper outlines an assessment of the impact of 23 

PuO2 incorporation on the bulk characteristics of BFS and PFA blended Portland cements, with specific 24 

focus on the microstructure, phase assemblage and the radiolysis of pore water. Cellulose was also 25 

added to the cements to investigate the effects of organics on these systems. Characterisation of the 26 

bulk phase assemblage and microstructure were completed using optical and scanning electron 27 

microscopy (SEM), x-ray diffraction (XRD), and thermogravimetric analysis (TGA). Gas evolution was 28 

measured to determine the radiolytic breakdown of pore solution. In all samples the PuO2 appeared 29 

well encapsulated, with good physical contact to the cement grout and no large scale defects 30 

observed. Pu-containing hydrates were not observed, but PuO2 containing BFS based systems showed 31 

variations in the ratio of sulfate-containing phases, with increased ettringite observed. Gas evolution 32 

results were consistent with expectations based on likely radiation deposition, and increased G(H2) 33 

values were observed for cellulose containing samples. The findings of this study suggest the 34 

investigated cements are suitable encapsulants matrices for wastes containing PuO2. 35 
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Graphical Abstract 36 

 37 

1. Introduction 38 

Encapsulation in cementitious grout is the baseline treatment strategy for the majority of the UK’s 39 

Intermediate Level Waste (ILW) [1]. The grouts, based on Portland cement (PC), are tailored for 40 

specific suitability to the waste materials by the addition of supplementary cementitious materials 41 

(SCMs) including blast furnace slag (BFS) and pulverised fuel ash (PFA).  42 

Plutonium contaminated materials (PCM) are a sub category of ILW that includes process equipment 43 

and materials used in Pu finishing and mixed oxide (MOX) fuel pellets production, in addition to Pu-44 

contaminated high efficiency particulate in air (HEPA) filters [2]. PCM waste is initially stored in 200 L 45 

drums prior to high force compaction, creating a puck that is encapsulated within a 500 L drum using 46 

a PFA:PC grout. These drums may contain up to 260 g Pu and U-235, combined. The initial mean 47 

specific activity of PCM drums produced up to 2016 is ~1 TBq/m3 alpha and 12.1 TBq/m3 beta / gamma 48 

[3]. Over time, alpha decay leads to the ingrowth of actinide daughters, including isotopes of 49 

americium and uranium. Plutonium, within fuel residues, is also expected to reside in BFS:PC grouts 50 

used to encapsulate Magnox fuel swarf. These canisters, 500 L in size, have a mean specific activity of 51 

~175 TBq/m3, of which ~18 TBq/m3 is from Pu isotopes [4,5]. The interface between radionuclide 52 

species and cement materials, which may be highly localised, is of specific interest, since these areas 53 

can be subjected to high levels of ionising radiation throughout their service life. As such, it is 54 

important to build an understanding of how Pu, ranging from soluble nitrates to solid oxides, interacts 55 

with cement minerals. 56 

Firstly, one must consider the role of radiation within the Pu-cement system. Two key processes are 57 

likely to induce reactions within cement materials upon irradiation: (i) radiolysis of pore fluid; and (ii) 58 

direct impact of alpha and alpha-recoil particles. Radiolytic decomposition of water generates H2, e-
aq, 59 

H, OH-, H2O, H+, OH and H2O2 as primary products [6]; generation of H2(g) may pressurise the 60 

wasteform, leading to cracking of the cement and creation of a potential explosion risk [7,8]. In grout 61 

systems containing BFS, the oxidation of sulfide to sulfate is of particular concern since internal sulfate 62 

attack may occur [9,10]. This is analogous to external sulfate attack, where ettringite forms at the 63 

expense of monosulfate and portlandite in an expansive nature, causing damage [11,12].  64 

Volumetric expansion is widely reported to result from direct impact of alpha- and alpha-recoil 65 

particles within crystalline phases [13,14]. The production of damage zones, typically highly localised, 66 

will affect cement microstructure and cause expansion, which may impact physico-chemical 67 

properties; hypothetically, this may manifest as a layer of altered hydrates in alpha deposition zones, 68 

similar to radiohalos seen in natural minerals [15–18]. The localised absorption of energy around alpha 69 
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emitting species could hypothetically increase pressurisation within closed porosity compared to an 70 

equivalent dose from gamma exposure. This increased pressurisation may lead to cracking, chipping, 71 

spallation and reduction in compressive strength becoming more prevalent. 72 

 73 

One further consideration is the potential influence of radiolytic effects on degradation of the 74 

wasteform itself. For example, the degradation of organic materials such as cellulose, which was a 75 

significant component of PCM wastes prior to the 1980s, can produce gaseous products and soluble 76 

organic compounds that may result in swelling of the cement and increased radionuclide solubility, 77 

respectively [19,20]. 78 

Given the potential for radiation effects in Pu-containing cement grouts, this study aims to assess the 79 

impacts of alpha radiation, arising from PuO2, on the hydration and physico-chemical properties of 80 

BFS and PFA:PC blended cement systems relevant to nuclear waste encapsulation. These results can 81 

be used to enhance understanding of ageing processes for existing encapsulated products and to 82 

support development of waste storage and disposal safety cases. 83 

2. Materials and Methods 84 

Portland cement conforming to Sellafield Ltd (SL) specification was supplied by Hanson Cement as 85 

Ketton coarse ground PC. BFS conforming to SL specification was also obtained from Hanson Cement 86 

as Scunthorpe GGBS blended with Calumite® (a coarse ground material produced from blast furnace 87 

slag) in a 70:30 weight ratio. PFA was from the CEMEX Drax plant and conformed to BS EN 450-1 as 88 

well as the SL specification regarding performance in a pre-prepared grout mix [21]. Oxide 89 

composition and other available details of the powders are given in Table 1. 90 

Table 1 Major constituents of raw materials determined via X-ray fluorescence (XRF). 91 

Oxide (wt.%) PC BFS PFA 

SiO2 21.6 36.1 52.9 

Al2O3 5.1 11.4 24.8 

Fe2O3 2.6 0.4 8.4 

CaO 64.9 39.4 2.5 

K2O 0.8 0.7 3.1 

MgO 1.0 8.4 1.6 

Na2O 0.2 0.4 1.2 

TiO2 0.4 0.9 0.9 

Mn2O3  0.6 0.1 

MnO 0.1 0.6  

SO3 2.6 - 0.1 

S2- - 0.8  

Cl- 0.1 0.0 0.1 

SiO2+Al2O3+Fe2O3 - - 84.6 

    

Glass count - 97  

Surface area - 357 m2.kg-1ǂ 9.1 %*  

LOI ≤1.5 %† - ≤7 %† 
ǂBlaine fineness 

*Residue on a 0.045 mm mesh sieve 
†Limits specified by the SL powder specification 

Plutonium dioxide (PuO2) was obtained from the Sellafield Ltd. Magnox reprocessing plant. PuO2 is 92 

manufactured by precipitation of plutonium(IV)oxalate from plutonium nitrate, which is washed and 93 
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calcined at 650 °C. The specific surface area of the PuO2, determined by BET analysis using nitrogen as 94 

the adsorbate, was 11.8 m2 g-1. The isotopic composition is given in Table 2. The α particle dose rate 95 

was 2.8x1010 MeV s-1 g(Pu)-1. At the PuO2 loading used in these experiments (0.5 wt%) the dose rate 96 

to the sample was ~72 Gy h-1. 97 

Table 2 Plutonium and americium isotopic composition of PuO2 accounting for 241Am in-growth 98 

 238Pu 239Pu 240Pu 241Pu 242Pu 241Am 

Wt. fraction heavy 

metal 
0.0027 0.72 0.23 0.032 0.0011 4.90x10-3 

Samples were prepared with 5 wt % microgranular cellulose to simulate organic containing waste 99 

streams, as degradation products can form soluble actinide complexes. Grout formulations 100 

representative of those used for encapsulation of ILW were prepared according to Table 3.  101 

Table 3 Grout formulations 102 

Samples Powder 

blend 

Powder 

ratio 

w/s 

ratio 

Cellulose* 

(wt%) 

PuO2
* 

(wt%) 

BFS:PC BFS:PC 3.44:1 0.35 - - 

BFS:PC + Pu BFS:PC 3.44:1 0.35 - 0.50 

BFS:PC + C BFS:PC 3.44:1 0.35 5.0 - 

BFS:PC + C + Pu BFS:PC 3.44:1 0.35 5.0 0.50 

PFA:PC PFA:PC 3:1 0.43 - - 

PFA:PC + Pu PFA:PC 3:1 0.43 - 0.51 

PFA:PC + C PFA:PC 3:1 0.43 5.0 - 

PFA:PC + C + Pu PFA:PC 3:1 0.43 5.0 0.49 

*Expressed as a weight percentage of the grout mix mass 103 

2.1 Sample synthesis 104 

Grouts were first prepared at room temperature in a non-radioactive laboratory using a method 105 

developed to assess powder properties for current intermediate level waste (ILW) encapsulation plant 106 

processes [21]. Cement precursors were added to deionised water while mixing (3L low-shear) over a 107 

period of 5 minutes, with PC added first, followed by another 5 minutes of mixing at low shear and 108 

then 10 minutes at 6000 rpm in a high shear mixer. Non-radioactive reference samples were prepared 109 

in ~1 cm3 moulds. For formulations containing cellulose, cellulose powder was added by hand mixing 110 

to 100 g of cement paste. Within an α-radioactive glovebox, approximately 0.5 g PuO2 was added to 111 

100 g of cement paste (with or without cellulose) prior to mixing by hand and placing within ~1 cm3 112 

moulds. All samples were cured for 28 days in sealed bags with water to maintain high relative 113 

humidity, after which time they were de-moulded. The samples were then placed in vessels and 114 

covered with Ca(OH)2-saturated water to control the pH and to prevent leaching of cement phases 115 

from the sample. The vessels were sealed to minimise atmospheric carbonation effects.     116 

2.2 Hydrogen yield measurements 117 

After one month of hydration, the yield of hydrogen from PuO2 containing samples was measured. 118 

Ten cubes of a single formulation were placed in a sealed glass vessel, which was fitted with a valve to 119 

allow periodic sampling using a gas tight syringe. Cement cubes were maintained under calcium 120 

hydroxide saturated water during the measurements. After removing each sample of gas from the 121 

vessel, a measured volume of air was immediately returned to maintain approximately atmospheric 122 

pressure in the vessel. The hydrogen concentration was determined using a Varian 490 micro-GC 123 

operating with a Molsieve 5A column, argon carrier gas and calibrated with a 102 ppm standard. The 124 

cumulative hydrogen production was calculated from the hydrogen concentration in each sample, the 125 
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gas sample volume, air volume returned and vessel headspace volume. Gas samples were generally 126 

taken daily. After six to eight days of measurements, the vessel was fully vented to remove all the 127 

hydrogen present and measurements of the accumulated hydrogen restarted. Typically two or three 128 

sets of measurements of hydrogen accumulation were made over a period of up to 24 days. 129 

2.3 Sample characterisation 130 

Characterisation of samples was performed after approximately one year of curing. Control samples 131 

were provided to the University of Sheffield to enable characterisation of the phase assemblage and 132 

microstructure, whilst the PuO2 containing samples remained at the NNL active facilities to allow 133 

concurrent analysis. Analytical protocols were dictated by the constraints imposed of handling PuO2 134 

samples under local health and safety requirements. As a result, some variation from typical 135 

preparation methods was required. Hydration of the samples was not halted prior to any analysis, 136 

powders were crushed several days prior to analysis and stored under vacuum in a desiccator, and the 137 

materials did not undergo sieving before XRD and TGA testing. All preparation and subsequent storage 138 

occurred at room temperature. Despite concurrent analysis, due to alpha handling protocols, 139 

equipment location, and local variations in storage conditions between the radioactive and non-140 

radioactive samples in the period between preparation and analysis, atmospheric carbonation effects 141 

cannot be fully evaluated.   142 

2.3.1 Non-radioactive Reference Samples 143 

Upon receipt from NNL, non-radioactive reference samples were stored in a controlled environmental 144 

chamber at 20°C and 95% relative humidity. Prior to this, samples were stored as detailed in section 145 

2.1. After removal from the curing solution, slices were cut and mounted in epoxy resin or crushed 146 

into a fine powder by hand using a pestle and mortar, during which time atmospheric carbonation 147 

may have occurred. Sample preparation and analysis was co-ordinated with NNL, and the samples 148 

were stored in a Parafilm® sealed jar inside a desiccator at room temperature until analysis was 149 

completed. 150 

Mounted monolith samples were prepared for SEM analysis by successive grinding (240-1200 SiC grit 151 

papers) and polishing (6 µm - 0.25 µm) with diamond suspension. Following carbon coating, 152 

backscatter electron images were collected using a Hitachi TM3030 SEM with a 15 kV accelerating 153 

voltage and a working distance of 8.5 to 9 mm. Semi-quantitative chemical analysis by Energy 154 

Dispersive X-ray Spectroscopy (EDS) was completed using a Bruker Quantax 70 detector, and 155 

elemental mapping was completed for 10 minutes. For spot analysis, 150 points were manually chosen 156 

focussing on areas of C-A-S-H from 3 mapping areas taken at 1500 magnification with a spot size of 157 

9.5 microns. C-A-S-H was targeted using the characteristic light grey colour identifiable in the matrix. 158 

Powder XRD analysis was performed using a Bruker D2 Phaser with Cu Kα radiation and a nickel filter, 159 

operating between 5° < 2θ < 60° with a step size of 0.02 °2θ. Thermogravimetic analysis (TGA) was 160 

completed using a Perkin Elmer Pyris 1 TGA 4000 in conjunction with a HPR-20 QIC Benchtop Gas 161 

Analyser System. Analysis was performed between 25 and 1000 °C, at a rate of 10 °C per minute, under 162 

a nitrogen atmosphere with a flow rate of 40 mL/minute. Free water loss was assessed as the 163 

percentage weight loss between 30 – 105°C. The amounts of portlandite and carbonate in the pastes 164 

were quantified from the weight loss between 400 to 500°C, and 550 to 800°C, respectively, using the 165 

tangential method [22] and calculated according to Eqns. (1) and (2): 166 

 𝐶𝐶𝐶𝐶(𝑂𝑂𝑂𝑂)2 =  
𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 (𝐶𝐶𝐶𝐶(𝑂𝑂𝑂𝑂)2)

100−𝑤𝑤𝐶𝐶𝑡𝑡𝑤𝑤𝑤𝑤 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 (30−500°𝐶𝐶)

×
𝑀𝑀𝐶𝐶𝐶𝐶(𝑂𝑂𝑂𝑂)2𝑀𝑀𝑂𝑂2𝑂𝑂 (1) 167 

 168 
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 𝐶𝐶𝐶𝐶𝐶𝐶𝑂𝑂3 =  
𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 (𝐶𝐶𝐶𝐶𝐶𝐶𝑂𝑂3)

100− CO los𝑙𝑙 (30−800°𝐶𝐶)

×
𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶𝑂𝑂3𝑀𝑀𝐶𝐶𝑂𝑂2 (2) 169 

where the portlandite and carbonate wt. % is expressed as percentage of the dry sample weight at 170 

500°C and 800°C respectively, and M is the molar mass. The relative error of these measurements is 171 

±5-10% [23]. 172 

2.3.2 PuO2 Containing Samples 173 

The PuO2-containing samples were stored in glovebox facilities. No temperature controls were 174 

implemented in the glovebox. Samples were cut from the 1 cm3 cubes for grinding and mounting for 175 

microscopy. Samples were ground by hand using a pestle and mortar inside the glovebox for XRD and 176 

TGA analysis. For SEM preparation, samples underwent successive grinding using 220 – 3 µm diamond 177 

suspensions with resin bonded diamond discs, followed by polishing using 1 µm - 0.25 µm diamond 178 

suspensions with alcohol based lubricant. Due to alpha handling protocols and equipment location, 179 

movement of the samples between laboratories was required for several of these stages increasing 180 

the overall preparation time. During this period the samples were stored in a glovebox. During transfer 181 

of samples for analysis atmospheric carbonation may have occurred.  182 

The TGA characterisation was performed using a Seteram TGA 92-1800 installed in a plutonium active 183 

glovebox. Samples of 40 mg in an alumina crucible were analysed between 25 and 1000°C, at a rate 184 

of 10 °C per minute, under a nitrogen atmosphere with a flow rate of 40 mL/minute. The raw TG data 185 

were processed to produce the derivative weight loss using a Mathematica script based on Tikhonov 186 

regularization that calculates the first derivative via the second derivative [24], and a correction for 187 

the formation of condensation in equipment tubing during the initial hold temperature was applied. 188 

Quantities of Ca(OH)2 and CaCO3 were calculated using Eq. (1), (2). Variations in peak width and 189 

position are present between the PuO2 containing and control results for all samples; this is likely the 190 

result of equipment differences.  191 

XRD analysis was completed using a Bruker D8 ADVANCE with Cu Kα radiation operating between 5° 192 

< 2θ < 60° with a step size of 0.02 °2θ. The samples were mixed with Epofix resin and loaded into a 193 

polymethylmethacrylate (plexiglass) puck, giving rise to intense diffuse scattering in the background 194 

of all diffractograms. This was sealed using an additional layer of resin. The results were processed to 195 

subtract background, and this removed diffuse scatter associated with poorly crystalline hydrate 196 

phases and unreacted SCM. The data were subjected to an overall plot offset of -0.25° 2θ to correct 197 

for equipment drift. Whilst this was effective for 2θ > 23°, peak positions at low angles are slightly 198 

more variable, potentially due to the data processing that removed background scatter.  199 

Bright and dark field optical microscopy was completed using a Leica DM1500 M inverted binocular 200 

microscope with 50x magnification, installed in a plutonium active glove box. Estimation of porosity 201 

was completing by inferring an arbitrary pore threshold from the dark field greyscale histogram using 202 

ImageJ software. SEM-BSE imaging was carried out using a Phenom ProX desktop instrument. The 203 

instrument has a backscatter electron detector for imaging at accelerating voltages of 5 – 15 kV and a 204 

magnification range of 80 – 130000x with a resolution of < 10 nm.  205 

3. Characterisation results and discussion 206 

3.1 Influence of PuO2 on BFS:PC 207 

3.1.1 Microstructural development 208 

Figure 1 shows the development of a characteristic microstructure for BFS:PC grouts, displaying 209 

unhydrated cement clinker and BFS together with hydrate products including portlandite and AFm-210 

type phases. Figure 2 shows a hydrated cement clinker grain and the surrounding matrix; textural 211 
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differences between the denser appearing inner product and the surrounding outer product forming 212 

the remaining matrix can be seen. EDX analysis shows distribution of aluminium throughout the matrix 213 

indicating substitution into C-S-H to form C-A-S-H [25,26]. Dark rims surrounding the BFS indicate 214 

hydration of the particle, forming a hydrotalcite-like product [27,28]. Residual iron from the BFS can 215 

be seen in the Fe mapping shown in Figure 2, as observed in other BFS containing cements [29]. High 216 

concentrations of sulfur are shown in Figure 2 which together with low Si content indicates high 217 

proportions of AFm-type phases in this region. Cracking was observed at a range of scales, thought to 218 

be the product of sample preparation rather than of curing. 219 

 220 

Figure 1 BSE micrograph of BFS:PC showing characteristic microstructural development and some identifiable phases: C: 221 
unreacted cement clinker, BFS: unreacted BFS (larger grains are Calumite®), AFm: monosulfoaluminate-type phase, P: 222 
Portlandite (lighter grey areas of matrix), IP: matrix inner product, OP: matrix outer product. 223 



8 

 

 224 

Figure 2 BSE micrograph and EDS analysis of BFS:PC grout showing a clinker grain which is almost fully hydrated. IP) inner 225 
product C-A-S-H, OP) outer product C-A-S-H and IP-𝑆𝑆̅) S rich inner product – potential AFm formation. Residual Fe from BFS is 226 
highlighted by the dashed red circle. 227 

 228 

Figure 3 Atomic ratio plots from EDX spot analysis of areas IP, OP and IP-𝑆𝑆̅) (shown in Figure 2) demonstrating the variations 229 
across the matrix.  230 

Spot analyses from the BFS:PC samples were taken and ratio plots are shown in Figure 3. Due to 231 

intermixing of the hydrate phases results should not be treated as quantitative, but broad trends are 232 

provided such as lower Si/Ca ratio for the outer matrix product, and inner product areas containing 233 

higher proportions of sulfate containing phases.  234 

The BFS:PC + Pu grouts display no large scale defects within the matrix (Figure 4). Large unreacted 235 

Calumite® particles are identifiable in the hydrate matrix and areas of red-brown coloration were 236 

noted, thought to represent ferrite rich hydrate zones although no SEM EDX has been completed. 237 

Porosity estimations from the thresholding of the dark field images using ImageJ was 3.63%.  238 
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 239 

Figure 4 Optical images of BFS:PC + Pu cements. A) Bright field image, B) Dark field image 240 

3.1.1.1 Effects of cellulose addition 241 

The incorporation of cellulose powder does not appear to have had a significant impact on the 242 

microstructural development of the grout in the BFS:PC + C sample. Cracking in the cellulose is present, 243 

which may be due to sample preparation techniques together with cellulose degradation. There is 244 

some smudging evident at the outer boundaries of the encapsulated cellulose that may indicate 245 

greater decomposition of the cellulose material.  246 

 247 

Figure 5 BSE micrograph of BFS:PC + C grout. Cel: cellulose powder, BFS: unreacted BFS (larger grains are Calumite®), P: 248 
Portlandite (lighter grey areas of matrix), IP: matrix inner product, OP: matrix outer product. 249 

BFS:PC + C + Pu samples show similar textural development to BFS:PC + Pu samples, and no significant 250 

microstructural alteration noted – no large scale cracking was observed in the bulk matrix (Figure 6). 251 

Porosity was estimated to be 3.1%, using thresholding of the greyscale histogram of the dark field 252 

images. 253 
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 254 

Figure 6 Optical images of BFS:PC + C + Pu cements. A) Bright field image, B) Dark field image 255 

SEM investigation of the BFS:PC + C + Pu also showed no large scale defects in the matrix surrounding 256 

the PuO2 particles, which appear to have been well encapsulated in the matrix (Figure 7). Limited 257 

investigation of the interface between the PuO2 and the grout has been completed, however Figure 7 258 

C) shows this area is of interest; label 1 indicates that good infilling of PuO2 by the grout has been 259 

achieved around most of the particle, whilst label 2 shows a low contrast backscatter area which may 260 

be due to cellulose particles, or topographic differences that might be a result of a damaged zone [17]. 261 

Pervasive cracking was also not observed, indicating overpressure of the matrix through gas 262 

generation did not occur.  263 

 264 
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 265 

 266 

Figure 7 BFS:PC + C + Pu at increasing magnification levels in A), B) and C). Red zone in image B) shows PuO2 particle shown 267 
in image C). Labels 1, 2, in image C) are expanded on in text. 268 

3.1.2 Phase assemblage 269 

The phase assemblage identified is typical of BFS:PC blended systems. XRD results display reflections 270 

attributed to ettringite (PDF#-41-1451), monosulfoaluminate (PDF#-83-1289), hemicarboaluminate 271 

(PDF#-014-0221), hydrotalcite (PDF#-14-0191), monocarboaluminate (PDF#-36-0377), portlandite 272 

(PDF#-04-0733), C-A-S-H, and calcite (PDF#-01-0837) together with unreacted belite (PDF#-29-0369) 273 

and BFS (attributed to the diffuse scatter at 25°<2θ<35°) are indicated in Figure 15. The peaks from 274 

the PuO2 are shown by the light grey dashed lines.  275 

Due to the background stripping analysis, the peak intensities and peak width cannot be used to 276 

quantitatively evaluate radiation induced variations in crystal structure. Qualitative evaluation of 277 

phase assemblage was completed by assessing the peak positions and intensity. Variation in the 278 

diffraction patterns was observed at low angles, where the peak associated with the [100] ettringite 279 

reflection had higher intensity in the BFS:PC + Pu sample. A slight shift in peak position was noted, 280 

however this is thought to be a product of the original peak offset having less impact at low angles 281 
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rather than substitution either of Fe for Al in the ettringite [30], or of a shift in the end member 282 

proportions of the AFm phases [31]. 283 

 284 
Figure 8 XRD data from BFS:PC and BFS:PC + Pu grouts. E: ettringite, Ms: monosulfoaluminate, Hc: hemicarboaluminate, HT: 285 
hydrotalcite, Mc: monocarboaluminate, P: portlandite, C-A-S-H: aluminium substituted calcium silicate hydrate, B: belite, C: 286 
calcite, Pu: PuO2 287 

The increase in peak intensity for ettringite comparative to the peaks for monosulfoaluminate (not 288 

present), monocarboaluminate, hydrotalcite, and hemicarboaluminate indicates an increase in the 289 

proportion of ettringite present in the BFS:PC + Pu sample. This increase may be the result of radiolytic 290 

induced oxidation of sulfide released from the BFS, as observed by Richardson et al. [9] in gamma 291 

irradiation studies. The presence of ettringite was not observed at the expense of monosulfoaluminate 292 

in that study, unlike the results shown here. The reduction in the peak intensities for the AFm phases 293 

(monosulfoaluminate, monocarboaluminate, hemicarboaluminate) in the diffraction patterns may 294 

indicate that the increase in sulfate content was sufficient to allow later age conversion back to 295 

ettringite. However, as AFm phases are partially XRD amorphous, comparison of peak intensities may 296 

be misleading and overlapping dehydration temperatures for these phases in TGA offers no further 297 

clarification [22,32]. 298 

The sulfate content of the BFS:PC systems will only increase if both the degree of hydration (DoH) of 299 

BFS increases and there is a sufficiently oxidising environment to convert the released sulfide to 300 

sulfate. Prentice et al. [33] found the DoH in Sellafield Ltd specification 3:1 BFS:PC system to be 301 

between 50-55% for BFS after one year, with alite and belite hydration at 85% and 53% respectively. 302 

There was no intermixing of Calumite® with the GGBS fraction in the Prentice study, and the larger 303 

particle size of the Calumite® component will reduce the degree of reaction in the current study; 304 

Sanderson et al. found the behaviour of Calumite® to be similar to an inert filler [34]. For the 30 wt% 305 

Calumite® replacement in the current study, it is estimated that the DoH is reduced by approximately 306 

10% [35] relative to Prentice et al.  307 
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The DoH of the slag has been estimated to be between 40-50% given the level of Calumite® 308 

replacement. The clinker hydration has been modelled using the Parrott and Killoh [36] method, after 309 

Lothenbach [37]; the degree of hydration of each clinker phase is shown in Table 4. 310 

Table 4 Clinker phases present in anhydrous PC calculated (Taylor-Bogue method [38] using data from Table 1), and 311 
estimated DoH  312 

Clinker phases 
% present in 

anhydrous PC 
% hydrated Overall DoH 

Alite 63.4 81.2 

72.3 
Belite 16.0 39.7 

Aluminate 7.4 61.2 

Ferrite 7.9 77.9 

The XRF analysis of the anhydrous materials (Table 1) allows the sulfate content of the 3.44:1 BFS:PC 313 

system assuming complete oxidation of sulfide to be estimated given different DoH values for the BFS 314 

and PC. Given the estimated range of DoH, the concentrations are not anticipated to vary significantly 315 

without oxidation of the sulfide (Table 5).  316 

Table 5 Sulfate content of 3.44:1 BFS:PC at varying DoH, with and without the contribution of oxidised sulfide from BFS 317 

 % DoH PC 

+ Sulfide 

oxidation 

% DoH PC 

70 75 70 75 

sulfate  

(g / 100g solid) 

sulfate  

(g / 100g solid) 

sulfate  

(g / 100g solid) 

sulfate  

(g / 100g solid) 

%
 D

o
H

 

B
F

S
 40 0.061 0.064 0.233 0.236 

45 0.063 0.066 0.256 0.260 

50 0.065 0.068 0.280 0.283 

Thermodynamic modelling of similar systems (unirradiated) [33] predicts ettringite to be replaced by 318 

monosulfoaluminate in the phase assemblage by 28 days; monosulfoaluminate and 319 

hemicarboaluminate were predicted to be the major AFm components. The persistence of ettringite 320 

together with AFm phases can be seen in the XRD data for the BFS:PC control samples (Figure 8), 321 

indicating the sulfate had not decreased as predicted. The replacement of ettringite requires a 322 

reduction in the SO3/Al2O3 ratio of the system, which occurs as depletion of gypsum and hydration of 323 

BFS progresses [11,31,33]. The stability of the AFm phases that are formed upon replacement of the 324 

ettringite is also dependent upon the bulk CO2 content of the system, as the stability of 325 

monosulfoaluminate decreases significantly with increasing carbonate contents; the phase 326 

assemblage identified by XRD indicates molar bulk ratios of CO2/Al2O3 and SO3/Al2O3 of below 0.5 and 327 

between 1-3 respectively [31]. Given the increased carbonation observed in the XRD and TGA results 328 

for the PuO2 samples, the variations in monosulfoaluminate and ettringite may be in part a product of 329 

the destabilisation of monosulfoaluminate due to CO2 increases rather than dramatic sulfate increase. 330 

As can be seen from the above, later age conversion of the AFm phases to ettringite is not only 331 

dependent on an increase in sulfate. As the hydrating BFS is assumed to react congruently, the 332 

released sulfide is accompanied by Al2O3. In terms of oxidation of sulfide, it is considered that this 333 

would likely take place as it is released, as radical formation is continuous, rather than remaining as 334 

sulfide indefinitely until some mass oxidation event allows conversion to sulfate. Given this, for the 335 

complete removal of monosulfoaluminate the Al2O3 released would have to be bound into a separate 336 

hydrate phase; Taylor et al. summarise several factors that can impact on the Al2O3 availability, 337 

including the MgO, and CO2 contents allowing formation of hydrotalcite and carboaluminate phases 338 

respectively [11]. 339 
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It seems unlikely that there would be sufficient sulfate together with the necessary reduction in Al2O3 340 

and CaCO3 to allow full conversion of all the monosulfoaluminate to ettringite, however further 341 

investigation is required, as this represents a complex set of interactions within a simplified system; 342 

the interaction of the waste components in final waste packages is not included here.  343 

TGA results also show variations between the PuO2 containing and control samples. The initial weight 344 

loss between 30-300°C is the result of the loss of free water, C-A-S-H, ettringite, and AFm phases (likely 345 

monocarboaluminate(140-180°C) and monosulfoaluminate (180-210°C)). The initial peak at 100°C is 346 

typical of cements containing ettringite, and slight broadening of this peak in the PuO2 containing 347 

sample may be due to loss of free water or slight variations in experimental setup [22]. Weight losses 348 

at 350-400°C and 400-480°C correspond to the dehydroxylation of hydrotalcite and portlandite 349 

respectively, and losses > 500°C are attributed to carbonate decomposition [39]. 350 

 351 

Figure 9 Thermogravimetric analysis of BFS:PC and BFS:PC + Pu 352 

Estimations of free water loss were calculated together with the relative proportions of Ca(OH)2 and 353 

CaCO3 for each sample, and the results for all samples are shown in Table 6.  354 

Table 6 Amount of free water loss, Ca(OH)2 and CaCO3 detected by thermogravimetry. Results should be treated tentatively 355 
and considered semi-quantitative. 356 

Cement 

formulation 

Free water loss (mass ratio) Ca(OH)2 (mass ratio) CaCO3 (mass ratio) 

PuO2:Control PuO2:Control PuO2:Control 

BFS:PC 0.3 : 1 0.4 : 1 2.4 : 1 

PFA:PC 0.3 : 1 - 1.6 : 1 

BFS:PC + C 0.5 : 1 0.6 : 1 0.7 : 1 

PFA:PC + C 0.3 : 1 - 1.1* : 1 

*Data acquisition for this sample is suspected to contain errors at temperatures > 750°C 357 

Greater free water loss was seen in the BFS:PC control sample compared to the BFS:PC + Pu sample, 358 

and more Ca(OH)2 remained. Increased weight loss between 500-700°C in the BFS:PC + Pu sample 359 

suggests decomposition of mono- and hemi-carbonate species, and may indicate that vaterite / 360 

aragonite polymorphs of CaCO3 are present [39–41]. Given the variations in storage conditions 361 

between the radioactive and non-radioactive samples in the period between preparation and analysis, 362 

atmospheric carbonation effects cannot be fully evaluated and as such the contribution of radiolytic 363 
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effects, if any, cannot be ascertained. Increased deposition of aragonite and vaterite in gamma-364 

irradiated Portland cement samples has been linked to an increase in bending strength, as the 365 

carbonation maintains the layered C-S-H structure that is disrupted in calcite-carbonation [42]. Further 366 

work is required to assess how potential strengthening competes with damage caused through alpha 367 

interactions. 368 

3.1.2.1 Effects of cellulose addition 369 

Cellulose addition caused alteration of the proportions of hydrates but no overall changes to the phase 370 

assemblage were observed. Peak intensities for ettringite, hydrotalcite and monocarboaluminate 371 

increase with cellulose addition, whereas a reduction in the peak intensity for monosulfoaluminate 372 

was observed.  373 

 374 

Figure 10 XRD patterns for BFS:PC and BFS:PC + C grouts. E: ettringite, Ms: monosulfoaluminate, Hc: hemicarboaluminate, 375 
HT: hydrotalcite, Mc: monocarboaluminate, P: portlandite, C-A-S-H: aluminium substituted calcium silicate hydrate, B: belite, 376 
C: calcite 377 

These variations indicate carbonate rich cellulose degradation products influence the phase 378 

assemblage, particularly carbonate rich AFm-type phases. The increase in ettringite may be a product 379 

of this, as the Al2O3 binding to AFm phases will keep the SO3/Al2O3 ratio high [11]. Cellulose 380 

degradation does not appear to influence the calcite content, as reflections are similar in both 381 

diffractograms. The effects of atmospheric carbonation are considered negligible in all control samples 382 

due to the same curing and preparation conditions. 383 

Addition of PuO2 causes shifts in the proportions of phases present (Figure 11). The loss of free water 384 

and Ca(OH)2 are lower in the BFS:PC + C + Pu sample, as seen in the non-cellulose samples (Table 6). 385 

The split peak at 100 °C in the PuO2 containing grout may be a due to loss of free water prior to 386 

ettringite dehydration, or a result of the sample size and differences in equipment setup [22]. The 387 

weight loss between 300-400°C is indicative of cellulose decomposition [43]. The weight loss observed 388 

in the BFS:PC + C + Pu sample at temperatures >550°C is lower than the control sample, indicating less 389 
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carbonate products are present. This trend is not observed in any other PuO2 containing samples, and 390 

is surprising as cellulose degradation can lead to increased carbon dioxide formation [19].  391 

 392 

Figure 11. Thermogravimetric analysis of BFS:PC +C and BFS:PC + C + Pu 393 

3.2 Influence of PuO2 on PFA:PC  394 

3.2.1 Microstructural development 395 

Characteristic microstructures were observed for PFA:PC grouts with textural differences in the matrix 396 

indicative of inner and outer product formation during hydration. Unreacted precursor material was 397 

identified and no pervasive cracking was observed (Figure 12). 398 

 399 

Figure 12 BSE micrographs pf PFA:PC sample. Unhydrated cement clinker: C, unreacted PFA: PFA, matrix inner product: IP, 400 
matrix outer product: OP 401 

EDX analysis indicates a hydrated phase assemblage containing C-S-H incorporating Al [44,45] and 402 

sulfur containing AFm/AFt phases. Unburnt carbon particles from the PFA were observed as darker 403 

zones in the matrix (Figure 13). Minor alteration was observed on surface of some PFA particles; 404 

aluminium enrichment and dendritic features were identified. These dendritic features may represent 405 

mullite crystals that are exposed as the hydration of the glass phase of the PFA consumes the particle 406 
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[46,47]. The matrix texture appears slightly less dense than in the BFS:PC samples, which could be the 407 

result of the slower rate of reaction of PFA in PC blends [44]. 408 

 409 

Figure 13 BSE micrograph and EDX analysis of PFA:PC showing unburnt carbon particle. Label i) shows ettringite needle 410 
formation, and ii) Al enriched PFA rim. 411 

The PFA:PC + Pu samples displayed similar textures, and the PuO2 does not appear to have significantly 412 

impacted the matrix. Optical investigation indicated no pervasive deformation of the bulk, with no 413 

large cracks identified (Figure 14).  414 

 415 

Figure 14 Optical images of PFA:PC + Pu. A) Dark field image, B) Bright field image 416 

SEM analysis of PFA:PC + Pu (Figure 15) also indicates there is smaller scale cracking, and the PuO2 417 

particles are well encapsulated albeit with less intimate contact to the grout than seen in the BFS 418 

samples (Figure 7, section 3.1.1). This effect is exaggerated in Figure 15 B) due to the high contrast 419 

PuO2 particle; the dark areas adjacent to the particle are likely low contrast hydrate products.  420 

 421 
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 422 

Figure 15 BSE images of PFA:PC + Pu at increasing magnification. Unhydrated cement clinker: C, unreacted PFA: PFA, matrix 423 
inner product: IP, matrix outer product: OP 424 

3.2.1.1 Effects of cellulose addition  425 

The cellulose powder appears well encapsulated in the PFA:PC + C samples with limited impact on the 426 

microstructural development. The phase assemblage is as identified in the PFA:PC grout, with similar 427 

textural development observed. Some dehydration of the cellulose is apparent, with cracking and 428 

shrinkage away from the grout encapsulant (Figure 16).  429 

 430 

Figure 16 BSE micrograph of PFA:PC + C grouts showing encapsulation of cellulose powder in the matrix. Cel: cellulose powder, 431 
PFA: unreacted PFA, OP: matrix outer product. 432 

PuO2 addition does not appear to significantly affect the microstructure, with no pervasive cracking 433 

noted in PFA:PC + C + Pu samples (Figure 17). Optical images show a dense microstructure, with 434 

identifiable unburnt carbon particles and PFA in the hydrate matrix. Porosity was estimated at 2.9% 435 

using thresholding of the greyscale histogram. Zones of red brown colouration similar to those 436 

identified in the BFS:PC blends are present, together with highly reflective white regions; these may 437 

represent zones of unhydrated PC or PFA agglomerations within the matrix (Figure 14 B).  438 



19 

 

 439 

Figure 17 Optical images of PFA:PC + C + Pu cements. A) Dark field image, B) Bright field image 440 

3.2.2 Phase assemblage 441 

The PFA:PC materials contained strätlingite (PDF#-29-0285), mullite (PDF#-79-1453), and quartz 442 

(PDF#-85-0335) in addition to several phases identified in the BFS containing blend (Figure 18). 443 

  444 
Figure 18 XRD data from PFA:PC and PFA:PC + Pu grouts. S: strätlingite, E: ettringite, Ms: monosulfoaluminate, Hc: 445 
hemicarboaluminate, Mc: monocarboaluminate, M: mullite, Q: quartz, B: belite, C: calcite, Pu: PuO2. 446 

The shift in peak position for the [100] ettringite reflection was observed in the PFA:PC + Pu sample 447 

(discussed in section 3.1.2), however no significant alteration in the peak intensity was noted. The 448 

monosulfoaluminate reflection is not present in the PFA:PC + Pu diffractogram, indicating potential 449 

destabilisation of monosulfoaluminate. However, no formation of other sulfate containing phases is 450 

noted, and so it is considered a result of the background stripping applied to the data. Strong 451 

reflections for calcite are observed in the PFA:PC + Pu sample, and TGA results (Figure 19) also show 452 

a higher proportion of carbonates (Table 6, section 3.1.2). Increased weight loss between 500-700°C 453 
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was noted with a smaller peak centred at 730°C, indicating a range of carbonate species were present 454 

as discussed in section 3.1.2. Weight losses indicative of ettringite and AFm are also observed. The 455 

weight loss <100°C is reduced in the PFA control blends comparative to the BFS controls, likely a result 456 

of fewer AFm phases undergoing dehydration in this formulation together with a smaller weight loss 457 

contribution from free water.  458 

 459 

Figure 19. Thermogravimetric analysis of PFA:PC and PFA:PC + Pu. 460 

3.2.2.1 Effects of cellulose addition 461 

Cellulose addition caused similar variation to those seen in the BFS systems. Peak intensities for 462 

ettringite, hemicarbonate and monocarboaluminate increased in the cellulose containing sample 463 

(Figure 20), whilst the reflection for monosulfoaluminate at 9.9°2θ reduced.  464 

 465 

Figure 20. XRD data for PFA:PC and PFA:PC + C grouts. S: strätlingite, E: ettringite, Ms: monosulfoaluminate, Hc: 466 
hemicarboaluminate, Mc: monocarboaluminate, M: mullite, Q: quartz, B: belite, C: calcite. 467 
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The increase in hemi- and monocarboaluminate indicates higher carbonate contents in the PFA:PC + 468 

C sample; this is likely due to the degradation of cellulose, as atmospheric carbonation effects are 469 

expected to be limited (see section 3.2.3). However, the peak intensities for calcite appear increased 470 

in the PFA:PC + C diffraction pattern suggesting the cellulose degradation products could not be 471 

accommodated through formation of additional AFm type phases. TGA results support the increase in 472 

AFm-type phases (Figure 21). Weight loss between 300-400°C indicates decomposition of cellulose, 473 

which was greater in the PFA sample than observed in section 3.1.2.1.  474 

 475 

Figure 21 Thermogravimetric analysis of PFA:PC + C and PFA:PC + C + Pu. Data acquisition of PFA:PC + C + Pu suspect at T > 476 
750°C. 477 

The PFA:PC + C + Pu sample shows increased weight loss at temperatures >500°C, suggesting increased 478 

carbonation in the PFA system which may be linked to an increase in cellulose degradation products; 479 

however, the data becomes unreliable at temperatures >750°C and so further investigation is 480 

required.  481 

4. Gas evolution results and discussion 482 

4.1 Gas evolution results 483 

Figure 22 shows PuO2 containing samples in a glass vessel prior to hydrogen yield measurement.  484 
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 485 

Figure 22 Photograph of PFA/PC+C samples in glass vessel as used for hydrogen yield measurement. 486 

Hydrogen radiation chemical yields are summarised in Table 7, based on the total energy absorbed by 487 

the cement. Hydrogen production rates were linear with time and repeat measurements on each 488 

sample were generally within ±0.1 molecules.100eV-1 of the mean.  489 

Table 7 Hydrogen yields from α-self irradiation of PuO2-containing cement (1 cm3 sample) 490 

Cement formulation Mean G(H2) (molecules.100eV-1) 

BFS:PC + Pu 0.37 

BFS:PC + C + Pu 0.60 

PFA:PC + Pu 0.33 

PFA:PC + C + Pu 0.91 

Hydrogen yields from the BFS:PC + Pu and PFA:PC + Pu were similar, falling in the same range, whilst 491 

hydrogen yields from cellulose containing samples (BFS:PC + C + Pu and PFA:PC + C + Pu) were 492 

consistently higher. 493 

4.2 Gas evolution discussion 494 

The hydrogen yield from an ~5 MeV α-particle of helium ion irradiation in water is G(H2) = 1.2-1.3 495 

molecules.100 eV-1 [48–50]. The current experiments use PuO2 as the radiation source and therefore 496 

some energy will be absorbed by the PuO2 lattice itself as well as by unhydrated cement phases and 497 

will not contribute to hydrogen production. Figure 23 shows SEM images of PuO2 particles from the 498 

batch of oxide used in the current experiments and shows particles are typically 20-40 µm in diameter. 499 

The range of a 5.5 MeV α-particle through the PuO2 lattice is 12.5 µm, but since the PuO2 particles are 500 

highly porous and formed from an agglomeration of much smaller crystallites, the density of particles 501 

is probably about 50 % crystalline density and the effective range is therefore greater. Thus, the 502 

particle dimensions are a significant fraction of the particle range and a significant fraction of energy 503 

will be absorbed by the PuO2. 504 
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 505 

Figure 23 SEM images of Magnox PuO2 powder used in this investigation 506 

A practical estimate of the energy self-absorbed by PuO2 can be made from measurements of the 507 

hydrogen yield from a slurry of Magnox PuO2 in aqueous sodium nitrite that was measured to be G(H2) 508 

= 0.63 molecules.100 eV-1 [51]; sodium nitrite was used to scavenge OH to prevent it reacting with H2, 509 

although this is not a large effect under α-irradiation. This suggests that on average about 50 % of the 510 

α-particle energy is absorbed by the PuO2. This is consistent with calculated estimates assuming 511 

spherical particles with diameter ~30 µm [52]. It follows that G(H2) is not expected to exceed ~0.6 512 

molecules.100 eV-1 from cement, unless energy transfer from the oxides in the cement matrix occurs.  513 

In addition to absorption of energy by the PuO2, the hydrogen yields from cement will depend on the 514 

fraction of α-particle energy escaping from the PuO2 particles that is absorbed by unhydrated 515 

components and by water in the cement matrix as either structural or pore water. The latter is 516 

expected to be determined mainly by the volume fraction of water in the matrix. This has been 517 

reported in recent gamma irradiation studies where the hydrogen yield from structural water in the 518 

hydrated phases and pore water was found to be fairly similar to the yield from bulk water [53]. In the 519 

present case it is not straight forward to accurately estimate the dose to water within the matrix owing 520 

to heterogeneity on the length scale of the alpha particle of hydrated and unhydrated components in 521 

the matrix. In addition, the dose must take into account differences in the stopping power of the 522 

different components. Consequently a detailed comparison of the hydrogen yield from water in the 523 

matrix cannot be made with the expected value for bulk water. It is possible that additional water may 524 

have been absorbed under saturated storage conditions, increasing the overall water content from 525 

the 26-30 wt% used in the mix. Also, hydrated phases will tend to infill the immediate vicinity around 526 

PuO2 particles and increase the local water content. Given this, measured yields appear reasonably 527 

consistent with expectations based on bulk water yields and self-absorption by the PuO2. 528 

Only a handful of measurements of hydrogen yields from alpha radiolysis of cements have been 529 

reported in the open literature. Bibler reported values G(H2)=0.63 molecules 100 ev-1 for an 530 

OPC/gypsum cement w/s=0.7 [54]. Curium was dissolved in the pore water so that self-absorption of 531 

the radiation would not have occurred, probably accounting in the higher yield than measured in the 532 

present study. Crapse et al. reported hydrogen yields from a cement sample (unspecified composition) 533 

containing 1wt % PuO2 and 16.5 wt% water to be 0.15 molecules 100 ev-1 [55]. The lower yield 534 

compared with the results reported here is probably a consequence of the much lower water content.  535 

Samples containing cellulose gave consistently substantially higher hydrogen yields. This is surprising 536 

considering the relatively low mass fraction of cellulose in the formulation. This is presumably, in part, 537 

because the hydrogen yield of cellulose is significantly higher than for cement. The hydrogen yield 538 

from alpha irradiation of cellulose has been reported to have an initial value of approximately 539 
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G(Gas)=1.5-1.9 molecules.100eV-1 and ~60% H2 giving a hydrogen yield of G(H2)= 0.9-1.1 540 

molecules.100eV-1 [56]. Similar results in a Los Alamos National Laboratory report gave initial 541 

G(gas)~1.5 molecules.100eV-1 and ~50% H2 giving a hydrogen yield of G(H2)=0.75 molecules.100eV-1 542 

[57]. In both cases, these measurements were made by contaminating the surface of the test material 543 

with PuO2 without accounting for self-absorption of energy by the PuO2, and therefore these studies 544 

underestimate the true yield, which should be significantly greater in magnitude than for bulk water. 545 

This means that where cellulose particles are in close proximity to PuO2 the hydrogen yield from the 546 

cellulose will be much greater than the cement it has displaced. Absorption of water by the cellulose 547 

may further enhance the yield by swelling the volume occupied by cellulose and the fraction of 548 

radiation absorbed by water. However, it currently remains difficult to quantitatively explain the much 549 

greater yield for the cellulose containing samples. A detailed analysis would require a more complete 550 

understanding of the distribution of cellulose and water, and calculation of the dose to cellulose in the 551 

matrix.  552 

5. Conclusions 553 

This study provides novel investigation of how PuO2 encapsulation affects the physico-chemical 554 

development of Portland cement blended grouts typically used for waste management in the UK. 555 

Many waste streams include alpha emitting species, which will result in extremely localised radiation 556 

fields in regions immediately surrounding the alpha source – a situation that cannot be simulated by 557 

external gamma radiation. PuO2 is a particularly intense alpha emitter, and since no UK waste stream 558 

currently incorporates particulate PuO2 at the levels used here, the experiments represent a worst 559 

case as regards alpha radiolysis effects on immobilised UK ILW. 560 

Grout formulations and cement/SCM powders used in the experiments are identical to those used in 561 

the UK nuclear industry, and the PuO2 used had relevant morphology, mineralogy and isotopic 562 

composition. Mixing processes aimed to simulate encapsulation plant processes as closely as 563 

practicable.  564 

Several UK waste streams include organics which historically included sources of cellulose. The 565 

inclusion of high levels of cellulose in powder form allowed intimate intermixing between the grout 566 

and cellulose, producing samples that represent an unrealistic worst case scenario unlikely to be 567 

encountered in UK waste streams. 568 

Microscopic analysis indicates there is good physical contact between cement hydrates and PuO2 569 

particle agglomerates, with evidence of some infilling between particles. No microstructural damage 570 

to the cement hydrates was observed, even in the regions closest to the PuO2 particle agglomerates. 571 

The mineralogy and morphology of the PuO2 appears unchanged by contact with cementitious grouts, 572 

however limited EDX of the active samples was completed so no information is available on Pu 573 

mobility or whether it has been incorporated in hydrate phases. Further characterisation is 574 

recommended, particularly focussing on the interface between the PuO2 particle agglomerates and 575 

the encapsulant grouts. The evidence available from this study indicates that Portland cement blends 576 

are suitable encapsulating matrices for wastes containing PuO2 (whether in this physical form or as a 577 

component of other waste streams arising from spent fuel reprocessing). 578 

XRD and TGA results indicate phase assemblages characteristic of the blended cements investigated; 579 

no significant crystal reflections for new hydrate phases in XRD were observed, and no additional 580 

weight loss was seen at temperature ranges inconsistent with these blends. Incorporation of cellulose 581 

caused variation in the proportion of phases present, likely due to cellulose degradation, but no 582 

microstructural differences were observed. 583 
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Comparison of the PuO2 samples with the controls suggests quantitative differences in the phase 584 

assemblage. The ratio of sulfate phases in the BFS blends appear to have altered in the presence of 585 

PuO2, with an increase in ettringite observed. This change may be driven by a combination of factors, 586 

including an increase in the CO2/Al2O3 ratio. Despite conversion of monosulfoaluminate to ettringite 587 

being linked with structural damage in sulfate attacked concretes, no evidence of structural damage 588 

was apparent in these small scale samples. The potential radiolytic oxidation of sulfide released 589 

through hydration of BFS increasing the sulfate content is considered insufficient to cause significant 590 

structural issues, as the bulk SO3/Al2O3 ratio will be buffered by the alumina also released from the 591 

BFS. Further work is needed to assess the extent of chemical variations in the area surrounding the 592 

PuO2 agglomerate particles with regard to the sulfate phase ratio, and how the carbonate content 593 

affects the AFm phase balance in these areas. 594 

Differences in amount of carbonates present were observed, however due to the different storage 595 

and handling of the radioactive samples and controls this cannot be attributed to radiation effects. 596 

Although the results indicate that radiolytic carbonation may have occurred, no systematic trends 597 

were observed for the different samples analysed. 598 

Gas evolution data for the samples show slightly elevated G(H2) values compared to those in literature 599 

for similar systems, which is thought to be a product of the idealised curing condition used in the 600 

current study. Results are consistent with what would be expected based on the likely radiation 601 

deposition, taking account of self-absorption within the PuO2 particle agglomerates. The addition of 602 

cellulose increased the G(H2) values in all samples; this is probably due to the contribution of cellulose 603 

radiolysis products and additional water absorption by the cellulose creating an enhanced water 604 

content in the samples.  605 
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