
This is a repository copy of A Deep Learning Approach Combining Auto-encoder with One-
class SVM for DDoS Attack Detection in SDNs.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/157807/

Version: Accepted Version

Proceedings Paper:
Mhamdi, L, McLernon, D orcid.org/0000-0002-5163-1975, El-moussa, F et al. (3 more 
authors) (2021) A Deep Learning Approach Combining Auto-encoder with One-class SVM 
for DDoS Attack Detection in SDNs. In: 2020 IEEE Eighth International Conference on 
Communications and Networking (ComNet). 8th IEEE International Conference on 
Communications and Networking IEEE ComNet'2020, 27-30 Oct 2020, Hammamet, 
Tunisia. IEEE . ISBN 978-1-7281-5321-6 

https://doi.org/10.1109/ComNet47917.2020.9306073

© 2020, IEEE. All rights reserved. Personal use of this material is permitted. Permission 
from IEEE must be obtained for all other uses, in any current or future media, including 
reprinting/republishing this material for advertising or promotional purposes, creating new 
collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted 
component of this work in other works.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



A Deep Learning Approach Combining
Autoencoder with One-class SVM for DDoS Attack

Detection in SDNs

Tuan A Tang∗, Des McLernon†, Lotfi Mhamdi†, Syed Ali Raza Zaidi†,
Mounir Ghogho‡ and Fadi El-Moussa§

∗Da Nang University of Science and Technology, Danang, Vietnam.
†School of Electronic and Electrical Engineering, The University of Leeds, Leeds, UK.

‡International University of Rabat, Morocco.
§BT Security Futures Practice, Adastral Park, Ipswich, IP5 3RE, UK.

Email: tanganhtuan@dut.udn.vn, d.c.mclernon@leeds.ac.uk, l.mhamdi@leeds.ac.uk, s.a.zaidi@leeds.ac.uk,

m.ghogho@leeds.ac.uk and fadiali.el-moussa@bt.com.

Abstract—Software Defined Networking (SDN) provides us
with the capability of collecting network traffic information
and managing networks proactively. Therefore, SDN facilitates
the promotion of more robust and secure networks. Recently,
several Machine Learning (ML)/Deep Learning (DL) intrusion
detection approaches have been proposed to secure SDN
networks. Currently, most of the proposed ML/DL intrusion
detection approaches are based on supervised learning approach
that required labelled and well-balanced datasets for training.
However, this is time intensive and require significant human
expertise to curate these datasets. These approaches cannot deal
well with imbalanced and unlabeled datasets. In this paper,
we propose a hybrid unsupervised DL approach using the
stack autoencoder and One-class Support Vector Machine (SAE-
1SVM) for Distributed Denial of Service (DDoS) attack detection.
The experimental results show that the proposed algorithm can
achieve an average accuracy of 99.35% with a small set of flow
features. The SAE-1SVM shows that it can reduce the processing
time significantly while maintaining a high detection rate. In
summary, the SAE-1SVM can work well with imbalanced and
unlabeled datasets and yield a high detection accuracy.

Index Terms—SDN, software-defined networking, network
intrusion detection, autoencoder, one-class SVM, DDoS

I. INTRODUCTION

A. Motivation

In SDN architecture, control and data planes are separated

from each other. The logically centralized control plane

provides a global network overview that can help to secure the

network efficiently. Network attacks (i.e., Port Scan, DDoS,

Man-in-the-Middle) can now be detected and mitigated in

a real time manner. DDoS attacks have existed for a long

time and are becoming more and more complex and directly

threaten the network’s service availability. These attacks are

relatively easy to perform, hard to defend against, and the

attacker is rarely traced back because of the distributed nature

of DDoS attacks. The attacker launches a DDoS attack using

a botnet-group of zombies-to generate a vast amount of traffic

against a victim’s web server. Zombies or computers that are

part of a botnet are usually recruited through the use of worms,

Trojan horses or back doors. Defending against DDoS attacks

is a challenging issue, and in order to do so, we have to first

detect these attacks. There are several methods for detecting

DDoS attacks like statistics-based method [1], clustering

method [2]. DDoS attacks can be mitigated by some defense

mechanisms like a firewall or load balancing. However, these

defense mechanisms have their own limitations and efficient.

Despite all the effort to tackle these attacks, DDoS attack

strategies are constantly evolving, so it is tough to detect

and mitigate against sophisticated variants of one of the most

common attacks. With the development of new DDoS attacks,

the statistic-based method and the clustering method cannot

perform well enough, so ML/DL approaches are becoming

more and more popular and eficient in detecting these kinds

of attacks. Several works [3]–[6] have been carried out to

tackle DDoS attacks in SDNs. Most of these works employ

supervised learning based approach. This approach requires

balanced and labelled datasets for training. However, these

datasets are not always available for researchers, and they

are especially rare in the context of SDN. Unlike supervised

learning, the unsupervised learning approach does not need

label information for the data and can address the imbalanced

classification problems. One-class Support Vector Machine

(OC-SVM) has for a long time been one of the most effective

anomaly detection methods and is widely adopted in both

research and industrial applications. However, the biggest

issues for OC-SVM is the capability to operate with large

and high-dimensional datasets due to inefficient features and

optimization complexity. As a result, the OC-SVM may not be

desirable in big data and high-dimensional anomaly detection

applications. Besides, Autoencoder recently emerges as an

effective intrusion detection approach in different fields [7]–

[9]. In these researches, a reconstruction error is used to detect

anomalies. In this paper, we propose an unsupervised hybrid
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approach combining Stack Autoencoder with OC-SVM (SAE-

1SVM) for DDoS attack detection in the SDN.

B. Contribution

Our main contributions are as follows:

• We introduce an unsupervised DDoS attack detection

approach in the SDN paradigm using the SAE-1SVM.

To the best of our knowledge, this is the first attempt

to use the SAE-1SVM for DDoS attack detection

in the SDN environment. In our work, the Stack

Autoencoder learns the patterns of legitimate traffic and

also compresses input data into a lower dimension. This

lower-dimensional and higher-level data is now more

suitable for the OC-SVM to process.

• Our SAE-1SVM approach yields a detection rate of

99.35% using a minimum number of features compared

to other state-of-the-art approaches.

• We also evaluate the computational overhead of the SAE-

1SVM. The result shows that our approach has significant

potential for real-time intrusion detection.

This paper is organized as follow. In Section II, we

introduce some related work. Section III describes our

proposed hybrid approach for DDoS attack detection, the

CICIDS20127 dataset and evaluation metrics. Section IV

shows the performance evaluation of our approach. Finally,

conclusions and future work are discussed in section V.

II. RELATED WORK

SDN-based IDSs have been extensively researched recently.

One of the earliest approaches for DDoS attack detection

in the SDN was proposed in [10]. Braga et al. presented a

lightweight approach using a Self Organizing Map (SOM)

to detect DDoS attacks in the SDN. This approach based

on six traffic flow features (Average of Packets per flow,

Average of Bytes per flow, Average of Duration per flow,

Percentage of Pair-flows, Growth of Single-flows, Growth of

Different Ports) gives a quite high detection accuracy. Nam

et al. [11] proposed an approach combining SOM and K-

Nearest Neighbors to detect several kinds of DDoS attacks

in SDN. This approach can reduce computational overheads

while maintaining a suitable ACC of 98.24%.

Recently, DL has developed as an important research trend

in the field of intrusion detection. Tang et al. [12] proposed a

DL approach for intrusion detection. They achieved a quite

promising accuracy of 75.75% using a limited number of

flow features. Yin et al. [13] proposed a DL approach using

recurrent neural networks for detection intrusion. They got an

accuracy of 83.28% with their experiments on the NSL-KDD

dataset. Fu et al. [14] proposed an IDS using Long short term

memory RNN (LSTM-RNN). They achieved an accuracy of

97.52% with the NSL-KDD dataset. An autoencoder (AE) -

a form of Artificial Neural Network - is extensively exploited

by many researchers for anomaly detection in SDNs. Zhang

et al. [15] proposed a method combining Sparse Autoencoder

and Xgboost algorithms to deal with a high-dimensional and

unlabelled dataset. They achieved an F1-measure of 91.97%,

but their precision is still quite low compared to other state-

of-the-art approaches. In [5], the authors proposed a DL based

approach using a stacked autoencoder (SAE) for detecting

DDoS attacks in the SDN. A non-symmetric deep AE and

Random Forest algorithm are combined to detect DDoS

attacks in [6]. The authors claim that they can obtain a good

classification result whilst significantly reducing the training

time.

These proposed methods can detect DDoS attacks with

quite high accuracy, but they only support limited types of

DDoS attacks and are all supervised learning approaches.

From the above approaches, a DDoS detection system which

is lightweight and unsupervised is now necessary.

III. RESEARCH METHODOLOGY/SYSTEM DESCRIPTION

In this section, we first introduce the SAE-1SVM

architecture. Secondly, we describe the CICIDS2017 dataset

used in our research. Finally, we explain all the metrics used

to evaluate the performance of our proposed approach.

A. SAE-1SVM for DDoS Attack Detection

An AE consists of one input layer, one or more hidden

layers and one output layer. The input and output layers

always have the same sizes. A general structure for an AE

is shown in Fig. 1. The AE has two phases which are

encoding and decoding. For encoding process, input data x

is compressed into a low-dimensional representation h and

then the decoder reconstructs the input based on the low-

dimensional representation:

h = f(Wx+ b), (1)

y = f(W′h+ b′), (2)
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Fig. 1. A General Structure of an AE



where f(·) is a non-linearity activation function, W and W′

are hidden weight matrices, b and b′ are biases and y is the

output vector.

The main goal of training the AE is to minimize the

difference between the input x and output y. Therefore, a

MSE loss function is used as follows:

L(x,y) = ‖x− y‖
2

2
. (3)

In order to learn feature representations of input data, AEs

are stacked successively to form a deep AE (SAE). The

learned feature representations will be used as inputs for other

classifiers.

The OC-SVM [16] is an unsupervised approach for

classification. The OC-SVM tries to learn a hyperplane that

best separates all the data points from the origin:

f(x) = wTφ(x)− ρ, (4)

where φ(·) is a feature projection function that maps an input

vector x into a higher dimensional feature space, w is a

decision hyperplane normal vector which is perpendicular to

the hyperplane, and ρ is an intercept term. We can obtain w

and ρ by solving an objective function:

min
ω,ξ,ρ

1

2
‖w‖

2
+

1

νn

n∑

i=1

ξi − ρ, (5)

subject to: wTφ(xi) ≥ ρ− ξi, ξi > 0,

where the meta-parameter ν ∈ (0, 1] determines the upper

bound on the fraction of outliers and the lower bound on the

number of training samples used as support vectors, and ξi
are non-zero slack variables for penalizing the outliers.

By using Lagrangian techniques and a kernel function for

the dot-product calculations, the decision function becomes:

f(x) =

n∑

i

αik(xi,x)− ρ, (6)

where αi is a Lagrange multiplier, and k(xi,x) = φ(xi)
Tφx

is a kernel function. A Radial Basic Function (RBF) kernel is

employed in our experiment:

k(xi,x) = e−γ‖xi−x‖2

, γ > 0. (7)

In this paper, we propose a hybrid approach combining

SAE with OC-SVM for DDoS attack detection. Fig. 2 gives

a general structure of the proposed SAE-1SVM. The SAE-

1SVM is trained with legitimate traffic traces. At first, the

legitimate traffic traces are trained with the SAE to extract the

low-dimensional representation, and then the low-dimensional

representation is trained with OC-SVM for DDoS attack

classification. Because the SAE-1SVM is trained with the

legitimate traffic only, the anomaly traffic will be considered

as outliers which can be easily detected.

B. CICIDS2017 Dataset

As mentioned in [17], most of the current network dataset

is out-of-date and not reliable enough, so the CICIDS2017

dataset was proposed as a new benchmark dataset. The

CICIDS2017 dataset is claimed to be most up-to-date with

all common attacks and real-world traffic. This dataset covers

seven types of common attack families (i.e., Brute Force

Attack, Heatbleed Attack, Botnet, DoS Attack, DDoS Attack,

Web Attack, and Infiltration Attack). This dataset is divided

into seven small datasets with different attack scenarios. All of

these datasets are labeled and saved in CSV format. Each flow

sample in the CICIDS2017 dataset contains 80 flow features

which are defined and explained in detail in [18].

In this paper, we choose the Wednesday dataset focusing on

DoS, Heartblead, Slowloris, Slowhttptest, Hulk, GoldenEye,

and DDoS attacks. These types of attacks are on the

rise and are major threats to the SDN architecture. The

Wednesday dataset contains 439,683 legitimate traffic and

251,723 anomaly traffic samples.

Since we just focus on the SDN-related flow feature, we

extract a subset of 13 SDN-related features out of 80 features

of this dataset for our research. Details of these features can

be seen in Table. I.

TABLE I
THE CICIDS2017’S FEATURE DESCRIPTION

Feature Name Description

Source Port Source port of the flow
Destination Port Destination port of the flow
Protocol Protocol type of the flow
Flow Duration Duration of the flow in microseconds
Total Fwd Packets Total packets in the forward direction
Total Length of Fwd
Packets

Total size of packet in forward direction

Fwd Packet Length Mean Standard deviation size of packet in forward
direction

Flow Bytes/s Number of flow bytes per second
Flow Packet/s Number of flow packets per second
Flow IAT Mean Mean time between two packets sent in the

forward direction
Flow IAT Std Standard deviation time between two

packets sent in the forward direction
Fwd Packets/s Number of forward packets per second
Subflow Fwd Bytes The average number of packets in a sub flow

in the forward direction

Samples in this dataset are normalized into the range of

[0-1] by Min-Max scaling. Its mathematical equation is given

as:

x
′

=
x−min(x)

max(x)−min(x)
, (8)

where x
′

is the normalized value, and x is the original value.

C. Evaluation Metrics

The performance and effectiveness of the NIDS are

evaluated by several metrics as follows:

• True Positive (TP): the number of anomaly records

correctly classified.
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• True Negative (TN): the number of normal records

correctly classified.

• False Positive (FP): the number of normal records

incorrectly classified.

• False Negative (FN): the number of anomaly record

incorrectly classified.

For the evaluation purpose, Accuracy (ACC), Precision (P),

Recall (R) and F1-measure (F1) metrics are applied. These

metrics are calculated as follows:

• Accuracy (ACC): shows the percentage of true detection

over total traffic trace:

ACC =
TP + TN

TP + TN + FP + FN
× 100%. (9)

• Precision (P): shows how many intrusions predicted by a

NIDS are actual intrusions. The higher P then the lower

false alarm is:

P =
TP

TP + FP
× 100%. (10)

• Recall (R): shows the percentage of predicted intrusions

versus all intrusions presented. We want a high R value:

R =
TP

TP + FN
× 100%. (11)

• F1-measure (F1): gives a better measure of the accuracy

of a NIDS by considering both the precision (P) and the

recall (R). We also aim for a high F value:

F1 =
2

1

P
+ 1

R

× 100%. (12)

IV. DETECTION PERFORMANCE EVALUATION

A. Experimental Setup

In our experiment, the SAE architecture is implemented

with all hyper-parameters given in Table II. Details about the

number of neurons of each network architecture used in this

experiment are shown in Table III. For the OC-SVM model,

the parameters ν and γ are chosen from the range {10−10,

10−9,...,100}. After the optimizing process, the parameters in

(5) ν = 10−2 and γ = 10−2 are chosen for the experiment.

TABLE II
THE SAE HYPER-PARAMETERS

Variable Parameters

Activation Function Tanh
Loss Function Mean Squared Error
Learning Rate 0.001

Batch Size 10
Epoch 1000

TABLE III
NETWORK ARCHITECTURE DETAILS

Architecture Input Layer Hidden Layer Output Layer

AE 13 2 13
SAE 1 13 6,2,6 13
SAE 2 13 10,8,6,4,2,4,6,8,10 13

B. DDoS Attack Detection with a Hard Threshold

The AE is commonly used to detect anomaly with the

idea that behaviors of attacks are different from those of



legitimate traffic. Therefore, the AE will be trained only with

the legitimate traffic and then it tries to reconstruct them

with the highest ACC. The anomaly traffic is not used for

training, so the AE cannot reconstruct them correctly. We

can detect anomaly traffic based on this difference. In this

section, we analyze the effect of network architecture on the

reconstruction performance.

We compare the reconstruction ACC of the AE, SAE 1,

and SAE 2 in Table IV. As we can see, the SAE 2 yields the

best reconstruction ACC at 98.6%. The AE gives a quite low

reconstruction ACC at 85%. With just one hidden layer, we

cannot learn good feature representations, so the reconstructed

input is just a lossy version of the original inputs. It shows

that a deeper SAE can learn feature representations better and

then reconstructs the inputs with a higher ACC. Therefore,

the SAE 2 will be chosen for further experiments.

TABLE IV
RECONSTRUCTION ACC COMPARISON

Architecture Reconstruction ACC (%)

AE 85
SAE 1 96
SAE 2 98.6

As in [7], [8], and [9], we also employ the reconstruction

error to detect anomalies. The SAE 2 is trained to minimize

the reconstruction error, so the error rate should be quite

small with the legitimate input traffic. If any anomaly traffic

is fed into the SAE 2, the SAE 2 could not recognize it and

reconstruct it correctly. In this case, the reconstruction error is

higher than normal, and so we can detect the network attack.

In Table V, we compare the performance of different

threshold values in terms of ACC, P, R, and F1. As we

can see, with a higher threshold, we get a higher detection

ACC. However, the other evaluation metrics drop dramatically

with high threshold values. The reason for this trend is that

more legitimate traffic is classified correctly with a higher

threshold, but we also misclassify anomaly traffic. Even with

a small threshold of 0.01, the detection P is still worst. If

we set a high hard threshold, the false positive rate will

increase significantly, and our network will become vulnerable

to attacks. If we set a low hard threshold, the false alarm rate

will increase and so the NIDS can block the legitimate traffic.

TABLE V
ACCURACY METRICS FOR DIFFERENT THRESHOLDS

Threshold ACC (%) P (%) R (%) F1 (%)

0.01 54.9 21 85 33.67
0.03 55.3 13.9 4.3 6.5
0.05 58.2 1.7 0.26 0.45

The AE approach with a hard threshold for anomaly

detection works quite well in [7], [8], and [9] but it does

not perform well in our experiments. This phenomenon can

be attributed to the complexity of DDoS attacks in the

CICIDS2017 dataset. Some DDoS attacks in this dataset try

to mimic behaviours of legitimate traffic, so the reconstruction

error rate of both legitimate and anomaly traffic quite close to

each other. As a result, they are hard to detect. As seen in this

section, the hard threshold approach is not good and efficient

enough for DDoS attack detection, so we will consider another

approach in the next section.

C. DDoS Attack Detection with the SAE-1SVM

In this section, we analyze the DDoS attack detection

performance of the SAE-1SVM. The general architecture

of the SAE-1SVM has been described in Fig. 2. In this

experiment, we employ the SAE 2 architecture from the

previous experiment for feature representation learning. To

begin with, we present the detection performance of the

SAE-1SVM in term of ACC, P, R, and F1. We compare

the performance of SAE-1SVM with classical OC-SVM. We

also compare the SAE-1SVM with a DL algorithm combined

Convolution Neural Network (CNN) and LSTM proposed

in [19]. This work also uses the CICIDS2017 dataset for

performance evaluation.

The overall detection performance comparison is depicted

in Table VI. According to the experimental results shown

in Table VI, we can see that the SAE-1SVM outperforms

the OC-SVM in all of the evaluation metrics. Specifically,

the SAE-1SVM achieves a much higher P than the OC-

SVM. The SAE-1SVM also achieves better results than

the CNN+LSTM algorithm. The main reason for this high

performance is that the OC-SVM in the SAE-1SVM is

trained with the low dimensional representation. The low

dimensional representation helps the OC-SVM characterize

the network traffic better, so the detection ACC can be

improved significantly.

TABLE VI
THE EVALUATION METRIC COMPARISON

Algorithm ACC (%) P (%) R (%) F1 (%)

OC-SVM 98 96.26 98.21 97.22
CNN+LSTM [19] 98.87 98.89 98.83 98.86

SAE-1SVM 99.35 99.97 98.28 99.11

The computational time is an important factor in evaluating

the performance of a classifier. Reducing the computational

time is also very important. The training and testing times

of each algorithm are presented in Table VII. As we can

see, the SAE-1SVM consumes significantly less time than

OC-SVM in both training and testing processes. The SAE-

1SVM is 27 and 6 times faster than the OC-SVM in training

and testing respectively. The OC-SVM module in the SAE-

1SVM now only processes 2-dimensional inputs compared

to 13-dimensional inputs in the original OC-SVM, so the

processing time has been reduced significantly. In the SAE-

1SVM, the OC-SVM processes more representative but lower-

dimensional inputs. Therefore, the SAE-1SVM has excellent

potential for real-time NIDS.



TABLE VII
THE TRAINING AND TESTING TIME COMPARISON

Algorithm Traing Time (s) Testing Time (s)

OC-SVM 5110 141
SAE-1SVM 189 26

V. CONCLUSION

In this paper, we presented a hybrid unsupervised DL

approach for DDoS attack detection. The above results show

that our proposed approach has a strong potential in detecting

DDoS attacks using limited flow features. The experimental

results also show that our SAE-1SVM can deal really well

with imbalanced and unlabeled datasets. Although the final

results have a quite high false positive rate, the SAE-1SVM

can be improved in several ways. Several DL approaches can

be applied to the SAE to improve generalizing capability. We

can also optimize the OC-SVM by a grid search algorithm.

In future research, we will deploy our proposed approach in

a real SDN testbed for more detail analysis. Detecting other

kinds of network attacks will also be considered in future

research.
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