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Abstract

Recent years have seen a profound change in how most users interact with

search engines: the majority of search requests now come from mobile devices,

which are used in a number of distracting contexts. This use of mobile devices in

various situational contexts away from a desk presents a range of novel challenges

for users and, consequently, possibilities for interface improvements. However,

there is at present a lack of work that evaluates interaction in such contexts

to understand what effects context and mobility have on behaviour and errors

and, ultimately, users’ search performance.

Through a controlled study, in which we simulate walking conditions on a

treadmill and obstacle course, we use a combination of interaction logs and

multiple video streams to capture interaction behaviour as participants (n=24)

complete simple search tasks. Using a bespoke tagging tool to analyse these

recordings, we investigate how situational context and distractions impact user

behaviour and performance, contrasting this with users in a baseline, seated

condition. Our findings provide insights into the issues these common contexts

cause, how users adapt and how such interfaces could be improved.

Keywords: mobile search; distraction; search experience; user study;

experimentation
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1. Introduction

Recent years have seen a rapid change in the mix of devices people use to

search for and interact with information on the Internet. As early as mid-2015

the world’s largest search engine announced that mobile devices had overtaken

desktop and laptop machines as the most common source of search queries [15].

Such devices give people the ability to access search engines and the wider

Internet away from the confines of a desk and in many different environmental

contexts: on public transport, while walking from place to place [28, 34, 46]

or in social contexts, where the presence of others can cause distraction [9].

Put simply, we use mobile devices in situations where we cannot use desktops

and laptops and these everyday situations (e.g. walking) can often present

distractions, dividing our attention as we interact [40]. Research suggests that

these situations increase cognitive load and, therefore, may have an impact on

performance [23], increasing the possibility of interaction errors as we hold and

alter our grip to complete common tasks.

The result is a larger number of misspelled queries and an attempt by users

to shorten queries when searching [45, 46]. In fact, concentration on a mobile

task while walking even has an effect on how we walk: to compensate the

brain subtly (and subconsciously) alters stance and gait [47]. As such, using a

mobile device whilst walking requires both cognitive and motor abilities and so

users must divide their attention between the two tasks [32], meaning either an

increase in cognitive load, a decrease in pace, a decrease in task performance or

a combination of these [33]. The level of difficulty experienced may additionally

be influenced by the device size and type and the amount of encumbrance it

itself causes [21, 6].

Since interaction with mobile devices is typically achieved by means of a

touchscreen and such devices are used whilst held in one’s hand, it is important

to consider how the device is gripped [18, 17]. Research shows that people

employ various different grips and that, depending on factors such as device

size, they have preference of certain grips over others [18]. Despite the fact that
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mobile hand-held devices are often used in distracting contexts and whilst on the

move and for complex tasks, we do not yet know what impact different situations

have on grip preference and effectiveness, how users transition between grips as a

task evolves and how this all relates to interaction errors. While previous work

has investigated behaviour and error rates when completing single “atomic”

tasks (e.g. tapping a button or typing a set word or phrase), we know little about

user interaction with devices for more holistic tasks, such as web search, and the

effects that commonly-encountered mobile situations have on these interactions.

In this paper we investigate user search performance and behaviour, inter-

action errors and the use of grips in common everyday situations (i.e. walking

whilst using a mobile phone). Through a controlled study we asked partici-

pants to complete real-world search activities and, using both log data from

the devices and multiple video recordings, captured their behaviour and how

they interacted with the device in completing the tasks. These recordings were

synced, encoded, annotated and analysed using a bespoke tool designed specifi-

cally for this research. By manually tagging interactions observed from the three

video streams running concurrently, we are able to analyse behaviour and iden-

tify which grips are being used, when these are changed and how this impacts

search performance. In concert with analysis of log data, these investigations

allow us to gain a more nuanced and detailed understanding of device use in

context. This research is, to our knowledge, the first to investigate grips in

situations where mobile device users are not seated at a desk and interaction

errors for complex tasks under varying everyday mobile situational contexts.

Concretely, we aim to:

1. Obtain, from a lab study, holistic data of user behaviour when performing

search tasks on a mobile phone in everyday situations.

2. Investigate the effects these mobile situations have on hand movements,

grip and shifts in grip.

3. Assess the impact of (i) context and (ii) grip on:

(a) interaction behaviour
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(b) error rates

(c) objective search task performance

2. Related work

In the fields of computer science that seek to understand and improve users’

interactions with devices - such as Human Computer Interaction (HCI), Com-

puter Supported Collaborative Work (CSCW) and Information Retrieval (IR)

- the use of various methods to capture and model these interactions is com-

mon [19]. A lot can certainly be learned from detailed examination of system-

generated log data (e.g. [26, 48, 29]) or qualitative analysis of interviews and

diary studies (e.g. [10]). However, such data used on its own can lack infor-

mation about user context, how the user is physically holding the device and

errors made when interacting with on-screen elements [36] or can suffer from

inaccurate or incomplete recall of memories.

The user’s surroundings can be crucial in understanding a particular be-

haviour, as concurrent interactions with objects other than the device of in-

terest and distractions in the environment can have large effects [44]. This is

especially true when attempting to understand interactions with mobile phones,

where users often use their devices in noisy, busy and disruptive environments

and contexts [24]. Recent work has called for the use of multiple video record-

ings, including screen recordings, wearable headcams and other sources to obtain

a more complete and accurate understanding of user behaviour in context [36].

2.1. Attentional shifts

Mobile touchscreen devices have become increasingly popular, yet typing on

virtual keyboards whilst walking is still an overwhelming task [40]. There are

many examples of distracted input on smart phones, where users must split their

attention between the task of navigating their physical environment and inter-

acting with information on the screen [39]. Bergstrom-Lehtovirta et al. [3] varied

walking speed on a treadmill and measured the resulting effects on the abiulity
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of users to tap discreet interface elements on the touchscreen. Distractions

encountered during walking can preoccupy users, reducing their effectiveness

in interacting with a user interface (UI) and adding to their cognitive work-

load [24]. It could even be interpreted that users are performing tasks inside

a bubble: flipping back and forth between the information on the screen and

the outside world [28]. As a user interacts with a mobile phone, distractions

caused by walking can influence the way they hold the device, influencing the

level of engagement with the task and affecting the overall effectiveness of the

interaction [5, 9].

Given that today’s users are more likely to be mobile when they search for

information online, a deeper understanding of their interactions and challenges

whilst mobile will help us to understand situational search behaviour and the

influences of these attentional shifts on search.

2.2. Mobile interaction and grips

Mobile interactions are commonly achieved via touch screens upon which

relatively small “soft buttons” are drawn to allow the selection of items and

input text. While these buttons may be easy to accurately press in an ideal

environment, such as when seated, these small and non-tactile targets may be

much more difficult to interact with in other distracting situations [5]. For

example, buttons in mobile UIs are often too small to comfortably press, which

can result in unintended interactions [31].

Work has assessed the effects of walking on performance with soft buttons,

attempting to quantify the negative effects on use due to walking and exploring

design changes that may improve a user’s experience with a mobile device [31].

Mizobuchi et al. looked into mobile text entry and found additional workload

effects when walking and identified walking speed as a secondary measure of

mental workload [37]. They concluded that texting whilst walking results in

either a reduction in input speed (but not accuracy) or a reduction in walking

pace.

The limited input modalities afforded by mobile devices have a negative
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effect on usability [22], a problem compounded by screen size and the device’s

reduced ability to present information and navigational cues [6, 8]. Small screens

can easily become cluttered with information and widgets (e.g. buttons, menus,

windows etc.) and this presents a difficult challenge for interface designers [6].

Use of larger devices, such as tablets, which have correspondingly larger screens,

may mitigate some of these issues and result in notably different modalities of

use [38].

One of the most important aspects of context in mobile computing is the

way in which people hold and move with their phones, which affects how they

interact with it. Nicolau and Jorge [40] investigated the effects of walking and

different grip types on virtual keyboard text entry, finding that ambulatory

motion had a negative effect on text entry. They also found that, although

two-handed interaction improved input rate, it surprisingly did not improve

accuracy through additional physical stability. More recently, Eardley et al.

[17, 18] investigated the grips people tend to use when interacting with different

types of device with varying screen sizes. Through a series of user studies they

demonstrated that different conditions afford different grip types and that the

most effective grip is dependent on the context of interaction.

While these existing studies do indicate the importance of grip in interaction

with mobile touchscreen devices, they do so in very restricted sets of conditions.

Users are given simple, atomic tasks to perform and the context is kept strictly

static. As such we do not know how or whether users transition between grip

types for different tasks and what impact situational context has on these shifts

in grip. Do, for example, users employ one grip for some tasks but switch to

another when the required style of interaction changes and do they shift their

grips in order to compensate for distractions or environmental impediments?

2.3. Recording and annotating mobile interaction

Cameras placed in settings such as control rooms, surgeries, homes, offices,

and museums are used to capture technology use in-situ [35]. Videoing inter-

actions has been popular as attempts are made to understand and interpret
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the subjective qualities of user behaviour, encoding events with the help of

timecodes [42]. Previous research filmed and logged user behaviour and stud-

ied preferred user interaction modalities in different contexts and for different

tasks [43]. Brown et al. [7] coded events observed from video recordings on a

data sheet by watching and pausing the playback tape.

As mobile devices have become more ubiquitous, recording the environment

where interactions take place has become important [41] and the analysis of

video allows for fine-grained analysis of interaction and activity [36]. Combin-

ing methods that record the screen and lightweight cameras to capture environ-

mental details supports this analysis of mobile interactions [41, 7, 36]. However,

while many early studies were able to assess user performance, they lacked anal-

ysis of the way that context affects interaction [4, 36].

The emergence of video annotation tools have raised the possibility of explor-

ing not just which UI elements a user interacts with, and for how long, but also

the context of use. Such tools offer the flexibility to model several perspectives

over the same video content allowing multiple views of the same video data [12].

Følstad et al. [20] noted that practitioners tend to use commercially available

software tools for analysis. Other research has, however, developed plug-ins for

existing commercial software, for example Techsmith’s Morae, bridging the gap

between academic and commercial tools [27]. However, as we move towards

more complex interactions, software like Morae, which is designed primarily

for static lab-based evaluations, lacks the flexibility to model user interactions

in-situ from these multiple perspectives.

2.4. Mobile information retrieval (MIR)

Improvements in mobile technologies have led to a dramatic change in how

and when people access and use information, and have “a profound impact on

how users address their daily information needs” [11]. Large-scale analysis of

mobile search logs [29] has shown that the increase in time required for mobile

searches deters some types of search behaviour, such as exploratory search, and

causes search sessions to be considerably shorter than in desktop search.
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Situational conditions have a number of fairly profound effects on user per-

ceptions, both before and after completing the tasks [24], exerting a range of

effects on performance and increasing difficulty of interaction [31]. This can

cause users to feel more rushed, meaning they are less likely to explore the

search results and to assess potentially relevant documents for relevance [13].

Tasks that are comparatively easy when stationary will likely incur a higher

“cost” [1] if input accuracy [39] and reading comprehension [2] are reduced.

Environmental distractions can preoccupy users [41], reducing their effec-

tiveness in interacting with the UI [5, 34] and resulting in a larger number of

misspelled queries and an attempt by users to shorten queries [45]. Walking

whilst using a mobile device requires both cognitive and motor abilities and

users must divide their attention between the two tasks [32]. These different

situational conditions impact search behaviour and, consequently, search per-

formance [24, 23].

As research into information retrieval continues to evolve, evaluating search

behaviour with the use of video will permit the identification of patterns and

search behaviours unique to the user’s condition, which log analysis can not

uncover. Evaluating spatial awareness and any shifts in attention as users grip

the device to type queries in these everyday situations will help to assess the

levels of immersion and user abilities in mobile search tasks.

3. Method

We conducted a laboratory experiment with a total of 24 participants drawn

from a large European University (a mixture of academic staff, support staff and

post-graduate students), of whom 13 were male. Although participants were

randomly assigned to one of 3 conditions, there was an equal spread across the

two sexes (i.e. male and female), with participants from each sex assigned to all

conditions. Ages ranged from 18 to 60, with 2 modal age ranges of between 25

and 30 and between 31 and 40. Ages were also distributed between the exper-

imental conditions with no significant differences (χ2=5.13, p-value=0.74). 18
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of the participants were native English speakers and the others were completely

fluent in the language.

The study used a Moto X Style Smartphone running Android version 5

with the Google Chrome web browser for all tasks. The level of distraction and

encumbrance was varied by simulating three everyday situations experienced by

mobile device users: walking quickly on a treadmill, navigating an environment

with obstacles, as well as a baseline condition in which the participant was seated

without any distractions. Participants were randomly allocated to one of the

three conditions, resulting in 8 participants per condition, and the distraction

level was a between-subjects variable. Following the procedure of Lin et al.

[34], participants on the treadmill were asked to select a comfortable walking

pace using the increase and decrease belt speed buttons. This chosen speed

was then increased by 20% to induce a small amount of ambulatory distraction.

The obstacle course group was shown how to navigate a pre-defined figure-of-

eight layout around tables, were asked to maintain a normal walking pace and

were prompted to speed up by the researchers if their pace began to noticeably

decrease during the task.

We developed a simple mobile search interface named zing, shown in Fig-

ure 1, which mimics a standard search interface by showing 10 links in descend-

ing order of relevance together with short 5-line snippets for each. The interface

allows participants to enter search terms and indicate via check-boxes which

documents, if any, they think are relevant. It shows the current task at the bot-

tom of the screen, it allows participants to progress to the next search task at

any time and it prompts users to fill in pre- and post-topic questionnaires. These

are used to survey their perceptions about the task, their self-assessed post-task

performance, satisfaction, perceived time pressure and focus/involvement on the

task.

We used a standard test collection - AQUAINT - and removed duplicate

documents in a pre-processing step to provide a better and more familiar user

experience. To assess performance, we made use of pre-defined TREC topics

from the 2005 Robust track [49], of which we chose 4 at random from a subset of
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Table 1: TREC topics used for user studies.

No. Title AP Pre Post

362 Human smuggling 0.29 2.83 2.75

367 Modern Piracy 0.26 2.79 2.25

638 Wrongful convictions 0.23 2.83 3.00

404 Ireland peace talks 0.28 3.25 2.79

those that are neither too difficult nor too easy1. Table 1 shows the topics chosen

as well as the average precision (AP) of their titles on the AQUAINT collection

and the participants’ perceptions of each topic’s difficulty before (pre) and after

(post) completing it. Participants expressed topic difficulty by means of a 5-

point Likert scale. Indexing, searching and snippet generation was provided by

Apache SOLR2.

Participants were asked to imagine they wanted to learn more about the

subject of each topic for a short report and were requested to select 3-5 doc-

uments they thought were relevant. Participant actions and behaviour were

recorded by means of a GoPro camera; recording of the screen by an Android

application installed on the mobile devices; for the obstacle course only, a wide-

angle camera was used to record global user behaviour. The GoPro camera was

worn on the head capturing hand movements, grip changes and any attentional

shifts (i.e. obvious movements of the head and or body away from the device

and to the environment). The touchscreen and interface was recorded using

a screen recording application; this application recorded the interaction points

with the device, providing insights into the interaction errors (e.g. miss typing,

missing areas of the UI, etc.). For the obstacle course, the third wide-angle

camera - a Sony Handycam on a tripod - captured additional mobility changes

and additional behavioural changes that were not obvious from the headcam

1After the method of Harvey et al. [25], whereby the difficulty of a topic is determined by

the average precision of its title over the document collection.
2http://lucene.apache.org/solr/
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footage. This includes any obstacle avoidance and participants visibly slowing

down during interaction.

3.1. Adobe UI plugin and video processing

As the video recordings were made by three different devices, they did not

all have the same frame rate, making any immediate comparison between them

impossible. To remedy this we first re-encoded all of the videos to a single, fixed

frame rate of 30 frames per second. We then used Adobe Premiere to collate

all three videos for each participant into a single workspace and synchronised

their starting times, allowing device interactions to be assessed in context. Fig-

ure 2 shows an example of the three video streams arranged to play together

synchronously.

As the footage was played back, an Adobe Premiere plugin (see Figure 3)

developed for this research was used to tag the interactions. All of the footage

was tagged by both researchers working as a team to reduce the possibility

that any events were incorrectly tagged or missed entirely. Any disagreements

regarding the appropriate tag type were resolved during the tagging process.

The plugin allowed us to insert a range of coloured markers, which could be

placed and annotated on the timeline. The plugin allows for the marking of

both instantaneous/atomic events (i.e. those with no defined time period, such

as tapping a button by mistake) and events that occur over a defined and

continuous time window (e.g. entering a query using the virtual keyboard).

The plugin also includes a description window allowing for additional qualitative

data to support the data gathering process to be entered.

Figure 4 outlines all of the marker types we used to tag the footage, which

were chosen based on the related literature and on our research aims. A marker

was inserted every time the participant changed grip and at the start of each

piece of footage to capture the initial grip type. As these markers encoded all of

the different grips used by the participants and when they transitioned from one

to another, we were able to use these atomic event markers to identify which

grips were being used when every other type of tagged event occurred. Note
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that, although they were included in our initial table of marker types, we did not

use the “Shift in speed/gait” or “Obstacle avoidance” markers in our analysis.

Despite the amount of video footage available from the three different sources,

these were very difficult to accurately and consistently identify.

After tagging is complete, the plugin outputs all of the resulting data in

Comma-Separated Value (CSV) format for analysis. The video analysis process

is labour-intensive and, due to technical reasons, video streams for some par-

ticipants were incomplete or missing. As such, we present analysis of the video

data for 14 out of the 24 total participants. This sub-sample is representative of

the larger participant group with 8 males, a similar distribution over age ranges

and an even distribution over experimental conditions: 4 baseline, 5 treadmill

and 5 obstacle course.

In total, 710 individual markers were created, a rate of more than one marker

for every 14 seconds of recorded footage. There was a median of 51 markers per

participant over a median total interaction time of 10 minutes and 24 seconds

per participant. The most frequently-occurring markers were: interaction errors

(205, 28.9%), reading (121, 17.0%), attentional shifts (59, 8.3%) and typing

errors (41, 5.8%).

4. Results

We simulated the everyday condition of walking when using a mobile phone

by means of a treadmill and obstacle course and captured users’ interactions

using multiple video recordings as participants completed simple search tasks.

We first present the results obtained from the analysis of the log files, which

summarise the objective search performance of the participants under each of

the three conditions. We then focus on the data captured by tagging user

interaction behaviour (e.g. grips, shifts in grip and interaction errors) from the

video data.

Note that, for brevity, in results section we will sometimes refer to the three

conditions by the abbreviations B for the baseline (seated) condition, OC for
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the obstacle course and W for the treadmill.

4.1. Objective search performance

In order to objectively evaluate search performance, we rely on several met-

rics: the average number of hits (relevant documents) returned per search query;

the Mean Average Precision (MAP) attained; the number of documents book-

marked; the number of documents read; the ratio of relevant documents book-

marked relative to the total number bookmarked (to give an indication of how

accurate users were with their bookmark choices); and the same ratio for doc-

uments read.

We also consider a number of other proxies of overall search and task perfor-

mance as well as metrics such as query length and query duration - the amount

of time from a search task first being presented and a query being submitted.

Table 2: Objective performance measures by condition. ∗ = sig. diff. with Obstacles; † = sig.

diff. with Treadmill.

Condition Baseline Obstacles Treadmill

Number of queries/user 13 12 14

Hits/query 3.71 ∗† 2.00 1.75

MAP 0.104 ∗† 0.085 0.083

Bookmarks/query 1.32 † 1.74 † 1.03

(Ratio relevant) 0.55 0.47 0.49

Docs read/query 1.58 † 1.19 1.00

(Ratio relevant) 0.43 0.41 0.44

Number of query terms 3.61 ∗ 3.17 3.38

Query duration 39.5s ∗† 30.5s 35.0s

Table 2 shows how the objective performance measures varied by experimen-

tal condition. Most notably, the average number of hits per query achieved by

the baseline users is significantly greater than those by either the treadmill (p-

value=0.029) or obstacle course (p-value=0.023) groups, even though all groups

submitted very similar numbers of queries. This is also true for mean average
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precision. This suggests that those sitting were able to generate more accurate

and precise queries than those in the other two groups. This may be because

the queries they submitted were longer and more detailed (significantly longer

than the obstacle course group: p-value=0.002) and because they spent signifi-

cantly more time per query than the others - over 5 seconds longer on average

per query (compared to treadmill: p-value=0.023; compared to obstacle course:

p-value=0.005).

Those sitting and those on the obstacle course bookmarked significantly more

documents than the treadmill group (p-values= 0.01 and 0.001, respectively).

The participants on the obstacle course bookmarked the most often; however, as

they bookmarked a larger number of non-relevant documents, they had the low-

est ratio of relevant bookmarks. The baseline group appears to have been able

to more accurately choose relevant documents as they achieved the best ratio of

relevant bookmarked documents. The baseline group also read the largest num-

ber of documents on average, perhaps partially explaining their increased query

durations, and read significantly more than those on the treadmill (W=7371,

p-value= 0.0153). This may be because sitting at a desk is a more comfortable

environment for in-depth tasks such as reading, which requires concentration

and may be disrupted by movements of the screen or eyes.

4.2. Interaction errors and corrections

Measuring errors when interacting with a device gives insight into how diffi-

cult users are finding a given device, interface or set of conditions. We measure

both: typing errors, atomic mistakes when attempting to enter characters using

the phone’s virtual keyboard; and interaction errors, e.g. accidentally tapping

on an interface element near to the desired one. Table 3 shows the average

number of errors made by participants in each of the three conditions. This

is averaged on a per-user basis, such that the numbers represent the average

number of errors made by a user under each condition. Unsurprisingly, partici-

3As determined by a Wilcoxon signed-rank test.
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pants in the baseline condition make fewer interaction errors than those in the

other two conditions. This is likely because the other two conditions present

situational impairments that exert a range of effects on performance, adding

levels of difficulty as interaction with the device takes place [31].

Table 3: Errors by experimental condition (mean per user; standard deviations in brackets).

Condition All errors Interaction Typing

Baseline 10.5 (5.2) 8.0 (5.2) 2.5 (1.9)

Obstacles 18.6 (10.4) 16.0 (9.1) 2.6 (1.8)

Treadmill 22.2 (10.3) 18.6 (8.6) 4.5 (3.1)

The baseline and obstacle course have similar rates of typing errors (2.5

and 2.6 respectively), while being on the treadmill resulted in a higher rate of

4.5. These errors are possibly caused by participants demonstrating a lack of

control or an increase in cognitive workload as they interact on the treadmill

[23]. On the obstacle course, however, participants can control their walking

speed, giving them more control as they interact, and thus reducing error rates.

Mizobuchi et al. [37] observed no reduction in input accuracy when walking and

texting - the participants simply reduced their walking speed to prioritise text

input. However, the walking condition on a treadmill takes away that level of

control as the speed the participant must maintain is constant and this impacts

on performance and difficulty, increasing the number of errors.

Interestingly, although the interaction log data indicates that baseline users

spent significantly longer formulating queries, analysis of the video data shows

that they spent less time actually typing those same queries using the virtual

keyboard. The median query typing time for the baseline users was 10.46 sec-

onds, while for the obstacle course and treadmill users it was 16.38 and 15.4

seconds. This is despite the fact that the baseline users’ queries were signifi-

cantly longer. This suggests that baseline users were able to spend more time

actually thinking about the content of their queries and less time physically

interacting with the virtual keyboard to enter them into the search box.
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Table 4: Query corrections by condition (mean per user; standard deviations in brackets).

Condition Average number of corrections Average duration

Baseline 1.33 (0.58) 1.29s (1.20s)

Obstacles 2.50 (1.00) 11.58s (15.86s)

Treadmill 4.67 (2.31) 20.95s (8.82s)

Typing errors are made whilst users are inputting or amending queries and,

once noticed by the user, must subsequently be corrected through further inter-

action with the device and, particularly, with the on-screen virtual keyboard.

Table 4 shows the average number of times a user in each condition had to

correct a previous mistake in typing and the cost in terms of time that each of

these corrections incurred on average. As discussed above, baseline users make

few typing mistakes and, therefore, have to make fewer corrections. In addition,

when they do have to correct typing mistakes, it takes them far less time than

users in the other conditions and, as such, they incur a much smaller overall

interaction cost. The maximum amount of time for baseline users to correct a

typing error was only 1.96 seconds, while for the obstacle course and treadmill

conditions the maximum duration was 18.00 and 27.72 seconds respectively.

4.3. Query amendments

When searching to complete a given task it is often necessary to amend

the original query. This is often done after users have assessed the results

of the initial query and, based on this, either choose additional keywords to

add to the original query or to remove extraneous keywords from it. Research

shows that query amendment/refinement generally leads to better overall search

performance and that it is a beneficial technique often employed by expert

users [50].

As outlined in Table 5 all participants in the baseline condition made some

query amendments: at least 4 instances per user with a median duration of

8.42s. However, only two treadmill users and three obstacle course users made
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Table 5: Query amendment statistics.

Condition Instances Median time Total time Number of users

Baseline 22 8.4s 225.8s 4 (all)

Obstacles 5 8.9s 46.8s 3/5

Treadmill 9 10.6s 118.8s 2/5

any amendments, although these tended to take more time to complete.

4.4. Attentional shifts

Shifts in attention are defined as either major or minor within this study.

Major shifts are a clear movement of the head away from the device, while minor

shifts are a small movement in which the participant’s gaze is still set within the

UI but there has been a movement that could be seen as a slight distraction.

These attentional shifts were assessed via careful analysis of the head-mounted

GoPro footage. These may be caused by attention being drawn away from the

interaction by external distractions in the surrounding environment or, in some

cases, by distractions local to the user, for example needing to scratch one’s

nose.

Table 6: Attentional shifts by condition (average count per user; standard deviation in brack-

ets).

Condition All shifts Minor Major

Baseline 3.75 (2.99) 3.50 (3.11) 1.00 (0.00)

Obstacles 2.25 (1.89) 2.00 (0.00) 1.67 (1.15)

Treadmill 7.00 (10.17) 7.50 (9.11) 2.50 (2.12)

Table 6 shows the major and minor attentional shifts identified by experi-

mental condition. The results show there are considerably more minor atten-

tional shifts in the treadmill condition compared to the other two conditions,
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although the standard deviations are high. Interestingly, participants on the ob-

stacle course had the smallest number of shifts overall and, based on the video

observations, this condition showed that participants are more immersed within

the activity and are concentrating on their route around the course. There

was only one instance where a participant on the obstacle course needed to

avoid obstacles in a manner that could be deemed to have clearly affected their

behaviour.

Table 7: Average and total duration of attentional shifts by condition (all in seconds; standard

deviations in brackets). B = baseline, OC = obstacle course, W = treadmill.

All shifts Minor Major

Condition Total Ave. Total Ave. Total Ave.

B 61.56 4.10 (3.02) 58.60 4.19 (3.12) 2.96 2.96 (0.00)

OC 30.72 3.41 (2.63) 17.56 4.39 (3.71) 13.16 2.63 (1.34)

W 110.06 3.14 (2.13) 101.89 3.40 (2.20) 8.17 1.63 (0.57)

The actual duration of the shifts in attention (see Table 7) tend to be more

or less the same by condition, although they are somewhat shorter on average

in the baseline condition and there were very few instances of major attentional

shifts. This is perhaps due to the controlled environment within the lab lacking

the realism of true mobile interactions.

4.5. Reading

Table 8: Median number of documents read and reading time by condition. B = baseline, OC

= obstacle course, W = treadmill.

B OC W

Documents read per user (count) 15.0 6.5 8.0

Reading time per document (seconds) 13.2 14.1 13.1

Total reading duration per user (seconds) 201.6 92.1 105.4
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Another important behaviour for good search performance is the amount

that people read the content of search results - the more time spent reading, the

more likely it is that a searcher will be able to identify good quality, relevant

documents [50]. Table 8 displays various statistics relating to reading behaviour

over the three experimental conditions.

People on the baseline read considerably more documents and read for a

much longer amount of time overall; however, the amount of time spent reading

an individual document is much the same over all the conditions. These results

are in contrast to Barnard et al. [2], who found that participants spent more

time reading the passages and trying to encode them in the walking condition,

likely because the process of encoding was hindered by their motion.

4.6. Grips

An important factor when studying how people interact with objects is the

grip that they choose to use. This is especially important for interaction with

mobile devices and can be influenced by a number of contextual factors [18].

When tagging the video footage, we identified each time a participant changed

their grip between 1 of 5 different grip types. Four of these (grips A–D) are

after the work of Eardley et al. [18] and are shown in Figure 5. The fifth (grip

E) was only used in the baseline condition and refers to the situation in which

the user interacts with the device when it is laid on the table.

Figure 6 shows the number of times participants switched to each of the

grips by condition, expressed as a percentage of the total number of shifts in

grip made in that condition. We observe that there are considerable differences

in the use of the various grips depending on the condition. Overall, we observed

53 shifts in grip by the baseline users, 56 by the treadmill users and only 9 on

the obstacle course.

On the obstacle course D is the preferred grip type, while on the treadmill

the preference seems to be for grip type B. In the baseline condition the most

frequently occurring grip is A, although there appears to be a much more even

distribution in this context. Note that grip A is not used at all on the obstacle
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course and grip B is only used once, while on the treadmill grip D is only used

twice.

It may be possible that, even though a given grip is only used a small num-

ber of times in a given condition, its duration of use still constitutes a large

proportion of the total interaction time. Figure 7 shows the total duration of

time that each grip was used under each of the three conditions. Here we see

some slight differences when compared to the counts in Figure 6. Although grip

D is only used twice by treadmill users, it actually accounts for nearly 40% of

the total duration. Further analysis showed that the two users on the treadmill

who used this grip did so for the entire duration of the study. Grip A was the

most frequently occurring grip for baseline users, however, when duration is ac-

counted for, it becomes the second most used after grip D. Grip C is used quite

infrequently and, when it is used, is only maintained for a very short period of

time.

4.6.1. Errors by grip type

We now consider the number of errors made by participants when using each

of the 4 main grip types. To do this we identified from the tagging data the

grip that was being used when each tagged interaction was made, allowing us

to investigate errors by grip. Of the 246 errors identified in total (i.e. both

interaction and typing errors), 12.6% were using grip A, 22.8% when using B

and nearly two-thirds (63.8%) were made when using grip D. In contrast, only

2 errors occurred while participants were using grip type C. We can normalise

these numbers by considering the percentage of all interactions conducted using

each grip that were errors. Again, grip D appears to be the least stable, with

nearly half (49.4%) of interactions using this grip being errors, while grips A

and B seem to be somewhat more stable, resulting in errors in only 27.4 and

29.9% of interactions respectively.

Figure 8 shows the ratio of interactions using each type of grip that were

errors, segmented by experimental condition. In other words, for a given ex-

perimental condition, when users were employing a given grip type, what ratio
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of their interactions were recorded as errors. Although grip D is used for large

amounts of time in all 3 conditions, the error rate is significantly 4 lower in the

baseline condition (16.2%) than on the treadmill (62.6%) or the obstacle course

(57.2%). Grip B, on the other hand, only results in high error rates for the

obstacle course condition (47.6%). Grip A was only observed in use by baseline

users and those on the treadmill and caused slightly higher error rates on the

latter (34%) than the former (22.2%).

5. Discussion

This research set out to investigate searching on the go and the effects com-

mon mobile situations have on hand movements, grip and shifts in grip, assessing

the impact of context and grip on interaction behaviour, error rates and search

task performance. The following discussion will consider each of these areas of

interest in line with the aims outlined in the introduction.

The effects mobile situations have on hand movements, grip and

shifts in grip.

The results of the study demonstrate a number of effects on interaction

and user behaviour. The outcomes highlight substantial variations between

situations and both the number of changes in grip (grip shifts) and the frequency

of use of each grip type. Overall, across all three conditions, participants tended

to primarily use two-handed grips, with only very little use of grip C (the sole

one-handed grip). This is perhaps not surprising as a two-handed grip should

provide a more stable base for interaction, especially if the participant has to

maintain balance when walking. Baseline users tended to use all of the grip

types and were much less likely to stick to a single grip for large amounts of

time. This may be because this is a less distracting setting and grip changes

may have occurred because subjects felt more relaxed [23] and free to make

them. Research suggests that the baseline users feel less rushed [24] and may

4Significance determined from Z scores of 2 (i.e. pairwise) population proportions. p ≪

0.01 for both comparisons.
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feel that they have more time to construct queries [30] and use different grips,

allowing them to alter interaction behaviour depending on task requirement.

For example, baseline users often employed grip A when typing queries as it

permits more rapid typing but then switched to grips B or D when interacting

with search results or reading. They were also the only group to use grip C for

any considerable length of time, likely because the lack of ambulatory movement

means that it is not necessary to use both hands to stabilise the device.

The treadmill had the largest number of grip shifts, a factor possibly influ-

enced by the extra cognitive effort needed to complete the tasks whilst walking

[37], especially at speeds above a subject’s normal pace. In comparison with

those on the obstacle course, participants on the treadmill do not have control

over how quickly they are walking and cannot simply reduce their pace when

reaching a cognitively challenging part of the task. Earlier research [23] noted

the treadmill to be the most difficult due to the lack of control over speed whilst

walking. Initial insights suggest that grip shifts under these conditions reflect

an increased cognitive load for subjects, which leads to behavioural modifica-

tion as evinced by the work of Azzopardi et al. [1]. In contrast, the obstacle

course group only very infrequently changed their grip and tended to maintain

the same grip over long periods of time, even if the tasks they were perform-

ing changed. Unlike in the other two conditions, they often did not change

grips when transitioning from text input to browsing or scrolling. Walking and

avoiding obstacles necessitates the user’s brain frequently switching attention

between the environment and the device [16] and the additional requirement of

a change in grip type may perhaps be of lesser priority, even though it might

improve interaction performance.

The impact of context and grip on interaction behaviour, error

rates and search task performance.

Situational context clearly had a considerable impact on search performance

- those in the baseline condition were able to achieve significantly higher MAP

scores and almost double the average number of hits per query than those in

the other two conditions. Some reasons for this large difference were revealed
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through analysis of the interaction logs: baseline users submitted significantly

longer queries and spent more time actually generating queries. Analysis of the

video footage, however, showed that the baseline users actually spent less time

typing their queries into the search box and, therefore, were able to spend more

time selecting appropriate keywords.

Amendments made to queries and reading of result-set documents both in-

dicate a high level of engagement with the task and are behaviours commonly

employed by expert searchers [50]. In total over all conditions we identified 36

instances of query amendment, 22 of which were made by the baselines user, all

of whom were responsible for at least four. This was not the case in the two

walking conditions as only two treadmill and three obstacle course users made

any amendments at all.

We observed a similar behaviour when it came to reading documents to assess

relevance: baseline users read frequently and, over the entire study, for a long

period of time, while those in the other conditions read much less frequently.

These differences in behaviour suggest that the walking conditions require more

effort from users to perform these tasks [41] and, as such, they engage in them

as little as possible. This notable lack of exploratory search behaviours and

under-prioritisation of such tasks has been identified before when artificial time

constraints were imposed on searchers [9, 14]. Although we imposed no such

restrictions, the walking conditions may have nevertheless made users feel rushed

and under pressure [24].

Although both typing and interface interaction errors were observed under

all conditions, there was considerable variance in the incidence of errors by

condition. Perhaps unsurprisingly, the baseline condition yielded the fewest

errors overall, particularly interaction errors, which were much more frequent in

the other two conditions. This is most likely because there is no body movement

for baseline users to compensate for and, as such, they are much less likely to

miss small targets when tapping [26, 3, 41]. Typing errors were far more common

in the treadmill condition than either of the other conditions. This is likely also

related to the inability of users in this condition to reduce their pace when
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encountering a cognitively challenging task, unlike those on the obstacle course,

who often did [37, 5]. These typing errors then necessitate later correction of the

incorrectly typed word(s), a task which the baseline users were able to perform

much more quickly, incurring much smaller interaction costs for their earlier

mistakes.

Incidence of errors also varied by combination of grip type and condition.

Interestingly, when baseline users interacted using grip D the error rate was

very low (lower than with either grips A or B), while for the treadmill and

obstacle course conditions this was certainly not the case as the error rate when

using grip D was the highest for both conditions, especially for the treadmill.

This suggests that, although grip D seems to be commonly used when walking

and may feel intuitive under such conditions, it may not actually be a good

choice. This may be because the fingers that are interacting with the screen

are on a hand that is not actually cradling the device and is completely free to

move and, therefore, may easily be jostled by ambulatory movement or when

avoiding obstacles. This is in contrast to grips A an B, where the “interacting

hand” is somewhat braced against the device at the palms and is thus more

“anchored” and stable. The baseline results agree with those of Eardley et al.

[18], whose participants found grip D to be the most secure and comfortable.

All experiments in Eardley et al. [18] were conducted with users seated and

our results show that their conclusions may not hold when users are in other

situational contexts.

6. Conclusions

By simulating common mobile contexts and analysing both log data and

interaction data obtained by tagging video footage from three different sources,

we were able to repeatably investigate user behaviour, search performance and

error rates under different experimental conditions. This combination of analysis

methods allowed us to further identify the grips participants were using as they

completed tasks, what effects these had on their interactions and how these
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effects resulted in interaction and typing errors.

Using both sources of information we revealed considerable differences in

performance and behaviour between the three conditions, demonstrating the

effects that the context in which mobile interaction takes place has. Detailed

analysis of the video footage allowed deeper insights into search behaviour and

interaction that would not have been possible with the log data alone. Our

results provide useful insights to inform the design of future mobile search in-

terfaces, giving us a greater understanding of how situational contexts, such as

walking, impact search performance and user behaviour. Our results also build

on previous work on grips (e.g. [17, 18]) to provide novel insights into how grip

use varies under different mobile conditions and how these conditions affect the

effectiveness of these different grips.

For future research in this area, we plan to expand the scope of this work by

considering other more natural/field-based contexts, such as a busy high street,

public transport or a bar. While simulation of walking and navigating obsta-

cles in a lab gave us control over many aspects of the conditions, they do not

fully simulate the difficulties encountered when interacting with a mobile device

whilst walking. The obstacles on the course were static and participant move-

ment was repeated and predictable; what impact do unpredictable objects and

obstacles have on user behaviour and how do users employ grips to counteract

this? We intend to design search interfaces that adapt to walking using phone

accelerometers to investigate whether a UI can respond to situational changes

to improve user experience and reduce interaction errors. We also intend to

investigate the possibilities of a mobile phone detecting how it is being held and

responding to particular grip types.
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Figure 1: Zing search interface on an Apple iPhone 5. Checkboxes used to indicate relevance.

33



Figure 2: An example of a merged video screen.
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Figure 3: Premiere plugin user interface.
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Figure 4: List of marker types used for video tagging.

Figure 5: Visualisations of the 4 most-commonly identified grip types, after Eardley et al.

[18].
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Figure 6: Grip count by condition.

Figure 7: Grip time by condition.
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Figure 8: Errors by condition as ratio of tagged interactions using each grip type.
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