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Abstract

In this paper we address the problem of allocating the efforts of a collection of
repairmen to a number of deteriorating machines in order to reduce operation
costs and to mitigate the cost (and likelihood) of unexpected failures. Notwith-
standing these preventive maintenance interventions are aimed at returning the
machine to a so-called as-good-as-new state, unforeseeable factors may imply
that maintenance interventions are not perfect and the machine is only returned
to an earlier (uncertain) state of wear. The problem is modelled as a restless
bandit problem and an index policy for the sequential allocation of maintenance
tasks is proposed. A series of numerical experiments shows the strong perfor-
mance of the proposed policy. Moreover, the methodology is of interest in the
general context of dynamic resource allocation and restless bandit problems, as
well as being useful in the particular imperfect maintenance model described.

Keywords: Dynamic programming, machine maintenance, imperfect
interventions, index policies, restless bandits

1. Introduction

Maintenance interventions in deteriorating equipment are aimed at guaran-
teeing its availability, reliability and safe performance whilst maximising output
and minimising waste. Such interventions may be preventive, aimed at guar-
anteeing an optimal performance of the equipment and preventing eventual
failures and breakdowns by means of minor actions as cleaning surfaces, lubri-
cating joints, sharpening blades, replacing and refilling fluids, removing waste,
among others [48]; or corrective, aimed at repairing minor or major faults in
the system. Regarding the planning horizon, whereas corrective maintenance
is reactive, preventive interventions are scheduled using either time-based or
condition-based schemes. Time-based interventions are usually scheduled ac-
cording to an age-based regime or following a pre-determined calendar; while
condition based interventions are conducted in irregular intervals based the state
of wear of the equipment, which is typically determined by means of inspections
or a -more or less sophisticated- monitoring mechanism.
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Typically the aim of a given maintenance intervention is returning the equip-
ment to an as-good-as-new state. However, it is easy to find scenarios where
the quality of a maintenance intervention may be affected by uncontrolled fac-
tors associated, for example, with the skills and qualification of the technicians,
the quality or suitability of the tools and components used, or the existence of
hidden defects that are not typically undercover during a routine check [42, 49].
This implies that a maintenance intervention may actually take the machine
to an earlier (undetermined) state of wear, improving its current condition but
without returning the machine to its pristine state. For a more in depth discus-
sion of general machine maintenance issues see, for example, [28, 37, 4].

When the target of a preventive maintenance strategy is a single machine,
maintenance strategies are designed either to determine appropriate intervention
times, or to identify the subsystems or components that should be intervened,
or both. The objective is preventing failures and guaranteeing a high level of
performance at a minimum cost. However, when a system consists of several
machines and only a limited number of repairmen is available, the objective of
a maintenance scheduling regime is to determine which machines to intervene
at each decision epoch.

As it is argued in the literature review, the problem of scheduling fortuitously
imperfect maintenance interventions in multiple deteriorating equipment has not
yet fully addressed in academic literature. This is especially relevant when it
has been highlighted that realistic and valid maintenance scheduling methods
must incorporate random features of the maintenance tasks [49]. In this article,
we intend to fill this void by proposing an index heuristic based on a restless
bandit formulation of the problem. Rather than a long-term scheduling plan,
we propose an on-line heuristic system that schedules interventions based on
information available on the equipment’s condition at each decision time.

Notwithstanding the research is motivated by the machine maintenance
problem, it is important mentioning that the proposed methodology can be
seen as a generic intervention scheduling model, that can be used for systems of
independent bi-directionally-evolving elements when the result of the interven-
tions is uncertain.

2. Literature Review

There is a vast amount of literature addressing the problem of scheduling
preventive maintenance interventions in one single machine. In most cases it
is assumed that maintenance actions are perfect and, upon intervention, the
equipment or machine is returned to an as-good-as-new state. Some examples
of work in this area, which are somehow related to our approach, are: Grall et al.
[21] study the problem of designing condition-based maintenance policies in one-
machine systems. The machine degradation is modelled as a Markovian process.
Borrero and Akhavan-Tabatabaei [5] analyse an inventory/maintenance problem
for single machine systems using a Markov Decision Process approach. Inventory
holding and unfulfilled demand costs are the main variables in the decision
process. Zhu et al. [67] propose a condition-based maintenance policy for a
continuous degrading multi-component system in an infinite horizon. They
develop an analytical solution suitable for large-scale problems. Poppe et al.
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[50] address a condition-based maintenance problem in a one-machine multi-
component system. They propose a double-threshold based hybrid policy for
scheduling preventive and corrective maintenance interventions based on the
machine degradation level.

In some other cases, a maintenance intervention is planned to be intention-
ally partial (i.e. conducting minor repairs or replacements instead of a thorough
revision of the equipment), aimed at attaining minor improvements in the ma-
chine’s performance instead of taking it to an as-good-as-new state. This prob-
lem is typically referred to as imperfect maintenance or minimal maintenance.
In all these cases, the state of the machine after intervention is assumed to be
known or determined. Kurt and Kharoufeh [29] propose threshold policies for
the maintenance/replacement problem in a single equipment while degradation
is driven by a discrete Markovian process. Maintenance decisions are taken fol-
lowing periodical inspections of the equipment. The interventions are assumed
imperfect, affecting either the virtual-age or the hazard-rate function of the
system. Assuming non-decreasing operating costs, the authors propose an opti-
mal threshold-type policy based on the system deterioration state. Moghaddam
and Usher [39] use dynamic programming techniques for solving the problem of
scheduling both preventive maintenance and replacement tasks in deteriorating
multi-component equipment. The effectiveness of the intervention is given by
a known improvement factor. Huynh et al. [24] analyse minimal repair main-
tenance strategies in single-unit systems subject to degradation and external
shocks. Their aim is to study different approaches for conducting minimal re-
pair (either time-based or degradation-based) as a reaction to the degrading
effect of traumatic shocks; they compare the overall cost savings of these poli-
cies with the costs of a pure age-based replacement policy. Do Van et al [10]
compare the costs and efficiency of two alternative families of policies: perfect
and imperfect maintenance. They propose a maintenance policy aimed at op-
timally selecting the type of maintenance action to be taken at each inspection
time. The time between interventions is determined by a remaining-useful-life
inspection policy. Gilardoni et al. [13] analyse the partial maintenance problem
of deteriorating equipment and propose static and dynamic intervention poli-
cies based on information about the failure history of the equipment. Lee and
Cha [30] address a one-machine periodic preventive maintenance problem with
minimal repair. Minimal interventions are conducted periodically for improving
the machine’s reliability performance. Failures between maintenance interven-
tions, which are modelled by means of a generalised non-homogeneous Poisson
process, are assumed to be immediately repaired. Other relevant references are
[32, 35, 44].

The problem of single-machine maintenance interventions with uncertain
outcome, to which hereby we refer to as imperfect maintenance, has been stud-
ied by a small number of authors. Wang and Sheu [58] address a multi-machine
production/maintenance problem subject to inspection errors. Liao et al. [31]
analyse a condition-based maintenance model for continuously deteriorating sys-
tems. It is assumed that after an intervention the equipment is returned to a
randomly determined state with residual damage. The authors propose a so-
called condition-based availability limit policy, aiming at maximising the avail-
ability level of the system. Meier et al. [36] discuss the maintenance model
of a deteriorating system where the efficiency of the interventions is modelled
as a normally distributed random variable. Different maintenance strategies
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are evaluated and their long-term costs computed. Do Van et al.[9] propose a
condition-based maintenance policy for deteriorating equipment. The authors
assume that maintenance interventions can be either deterministically imper-
fect (the system is intentionally taken to a pre-determined deterioration level);
or randomly imperfect (the system is fortuitously returned to a certain dete-
rioration level). In both cases, the final state of the machine is better than
the initial one. The system determines the optimal intervention time and the
type of action to be taken in order to minimise a measure of maintenance cost.
Mor and Mosheiov [40] address the problem of scheudling maintenance inter-
ventions in single-machine system where delays in the intervention increase the
completion time of the task. Two deterioration regimes, time and state depen-
dent, are discussed. They demonstrate that their formulation can be reduced
to a linear assignment problem. Khatab and Aghezzaf [27] address the problem
of selective stochastic maintenance scheduling in a multi-component system,
where interventions can be conducted during specific equipment’s idle times.
Different actions ranking from minimal repair to replacement are available at
each intervention epoch. The quality of a maintenance action is assumed to
be stochastic (with known probability distribution), depending on the skills of
the repair team. Their objective is determining the optimal subset of tasks
(cost minimising) to be conducted during the idle times in order to guarantee
optimal system’s performance in subsequent stages. Liu et al. [33] propose a
maintenance policy for deteriorating equipment with age- and state-dependent
operating costs. The authors develop a replacement model that is further ex-
tended to a repair/replacement model. Partial maintenance interventions are
aimed at returning the system to certain operating level, but the outcome can
be controlled or not. They establish the optimality of a monotone control-limit
policy.

Regarding literature addressing the problem of scheduling maintenance in-
terventions to more than one machine, we notice that most of these works
assume that the outcome or quality of the maintenance interventions is perfect
or, at least, deterministic. Among them, Kenné et al. [26] provide an algo-
rithm for solving an optimal control problem consisting of finding optimal -cost
minimising- repair rates for a collection of identical independent machines sub-
ject to breakdowns. Gharbi and Kenné [12] apply control theory and simulation
techniques to find production and preventive maintenance rates for a multiple-
machine manufacturing system in order to minimise total inventory, repair and
maintenance cost. Wang and Pham [60] discuss models that, in general, assume
equipment dependency and interaction and focuses in group and opportunistic
policies. Ruiz, Garćıa-Dı́az, and Maroto [53] propose a formulation that simula-
taneously schedules a series of jobs together a preventive maintenance interven-
tion. The aim is minimising the makespan of the complete sequence. When ad-
dressing the multi-machine maintenance problem, Pérez-Canto [6] assumes that
the number of machines is limited and smaller than the number of technicians,
and the schedule tableau is designed beforehand. Oyarbide-Zubillaga et al. [45]
address the problem of determining the optimal frequency of preventive main-
tenance interventions for multiple-machine systems. They use discrete event
simulation and evolutionary algorithms for solving instances with different costs
and profit criteria. Mosheiov and Sarig [41] propose a heuristic for the problem
of scheduling maintenance activities in independently deteriorating machines.
Wang and Wei [61] address the problem of scheduling maintenance activities in
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a collection of parallel deteriorating machines in order to either minimise dif-
ferences in job completion times, or total differences in waiting times. Hsu et
al. [23] address the problem of scheduling one single maintenance intervention
on a collection of parallel aging machines in order to minimise total completion
time and total machine load. Moghaddam [38] proposes a multi-objective non-
linear mixed integer optimization model to identify Pareto-optimal preventive
maintenance and replacement schedules for a multiple-machine manufacturing
system. More recently, Tao et al. [56] deploy a theory of constraint-based mod-
els in order to find a savings maximising regime for scheduling opportunistic
preventive maintenance interventions. Irawan et al. [25] deal with the problem
of scheduling maintenance when the recommended intervention period is given.
The problem is set within the context of a wind farm. Also within the wind en-
ergy context, Froger et al. [11] propose a branch-and-check heuristic for finding
efficient solutions to a multi-equipment maintenance scheduling problem. Seif
and Yu [55] address a general operation and maintenance planning problem for
multi-machine systems. The problem is formulated as a MIP problem and a
solution method is provided. Liu et al. [34] propose a selective maintenance
policy, choosing the sequence of actions to be taken in an integrated system
(with dependencies). Detti et al. [8] address the problem of secheduling a col-
lection of jobs and a manitenance activity in a single-machine system. They
propose a mixed-integer programming formulation of the problem. Good re-
views of contributions to single and multi-machine maintenance management
and optimisation can be found in [49, 59, 2, 7].

Among the techniques proposed for the scheduling of preventive mainte-
nance interventions in independently deteriorating equipment stands-out, due
to its conceptual simplicity and outstanding performance, the family of so-called
index policies. Such policies root from the classical result of Gittins [14] and
Whitte [63] for the multi-armed bandit problem, and its extension to the rest-
less bandit problem by Whittle [65] among many others (a thorough account of
the evolution of this field can be found in Glazebrook et al. [17]). For exam-
ple, Whittle [66], Glazebrook [18], and Abad et al. [1] propose index policies
for solving particular maintenance problems; likewise, Glazebrook et al. [20]
establish general indexability for a family of problems where maintenance in-
terventions have to be scheduled in order to mitigate increasing operation (and
breakdown) costs due to machine deterioration. However, to our knowledge,
this methodology has not yet been applied to a framework where the outcome
of a maintenance intervention is uncertain.

Among the multiple -exact and heuristic- techniques that have been proposed
for the scheduling of preventative maintenance interventions in large systems of
independently deteriorating equipment stands-out, mostly because of its con-
ceptual simplicity but also because of its outstanding performance, the family
of so-called index policies. Such policies root from the classical result of Gittins
[14, 16, 15] and its further refinements by Whittle [63, 64, 65] and many others
(for a thorough account of the evolution of this area please refer to the work by
Glazebrook et. al. [17]).

Roughly speaking, an index heuristic consists of calibrating an state-depen-
dent index for each machine/state combination in the system, and allocating
-at each decision epoch- the effort to the subset of machines with largest indices
associated to their current states. Gittins [14] (and later Pandelis and Teneket-
zis [46]) proved that, in a setting where all the elements in the system that
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are not been intervened remain in their current state, the index policy which
allocates the effort to the machine or machines with larger index is, indeed,
optimal. Whittle [65] extended these results to the case where those elements
that are not receiving effort are allowed to evolve over time. Notwithstanding
this class of problems has been shown to be intractable [47], a large number of
empirical studies have witnessed its outstanding performance in different areas
of application [1, 3, 18]. Moreover, Weber and Weiss [62] established a form of
asymptotic optimality for Whittle’s index heuristic and Glazebrook et. al. [19]
developed certain bounds on its suboptimality.

In this article we address the problem of scheduling (fortuitously imperfect)
preventive maintenance interventions to a collection of independent deteriorat-
ing machines. We assume that the number of repairmen (or teams) is smaller
than the number of machines and, therefore, a sound effort allocation policy has
to be developed in order to minimise operation/intervention costs and the risks
of failures due to machine wear. Unfortunately, the size of real life instances
prevents the direct aplication of standard dynamic programming techniques.
To fill this gap, we propose a restless bandit formulation of the problem and
propose an index policy for its solution. The problem is formally introduced
in Section 3. After the so-called indexability property is established in Section
4 for the general case, closed form indices for specific families of the problem
are provided in Section 5. In Section 6, the performance of the resulting index
policy is tested in a series of numerical examples. Finally, Section 7 concludes
the article.

3. The Multi-Machine Maintenance Problem with Imperfect Inter-

ventions

Consider the problem of a manager that periodically must schedule preven-
tive maintenance interventions in his equipment (sketched in Figure 1). Assume
that the number of machines is larger than the number of repairmen (or teams)
and, therefore, not all machines can be intervened simultaneously. Therefore,
at each decision epoch the manager must select a collection of machines to be
intervened during the corresponding period. This decision is typically based
on information on the current state of the equipment obtained, for example,
through condition monitoring systems.

Machines deteriorate with use over a discrete space representing the state
of wear of the equipment. It is assumed that machines operate and deteriorate
independently from each other. Degradation increases both operation costs and
failure probability. Upon failure, the machine is either replaced by a new one or
subject to a thorough repair that takes it back to a pristine state. Preventive
and corrective maintenance tasks are assumed to be conducted by different
dedicated units.

Notwithstanding preventive maintenance interventions are aimed at taking
the machine to a good-as-new state, hidden faults not detected during the in-
tervention, human error, faulty parts, or other external factors, can cause an
intervention to be imperfect. In such cases the machine may be left in a better
condition than the current one but not as-good-as-new. Preventive maintenance
interventions are assumed immediate, in the sense that they are completed be-
fore the next decision epoch (when the machine will become available again).
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Maintenance costs are non-decreasing in the state of wear of the machine.

Figure 1: Illustrating example: five machines and two technicians.

3.1. Mathematical Formulation

In this section, we present the mathematical formulation of the problem
described above. Consider that the manager seeks to schedule maintenance
interventions in a collection M of independently deteriorating machines by a
set R of repairmen. At each decision epoch t ∈ N the manager must choose a
subset Q (t) ⊆ M of machines for intervention. Notice that the choice of Q may
allow the manager to leave some repairmen idle if necessary, i.e. |Q (t)| ≤ |R|.
As discussed in [54], the manager’s problem can be modelled a discrete-time
infinite horizon Markov Decision Problem, where each machine is modelled as a
two action (operation/intervention) Markov decision chain that evolves over a
discrete state space. States represent different (increasing) deterioration levels
(see, for example, [20, 29]), with 0 representing the as-good-as-new state. During
the operation phase, the machine deteriorates, operation costs increase and the
failure probability becomes larger. The intervention, which is conducted at a
cost, aims at returning the machine to its as-good-as-new state. However, due
to unforeseeable reasons, the intervention may not be perfect, with the machine
ending up at a more advanced state of wear than intended. The objective of the
manager is minimising the discounted operation/intervention cost of the system
over an infinite horizon.

The manager’s problem can be characterised by {β,M,R, ξ,A,P, C}; where
β is a discount factor; M and R represent the sets of machines and repairmen,

respectively; set ξ = ×|M |

m=1Sm denotes the system’s state space, with Sm

representing the state space of machine m = 1, . . . , |M |. The system’s state at
any decision epoch t is given by X (t) = {Xm (t) ∈ Sm,m = 1, . . . , |M |}. Set
A represents the collection of all admissible actions a =

(

a1, . . . , a|M |

)

at any
given state X (t), where am ∈ {0, 1}, for all m = 1, . . . , |M |. Notice that am
represents the action to be taken at machine m, with value 0 for operation and
1 for intervention. Moreover, any admissible action a must satisfy the condition
∑|M |

m=1 am ≤ |R|. P is the set of all transition probability matrices Pa; where
Pa (X,X′) represents the probability of a transition from state X to state X′

under action a ∈ A, for all X,X′ ∈ ξ. Finally, C is the collection of all possible
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vectors Ca (X), representing the costs incurred from taking action a ∈ A when
the system is in state X ∈ ξ. Notice that P a

m and Ca
m represent the sets of

transition and cost matrices, respectively, for any given machine m.
Given this framework, the objective of the manager is to choose the sta-

tionary, deterministic policy π that minimises the expected discounted opera-
tion/intervention cost over an infinite horizon, namely

V ∗ = min
π

{

Eπ

[

∞
∑

t=0

βtCa(t) (X (t))

]}

(1)

Problem (1) is a typical example of the so-called curse of dimensionality, which
hinders the application of standard dynamic programming techniques for its
solution. However, because of the independent evolution of the machines in
the system, the maintenance scheduling problem can be addressed as a rest-
less bandit problem [20], and Whittle’s extension [65] to the standard index
theory can be deployed in order to find a good (near-optimal) solution to the
operation/intervention problem. According to this theory if -after establishing
the indexability of the problem- an index is calibrated for each machine/state
pair in the system, then the policy that prescribes intervention in the subset
of machines with larger indices is asymptotically optimal [65, 62]. In the fol-
lowing lines, we present the restless bandit formulation of our problem. The
indexability of the problem and the structure of indices are discussed in Section
4.

As indexability and indices are properties of individual machines, in what
follows we isolate an individual machine from the MDP problem described
above and drop the machine indicator m. This machine is characterised by
{β, S, a, P a, Ca}. In order to establish indexability and computing the corre-
sponding indices, we develop a parameterised version of the problem by intro-
ducing a charge for intervention W , which generates a family of cost-discounted
MDPs for the machine. The actions available when the machine is at state X (t)
are given by a ∈ {0, 1}. If action a = 0 (operation) is taken at decision time t,
the machine performs a transition to some state X ′ with probability P 0 (X,X ′);
if, otherwise, action a = 1 (intervention) is taken, then the system’s state goes
to some state X ′′ with probability P 1 (X,X ′′). Under action a = 0 an operation
cost C0, represented by K (X,X ′), is incurred; likewise intervention implies a
cost C1, given by C (X) + W . Notice that K : S2 → R and C : S → R are
bounded continuous functions. Given these elements, the optimality equations
for the W -charge problem evaluated at state X (t) = x can be expressed as

V (x,W ) = min

{

K (x) + β
∑

x′∈S

P 0 (x, x′)V (x′,W ) ,

C (x) +W + β
∑

x′′∈S

P 1 (x, x′′)V (x′′,W )

}

, x ∈ S (2)

where K (x) =
∑

x′∈S K (x, x′)P 0 (x, x′) represents the expected cost incurred
when operation is conducted at time t. This expectation is taken over all possible
arrival states when starting from X (t) = x.
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With these elements we can now introduce the notion of indexability for
the W -charge problem. Use Π (W ) for the subset of S for which the operation
is optimal under intervention charge W ; i.e. the first term of the expression
between brackets in equation (2) is larger or equal than the second term. Based
on Whittle’s definition of indexability [65] we introduce a definition suitable for
the characteristics of our model:

Definition 1 (Indexability). Machine {β, S, a, P a, Ca} is indexable if Π(W )
is increasing in W, namely,

W1 ≤ W2 ⇒ Π(W1) ⊆ Π(W2)

In words, a machine is indexable if, as the intervention charge increases,
so does the collection of states for which operation is optimal. Moreover, the
restless bandit formulation of the operation/intervention problem is indexable
if each of its constituent bandits in indexable.

Definition 2 (Whittle Indices). If machine {β, S, a, P a, Ca} is indexable,
then its index W : S → R is given by

W (x) = inf {W : x ∈ Π(W )} , x ∈ S .

Namely, the index for a particular state x is given by the minimal value
of the intervention charge, W , for which it is optimal to operate according to
equation (2). We refer to index W (x) as the W -index for state x. Notice that
the boundedness of the costs guarantees that the Whittle index will also be
bounded. Intuitively, the index W (x) represents a fair charge for intervention
in state x, in the sense that it renders both actions, operation and intervention,
optimal in the W -charge problem.

Definition 3 (Index Policy). Consider an indexable operation/intervention
problem with W -index Wm for machine m, 1 ≤ m ≤ M given by definition
1. The index heuristic prescribes, at each time t ∈ N, to intervene in the |R|
machines with largest index Wm (X (t)), and to operate the remaining |M |− |R|
machines.

Roughly speaking, an index heuristic consists of calibrating a set of state-
dependent indices for each machine in the system, and -at each decision epoch-
allocating the effort to the subset of machines with largest indices (further dis-
cussion on the index policy is provided at the end of Section 4 and sketched in
Figure 5). Empirical studies testify the outstanding performance of the index
policies in different areas of application [1, 3, 18].

Comment

It is important noticing that the index policy is flexible enough to allow
modelling situations that may arise in real life problems. For example, as the
index is built independently for each machine, without making any assumption
on the number of machines in the system, arrivals of new machines or temporary
removals of damaged equipment can be easily incorporated in the model. In
those cases, the set M is simply extended or reduced correspondingly. Likewise,
the number of repairmen available at each decision epoch is not required to
be the same. For example, if a number r of technicians is not available at a
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particular epoch, the decision can simply be made selecting the |R|−r machines
with larger index.

Once the model has been described and the main concepts of indices and
indexability introduced, in the next section we develop a collection of suitable
indices for the operation/intervention problem and establish a general form of
indexability.

4. Indices and Indexability Analysis

In order to obtain the W -indices for the restless bandit formulation of the
operation/intervention problem, in the following sections we analyse two possi-
ble courses of action that can be taken whenever a machine is in state x ∈ S at
time t. It will be argued that the W -index for state x is given by the value of
the activity charge W for which both policies render identical costs.

4.1. Cost of immediate intervention: the B (x,W )-policy

We start by considering a set up where, independently of the initial state of
the machine and after following an optimal (cost minimising) policy, whenever
the machine arrives to state X (t) = x, it is optimal to perform an intervention.
This is summarised in the following assumption.

Assumption 1. If intervention is optimal at state X (t) = x when operating
from X (0) = 0, then it is optimal when X (0) = y, for any 0 < y ≤ x.

It is convenient here to recall that, notwithstanding maintenance interven-
tions are aimed at taking the machine back to an as-good-as-new state, unfore-
seeable events may affect the outcome of the intervention and the machine may
end-up in a more advanced state of wear than expected. The evolution of the
machine after intervention is illustrated in Figure 2 and can be summarized in
steps (i) to (iii).

Figure 2: Machine’s evolution under B-policy

i) Intervention has taken the machine to certain state y < x with probability
P 1 (x, y). The machine is operated optimally until the first entry, after y,
back to state x. This takes a time represented by τ (y, x). The expected
discounted cost incurred during a transition from y to x is given by

K (y, τ (y, x)) = E





τ(y,x)−1
∑

t=0

βtK (X (t)) |y
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where the conditional |y is a notational shorthand for |X (0) = y.

Therefore, the expected cost of returning to state x after a maintenance
intervention becomes

Ey<x|x [K (y, τ (y, x))] .

where the expectation is taken over all possible values of y such that y < x,
for all x, y ∈ S.

ii) Once the machine has returned to state x, a new maintenance intervention
is performed with expected cost given by

Ey<x|x

[

Eβτ(y,x) (C (x) +W ) |y
]

iii) The intervention takes the system to certain state y < x, from which the
policy described above is repeated indefinitely.

The expected discounted cost of such policy, incurred over the infinite hori-
zon, satisfies the equation:

Ey<x|xB (x,W ) = Ey<x|x [K (y, τ (y, x))]

+ Ey<x|x

[

Eβτ(y,x)
(

C (x) +W + Ey<x|xB (x,W )
)

|y
]

or, equivalently

Ey<x|xB (x,W ) +W =
W + Ey<x|x [K (y, τ (y, x))] + Ey<x|x

[

Eβτ(y,x)C (x) |y
]

1− Ey<x|x

[

Eβτ(y,x)|y
]

(3)

We finally define:

B (x,W ) = Ey<x|xB (x,W ) +W . (4)

Proposition 1. Quantity B (x,W ) is continuous and strictly increasing in W .
Proof The continuity of B follows directly from the definition of B (x,W )

and the continuity of K (X) and C (X). That B is increasing in W follows
straightforwardly from (3). q.e.d.

4.2. Cost of postponing intervention: the G (x)-policy

Consider a set up where, starting from state X (0) = x, the machine is
operated for τ additional periods, where τ ≥ 1 almost surely, after which a
maintenance intervention is carried out. The evolution of the machine under
this scenario is depicted in Figure 3. The expected incremental cost incurred
from t = 0 until the machine returns to state x is given by

K (x, τ) + E [βτC (X (τ)) |x]− C (x)

This framework allows us to introduce a form of Gittins index [14, 16] ap-
propriate for our analysis:
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Figure 3: Machine’s evolution under G-policy

Definition 4. The Gittins index for operation G : S → R in state x ∈ S is
given by

G (x) = inf
τ

{

K (x, τ) + E [βτC (X (τ)) |x]− C (x)

1− E [βτ |x]

}

(5)

where the infimum in (5) is taken over all positive-valued stopping times on the
machine state process evolving from x under operation.

This index can be interpreted as the optimal operation/intervention cost
rate that can be incurred by a machine when its initial state is X (0) = x. A
thorough discussion on the characterisation of the set of stationary stopping
times achieving the infimum in (5) can be found in [20, 15].

Before proceeding with our main indexability result, we need to introduce
the following assumption:

Assumption 2. Whenever X (0) = x and operation is conducted during τ
additional periods, then P 1 (X (τ) , y) ≈ 0 for all x ≤ y ≤ X (τ); i.e. we assume
that a maintenance intervention, taken after an additional operation lap, will
take the system to a state y < x almost surely.

4.3. W-Indices

The following framework will help developing a general expression for theW -
indices. Consider a policy that, given an initial state X (0) = x and intervention
time τ : operates the equipment at times t = 0, . . . , τ − 1; carries out preventive
maintenance at time τ ; and follows an optimal operation/intervention policy at
any other subsequent time t > τ . This policy is optimal if and only if there
exists some stationary stopping time τ > 0, on the machine operation process
{X (t) , t ≥ 0}, such that the policy’s total expected discounted cost is no greater
than that of a policy that chooses intervention at t = 0 and behaves optimally
from there on.

The decision faced by the manager is whether to intervene at time t = 0,
taking the machine to certain (unknown) state y < x, and then to follow the
cost minimising policy described in points (i)-(iii) incurring a minimum expected
cost given by

W + C (x) + Ey<x|xB (x,W ) ;

or to operate the machine for some additional time τ , at which point intervention
is conducted, operating optimally thereafter. The expected cost of such policy
is given by

K (x, τ) + E [βτ (C (X (τ)) +W ) |x] + E [βτ |x]Ey<x|xB (x,W ) .

12



Operation will be an optimal choice in x if and only if there exists an stationary
stopping time, τ > 0, such that

K (x, τ) + E [βτ (C (X (τ)) +W ) |x] + E [βτ |x]Ey<x|xB (x,W )

≤ W + C (x) + Ey<x|xB (x,W )

i.e. ∃ τ > 0 s.t.

K (x, τ) + E [βτC (X (τ)) |x] + E [βτ |x]
(

Ey<x|xB (x,W ) +W
)

− C (x)

≤ B (x,W )

i.e. ∃ τ > 0 s.t.

K (x, τ) + E [βτC (X (τ)) |x]− C (x)

1− E [βτ |x]
≤ B (x,W ) (6)

Notice that, if we take the infimum over all positive stopping times τ , then
the left hand side term in (6) is the Gittins Index (4) for state x ∈ S. Moreover,
from Definition 4 and from the fact that the infimum in (5) is always achieved,
the left hand side of expression (6) is met precisely when

G (x) ≤ B (x,W ) .

As it will be stated in Theorem 1, it follows naturally from the discussion above
that the W -index for state x is given by the W (x) solution to the equation
G (x) = B (x,W ). The interaction between B (x,W ) and G (x) is illustrated in
Figure 4.

Figure 4: Determination of W -index from policies B (x,W ) (dashed) and G (x) (solid).

In order to establish our indexability result, and to derive an expression for
the W -index, we first need to define set Π (W ) for the W -charge problem:

Definition 5. Operation Set

We define the operation set

Π(W ) = {x ∈ S : G (x) ≤ B (x,W )} (7)

as the set of states x ∈ S for which operation is optimal in the W -charge problem,
given an intervention charge W .

13



Following Whittle’s discussion in [65] and according to Definition 1, the
machine {β, S, a, P a, Ca} –and the associated operation/intervention problem-,
will be indexable if Π (W ) is increasing in W , namely, the set of machine states
where it is optimal to operate, for a given intervention charge W , is increasing
in W .

Theorem 1. Indexability and Indices

a) Machine {β, S, a, P a, Ca} is indexable.

b) The W-index for state x, denoted by W (x), is the unique W solution to the
equation

G (x) = B (x,W )

c) The orderings of members of S determined by the W -index and the Gittins
index, G, coincide.

Proof By Proposition 1, B (x,W ) is strictly increasing in W . It then follows
from (7) that Π(W ) is increasing, and indexability follows immediately from
Definition 1. It also holds from the continuity of B (x,W ) and Definition 2 that
the W-index for state x, namely

W (x) = inf {W : x ∈ Π(x)}

satisfies the equation

G (x) = B (x,W (x)) (8)

By the strictly increasing nature of B (x,W ), equation (8) specifies W (x) uniquely.
This establish parts (a) and (b) of the theorem. Part (c) follows simply from
the fact that W (x) is strictly increasing in G (x). q.e.d.

A general interpretation of the index is that Wm (x) represents a fair charge
for intervening machine m when its current stat is X (t) = x. A more intuitive
interpretation of W (x) will be provided in the discussion around equation (10)
in the following Section.

Once the indices have been computed, the index policy prescribes carrying
out preventive maintenance in those machines whose current state returns larger
values of the W -index. Notice that the indices are built considering not only
the current state of wear of the machine, but also the machine’s specific char-
acteristics and its possible paths of future evolution; this implies that ordering
the machines by their index value will not necessarily return the same sequence
than the one obtained when the ordering criteria is the current state. This is
sketched in Figure 5, where notwithstanding machine 2 shows a higher state of
wear than machine 3, its index is smaller and, consequently, the index policy
prescribes intervention in machines 5 and 3.

Subsequent analysis will focus on developing the W -indices under specific
problem’s characteristics.
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Figure 5: Illustrating example: index policy.

5. Closed-form expressions for the W -indices

Once the main notions of indexability and indices have been developed, we
now proceed to introduce some particular elements of the machine maintenance
problem with imperfect interventions that will be useful for developing closed-
form expressions for the corresponding indices.

We assume that between interventions the machine is subject to gradual
deterioration, sporadic failures, and non-decreasing operation costs. Preventive
interventions are comprehensive and are aimed at taking the machine back to its
as-good-as-new state. However, due to unforeseeable factors, the machine may
end up in a more advanced state of wear than the one pursued. Maintenance
interventions are conducted by a group of repairmen (or teams) whose number
is smaller than the number of machines and, consequently, not all machines
can be intervened at each decision epoch. Maintenance costs include foregone
productivity, intervention related expenses and parts. Any failure is followed
by thorough repair or immediate replacement of the machine, incurring a large
cost.

To help characterising our model, we introduce the following assumptions:

Assumption 3. The state space, S, is the natural numbers (N), with 0 repre-
senting the so-called as-good-as-new state.

Assumption 4. Evolution under operation is right skip free, namely,

P 0 (x, x) + P 0 (x, x+ 1) + P 0 (x, 0) = 1

where P (x, 0) represents the probability of a failure. Moreover, as machines
are deteriorating at a non-decreasing rate, it must hold that P 0 (x, x+ 1) ≤
P 0 (x+ 1, x+ 2) and P (x, 0) ≤ P (x+ 1, 0) , x ∈ S.

The right-skip free condition simply guarantees a gradual degradation of the
machine. Notice that when the machine is at its as-good-as-new state there are
no failures and, consequently, P 0 (0, 0) + P 0 (0, 1) = 1, where P 0 (0, 0) simply
represents the probability of a new sojourn in state 0.

Assumption 5. Evolution under intervention is given by

∑

y<x

P 1 (x, y) = 1, x, y ∈ S ;
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moreover, it holds that P 1 (x, y) > P 1 (x, y + 1) for all y < x, x, y ∈ S.

The comment in Assumption 5 represents the intuitive fact that, when in-
tervention is conducted at given state, large errors are less likely than smaller
ones.

Assumption 6. The index for operation G : N → R is (strictly) increasing.

Suppose that X (0) = x and that the machine state evolves under the pas-
sive action. We use τ (x, x′) for the time to the first entry into state x′ when
the system starts at x. Notice that because of the right skip free assumption,
τ (x, x′) < τ (x, x′ + 1) for all x < x′, implying that the time required for a
machine departing from state x for visiting state x′, is shorter than the time
required for visiting x′ + 1.

The stopping time achieving the infimum in (5) can be written as

τ∗ = min {t : t ≥ 1, G (X (t)) ≥ G (x)}

additionally, because of Assumption 6, it holds that

τ∗x = min {τ (x, x) , τ (x, x+ 1)}

represents the required time until the first visit to x or x+ 1 when operation is
conducted from state x.

Given that τ∗x achieves the infimum in (5)1 the index G (x) can be rewritten
as

G (x) =
K (x, τ∗x ) + E

[

βτ∗

xC (X (τ∗x )) |x
]

− C (x)

1− E [βτ∗

x |x]
(9)

With this result and using the definition of B (x,W ) in (4) we can write the
following definition of the W-Index:

Theorem 2. W-Indices

The W-index for machine {β, S, a, P a, Ca} in state x, in the operation/intervention
problem with imperfect maintenance, is given by

W (x) = G (x)
(

1− Ey<x|x

[

βτ(y,x)
]

|y
)

− Ey<x|x [K (y, τ (y, x))]

− Ey<x|x

[

Eβτ(y,x)C (x) |y
]

(10)

for all x ∈ N
+, where G (x) is given by (9). W (x) is increasing in x.

Proof By Theorem 1, W (x) is the unique solution to G (x) = B (x,W ).
Solving

B (x,W ) =
W + Ey<x|x [K (y, τ (y, x))] + Ey<x|x

[

Eβτ(y,x)C (x) |y
]

1− Ey<x|x

[

Eβτ(y,x)|y
] = G (x)

for W we get (10). Given that W (x) is strictly increasing in G (x), and from
Assumption 6, it holds that W (x) is increasing in x. q.e.d.

1For a thorough discussion of this property please refer to Lemma 4.1 in [54].
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The first term in the right hand side of equation (10) represents the expected
discounted cost of a policy that, upon arrival to state x, operates for an addi-
tional period of duration τ and then conducts a maintenance intervention; the
other two terms represent the expected discounted cost of a policy that always
intervenes in state x. The difference between them represents the cost savings
incurred if intervention is taken immediately. This gives a natural interpreta-
tion of the index policy, which prescribes carrying out maintenance on those
machines where intervention brings up larger cost savings.

We now develop the explicit formulae for the index in the context of the
working assumptions of the model outlined at the beginning of this section. We
start by defining the following values:

δ (x) = βP 0(x,x+1)
1−βP 0(x,x) ; κ (x) = K(x)

1−βP 0(x,x) ; γ (x) = βP 0(x,0)
1−βP 0(x,x)

with γ (0) = 0.
To obtain an expression for E

[

βτ∗

x |x
]

we first need to obtain Eβτ(0,x). We
start noticing that

Eβτ(0,1) = βP 0 (0, 1) + βP 0 (0, 0)Eβτ(0,1) = δ (0)

and

Eβτ(1,2) = βP 0 (1, 2) + βP 0 (1, 1)Eβτ(1,2) + βP 0 (1, 0)βτ(0,1)βτ(1,2)

=
βP 0 (1, 2)

1− βP 0 (1, 1)− βP 0 (1, 0)Eβτ(0,1)

=
δ (1)

1− γ (1) δ (0)

consequently

Eβτ(0,2) = Eβτ(0,1)Eβτ(1,2) =
δ (0) δ (1)

1− γ (1) δ (0)

following the same reasoning, it can be easily verified that

Eβτ(0,x) =

∏x−1
y=0 δ (x)

1−
∑x−1

y=0 γ (y)
∏y−1

z=0 δ (z)
. (11)

We now have that

E
[

βτ∗

|x
]

= E
[

βτx(x,x+1)
]

= β
(

1− P 0 (x, 0)
)

+ βP 0 (x, 0)Eβτ(0,x) (12)

and

E
[

βτ∗

C (X (τ∗)) |x
]

= βP 0 (x, x)C (x) + βP 0 (x, x+ 1)C (x+ 1)

+ βP 0 (x, 0)Eβτ(0,x)C (x) (13)

can easily be computed by direct substitution of (11).
In order to find Ey<x

[

βτ(y,x)
]

we notice that

Eβτ(x−1,x) = βP 0 (x− 1, x) + βP 0 (x− 1, x− 1)Eβτ(x−1,x)
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+ βP 0 (x− 1, 0)Eβτ(0,x−1)Eβτ(x−1,x)

=
δ (x− 1)

1− γ (x− 1)Eβτ(0,x−1)
;

using (11) and upon simplification we get

=
δ (x− 1)

(

1−
∑x−2

i=0 γ (i)
∏i−1

z=0 δ (z)
)

1−
∑x−1

i=0 γ (i)
∏i−1

z=0 δ (z)
; (14)

whereas for x− 2 it holds that

Eβτ(x−2,x) =βP 0 (x− 2, x− 1)Eβτ(x−1,x) + βP 0 (x− 2, x− 2)Eβτ(x−2,x)

+ βP 0 (x− 2, 0)Eβτ(0,x−2)Eβτ(x−2,x)

=
βP 0 (x− 2, x− 1)Eβτ(x−1,x)

1− βP 0 (x− 2, x− 2)− βP 0 (x− 2, 0)Eβτ(0,x−2)

=
δ (x− 2)Eβτ(x−1,x)

1− γ (x− 2)Eβτ(0,x−2)

=
δ (x− 2) δ (x− 1)

(

1−
∑x−3

i=0 γ (i)
∏i−1

z=0 δ (z)
)

1−
∑x−1

i=0 γ (i)
∏i−1

z=0 δ (z)
.

This expression can be easily generalised to

Eβτ(y,x) =

x−1
∏

h=y

δ (h)

(

1−

y−1
∑

i=0

γ (i)

i−1
∏

z=0

δ (z)

)

1−

x−1
∑

i=0

γ (i)

i−1
∏

z=0

δ (z)

; (15)

and taking expectation over all possible values of y < x we obtain

Ey<x

[

βτ(y,x)
]

=
x−1
∑

y=0

P 1 (x, y)

x−1
∏

h=y

δ (h)

(

1−

y−1
∑

i=0

γ (i)

i−1
∏

z=0

δ (z)

)

1−
x−1
∑

i=0

γ (i)
i−1
∏

z=0

δ (z)

. (16)

In order to obtain expressions for K (x, τ∗x ) and K (y, τ (y, x)) we start with
the fact that

K (0, τ (0, 1)) = K (0) + βP 0 (0, 0)K (0, τ (0, 1)) = κ (0) .

We kindly ask the reader to recall that K (x) represents the cost incurred when
operating the machine in state x during one period; whereas K (x, τ (x, x′))
represents the cost incurred when the machine is in operation from state x until
a transition to state x′ occurs.

In order to compute

K (0, τ (0, 2)) = K (0, τ (0, 1)) + Eβτ(0,1)K (1, τ (1, 2))
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we notice that

K (1, τ (1, 2)) = K (1) + βP 0 (1, 1)K (1, τ (1, 2)) + βP 0 (1, 0)K (0, τ (0, 2))

= K (1) + βP 0 (1, 1)K (1, τ (1, 2))

+ βP 0 (1, 0)
(

κ (0) + Eβτ(0,1)K (1, τ (1, 2)) +B
)

=
κ (1) + γ (1) (κ (0) +B)

1− γ (1) δ (0)

therefore

K (0, τ (0, 2)) =
κ (0) + δ (0) (κ (1) + γ (1)B)

1− γ (1) δ (0)
.

Following the same reasoning, we conclude that

K (0, τ (0, x)) =

x−1
∑

y=0

(κ (y) + γ (y)B)

y−1
∏

z=0

δ (z)

1−
∑x−1

y=0 γ (y)
∏y−1

z=0 δ (z)
; (17)

and therefore

K (x, τ∗x ) = K (x)P 0 (x, x) + k (x)P 0 (x, x+ 1)

+ P 0 (x, 0) (k (x) +K (0, τ (0, x)) +B)

= K (x) + P 0 (x, 0) (K (0, τ (0, x)) +B) (18)

can be obtained by direct substitution of (17).
In order to compute Ey<xK (y, τ (y, x)) we first notice that for any x ∈ S,

the expression

K (x, τ (x, x+ 1)) =
κ (x) + γ (x) (K (0, τ (0, x)) +B)

1− γ (x)Eβτ(0,x)
(19)

can be obtained by direct substitution of (11) and (17). Additionally, for y =
x − 1, x ∈ S, K (x− 1, τ (x− 1, x)) can be computed directly using (19), and
for any other value y < x− 1 the expression

K (y, τ (y, x)) = K (y, τ (y, y + 1)) + Eβτ(y,y+1)K (y + 1, τ (y + 1, x)) (20)

can be obtained recursively using (19) and (14). From here the computation of

Ey<xK (y, τ (y, x)) =

x−1
∑

y=0

P 1 (x, y)K (y, τ (y, x)) (21)

is straightforward.
Using expressions (12),(13), and (18) in (9) we can define the function H :

N → R as:

H (x) =

[

K (x) + P 0 (x, 0) (K (0, τ (0, x)) +B)
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+βP 0 (x, x)C (x) + βP 0 (x, x+ 1)C (x+ 1)

+βP 0 (x, 0)Eβτ(0,x)C (x)− C (x)

]

×
[

1−
(

β
(

1− P 0 (x, 0)
)

+ βP 0 (x, 0)Eβτ(0,x)
)]−1

, x ∈ N/ {0}

with

H (0) =
K (0) + βP 0 (0, 0)C (0) + βP 0 (0, 1)C (1)− C (0)

1− β
.

The following result is based in a self-consistency result for Gittins indices
due to Nash [43]:

Lemma 1. For the operation/intervention problem, if H : N → R is increasing,
then H (x) ≡ G (x) , x ∈ N.

Corollary 1. If H (x) is increasing, then H (x) = G (x), x ∈ N, and the W -
index is given by

W (x) = H (x)



1−

x−1
∑

y=0

P 1 (x, y)

∏x−1
h=y δ (h)

(

1−
∑y−1

i=0 γ (i)
∏i−1

z=0 δ (z)
)

1−
∑x−1

i=0 γ (i)
∏i−1

z=0 δ (z)





−





x−1
∑

y=0

P 1 (x, y)

∏x−1
h=y δ (h)

(

1−
∑y−1

i=0 γ (i)
∏i−1

z=0 δ (z)
)

1−
∑x−1

i=0 γ (i)
∏i−1

z=0 δ (z)



C (x)

− Ey<x|x [K (y, τ (y, x))] (22)

Proof The first statement is consequence of Lemma 1. The index W (x) follows
directly from Theorem 2. q.e.d.

Pure Deterioration Problem

In certain cases, we may be interested in finding a maintenance scheduling
regime that minimises the expected costs of operating the equipment without
considering potential failures. In this pure deterioration model, the machine is
subject only to gradual deterioration. Consequently, Assumption 4 becomes:
Assumption 4’. Evolution under passivity is right skip free, namely

P 0 (x, x) + P 0 (x, x+ 1) = 1, x ∈ N

All other characteristics of the model remain the same.
Notice that, in this case, it may be convenient to include a final absorbing

state ∆ that guarantees the machine’s breakdown after certain level of wear
(i.e. P (∆, 0) = 1). However, if the deterioration rate is slow enough and/or the
number of states sufficiently large, the structure of the index policy guarantees
that ∆ will not be visited almost surely.

Following a similar reasoning to the one used for the problem with failures,
it is straightforward to derive a set of expressions equivalent to equations (12)
to (21). With these, we can construct an appropriate expression for quantity
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B (x,W ) in (4) and, together with the definition of the index G (x) in (9), we
can define the H (x) function for the pure deterioration problem as

H (x) =
K (x) + βP (x, x)C (x) + βP (x, x+ 1)C (x+ 1)− C (x)

1− β
, x ∈ N .

(23)

The next result follows directly:

Corollary 2. If H (x) is increasing, then H (x) = G (x), x ∈ N, and the W -
index is given by

W (x) =
K (x) + βP (x, x+ 1) (C (x+ 1)− C (x))

1− β

(

1−

x−1
∑

y=0

P 1 (x, y)

x−1
∏

z=y

δ (z)

)

−

x−1
∑

y=0

P 1 (x, y)

x−1
∑

h=y

κ (h)

h−1
∏

z=y

δ (z)− C (x) , x ∈ N (24)

Proof The first statement is an immediate consequence of Lemma 1. The index
W (x) in (24), follows from (10), the relevant expression for B (x,W ) and (23).
q.e.d.

Comment

The reader may notice that quantity B(x,W ) in (4) is an conditional expec-
tation on the state where the intervention is conducted. Alternatively, under
perfect interventions equation (3) will become

B (x,W ) +W =
W +K (0, τ (0, x)) + E

[

βτ(0,x)
]

C (x)

1− E
[

βτ(0,x)|0
] .

where 0 is the designated as-good-as-new state. It can also be seen that expres-
sion Ey<xK (y, τ(y, x)) in (21) becomes K (x, τ (0, x)) under perfect interven-
tions. Consequently, the recursive computation of equations (20) is no longer
necessary. This substantially simplifies the subsequent computations and the
obtention of a closed form expression for the W-indices.

Additionally, if x is chosen as the arrival state after conducting the passive
action (operation) during τ̃ periods when starting from 0 (i.e. τ (0, x) = τ̃),
then B (0,W ) becomes

B (0,W ) +W =
W +K (0, τ̃) + E

[

βτ̃
]

C (X (τ̃))

1− E [βτ̃ |0]
.

which is equivalent to expression (10) in [20]. From here it is easy to see that
the indices proposed in our manuscript are equivalent to the ones obtained by
[20] for the particular case of perfect intervention.

6. Numerical Assessment

In this section, we conduct a collection of numerical experiments in order
to assess the performance of the proposed index policy. We start with a small
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illustrative example of the computation of the W -indices by means of the in-
teraction between the proposed B (x,W ) and G (x) functions. After this, we
present the results of an extensive numerical comparison of the performance of
the index policy with respect to an optimal stationary policy. Finally, given
that the optimal policy can only be computed for relatively small examples, we
conduct a simulation analysis of the relative efficiency of the index policy in
larger systems with respect to alternative scheduling strategies that emerge in
practice, namely, näıve and threshold policies.

6.1. Computation of the W-Indices

One of the main contributions of this article is the procedure for obtaining
the W -index by means of the interaction of functions B and G. As discussed in
Section 4, for a given state x of the machine, the W (x) index is computed as
the W -solution to the equation G (x) = B (x,W ). This procedure is illustrated
with the following example.

Consider a system of four machines that are kept by two repairmen. The
machines wear over a 24 states space with deterioration rates given by the vector
(0.0208, 0.0245, 0.0180, 0.0149); with failure probability P 0 (x, 0) = 0.0061ex/6,
x = 1, . . . , 24. The transition probabilities for maintenance interventions are

P 1 (x, y) =
π (x, y)

∑

y<x π (x, y)
(25)

where π (x, y) = e−1.9436y. The intervention and operation costs are given by
the functions Ci (x) = ai + bix and K (x) = ei + fix + gix

2, respectively, and
are expressed in monetary units. The corresponding parameters are shown in
Table 1. The failure cost is 4684.7 monetary units. All reported values of the
parameters are random extractions from suitable uniform distributions (please
see Section 6.2 for details)2. However, it should be noticed that these values
are provided only for illustrative purposes and any practical application of the
results hereby presented requires a thorough analysis of the deteriorating process
of the equipment under study.

The corresponding W -indices, computed using equation (22), are illustrated
in the left hand side graph of Figure 6. Each index is given by the intersection
of H (x) with one of the level curves of B. This interaction is illustrated, for
the case of Machine 1, in the right hand side of Figure 6. Please notice that,
given the fact that B is continuous in W , the map of B is dense, with one
curve corresponding to each possible value of W . In Figure 1, we have only
highlighted those curves that correspond to the intersection between B and H
for a given state x. For the sake of completeness, the corresponding W indices
are provided in Table 2.

6.2. Suboptimality Assessment of the Index Policy

In the following lines we assess the effectivity of the index policy by compar-
ing its performance with the optimal stationary policy described in the discus-
sion around equation (1). As it was mentioned before, the problem of scheduling

2These values have been calibrated based on one of the author’s experience on maintenance
management and condition monitoring of wind turbines.
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Figure 6: Determination of the W-indices

maintenance interventions to a collection of deteriorating machines -as formu-
lated in this article- suffers from the so-called curse of dimensionality. This
dimensionality problem hinders the application of standard dynamic program-
ming techniques to the solution of the associated MDP problem. For this reason,
the numerical assessment in this section is limited to small sized instances of
the problem.

We explore a scenario where two repairmen are in charge of maintaining five
machines. We further introduce two additional virtual machines to account for
situations when the system will find efficient to keep one or both technicians
idle. For example, if the machines are in early stages of wear and intervention
is not necessary.

The values of the W-indices for the corresponding machine-state pairs are
computed, by means of equation (22), with parameters calibrated as follows:
The deterioration rates are obtained from a U (0.01, 0.025) distribution. The
failure probabilities are given by the expression P (x, 0) = qex/4, where the q
values follow a U (0.005, 0.015) distribution. The transition probabilities under
intervention are given by expression (25), where π (x, y) = e−νy and ν is ob-
tained from a U (0, 2) distribution. A linear configuration has been considered
for the maintenance costs, with five possible distributions for the constant term:
U (50, 80) , U (100, 140) , U (250, 300) , U (500, 600) and U (1000, 1200); and the
slopes following a U (5, 15) distribution. Regarding the operation costs, we
adopt the common practice of assuming increasing costs (see, for example
[57, 22, 33] and consider two different configurations: linear and quadratic.
For the linear configuration we have four possible scenarios given by the combi-
nation of two alternative distributions for the intercept, namely U (20, 30) and

Parameter Mach. 1 Mach. 2 Mach. 3 Mach. 4

ai 174.5432 197.2394 174.4626 166.8860
bi 11.8462 14.5003 10.5560 13.9013
ei 27.7880 26.1096 24.2345 20.9082
fi 1.3073 1.5329 1.5620 1.8802
gi 0.4915 0.5054 0.5751 0.5036

Table 1: Cost Parameters for the Illustrative Example (monetary units)
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State Machine 1 Machine 2 Machine 3 Machine 4

0 -197.24 -174.54 -174.46 -166.89
1 140.28 153.50 174.89 190.53
2 162.21 181.21 199.08 208.18
3 249.40 267.25 294.24 300.03
4 359.42 376.42 413.04 413.98
5 488.43 505.04 551.54 546.18
6 635.71 652.10 709.06 696.22
7 800.78 817.02 885.08 863.75
8 982.94 999.09 1078.75 1048.06
9 1181.03 1197.20 1288.72 1247.98
10 1393.41 1409.77 1513.15 1461.87
11 1617.95 1634.72 1749.66 1687.55
12 1851.94 1869.41 1995.34 1922.33
13 2092.26 2110.76 2246.80 2163.07
14 2335.37 2355.28 2500.31 2406.23
15 2577.51 2599.25 2751.91 2648.09
16 2814.87 2838.87 2997.64 2884.85
17 3043.76 3070.45 3233.69 3112.87
18 3260.83 3290.63 3456.67 3328.83
19 3463.23 3496.54 3663.72 3529.94
20 3648.75 3685.92 3852.67 3714.05
21 3815.88 3857.20 4022.11 3879.67
22 3963.81 4009.53 4171.36 4026.08
23 4092.41 4142.72 4300.43 4153.17
24 4132.57 4187.48 4352.13 4188.39

Table 2: Values of the W -Indices for the illustrative example

U (40, 60); and two distributions for the slope, U (1, 3) and U (8, 12), respec-
tively. For the quadratic configuration, a quadratic term is added to the four
linear cases, with the corresponding coefficient obtained from a U (0.4, 0.6) dis-
tribution. The failure costs take random values between 7.5 and 12.5 times the
average intervention costs on each possible case. The value of the index for the
two virtual machines is, trivially, zero.

The experiments were conducted as follows: 1000 problems were solved for
each pair of configurations of the intervention and operation costs (linear-linear
and linear-quadratic). There are 20 scenarios in each configuration and 50 ex-
periments were conducted for each scenario. Those 50 problems differ in the
values of the parameters for the operation costs and the transition probabili-
ties, which are computed as described above. In total, 2000 experiments were
conducted. As indicated by Lemma 1, a particular problem is indexable if and
only if function H (x) in increasing in x; accordingly, this condition was tested
for every set of randomly generated parameters before running the experiment.
For each experiment, the optimal expected discounted cost (with a tolerance
parameter ǫ = 0.01%) and the expected discounted cost of the index policy,
were obtained by means of a standard value iteration algorithm (see for exam-
ple [52, 51]). Averages over 1000 repetitions were taken. With these values, we
obtained the percentage-cost suboptimality of the index policy.

The results of the numerical assessment are summarised in Table 3. Each
row shows the order statistics for the corresponding operation/intervention costs
configuration. The label “Case” in the Maintenance Costs column refers to
each of the five proposed distributions of the constant parameter in the linear
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maintenance cost function.

Operation Maint. Lower Upper

Costs Costs Minimum Quartile Median Quartile Maximum

Linear

Case 1 0.000 0.001 0.012 0.061 0.169
Case 2 0.001 0.015 0.063 0.192 0.367
Case 3 0.025 0.141 0.226 0.347 0.869
Case 4 0.131 0.333 0.468 0.683 1.014
Case 5 0.626 0.848 1.127 1.370 2.128

Quadratic

Case 1 0.000 0.000 0.004 0.015 0.087
Case 2 0.000 0.009 0.030 0.063 0.216
Case 3 0.019 0.095 0.131 0.328 0.734
Case 4 0.156 0.307 0.398 0.540 0.946
Case 5 0.298 0.895 1.317 2.019 3.429

Table 3: Performance of the Index policy with failures (% suboptimality)

It can be seen that the suboptimality of the index policy was never above
3.5% of the optimal policy. The apparent increase in suboptimality for large
costs scenarios may be explained by the fact that the index policy tends to
intervene less than the optimal policy when the intervention costs increase (a
larger number of states will present negative indices), therefore incurring in
larger failure costs.

For the sake of completeness, the experiments were also conducted for the
pure deterioration case. We recall that in this case, machines are only subject
to gradual deterioration and failures never occur. Therefore, the parameters
associated to the failures, namely, B,P 0 (x, 0) and γ (x), are all set equal to
zero. Additionally, the W -indices are computed according to equation (24).
Table 4 summarises our findings.

Operation Maint. Lower Upper

Costs Costs Minimum Quartile Median Quartile Maximum

Linear

Case 1 0.000 0.263 0.589 1.245 6.324
Case 2 0.000 0.000 0.077 0.619 1.505
Case 3 0.000 0.000 0.000 0.314 1.155
Case 4 0.000 0.000 0.000 0.000 0.438
Case 5 0.000 0.000 0.000 0.000 0.000

Quadratic

Case 1 0.000 0.401 0.692 1.553 5.651
Case 2 0.000 0.281 0.526 0.820 1.432
Case 3 0.000 0.000 0.000 0.183 0.685
Case 4 0.000 0.000 0.000 0.116 0.624
Case 5 0.000 0.000 0.000 0.000 0.000

Table 4: Performance of the Index policy for the pure-deterioration case (% suboptimality)

In this case, the maximum suboptimality is above 6% with respect to the
optimal policy. However, the results suggest a much stronger performance of
the index policy when the system is not subject to failures than with them.
Indeed, for large values of the intervention costs, the index policy tends to behave
optimally. This may be the case because the index policy tends to intervene
machines at an earlier state of wear than the optimal policy (notice that the
index policy will always intervene in a machine with a positive index value),
increasing the total intervention costs. As the maintenance cost increases, the
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number of states with negative index value becomes larger, and the number of
interventions prescribed by index policy in early states of wear, decreases. This
reduces the total intervention costs bringing the value of the index policy closer
to the one optimal one.

6.3. Index Policy Performance in Large Systems

For large sized instances, dynamic programming techniques are no longer
available for finding the optimal solution to the problem due to prohibitively
expensive computational costs. In those cases, the performance of the index
policy must be assessed by comparison with other alternative policies. In this
section, we conduct a series of simulation experiments where the efficiency of the
index policy proposed in this article is compared with two alternative policies:
myopic and threshold.

Two sets of simulations were conducted, one with 2 repairmen and 25 ma-
chines, and the other one with 3 repairmen and 50 machines. The W-indices are
computed according to equation (22) and the parameters calibrated in the way
described in Section 6.2. We considered four alternative distributions for the
constant term in the linear intervention cost, namely U (250, 295) , U (500, 560),
U (750, 825) and U (1000, 1090); with the slope given by a U (10, 15) distribu-
tion. The operation costs have a linear configuration with the constant term
following either a U (20, 30) or a (40, 60) distribution, and the slope distributed
as either a U (1, 3) or a U (8, 12). The failure costs are computed as the mean
intervention cost times a value taken randomly from one of the following inter-
vals (5, 15) , (15, 25) and (50, 60). The deterioration rates are obtained from a
U (0.01, 0.025) distribution. The failure probabilities are given by the expression
P (x, 0) = qex/6, where the q values follow a U (0.0025, 0.0050) distribution. The
transition probabilities under intervention are given by expression (25), where
π (x, y) = e−νy and ν is obtained from a U (0, 2) distribution. As before, the
indexability of the problem is tested for each new combination of parameters.

Simulations were conducted for each of 48 possible combinations of the dif-
ferent intervention, operation and failure costs scenarios. A total of 250 simu-
lations, differing in the operation costs and transition probabilities, were con-
ducted for each of those combinations. In total 12000 simulations were ran.
For each simulation we computed the average expected discounted value of the
index policy, together with the corresponding values of a myopic policy, which
intervenes the most deteriorated machines at each decision epoch3; and a set
of eight threshold policies, intervening whenever a machine arrives to certain
pre-determined state, with ties broken randomly. Each simulation was taken
over an assumed planning horizon of 520 decision periods. Table 5 shows the
results of the simulations for the case with 25 machines and 2 repairmen; Table
6 illustrates the case with 50 machines and 3 repairmen.

These tables include the average expected discounted cost of each policy,
and the average of the expected discounted value of the best threshold policy
in each scenario. It also includes the average number of interventions and fail-
ures corresponding to each policy. As before, the “Case” labels in the tables
correspond to each of the four possible distributions of the constant term for

3We refer the reader to the end of Section 4 for a discussion on the different ordering of
the states resulting from the index and the näıve policies.
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the intervention costs. The three possible cases of failure costs are labelled Low,
Medium, and High.

It can be seen that the index policy outperforms both the myopic policy and
the average threshold policies in all cases. The best threshold policy outperforms
the index one in a number of cases, but the fact that the index policy is better
in all the others gives an idea of the strength of the proposed heuristic. This
becomes evident when we consider that choosing the best threshold policy for
a particular scenario happens only by chance or, at best, after a very large
learning process, over which the decision maker will be incurring the -larger-
average cost of the threshold policy. Other results, which are consistent with
what would have been intuitively expected, are: (a) as the maintenance cost
increases, the number of interventions prescribed by the index policy decreases;
(b) as the failure costs increase, so does the number of interventions prescribed
by the index heuristic; (c) in average the index policy tends to intervene less than
the myopic policy and more than the threshold policy; and (d) given that the
myopic policy does not consider costs, it tends to intervene more than necessary,
therefore the smaller number of failures comparing with the other two policies;
however, this comes at a much larger overall cost.

6.4. An alternative index policy

In this section we make a numerical comparison of the performance of our
proposed index policy against the one proposed in [20]. This alternative policy,
to which we refer to as myopic, ignores the fact that errors or imperfections
may arise when conducting preventive maintenance, and computes the indices
assuming that the interventions are perfect, i.e. they return the machine to its
as-good-as-new state. Notwithstanding both policies are index-based, for the
sake of consistency with the rest of the manuscript, we retain the name Index
Policy for the one proposed in this work.

Table 7 shows the simulation results for a problem with 50 machines and
3 technicians. Simulations consisted of running 250 instances of each of 12
possible configurations following the scheme used in the previous section. The
results show that, apart from a couple of instances with low maintenance and
failures costs, the Index Policy outperforms the myopic one. The results also
suggest that the myopic policy tends to intervene more than the index policy,
but the interventions seem to be less efficient. This becomes more evident when
the failure cost is high, and the number of interventions required to minimise
the operation/intervention costs is large. In those cases, the number of failures
experienced when using the myopic policy is larger.

7. Conclusions

In this article, we analyse the problem of scheduling maintenance interven-
tions for a collection of deteriorating machines by a limited number of repair-
men. We acknowledge that, in real life, maintenance interventions are subject
to errors (induced either by human factors or by unforeseeable external events),
which may imply that the final state of the intervened machine differs from the
pursued -or planned- one. In order to account for this fact, we propose an MDP
formulation of the machine maintenance problem with imperfect interventions.
Given the inherent complexity of the problem, whose size grows exponentially for
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Failure Maint. Index Policy Näıve Policy Threshold Policy Performance Ratios

Costs Costs Cost Intervs. Failures Cost Intervs. Failures Cost Intervs. Failures Best Index/Näıve Index/Threshold

Low

Case 1 14423.1 618.9 64.7 14825.0 936.7 43.6 14742.5 578.1 71.7 14571.3 2.7 % 2.2 %
Case 2 16372.1 434.0 82.7 18578.4 935.6 43.6 17282.9 576.9 72.2 16381.0 11.9 % 5.3 %
Case 3 17410.6 357.0 89.4 21660.8 935.9 43.4 19188.6 577.3 71.7 17367.8 19.6 % 9.3 %
Case 4 21538.1 367.7 89.1 26894.1 936.0 43.4 23734.5 577.2 71.9 21425.4 19.9 % 9.3 %

Medium

Case 1 16122.3 837.2 47.7 16369.7 935.7 43.2 16705.7 576.7 71.8 15796.5 1.5 % 3.5 %
Case 2 21129.4 674.7 59.0 21740.4 936.0 42.7 21457.5 577.7 71.0 21197.4 2.8 % 1.5 %
Case 3 26275.0 651.1 61.3 27477.4 934.4 43.3 26772.6 576.4 72.0 26259.8 4.4 % 1.9 %
Case 4 29329.8 563.0 69.5 32146.6 937.0 44.0 30391.7 577.6 72.9 29296.9 8.8 % 3.5 %

High

Case 1 19034.7 1039.3 33.7 22885.5 936.9 43.2 25056.6 577.4 71.6 19464.1 16.8 % 24.0 %
Case 2 26958.1 1039.3 33.6 32697.5 933.7 43.4 35359.2 575.8 72.0 26945.6 17.6 % 23.8 %
Case 3 35343.2 1039.2 33.5 43497.3 934.7 43.5 47188.5 576.7 71.8 36252.8 18.7 % 25.1 %
Case 4 42266.0 1036.6 33.3 50900.5 934.7 43.3 55077.0 576.2 71.7 43381.0 17.0 % 23.3 %

Table 5: Simulation results for 25 machines and 2 repairmen

Failure Maint. Index Policy Näıve Policy Threshold Policy Performance Ratios

Costs Costs Cost Intervs. Failures Cost Intervs. Failures Cost Intervs. Failures Best Index/Näıve Index/Threshold

Low

Case 1 28190.9 1167.3 133.9 28982.9 1548.0 106.7 28692.8 1044.3 150.6 28370.1 2.7 % 1.7 %
Case 2 31897.2 835.7 169.2 35981.0 1548.2 107.2 33502.4 1044.9 150.8 31946.8 11.3 % 4.8 %
Case 3 36532.3 734.2 179.1 43716.7 1548.0 107.3 39392.1 1045.1 150.9 36546.7 16.4 % 7.3 %
Case 4 43837.4 781.4 169.3 53141.0 1547.9 107.2 47393.8 1044.3 151.1 43637.9 17.5 % 7.5 %

Medium

Case 1 31757.6 1405.6 116.0 32142.7 1548.2 107.2 32692.9 1044.3 150.8 31862.3 1.2 % 2.9 %
Case 2 41331.5 1272.9 123.9 42630.3 1548.1 106.3 41835.5 1044.4 149.9 41291.8 3.0 % 1.2 %
Case 3 52774.7 1239.3 127.4 54747.9 1548.1 107.2 53396.9 1044.7 151.1 52590.7 3.6 % 1.2 %
Case 4 56066.9 1069.8 140.3 61618.7 1548.2 106.3 58022.1 1045.1 149.9 55973.0 9.0 % 3.4 %

High

Case 1 41917.8 1559.9 105.0 46096.0 1548.2 106.3 50782.0 1044.6 149.8 42301.9 9.1 % 17.5 %
Case 2 60614.0 1559.9 104.7 66547.3 1548.2 106.4 72823.6 1045.4 150.1 60956.4 8.9 % 16.8 %
Case 3 76506.9 1559.8 104.9 84357.1 1547.9 107.0 91582.3 1044.5 150.4 76928.7 9.3 % 16.5 %
Case 4 97177.9 1559.8 105.0 109199.2 1548.1 107.0 118016.4 1044.8 150.6 99279.3 11.0 % 17.7 %

Table 6: Simulation results for 50 machines and 3 repairmen
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Failure Maint. Index Policy Myopic Policy

Costs Costs Cost Intervs. Failures Cost Intervs. Failures

Low Case 1 21918.0 638.1 141.1 21912.8 847.3 121.5
Case 2 19584.7 230.0 221.4 19587.6 267.5 209.2
Case 3 31326.2 447.1 169.0 31338.2 546.7 154.2
Case 4 36769.8 424.4 170.4 36770.7 515.1 156.1

Medium Case 1 24126.4 820.6 125.1 24073.2 1119.9 103.7
Case 2 35901.6 876.5 117.9 35919.8 1184.5 96.7
Case 3 42970.7 768.1 129.2 43045.6 1023.7 109.3
Case 4 54193.7 798.5 126.5 54495.6 1071.3 106.1

High Case 1 36596.7 1559.9 73.1 36717.7 1559.9 74.5
Case 2 53147.2 1559.9 72.0 53315.7 1559.9 73.8
Case 3 69988.1 1559.9 72.7 70174.0 1559.9 73.7
Case 4 85219.3 1559.9 71.2 85313.1 1559.9 73.1

Table 7: Simulation results for the Index and Myopic policies.

real-life sized instances, we propose a restless-bandit formulation that exploits
the mathematical characteristics of the individual machines in order to develop
an index-based scheduling policy. Based on the dynamics of a deteriorating
machine, we propose an index structure and, after establishing an indexabil-
ity property, we develop closed form indices for the individual machines, which
build on the so-called Whittle indices for restless bandit problems.

The performance of the proposed index policy is assessed in two different sets
of experiments. For small instances, where dynamic programming techniques
are available for finding the optimal solution to the problem, a set of experiments
were conducted in order to evaluate the performance of the index policy. The
experimental results suggest a very strong performance of the index heuristic,
with maximum suboptimality below 3.5% for very large intervention costs and
below 1% in most cases. In a number of cases, the index policy was found to
perform optimally. For larger instances, the index policy was compared with
two alternative policies: a so-called näıve one, which always intervenes in the
machines with more advanced state of wear (irrespectively of the involved costs);
and a threshold policy, which prescribes intervention whenever the machine
reaches certain predetermined state of wear. The index policy outperforms
both policies in a series of simulations conducted in two scenarios with 25 and
50 machines, respectively. This result suggests a very strong performance of the
proposed heuristic.

Additionally, in order to highlight the importance of taking into account the
existence of imperfections in the preventive maintenance tasks, we compare the
results of our heuristic against an index policy that assumes perfect interven-
tions. Numerical results show that the policy that accounts for imperfections
outperforms the so-called myopic policy in most instances. This becomes more
important as the maintenance and failure costs increase.

Our work has extended the available literature in machine maintenance by
proposing an intuitive and efficient mechanism for allocating effort among de-
teriorating machines. This approach can be combined with advanced condition
monitoring and predictive maintenance systems in order to obtain an accurate
characterisation of the system’s deterioration and wear. Moreover, the technique
proposed in this article opens new research and implementation opportunities,
as it can be used in combination with other techniques available for optimal
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maintenance in single machines, in order to guarantee a system’s availability,
reliability, and productivity at a minimal cost.
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[9] Do Van, P. and Bérenguer, C. (2012). Condition-based maintenance with
imperfect preventive repairs for a deteriorating production system. Quality
and Reliability Engineering International, 28(6):624–633.

[10] Do Van, P., Voisin, A., Levrat, E., and Iung, B. (2015). A proactive
condition-based maintenance strategy with both perfect and imperfect main-
tenance actions. Reliability Engineering & System Safety, 133:22–32.

[11] Froger, A., Gendreau, M., Mendoza, J. E., Pinson, E., and Rousseau, L.-
M. (2017). A branch-and-check approach for a wind turbine maintenance
scheduling problem. Computers & Operations Research, 88:117–136.
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age-based maintenance strategies with minimal repairs for systems subject to
competing failure modes due to degradation and shocks. European journal of
operational research, 218(1):140–151.

[25] Irawan, C. A., Ouelhadj, D., Jones, D., St̊alhane, M., and Sperstad, I. B.
(2017). Optimisation of maintenance routing and scheduling for offshore wind
farms. European Journal of Operational Research, 256(1):76–89.

[26] Kenne, J., Boukas, E., and Gharbi, A. (2003). Control of production and
corrective maintenance rates in a multiple-machine, multiple-product manu-
facturing system. Mathematical and Computer Modelling, 38(3):351–365.

[27] Khatab, A. and Aghezzaf, E.-H. (2016). Selective maintenance optimization
when quality of imperfect maintenance actions are stochastic. Reliability
Engineering & System Safety, 150:182–189.

31



[28] Kobbacy, K. A. H. and Murthy, D. P. (2008). Complex system maintenance
handbook. Springer Science & Business Media.

[29] Kurt, M. and Kharoufeh, J. P. (2010). Optimally maintaining a markovian
deteriorating system with limited imperfect repairs. European Journal of
Operational Research, 205(2):368–380.

[30] Lee, H. and Cha, J. H. (2016). New stochastic models for preventive main-
tenance and maintenance optimization. European Journal of Operational Re-
search, 255(1):80–90.

[31] Liao, H., Elsayed, E. A., and Chan, L.-Y. (2006). Maintenance of con-
tinuously monitored degrading systems. European Journal of Operational
Research, 175(2):821–835.

[32] Liao, W., Pan, E., and Xi, L. (2010). Preventive maintenance scheduling for
repairable system with deterioration. Journal of Intelligent Manufacturing,
21(6):875–884.

[33] Liu, B., Wu, S., Xie, M., and Kuo, W. (2017). A condition-based mainte-
nance policy for degrading systems with age-and state-dependent operating
cost. European Journal of Operational Research, 263(3):879–887.

[34] Liu, Y., Chen, Y., and Jiang, T. (2018). On sequence planning for selective
maintenance of multi-state systems under stochastic maintenance durations.
European Journal of Operational Research, 268(1):113–127.

[35] Liu, Y. and Huang, H.-Z. (2010). Optimal selective maintenance strategy
for multi-state systems under imperfect maintenance. IEEE Transactions on
Reliability, 59(2):356–367.

[36] Meier-Hirmer, C., Riboulet, G., Sourget, F., and Roussignol, M. (2009).
Maintenance optimization for a system with a gamma deterioration process
and intervention delay: application to track maintenance. Proceedings of the
Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability,
223(3):189–198.

[37] Mobley, R., Higgins, L., and Wikoff, D. (2008). Maintenance engineering
handbook. McGraw-Hill,.

[38] Moghaddam, K. S. (2013). Multi-objective preventive maintenance and
replacement scheduling in a manufacturing system using goal programming.
International Journal of Production Economics, 146(2):704–716.

[39] Moghaddam, K. S. and Usher, J. S. (2011). Preventive maintenance and re-
placement scheduling for repairable and maintainable systems using dynamic
programming. Computers & Industrial Engineering, 60(4):654–665.

[40] Mor, B. and Mosheiov, G. (2015). Scheduling a deteriorating maintenance
activity and due-window assignment. Computers & Operations Research,
57:33–40.

[41] Mosheiov, G. and Sarig, A. (2009). A note: Simple heuristics for schedul-
ing a maintenance activity on unrelated machines. Computers & Operations
Research, 36(10):2759–2762.

32



[42] Nakagawa, T. and Yasui, K. (1987). Optimum policies for a system with
imperfect maintenance. IEEE Transactions on Reliability, 36(5):631–633.

[43] Nash, P. (1973). Optimal Allocation of Resources Between Research
Projects. PhD thesis, Cambridge University.

[44] Nguyen, D., Dijoux, Y., and Fouladirad, M. (2017). Analytical proper-
ties of an imperfect repair model and application in preventive maintenance
scheduling. European Journal of Operational Research, 256(2):439–453.

[45] Oyarbide-Zubillaga, A., Goti, A., and Sanchez, A. (2008). Preventive main-
tenance optimisation of multi-equipment manufacturing systems by combin-
ing discrete event simulation and multi-objective evolutionary algorithms.
Production Planning & Control, 19(4):342–355.

[46] Pandelis, D. G. and Teneketzis, D. (1999). On the optimality of the gittins
index rule for multi-armed bandits with multiple plays. Mathematical Methods
of Operations Research, 50:449–461.

[47] Papadimitriou, C. and Tsitsiklis, J. (1999). The complexity of optimal
queueing network control. Math. Oper. Res., 24:293–305.

[48] Percy, D. F. (2008). Preventive maintenance models for complex systems.
In Kobbacy, K. and Murthy, P., editors, Complex System Maintenance Hand-
book, pages 179–207. Springer.

[49] Pham, H. and Wang, H. (1996). Imperfect maintenance. European journal
of operational research, 94(3):425–438.

[50] Poppe, J., Boute, R. N., and Lambrecht, M. R. (2018). A hybrid
condition-based maintenance policy for continuously monitored components
with two degradation thresholds. European Journal of Operational Research,
268(2):515–532.

[51] Puterman, M. L. (1994). Markov Decision Processes: Discrete and Stochas-
tic Dynamic Programming. Wiley, New York.

[52] Ross, S. (1983). Introduction to Stochastic Dynamic Programming. Aca-
demic Press, Florida, USA.
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