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S U M M A R Y

We derive a quasi-geostrophic (QG) system of equations suitable for the description of the

Earth’s core dynamics on interannual to decadal timescales. Over these timescales, rotation is

assumed to be the dominant force and fluid motions are strongly invariant along the direction

parallel to the rotation axis. The diffusion-free, QG system derived here is similar to the one

derived in Canet et al. but the projection of the governing equations on the equatorial disc is

handled via vertical integration and mass conservation is applied to the velocity field. Here we

carefully analyse the properties of the resulting equations and we validate them neglecting the

action of the Lorentz force in the momentum equation. We derive a novel analytical solution

describing the evolution of the magnetic field under these assumptions in the presence of a

purely azimuthal flow and an alternative formulation that allows us to numerically solve the

evolution equations with a finite element method. The excellent agreement we found with the

analytical solution proves that numerical integration of the QG system is possible and that

it preserves important physical properties of the magnetic field. Implementation of magnetic

diffusion is also briefly considered.

Key words: Core; Rapid time variations; Numerical modelling.

1 I N T RO D U C T I O N

The Earth’s magnetic field shows oscillations and variations on a

wide range of temporal scales (Hulot et al. 2015). This variability

is the observable consequence of the rich dynamics taking place in

the Earth’s outer core, where the geomagnetic field is generated and

continuously altered by the complex interplay between fluid flows

and the geomagnetic field itself (Jackson & Finlay 2015; Roberts

2015).

Numerical geodynamo models (Christensen & Wicht 2015) can

capture qualitative features of the geomagnetic secular variation and

of the spatial structure of the geomagnetic field at the core–mantle

boundary (CMB) but the whole temporal spectrum is impossible to

cover due to the prohibitive computational costs required. For the

same reason, current numerical simulations operate in a parame-

ter regime that is far away from what is thought to be the one in

which the geodynamo operates. For instance, the ratio of the rota-

tion to viscous timescales, as measured by the Ekman number Ek,

is supposed to be extremely small in the Earth’s core for which

Ek = O(10−15). Recent numerical simulations (Schaeffer et al.

2017) are capable of reaching Ek = O(10−7) suggesting that they

might not operate in the same regime as the true geodynamo. Con-

versely, according to Aubert et al. (2017), these simulations might

be in the correct asymptotic regime. In the same paper, the authors

present the results from simulations where the value Ek = 10−8 has

been reached with hyperdiffusivity applied to the smallest length

scales. The ratio of magnetic to viscous dissipation timescales, as

measured by the magnetic Prandtl number Pm is also orders of

magnitude higher in numerical simulations than in the core: Pm =
O(10−5–10−6) in the core while Pm > 3 × 10−2 in recent simu-

lations (Aubert et al. 2017; Schaeffer et al. 2017). These numbers

indicate that the enormous spatial and temporal scale separation

that is thought to be characteristic of the dynamics in the core is

not present in numerical models. Unfortunately, by lowering Pm it

becomes more difficult to obtain self-sustained dynamo simulation,

as clarified by the relationship Rm = PmRe between the Reynolds

number Re (a measure of the vigour of the flow velocities) and

the magnetic Reynolds number Rm. Since the latter has to over-

come a certain critical value for dynamo action to take place, one

can see how lowering Pm to Earth-like values tends to result in

the generation of weaker magnetic fields. Therefore stronger fields

require more vigorous flows and consequently additional computa-

tional burden. As a consequence, geodynamo simulations typically

have a lower ratio of magnetic to kinetic energy (less than 10) than

what it is believed to be relevant for the Earth (where this value

is about 100). See Schaeffer et al. (2017) for a summary of recent

geodynamo simulations and for their comparison with the Earth’s

dynamo.

A possible route towards the development of numerical models

capable of operating in more realistic parameter regimes is given
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Quasi-geostrophic kinematic models 1773

by a class of models that attempts to represent only the physics that

is thought to be relevant for the Earth’s core. In particular, models

based on the quasi-geostrophic (QG) approximation take advantage

of the smallness of the Ekman and Rossby (Ro) numbers, the latter

being a measure of the importance of inertia over rotational forces.

These non-dimensional numbers are an indication of how rotation

(via the Coriolis force) is dominant in the force budget of the core.

As such the Earth’s core is said to be in rapid rotation. The fluid

flows characteristic of such a system are essentially 2-D, with verti-

cal component strongly inhibited by the presence of rotation, as pre-

dicted by the Proudman–Taylor theorem (Greenspan 1968; Jacobs

1987). Even when magnetic and thermal effects are included (by

including in the momentum equation the Lorentz force and buoy-

ancy, respectively) flows retain their columnar structure (vertically

invariant), as long as the main balance remains geostrophic, that

is, a balance between pressure gradient and the Coriolis force. The

remaining forces, most notably inertia, Lorentz force and buoyancy,

enter the balance at subdominant order, together with the Coriolis

and pressure forces due to ageostrophic flows (Gillet et al. 2011;

Calkins et al. 2015). An account of the experimental and numerical

evidence for bidimensionality in rapidly rotating flows is given in

Cardin & Olson (2007) and Williams et al. (2010).

These theoretical arguments, together with experimental and nu-

merical evidence suggest that it is acceptable to impose a flow

structure that is almost invariant along the vertical direction. This

approach has been originally developed for studies of thermal

convection (Cardin & Olson 1994; Aubert et al. 2003; Gillet &

Jones 2006; Guervilly & Cardin 2016) and has subsequently been

used for studies of kinematic dynamos (Schaeffer & Cardin 2006;

Schaeffer et al. 2016), the study of interannual and decadal dy-

namics in a data assimilation framework (Canet et al. 2009) and

the study of magneto-hydrodynamic oscillations in the Earth’s core

(Canet et al. 2014; Labbé et al. 2015). The columnar flow ap-

proximation has also been successfully applied to the inversion of

geomagnetic data for the retrieval of the flows at the surface of the

core (Pais & Jault 2008; Gillet et al. 2009, 2015).

The use of the columnar flow approximation for the study of

interannual and decadal dynamics has been justified in Jault (2008)

and Gillet et al. (2011) where an impulsive perturbation of the in-

ner core boundary (ICB) propagated into the exterior shell of a

3-D numerical model of a rotating fluid permeated by a magnetic

field. These transient motions are shown to be highly columnar pro-

vided that magnetic forces do not become dominant with respect

to rotation and that the disturbances propagate on timescales much

shorter than the magnetic diffusion timescale and much longer than

the rotation period of the shell. In the Earth’s core the propagation

timescales of magnetic disturbances (the Alfvén velocity) across

the core is thought to be of the order of 6–8 yr (Gillet et al. 2010,

2015) and the magnetic diffusion timescale can be estimated to

be at least 104 times this value (see Canet et al. (2014) and refer-

ences therein). It is safe to assume that, in the Earth’s outer core,

interannual and decadal flows and fluctuations are columnar. Ex-

amples of such motions include Alfvén torsional waves (Braginsky

1970) that propagate on the Alfvén timescales mentioned above,

and slow magneto-hydrodynamic oscillations (Hide 1966; Malkus

1967; Finlay 2011) that, depending on the geometry and intensity of

the magnetic field in the core, could move on decadal to centennial

timescales and therefore be a possible mechanism for the west-

ward drift observed in magnetic field models (Hide 1966; Finlay &

Jackson 2003; Jackson 2003). The detection of these motions in 3-D

geodynamo numerical simulation has proven challenging, mainly

due to the high values of Ek and Pm (Teed et al. 2014; Hori et al.

2015). Additionally, care has to be taken in relating the observa-

tion of interannual and decadal magnetic driven oscillations to their

counterpart detected in geodynamo simulations, as the timescales

are likely to be not in the correct ratio with rotational or advective

timescales. As both input parameters (like Ek and Pm) and diag-

nostic quantities (such as the ratio of magnetic to kinetic energy)

in current simulations are not the same as for the Earth’s core, so

are the relative timescales (Glatzmaier 2002) of relevant phenom-

ena. In particular the ratio of the Alfvén timescale to the convective

turnover or to the rotational timescale tend to be smaller in simu-

lations than in the Earth so that equating one timescale to Earth’s

values, makes other ones wrong. These issues may be also tackled

by QG models currently under development.

In the present study we consider a variation of the QG model of

Canet et al. (2009). The key aspect of that study is that the magnetic

field is considered through vertical averages of quadratic combina-

tions of its equatorial components. In this way both the momentum

and the induction equations are projected on the equatorial plane

and a fully 2-D model is obtained. The properties of the model of

Canet et al. (2009) have not yet been fully characterised through a

numerical simulation of the system, but data assimilation experi-

ments have been performed in simplified settings. Subsequent QG

models of magnetohydrodynamic oscillations (Canet et al. 2014;

Labbé et al. 2015) have assumed that the magnetic field too could

be approximated as columnar, with the vertical component of the

field being either negligible or linearized along the vertical direction.

This approximation is more restrictive than the general description

of Canet et al. (2009), in which no assumption about the vertical

structure of the magnetic field is made, but it allows the consis-

tent inclusion of magnetic diffusion and the natural imposition of

insulating boundary conditions at the CMB. Both these issues are

addressed in the present study.

We perform kinematic forward numerical simulations of a sys-

tem of equation similar to the one of Canet et al. (2009), the most

notable differences being the use of a velocity formulation that en-

forces mass conservation (Schaeffer & Cardin 2005) and the use of

vertically integrated magnetic quantities instead of vertically aver-

aged ones to describe the magnetic field. In addition, the presence

of the inner core is neglected from now on. We made this choice to

simplify our study and to focus attention on the significant aspects

of the QG model that we now derive. In Canet et al. (2009) and

Canet et al. (2014) the magnetohydrodynamic equations are solved

only outside the tangent cylinder, the imaginary cylinder aligned

with the rotation axis of the Earth and tangent to the inner core and

separating the regions above and below the inner core from the rest

of the outer core. Whether the geostrophic balance or the columnar

flow approximation hold in the fluid regions inside the tangent cylin-

der is an open question. In Canet et al. (2009, 2014), these regions

are completely excluded from the QG dynamics on the basis that, if

the flows are indeed vertically invariant outside the tangent cylinder

little feedback is expected from the fluid regions above and below

the inner core. A full sphere represents the simplest canonical sys-

tem to study and the correct geometry for an early Earth, in which

the inner core is not yet present, and some experimental configu-

rations. As prescribed velocity field we chose a time-independent

zonal flow with a cylindrical radial dependence. As we show later in

the paper, this choice allows significant simplifications in the gov-

erning equations and the derivation of a relatively simple analytical

solution. We do not expect the fundamental conclusion of our study

to vary for more complex flows (such as non-axysimmetric flows).

In Section 2, the system of equations under the QG approximation

is derived and its peculiar characteristics discussed. In Section 3,

we illustrate the ideal kinematic setup and the criteria chosen to

validate the QG equations. By imposing a time-invariant velocity
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1774 S. Maffei and A. Jackson

Figure 1. Geometry of a quasi-geostrophic column in a full sphere. H is the

half height of the column, x = s cos φ and y = s sin φ, s is the distance from

the rotation axis and φ is the azimuth.

field we can study specific properties of the model in a highly simpli-

fied setup. The results of the validation are given in Section 4. In Sec-

tion 5, we propose an alternative to magnetic diffusion, not possible

to implement consistently in the model we derive here. Comments

and conclusions are given in Sections 6 and 7.

2 G OV E R N I N G E Q UAT I O N S

We describe the Earth’s outer core as a rotating fluid sphere of radius

rc, whose axis of rotation is � (assuming that it passes through

the centre of the sphere), with homogeneous density ρ, kinematic

viscosity ν and magnetic diffusivity η. The velocity u, the non-

hydrostatic pressure p and the magnetic field B are described in

a cylindrical coordinate system with origin at the centre of the

sphere, coordinates (s, φ, z) and unit vectors (es, eφ , ez). The vertical

direction ez is parallel to the rotation vector �, z is the distance from

the equatorial plane, s is the distance from the rotation axis and φ

is the longitude. The radial distance from the centre of the sphere is

therefore

r =
√

s2 + z2. (1)

The boundary of the sphere (the CMB) is r = rc and, in cylindrical

coordinates, it is located at a height ±H above the equatorial plane,

where:

H =
√

r 2
c − s2. (2)

The geometry of the system is depicted in Fig. 1. Note that H = 0

at s = rc.

The equations describing the combined evolution of u and B are,

under the hypothesis of incompressibility:

∂u

∂t
+ (u · ∇)u + 2� × u = −

∇ p

ρ
+

(B · ∇)B

μ0ρ
+ ν∇2u (3)

∂B

∂t
= ∇ × (u × B) + η∇2B (4)

∇ · u = 0 (5)

∇ · B = 0 (6)

where the magnetic pressure term |B|2(2μ0)−1 has for simplicity

being incorporated in the pressure p and μ0 is the vacuum mag-

netic permeability constant. These equations are, respectively, the

momentum equation per unit mass, the induction equation and the

divergence free condition for the velocity field and the magnetic

field and are commonplace in the study of the Earth’s core (Jacobs

1987). We consider the non-dimensional version of these equation

by introducing B, U , rc, rc/U , P = ρU2 as the typical scales for

magnetic field, velocity, length, time and pressure respectively. Then

the non-dimensional MHD equations are obtained by making the

following substitutions:

u →
u

U

p →
p

P

B →
B

B
∂

∂t
→

rc

U

∂

∂t

∇ → rc∇. (7)

The governing equations written in non-dimensional form are

∂u

∂t
+ (u · ∇)u +

2�rc

U
ez × u

= −∇ p +
B2

ρμ0U2
(B · ∇)B +

ν

Urc

∇2u (8)

∂B

∂t
= ∇ × (u × B) +

ηrc

U
∇2B (9)

∇ · u = ∇ · B = 0. (10)

Here � = |�| is the rate of rotation. We introduce the Alfvén

velocity:

Va =
B

√
ρμ0

(11)

which is the velocity of propagation of magnetic disturbances in

an electrically conducting fluid (Alfvén 1942). We then define the

Lehnert, Ekman and Lundquist numbers as in Jault (2008):

Le =
Va

rc�
=

B

rc�
√

ρμ0

, (12)

Ek =
ν

�r 2
c

(13)

and

Lu =
rcB

η(μρ)1/2
, (14)

respectively. More specifically, Le measures the ratio of the rotation

period over the Alfvén timescale, which is the propagation time of a

magnetic disturbance of velocity Va over the distance rc. Assuming

the same values adopted in Canet et al. (2014), its value in the Earth’s

core is about 10−4. This value indicates that motions propagating

on the timescale of magnetic disturbances are highly influenced

by rotation. The importance of the diffusivities is measured by the

Lundquist and the Ekman numbers. They are, respectively, the ratio

of the magnetic diffusion timescale over the Alfvén timescale and
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Quasi-geostrophic kinematic models 1775

the ratio of the rotation period over the viscous diffusion timescale.

Since Lu ≃ 105 and Ek ≃ 10−15, it is safe to assume that, on the

short time scales we are interested in, we could entirely neglect both

diffusivities (especially viscosity).

In what follows we revisit the derivation of the governing equa-

tions for a QG model that follows closely that of Canet et al. (2009).

The quasi-z invariance of the flow suggests that the dynamics can be

projected on the equatorial plane and a 2-D system can be solved in

place of the original 3-D described by eqs (8)–(10). The treatment

of the magnetic field requires special care as in general its vertical

structure is unconstrained.

2.1 Columnar flow assumption and vertically

integrated equations

Given the values of Le, Ek and Lu the conclusions of Jault (2008)

apply and we consider the flow u to have a columnar structure.

Following Schaeffer & Cardin (2005), Schaeffer & Cardin (2006)

and Canet et al. (2014) we impose the velocity field to be of the

form:

u(s, φ, z) =
1

H
∇ × (�ez) −

z

H 3

∂�

∂φ
ez . (15)

This formulation describes a columnar flow that satisfies the con-

straint (5) and that is entirely defined by the 2-D scalar potential

�(s, φ). Furthermore, together with the condition

�(s = 1) = 0, (16)

the flow (15) satisfies the non-penetration boundary condition

er · u(r = 1) = 0 (17)

everywhere on the CMB.

Given the flow structure (15) it is natural to project the momentum

eq. (8) on the equatorial plane. Following Canet et al. (2014) and

references therein we take the curl of eq. (8) and consider its vertical

component (the axial vorticity equation):

∂ω0

∂t
+ (ue · ∇e)ω0 +

2

Le

s

H 2
us

= ez · ∇ × [(B · ∇)B]e +
E

Le
∇2ω0. (18)

Here []e denotes the equatorial part of the vectorial quantity enclosed

in square brackets and β = H−1∂ sH = −sH−2. By inserting the

columnar flow definition (15), the axial vorticity ω0 is

ω0 = ez · ∇ × ue =
1

H

[

−∇2 + β
∂

∂s

]

�. (19)

Note that the first term on the right-hand side of eq. (18) is not

independent of z. In Canet et al. (2014) and Labbé et al. (2015),

the magnetic field B is assumed to have a structure equivalent to

eq. (15) and eq. (18) is easily projected on the equatorial plane. In

Canet et al. (2009), no assumption is made regarding the vertical

structure of B and eq. (18) is projected by considering its verti-

cal average. Here we consider vertical integrals. We introduce the

following notation

{·} =
∫ H

−H

· dz (20)

to indicate a vertical integration and apply it to the axial vorticity

eq. (18). The vertical average operation is then (2H)−1{ · }. Both

integration and average transform a 3-D quantity in a 2-D one by

integrating along the vertical direction. The difference is that at

s = 1 the value of the averaged quantities is equal to the value of the

integrand there, while the integrated ones, as long as the original

integrand is not singular at the boundary, vanishes.

As the terms related to the vorticity and velocity fields are not a

function of z we obtain:

2H

[

∂ω0

∂t
+ (ue · ∇e)ω0 +

2

Le

s

H 2
us −

E

Le
∇2ω0

]

= {ez · ∇ × [(B · ∇)B]e}. (21)

We now manipulate the right-hand side as described in Canet et al.

(2009). By making use of the solenoidal nature of B and of Leibniz’

integration rule we obtain:

{ez · ∇ × [(B · ∇)B]e}

=
(

∂2

∂s2
+

3

s

∂

∂s
−

1

s2

∂2

∂φ2

)

{Bs Bφ}

−
1

s

(

1

s

∂

∂φ
+

∂2

∂s∂φ

)

({

B2
s

}

−
{

B2
φ

})

(22)

where terms evaluated on the surface r = 1 have been neglected by

assuming that the magnetic field at the CMB is much weaker than

the magnetic field in the interior of the domain. This assumption is

supported by observational studies of torsional waves (Gillet et al.

2010, 2015) and by geodynamo simulations (Aubert et al. 2009).

For convenience, we introduce the quadratic magnetic quantities:

a =
{

B2
s

}

b =
{

B2
φ

}

c =
{

Bs Bφ

}

. (23)

Neglecting the nonlinear advection term and the viscosity in

eq. (21) we obtain:

2H

(

∂ω0

∂t
+

2

Le

s

H 2
us

)

=
(

∂2

∂s2
+

3

s

∂

∂s
−

1

s2

∂2

∂φ2

)

c

−
1

s

(

1

s

∂

∂φ
+

∂2

∂s∂φ

)

(a − b). (24)

By neglecting the effect of magnetic diffusion as well, evolu-

tion equations for a, b and c can be obtained from the induction

eq. (9)1:

∂a

∂t
= −H (u · ∇e)

( a

H

)

+ 2a
∂us

∂s
+

2c

s

∂us

∂φ
(25)

∂b

∂t
= −

1

H
(u · ∇e) (Hb) + 2sc

∂

∂s

(uφ

s

)

− 2b
∂us

∂s
(26)

∂c

∂t
= − (u · ∇e) c + sa

∂

∂s

(uφ

s

)

+
b

s

∂us

∂φ
. (27)

Note that in the derivation of these equations, no assumption on the

intensity of the magnetic field is necessary. Surface terms have to

be neglected in the derivation of eq. (22) for the system (24)–(27) to

be closed in the quantities a, b and c. For the same reason, magnetic

diffusion needs to be neglected from the induction equation. It has

to be pointed out that the vertical component of B has not been

neglected in any way (apart from the assumption of the field at

1
These equations correct errors in the equations given in Jault & Finlay

(2015). The vertically averaged formulation employed there can be re-

trieved by dividing eqs (25)–(27) by 2H. Note that eqs (66) of Jault &

Finlay (2015) would be formally correct for the vertically integrated for-

mulation of the present study. The interested reader is referred to section

4.2.4 of Maffei (2016) for additional details.
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1776 S. Maffei and A. Jackson

Figure 2. Initial magnetic field for the kinematic analysis of the QG model. The left and right panels show a projection on the x, y plane (the equatorial plane)

and the right panel is a meridional cut in the z, y plane, respectively.

the CMB being negligible). Thanks to the solenoidal nature of the

magnetic field the component Bz is implicitly considered in the

quantities a, b, c and in their derivatives. Because of the vertical

integration, it is impossible to retrieve the original vector B from

the quadratic magnetic variables. The differences between eqs (25)–

(27) and eqs (17)–(19) of Canet et al. (2009) are due to the mass

conservation here considered in the definition (15).

The system (24)–(27) has to be solved on the equatorial plane

z = 0, with s ≤ 1. On this domain, the boundary conditions on a, b

and c naturally arise given their nature of integral quantities. Since

H vanishes on s = 1 and given that the quantities B2
s , B2

φ and BsBφ

are expected to remain finite everywhere:

a(s = 1) = b(s = 1) = c(s = 1) = 0. (28)

Physically, if we consider the mantle to be an insulator, we should

enforce continuity of B with the exterior field Be, valid for r > 1

which satisfies:

∇ × Be = 0. (29)

However, we were not able to write this condition for a, b and c.

In the more restrictive formulation employed in Canet et al. (2014)

and Labbé et al. (2015) the insulating boundary condition can be

naturally imposed at the CMB. The boundary conditions for the

stream function � is given in eq. (16). More specifically we have to

make sure that

�(s → 1) = O(H 3) (30)

in order for us to be zero and uφ to be finite at s = 1.

3 VA L I DAT I O N U N D E R T H E

K I N E M AT I C A P P ROX I M AT I O N

The QG equations derived in the previous section can in principle

be evolved forward in time from a given initial condition. Apart

from simple experiments performed in Canet et al. (2009), there

has been no characterization of the property of the system (24)–

(27) through forward numerical simulations. In the remainder of

the paper we present results of forward numerical models under the

kinematic approximation. Although the QG model discussed here is

targeted to magnetic fields and flows with interannual and decadal

temporal variability, we impose a steady velocity field so that we can

ignore the momentum equation and focus on solving the induction

eqs (25)–(27). As we are neglecting the momentum equation, we

follow Jones (2007) and consider typical values of velocity in the

outer core to be U = 5 × 10−4 m s−1 ≃ 15 km yr−1 which result in a

non-dimensional timescale of rc/U = 220 yr. These timescales lie

at the upper limit of validity of the QG model developed here.

We note the following important properties of the quantities a, b

and c. First, while a and b are bound to be positive, c can assume

positive or negative sign. Second, Canet et al. (2009) noted that the

Cauchy–Schwarz inequality applies:

ab ≥ c2. (31)

In particular we can introduce the quantity

q2 = ab − c2 ≥ 0 (32)

that satisfies the following evolution equation:

∂q2

∂t
= −(ue · ∇e)q2. (33)

3.1 Initial field and prescribed flow

The initial magnetic field used in this study is a poloidal magnetic

field defined in spherical coordinates (r, θ , φ) by the following

potential:

P1
1 =

r 2

2

(

(r 2 + k) sin(θ ) sin(φ)
)

(34)

where k = −5/3 is a constant. The magnetic field in the same system

is

B(r,θ,φ) = ∇ × ∇ ×
(

P1
1 er

)

. (35)

This corresponds to a dipole whose axis is aligned along the y

direction and satisfies insulating boundary conditions at the CMB

(see Fig. 2). The corresponding quantities a, b and c are shown in

Fig. 3. In this figure, the initial fields are interpolated on the finest

mesh and second largest Lagrange polynomial degree we used for

the numerical experiments (see the next section). The mathematical

expressions of the initial conditions are, in cylindrical coordinates:

a =
2

45
H (61 − 62s2 + 21s4) sin2 φ

b =
2

45
H (61 − 152s2 + 96s4) cos2 φ

c =
1

45
H (61 − 107s2 + 36s4) sin(2φ). (36)

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

-a
b
s
tra

c
t/2

1
0

/3
/1

7
7
2
/3

8
6
8
2
0
4
 b

y
 g

u
e
s
t o

n
 2

5
 F

e
b
ru

a
ry

 2
0
2
0



Quasi-geostrophic kinematic models 1777

Figure 3. Initial conditions for (in order from panels a to d) a, b, c and q2 calculated from the initial magnetic field of Fig. 2. Maximum and minimum values

are shown at the top and at the bottom of the colour scale for each quantity.

Figure 4. Radial structure of the zonal flow (39).

Fig. 3(d) shows the quantity:

q2 = ab − c2 (37)

which, according to the Cauchy–Schwarz inequality (31) has to be

positive. The analytical form of q2 for the initial condition (36) is:

q2 =
16

45
s4(1 − s2)3 sin2(2φ). (38)

The velocity field we impose is a simple azimuthal flow:

u = s(s2 − 1)eφ . (39)

Its radial functional form is shown in Fig. 4. As mentioned earlier

more involved flows can be prescribed, as long as they can be

described by the columnar formulation (15). With this velocity field

the evolution eqs (25)–(27) are greatly simplified:

∂a

∂t
= −

uφ

s

∂a

∂φ
(40)

∂b

∂t
= −

uφ

s

∂b

∂φ
+ 2sc

∂

∂s

(uφ

s

)

(41)

∂c

∂t
= −

uφ

s

∂c

∂φ
+ sa

∂

∂s

(uφ

s

)

(42)

∂q2

∂t
= −

uφ

s

∂q2

∂φ
. (43)

Here we also included the evolution equation for the control variable

q2. Note that a and q2 evolve according to a simple advection

equation. Therefore the analytical solution for these two quantities

is

aT (s, φ, t) = a0

(

s, φ −
uφ

s
t
)

(44)

where a0(s, φ) = a(t = 0) is the initial condition and aT indicates

the true solution. Substitution of this form in the evolution equation

for a will prove that this is indeed the solution. A similar theoretical

solution holds for q2:

q2
T (s, φ, t) = q2

0

(

s, φ −
uφ

s
t
)

. (45)
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Given the solution for a we can then solve (42):

cT (s, φ, t) =
2

45
H sin

(

φ −
uφ

s
t
)

[

2(21s4 − 62s2 + 61)s2t

× sin
(

φ −
uφ

s
t
)

+ (36s4 − 107s2 + 61)

× cos
(

φ −
uφ

s
t
)

]

(46)

and finally, combining (44)–(46) with (37) we obtain a solution for

b:

bT (s, φ, t) =
1

45
H

{

4(36s4 − 107s2 + 61)s2t sin
[

2
(

φ −
uφ

s
t
)]

+ (−84s8t2 + 248s6t2 + s4(96 − 244t2)

− 152s2 + 61) cos
[

2
(

φ −
uφ

s
t
)]

+ 84s8t2

− 248s6t2 + 244s4t2 + 96s4 − 152s2 + 61

}

(47)

and a fully analytical description of the solution is at hand. Note

that while aT and qT are given by pure advection of the initial

condition, the fields cT and bT grow linearly and quadratically with

time, respectively.

3.2 Numerical experiments setup

To assess the quality of the forward modelling, we evolve eqs (40)–

(42) forward in time with the finite element method, commercially

available software COMSOL Multiphysics.2 The reason for this

choice is twofold. First of all, we are interested in validating the QG

equations for which there is almost no phenomenological knowl-

edge. Therefore, since at this stage high performance is not required,

we decided not to develop a customized code but to use an available,

flexible software preferably with the possibility of testing various

types of spatial discretization and time-stepping techniques. The

second reason is that the finite element method is local in nature.

We are mainly concerned with the positivity of a and b and, as-

suming that eqs (40)–(42) actually can preserve this property with

time, there is always a risk that numerical noise generates spurious

negative values. This is particularly true considering that we ne-

glected diffusion. A local method should ensure that any numerical

artefacts remain localized in space, while in a global method, such

as a spectral one, there is no such guarantee.

In particular we are interested in preserving positivity of a, b and

q2. The quantities we compute in order to establish the performance

of the model are:

(i) The equatorial (non-dimensional) magnetic energy

2Em =
∫

core

(

B2
s + B2

φ

)

dV =
∫

disc

(a + b) dS. (48)

The integral on the right-hand side is calculated over the surface of

the equatorial disc. In general, we do not have information about

the vertical component of the magnetic field, so we can only calcu-

late the equatorial component of the magnetic energy. However, in

the simple case we are studying here the vertical component of the

magnetic field does not contribute to the evolution in time of the

3-D magnetic energy evaluated over the whole core. So Em rep-

resents the time varying part of the total magnetic energy of the

2
https://www.comsol.com

Table 1. Types of meshes used in COMSOL Multiphysics for the kinematic

study. The domain to be discretized is the equatorial disc. ‘tri’ indicates

the number of elements used to discretize the bulk of the domain. ‘edg’

indicates the number of edge elements, or curved elements used to represent

the boundary of the domain.

Mesh identifier (N) Mesh name tri edg

0 Custom 1 192 732 900

1 Extremely fine 24 934 316

2 Extra fine 6534 160

system and its evolution equation is

∂ Em

∂t
=

∫

disc

sc
∂

∂s

(uφ

s

)

dS. (49)

(ii) Knowing the theoretical solutions for q2 we can compute the

domain integrals of the misfit

mean
(

q2 − q2
T

)

=
∫

disc

|q2 − q2
T |dS (50)

where the theoretical solutions are of the form (45). A similar cal-

culation can be performed for a, b and c. Here, however, we mainly

focus on the deviations of the numerical solution of q2 from its

analytical form since, as we show below, this is the quantity that is

most prone to numerical noise.

(iii) The minimum values of q2, a and b. Since these must be

always positive quantities their minimum value should always be

greater than zero.

In COMSOL, we must choose several parameters to tune the nu-

merical method, the most significant of which are the number of

mesh elements used to discretize the spatial domain and the type

and degree of the polynomials we use to discretize the functions

representing the variables solved on the mesh. The mesh refine-

ments range from extremely coarse to extremely fine (see Table 1),

each of which is assigned an index: the lower the index, the finer

the mesh. As for the discretization inside each element, we use La-

grange polynomials with variable degree from 1 to 3. The models

are identified with the nomenclature LlNn where L is the degree of

the polynomials used and N is the mesh identifier. So the model run

with L = 2 and N = 1 will be called L2N1. Since by choosing a

coarser mesh and a high degree L the finite element method tends

towards a spectral method, we decide to keep L low and use fine

meshes.

3.3 Cartesian formulation

As COMSOL allows great flexibility in the choice of the domain,

its algorithms are formulated in Cartesian coordinates. As such any

discretized physical field in the appropriate coordinate system is

always smooth and differentiable everywhere on the domain. How-

ever, considering the geometry of the system, eqs (25)–(27) have

been formulated in polar coordinates and an artificial singularity

has been introduced at s = 0 (Lewis & Bellan 1990). This is ev-

ident in Figs 3 where the values of a, b and c are non-unique in

φ as s vanishes. In Cartesian coordinates, sharp gradients develop

near the origin and evolving eqs (40)–(42) in COMSOL results in

significant numerical noise around s = 0 (not shown here). As a

result, spikes of positive and negative values of similar magnitude

appear to be generated in the field q2, creating a violation of the

Cauchy–Schwarz inequality that increases with time. At t = π/2

the quantity q2 locally reaches the minimum value of −1.17. Con-

sidering that q2 should always be positive and given its maximum
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Figure 5. Initial conditions for (in order from panels a to d) A, B, C and q2 calculated from the initial magnetic field of Fig. 2. Maximum and minimum values

are shown at the top and at the bottom of the colour scale for each quantity.

expected value (see Fig. 3d), this violation of positivity is totally

unacceptable.

These observations motivated us to develop an alternative for-

mulation suited for numerical integration of the evolution equations

with a local method that discretizes the variables in Cartesian coor-

dinates, in the same way the finite element method is implemented

by COMSOL. Let us introduce the quantities:

A =
{

B2
x

}

=
∫ H

−H

B2
x dz

B =
{

B2
y

}

=
∫ H

−H

B2
y dz

C =
{

Bx By

}

=
∫ H

−H

Bx Bydz. (51)

These are the analogues to a, b and c but in Cartesian coordinates.

Here the cylindrical and Cartesian coordinates are related by the

following transformations:

x = s cos φ

y = s sin φ (52)

and z is not modified in the coordinate transformation. The relation-

ship between the cylindrical quantities a, b and c and the Cartesian

variations A, B and C is described by the formulae

A = a cos2 φ + b sin2 φ − 2c sin φ cos φ

B = a sin2 φ + b cos2 φ + 2c sin φ cos φ

C = (a − b) sin φ cos φ + c(cos2 φ − sin2 φ) (53)

and

a = A cos2 φ + B sin2 φ + 2C sin φ cos φ

b = A sin2 φ + B cos2 φ − 2C sin φ cos φ

c = (B − A) sin φ cos φ + C(cos2 φ − sin2 φ). (54)

The Cauchy–Schwarz inequality holds for the Cartesian quantities

too:

AB ≥ C2. (55)

It can be easily proven that ab − c2 = AB − C2 and therefore

the quantity q2 is an invariant of the transformation. The evolution

equations for A, B and C can be derived from (40)–(42) and the

relationships (53):

∂ A

∂t
= −(ue · ∇e)A + A

(

2
∂ux

∂x
+

∂uz

∂z

)

+ 2C
∂ux

∂y
(56)

∂ B

∂t
= −(ue · ∇e)B + B

(

2
∂u y

∂y
+

∂uz

∂z

)

+ 2C
∂u y

∂x
(57)

∂C

∂t
= −(ue · ∇e)C + A

∂u y

∂x
+ B

∂ux

∂y
(58)
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1780 S. Maffei and A. Jackson

Figure 6. Performance comparison between different models in the ideal case. The nomenclature is LlNn where l is the degree of the Lagrange polynomial used

as basis function and n is the number associated with the mesh. (a) Magnetic energy (48). (b) Zoom-in of magnetic energy towards the end of the computational

interval. (c) Averaged difference between the numerically calculated q2 and the analytical solution q2
T , according to eq. (50). (d) Minimum value of q2.

∂q2

∂t
= −(ue · ∇e)q2. (59)

The boundary conditions on A, B, C are, as for a, b and c:

A(x2 + y2 = 1) = B(x2 + y2 = 1) = C(x2 + y2 = 1) = 0. (60)

The velocity field (39) too is expressed in the Cartesian coordi-

nates:

ux = −y(x2 + y2 − 1)

u y = x(x2 + y2 − 1) (61)

where uφ is defined in eq. (39). The evolution equation for q2 is un-

changed. The initial conditions (36) can be re-written in the Carte-

sian formulation:

A = 2x2 y2
√

1 − x2 − y2

B =
2

45

(

61 + 96x4 − 62y2 + 21y4 + 8x2(−19 + 9y2)
)

×
√

1 − x2 − y2

C = −
2

3
xy(−3 + 4x2 + y2)

√

1 − x2 − y2

q2 = AB − C2 =
64

45
x2 y2(1 − x2 − y2)3. (62)

These fields are shown in Fig. 5. Clearly the Cartesian formulation

has removed the issue of regularity at the origin. We can now per-

form numerical integration of the eqs (56)–(58), subject to (60) and

with initial conditions (62). The quadratic quantities a, b and c can

be calculated via (54). As described in the previous sections, we can

compare the numerical results for a and q2 with their analytical so-

lutions to assess the quality of the simulation. The numerical setup

(namely the spatial discretization and time stepping) is as described

in the Section 3.2 and handled modifying the relevant parameters

in COMSOL Multiphysics.

4 R E S U LT S

Different simulations have been run over the window 0 ≤ t ≤ π .

The simulations have been performed changing the mesh refinement

(mesh 1 or mesh 0) and the degree of the Lagrange polynomials.

The comparison between some of these simulations is shown in

Fig. 6. The magnetic energy shows that the numerical simulations

have reached convergence with very small variations detectable

only toward the end of the computation time interval. In Figs 7

and 8, the solution for the model L2N0 is plotted at t = 3π/4. The

quadratic fields A, B and C are growing in time, each reaching val-

ues of the order 10 at the end of the simulation. Remember that q2

is not a variable solved in the simulation, it is a derived value: q2 =
AB − C2. Namely, it is a small quantity (of the order 10−4) de-

rived from a difference from bigger quantities. In this sense it is

a ’weak’ point of the simulation, difficult to keep smooth, as the

snapshots of Fig. 8(d) shows. The relative amplitude of the numer-

ical fluctuations is anyway small if we compare it to the magnitude

of the quadratic fields themselves, of the order of 0.001/10 = 10−4

in the L2N0 simulation, and even smaller in the L3N0 ones. The

same order of magnitude holds for the negative value in q2 devel-

oping at the end of the simulation. This is the amount by which the
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Figure 7. Numerical solution for the kinematic study for the diffusion free case. Variables (in order from panels a to c) A, B and C, respectively, in the diffusion

free case at the instant t = 3π/4. The flow is given in eq. (39) and the initial condition in Fig. 5. The spatial mesh is the N = 0 mesh of Table 1 and the Lagrange

polynomials are of degree 2. Maximum and minimum values are shown at the top and at the bottom of the colour scale for each quantity.

Figure 8. Numerical solution for the kinematic study for the diffusion free case. Variables (in order from panels a to d) a, b, c and q2 respectively, in the

diffusion free case at the instant t = 3π/4. The fields have been calculated from the numerical solutions for A, B and C according to the formulae (54). The flow

is given in eq. (39) and the initial condition in Fig. 3. The spatial mesh is the N = 0 mesh of Table 1 and the Lagrange polynomials are of degree 2. Maximum

and minimum values are shown at the top and at the bottom of the colour scale for each quantity.

Cauchy–Schwarz inequality is violated. Looking at A and B one can

see that this is also the ratio between the most negative and positive

values, expressing somehow the relative strength of positivity vio-

lation. In Fig. 9, we plot the logarithm of the absolute differences

between the numerically calculated a, b, c and q2 and their analyt-

ical solutions given in eqs (44)–(47). As already pointed out the

departures from the analytical solutions are very small compared to

the magnitudes of the quadratic fields calculated.

The magnitudes of the misfits and violations of the positivity

and Cauchy–Schwarz inequality depend on the spatial discretiza-

tion adopted, as is clear from Fig. 6. Provided that the numerical

model has enough degrees of freedom we argue that we managed

to successfully solve the kinematic problem, with acceptable depar-

tures from the expected solution. Further refinement of the spatial

grid and more accurate choices of the time stepping technique might

result in more refined models capable of better performance than

the ones illustrated here. We were not interested in obtaining a truly

advanced numerical model but only in studying the possibility of

integrating the kinematic equations forward in time. Our attention

was focused on the open questions highlighted in Section 3 re-

garding the conservation of positivity and of the Cauchy–Schwarz

inequality. Interestingly we found that the eqs (25)–(27) might not

be adequate to solve the kinematic problem using a local numerical

strategy due to numerical noise developing at the point s = 0. The

reformulation of the problem in Cartesian coordinates, leading to

eqs (56)–(58) removes this issue, providing numerically acceptable
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1782 S. Maffei and A. Jackson

Figure 9. Departure of a, b, c and q2 from the true analytical solutions aT, bT, cT and q2
T , respectively, for the diffusion free case. Shown is the logarithm of

the absolute difference as a function of space for the instant t = 3π/4. The fields a and q2 are calculated from the fields A, B and C according to the formulae

(54). The spatial mesh is the N = 0 mesh of Table 1 and the Lagrange polynomials are of degree 2. Maximum and minimum values are shown at the top and at

the bottom of the colour scale for each quantity.

solutions. In the spherical shell geometry considered by Canet et al.

(2009), where the equations are not solved near the origin, this

strategy might not be necessary.

5 I M P L E M E N T I N G D I F F U S I O N

As discussed in Section 2.1, it is not possible to implement diffusion

in eqs (25)–(27). Diffusion cannot be expressed solely in terms of

a, b and c. The same limitation holds for the Cartesian formula-

tion (56)–(58). However, mostly for numerical stability reasons, it

might be desirable to retain some form of diffusion or damping in

eqs (25)–(27). Here we propose to introduce a linear damping term

in the induction eq. (4) and re-write it as

∂B

∂t
= ∇ × (u × B) − η̂B (63)

where η̂ is a positive damping constant. To write this equation

in non-dimensional form in the case of the kinematic problem

we introduce the following definition for the magnetic Reynolds

number:

Rm−1 =
rcη̂

U
(64)

As before U = 5 × 10−4 ms−1 ≃ 15 km yr−1 is the characteristic

value for the velocity field and rc is the radius of the outer core.

If we choose η̂ so that it gives the same decay rate as the large

scale solution to the free decay problem (Jacobs 1987) we have

η̂−1 ≃ 30 kyr and:

Rm ≃ 100. (65)

The non-dimensional induction equation becomes

∂B

∂t
= ∇ × (u × B) − Rm−1B. (66)

Eqs (25)–(27) are modified accordingly:

∂a

∂t
= −H (u · ∇e)

( a

H

)

+ 2a
∂us

∂s
+

2c

s

∂us

∂φ
− 2Rm−1a (67)

∂b

∂t
= −

1

H
(u · ∇e) (Hb) + 2sc

∂

∂s

(uφ

s

)

− 2b
∂us

∂s
− 2Rm−1b

(68)

∂c

∂t
= − (u · ∇e) c + sa

∂

∂s

(uφ

s

)

+
b

s

∂us

∂φ
− 2Rm−1c. (69)

And the quantity q2 satisfies the equation:

∂q2

∂t
= −(ue · ∇e)q2 − 4Rm−1q2. (70)

In this case too a, b and q2 are positive quantities. The system

(56)–(58) is also modified according to (66):

∂ A

∂t
= −(ue · ∇e)A + A

(

2
∂ux

∂x
+

∂uz

∂z
−

2

Rm

)

+ 2C
∂ux

∂y
(71)
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Figure 10. Comparison between different kinematic numerical solutions for the L1N0 model in presence of damping. Different values of Rm are considered,

Rm = ∞ corresponding to case with no damping. (a) Magnetic energy (48). (b) Zoom in of magnetic energy toward the end of the computational interval. (c)

Averaged difference between the numerically calculated q2 and the analytical solution q2
T , according to (50). (d) Minimum value of q2.

∂ B

∂t
= −(ue · ∇e)B + B

(

2
∂u y

∂y
+

∂uz

∂z
−

2

Rm

)

+ 2C
∂u y

∂x
(72)

∂C

∂t
= −(ue · ∇e)C + A

∂u y

∂x
+ B

∂ux

∂y
−

2

Rm
C. (73)

Under the action of the same zonal flow (39) the analytical solu-

tions for a, b and c are a generalization of the ideal case considered

above where solutions (44), (46) and (47) are multiplied by a decay

factor:

aT (s, φ, t) = a0

(

s, φ −
uφ

s
t
)

e−2Rm−1t . (74)

In a similar way analytical solutions for b and c in presence of

damping are obtained. The generalization of the solution for q2 is

similar, but the damping factor is doubled:

q2
T (s, φ, t) = q2

0

(

s, φ −
uφ

s
t
)

e−4Rm−1t . (75)

We performed simulations with Rm = 101, 102 and 103. As for

the diffusion free case, we integrate in time eqs (71)–(73) and we

calculate the quantities a and q2 from A, B and C. The results for

models L1N0 and L2N0 are shown in Figs 10 and 11. As expected

the magnetic energy growth with time is slower with lower values

of Rm, corresponding to higher values of the damping coefficient.

However, the difference is modest for Rm up to 100. The solution

is visually similar to the diffusion free case, with the damping

introducing the expected effect of lowering the magnitude of both

the kinematic solution and of the numerical artefacts. The misfit

between q2 and q2
T shown in Figs 10(c) and 11(c) decreases with

increasing damping because all fields are damped, and so is the

error. The relative errors and the relative magnitude of the negative

features with respect to the amplitude of the solution is similar to

the diffusion free case and so is the location of the artefacts.

6 D I S C U S S I O N

The preservation of positivity for the quantities a, b and q2 is of

fundamental importance for the QG model (24)–(27). It has been

pointed out how on this ground, a spectral expansion has been ruled

out to discretize the quadratic variables a, b and c on the equatorial

plane. It is however possible to further manipulate eqs (25)–(27)

so that positivity is preserved independently of the details of the

numerical algorithm. For example under the following representa-

tion:

a =
{

B2
s

}

= eγ
√

c2 + q2 (76)

b =
{

B2
φ

}

= e−γ
√

c2 + q2 (77)

the Cauchy–Schwarz inequality (31) is identically satisfied. Evo-

lution equations for γ , q and c can be derived introducing (76),

(77) in (25)–(27). However the resulting system of equation is more
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Figure 11. Comparison between different kinematic numerical solutions for the L2N0 model in the presence of damping. Different values of Rm are considered,

Rm = ∞ corresponding to case with no damping. (a) Magnetic energy (48). (b) Zoom in of magnetic energy towards the end of the computational interval. (c)

Averaged difference between the numerically calculated q2 and the analytical solution q2
T , according to eq. (50). (d) Minimum value of q2.

involved than (25)–(27) and we chose not to investigate its proper-

ties further.

We now discuss the relationship between a, b, c and the physical

magnetic field in the core. From the quantity a we can calculate the

cylindrical radial propagation speed of torsional Alfvén waves in

the core (Braginsky 1970), which, in non-dimensional units is

Vs =

√

1

4π H

∫ H

−H

∫ 2π

0

B2
s dz dφ =

√

1

4π H

∫ 2π

0

a dφ. (78)

This is the average of B2
s on cylinders aligned with the rotation axis

(the geostrophic cylinders). Different papers have been devoted

with the calculation of Vs based on torsional waves observation

(Hide et al. 2000; Gillet et al. 2010, 2015) as its quantification

offers a precious constraint on the intensity of the magnetic field

inside the core. The latest results suggest a value of 3 mT for the

average intensity of the magnetic field in the interior of the core,

based on estimates of Vs. In a similar way the quantity b can be

quantified from the observation of slow hydrodynamic oscillations

propagating in the azimuthal direction around the core (Hide 1966;

Malkus 1967; Canet et al. 2014; Hori et al. 2015). However the

detection of such oscillations is more challenging than for torsional

oscillations and an observational estimate of b is still missing. The

quantity c, to the best of our knowledge, is not directly related to any

detectable oscillation and in the context of the QG model derived

here, it is a purely mathematical quantity that we need to close

the system (24)–(27). It is needed to complete the coupling of the

momentum equation with the induction equation and is related to a

and b via the Cauchy-Schwarz inequality (31).

7 C O N C LU S I O N S

In this study we presented a kinematic study of a QG model that

is tailored to the study of the interannual and decadal dynamics

of the Earth’s outer core. In Section 2, we discussed how the QG

formalism arises from the 3-D magneto-hydrodynamic governing

equations. Under the hypothesis of fast rotation, the columnar flow

assumption is the key to developing realistic numerical models that

have the potential to reach parameter regimes much closer to the

real Earth than 3-D numerical models. The key operation is the pro-

jection of the governing equations on the equatorial disc. This op-

eration is far from trivial when applied to the momentum equation,

as it requires assumptions and delicate mathematic manipulations

on the terms describing the body forces (Lorentz force and buoy-

ancy in geodynamo simulations). The formulation presented in Sec-

tion 2.1 has the advantage, compared to the QG formulation of Canet

et al. (2014) and Labbé et al. (2015), of handling the magnetic field

under very general assumptions. This is achieved by representing

the magnetic field via the quadratic quantities B2
s , B2

φ and BsBφ pro-

jected on the equatorial disc. We call this the quadratic formulation.
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The resulting equations are however much more complicated and

magnetic diffusion is impossible to accommodate. Compared to the

vertically averaged formulation of Canet et al. (2009), the equa-

tions presented here, based on a vertically integrated formulation,

have the advantage of providing a natural boundary condition for

the quantities a, b and c. The equations for the vertically averaged

formalism can be derived from (24)–(27) dividing them by 2H.

The QG model developed here, although based on the formulation

proposed in Canet et al. (2009), has never been integrated in time.

Our kinematic formulation highlighted some deficiencies in the

equations in polar coordinates that we removed when developing a

novel Cartesian formulation.

We investigated the effect of damping as an alternative to diffu-

sion. The simple damping term introduced in the induction eq. (66)

leads to a system of equation that is now closed in a, b and c. We

find that this simple solution is efficient in lowering the amplitude

by which the positivity of a, b and q2 is violated.

In future studies it is necessary to characterize the full system

(24)–(27) where the Lorentz force provides a link between the evo-

lutions of the magnetic field and the fluid flows. A first step could be

the calculation of magnetohydrodynamic normal modes in a similar

study to those of Canet et al. (2014) and Labbé et al. (2015). In such

studies care has to be taken in testing the effect of the approximations

that led to the derivation of (24), namely the assumption that surface

terms can be neglected compared to the vertically integrated ones.

The discarded surface terms could be of importance at the equator,

where the height H of the domain vanishes and singularities may

compromise the derivation if not treated carefully.

Finally we point out how the use of the axial vorticity eq. (18)

could not be the best option to describe the evolution of the stream

function � under the columnar flow approximation (15). In Labbé

et al. (2015), an alternative formulation is proposed that improves

the predictions of the momentum equation in the equatorial regions

s ≃ 1. This technique allowed Labbé and co-authors to calculate

hydrodynamic solutions that are in better agreement with 3-D calcu-

lations than previously known QG calculations (Canet et al. 2014).

In future work, the axial vorticity eq. (24) should therefore be re-

placed with an equation that is derived following the methodology

of Labbé et al. (2015).

The final goal of the QG studies such the one presented here is the

derivation of a numerical model capable of simulating the Earth’s

core dynamics in a realistic parameter regimes. Such a model will

allow the implementation of data assimilation systems that, making

use of modern geomagnetic observations, could open a window

on the core that has never been achieved with 3-D models. A first

step toward this goal is to perform closed loop data assimilation

experiment the kinematic system (25)–(27), similarly to the ones

presented in Canet et al. (2009). After the momentum eq. (24)

has been confidently integrated forward in time, data assimilation

experiments similar to the ones performed in Fournier et al. (2013)

can be attempted.
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