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Abstract 12 

What is the economic value of storing water for future droughts, and what are the consequences of 13 

this valuation for water management? One way to answer this question is to ask: ‘what is the 14 

valuation, which if used, would maximize a region’s economic use of water?’ This prescriptive 15 

valuation can be done by linking classical hydro-economic models to global search methods. Another 16 

way to answer this question is to ask: ‘what do historical water management operations reveal 17 

about water’s economic value?’ Indeed, past reservoir uses reveal the empirical inter-temporal 18 

valuations of past water managers. Although they may not have been optimized in a formal sense, in 19 

mature water resource systems with economic water demands, reservoir storage rules evolve via a 20 

socio-political process to embody societies’ valuation of water. This empirical, ‘positive’, or 21 

descriptive valuation is captured by calibrating a hydro-economic model such that carry-over storage 22 

functions enable simulated storage to match a historical benchmark. This paper compares both 23 

valuations for California’s Central Valley revealing that carryover storage values derived from 24 

historical operations are typically greater than prescribed values. This leads to a greater reliance on 25 

groundwater use in historical operations than would have been achieved with system-wide 26 

optimization. More generally, comparing the two approaches to water valuations can provide 27 

insights into managers’ attitudes as well as the impact of regulatory and institutional constraints 28 

they have to deal with – and that are not necessarily included in optimization models.  29 

 30 

Keywords: Water storage valuation, Historical water management, descriptive vs. prescriptive 31 

approaches, hydro-economic modeling, California Central Valley. 32 

1 Introduction 33 

What can water storage valuation tell us of the difference between optimal and historical water 34 

management decisions? Economic valuation of water across space and time informs water allocation 35 



and the design of the physical and regulatory infrastructure that supports it; this valuation reflects 36 

the hydrological, economic, institutional and ecological situation of a river basin [1, 2]. Modeling-37 

based approaches that derive water values aim to integrate these various aspects within a river 38 

basin model. Such approaches can be descriptive or prescriptive, used to examine historical or 39 

optimal water management decisions respectively. Descriptive approaches generally integrate the 40 

existing allocation rules and benefits from water allocation into a simulation framework to derive a 41 

valuation [3]. Prescriptive approaches use optimization to find a “best” system-wide allocation 42 

strategy according to a benefit-maximization criterion, and get an economically “efficient” valuation 43 

of water as a by-product of optimization [4-6]. Economic valuation of water according to these two 44 

types of approaches has different interpretations. Water values in descriptive models come from the 45 

actual allocation whereas in prescriptive models, they correspond to value extracted from optimal 46 

use.  What is more, descriptive valuations are generally set to reflect the rules that direct water 47 

management rather than reproduce historical operations – i.e., historical outcomes of this rule 48 

system. 49 

This paper contributes a methodology to infer a descriptive valuation directly from historical 50 

operations, in a way that makes it comparable to a prescriptive valuation. It uses a recent modeling 51 

framework fit for prescriptive valuation of surface water storage in large-scale conjunctive use 52 

systems [6], and instead finds the valuation of water storage that calibrates the model against a 53 

historical benchmark - making it a descriptive valuation approach. A higher water value in a given 54 

reservoir from one approach to another would reflect a premium placed on conservation of water 55 

from that reservoir. This enables further investigation of the cause for these discrepancies: is it 56 

because managers had a myopic behaviour in historical operations? Or is the prescriptive model 57 

missing something? Previous “positive” approaches [7] aimed to calibrate users’ benefit functions in 58 

hydro-economic models, generally focusing on agriculture [8, 9]. In contrast, this framework aims to 59 

investigate the water value implications of already derived benefit functions. 60 

These modeling-based approaches are a type of non-market valuation techniques – such techniques 61 

can also be survey-based [10]. In contrast, in market valuation techniques the value of an asset is 62 

based on the selling price or the price that consumers are willing to pay for a commodity in the 63 

market. Water markets are common in Western US [11-13], Australia [14-17], and the UK [18, 19].  64 

In theory, descriptive and prescriptive market valuations are the same as actual water prices 65 

converge towards the socially optimal value. Yet, water markets are far from a universal solution [5] 66 

and further, they often fail to achieve their primary objective of economic efficiency unless an 67 

adequate regulatory and institutional framework is designed and implemented to sustain them [20-68 

22]. In conjunctive use systems, different prices between local and non-local water, and between 69 

surface water and groundwater, may lead to overexploitation of groundwater resources even with a 70 

functioning market [23]. Optimization models tend to behave like water markets in the sense that 71 

they allocate water to most beneficial uses first, therefore comparing prescribed valuation to a 72 

historical benchmark has the potential to unveil some of the mechanisms that separate current 73 

operations from those that would result from a water market. Besides, system scale and complexity 74 

make water valuation more complicated. Under the phrase “curse of dimensionality”, scale by itself 75 

is a major obstacle to most optimization methods (e.g., SDP, most recently [24-26]). Even methods 76 

that can circumvent this limitation (e.g. SDDP; [27]) are subject to restricting assumptions. In the 77 

case of SDDP for instance, it is necessary for future benefits to be convex, which is a problem when 78 

studying conjunctive use systems [28]. It is noteworthy that the present work builds on an approach 79 

[6] that handles system scale as well as non-linearity and non-convexity. That approach was the first 80 

to the link an evolutionary algorithm (EA) to a hydro-economic model [2] for this purpose. 81 



Application of EAs to aid decision-making in economics can be seen in several studies [29-31]. The 82 

comparison of optimization results to water valuation from a historical benchmark is applied to the 83 

California Central Valley system, a system with 30 reservoirs in an agricultural area that also relies on 84 

groundwater, especially in times of drought [32-36]. Results are used to compare the two 85 

management practices using the concept of risk aversion. Risk aversion is the behaviour of decision-86 

makers when they are exposed to uncertainty. This is quantified by risk aversion coefficient [37, 38] 87 

whose positive (negative) sign reveals risk-taking (risk-averse) attitudes.  88 

The remainder of this paper is structured as follows. Section 2 explains the proposed approach; 89 

section 2.5 presents the California Central Valley application; results are shown in section 4, followed 90 

by discussion and conclusions in sections 0 and Error! Reference source not found., respectively. 91 

2 Methods 92 

2.1 Water storage valuations 93 

This work looks at the value of water storage for future uses, in a context where benefits from 94 

different water uses are already known. Valuation of water storage in reservoir balances current and 95 

future uses through the carry-over storage value function (COSVF). The COSVF describes water value 96 

as a function of reservoir storage. This work focuses on the end-of-year COSVF that determines the 97 

value of water for next years’ uses. It compares carryover storage values obtained from a 98 

prescriptive optimization framework, to those that enable reservoir operations to most closely fit a 99 

historical benchmark. Therefore, there needs to be a common and easily interpretable functional 100 

form from which to derive carryover storage values in both cases. 101 

At each point on the end-of-year COSVF, marginal benefits from an additional unit of storage for 102 

future uses are a unit value of water. In other words, end-of-year COSVF is the integral of the 103 

function known as the demand curve [39], that describes the unit value of water as a function of 104 

storage (Figure 1). This unit value can be interpreted as the marginal price that water users are 105 

willing to pay, and is therefore noted 𝑃. In its most general form, the end-of-year COSVF of a single 106 

reservoir is a function of that reservoir’s storage 𝑆 and of the parametrisation vector π chosen for 107 

the demand curve: 108 

𝐶𝑂𝑆𝑉𝐹(𝑆; 𝜋) = ∫ 𝑃(𝑠; 𝜋)𝑑𝑠𝑆
𝑆𝑚𝑖𝑛  (1) 

A direct consequence of equation (1) is that a reservoir’s COSVF is a growing function of storage, 109 

with 𝐶𝑂𝑆𝑉𝐹(𝑆𝑚𝑖𝑛; 𝜋) = 0. In its simplest form, the demand curve is linear, therefore the 110 

parameters 𝜋 are water values at minimal and maximal storage (𝑝1 and 𝑝2 respectively): 111 𝑃(𝑆; 𝜋) = 𝑃(𝑆; 𝑝1, 𝑝2) = 𝑝1 + (𝑝2 − 𝑝1) 𝑆 − 𝑆𝑚𝑖𝑛𝑆𝑚𝑎𝑥 − 𝑆𝑚𝑖𝑛 (2) 

 112 

This means that the integral of equation (2), the end-of-year COSVF, is quadratic; since it is 0 at 113 

minimal storage, it is entirely defined by 𝜋 = (𝑝1, 𝑝2). When storage in reservoirs is close to dead 114 

storage 𝑆𝑚𝑖𝑛, water is scarce for future uses, therefore each unit of stored water is close to its 115 

maximal value 𝑝1. Conversely, when reservoir levels get close to the maximum allowable storage 116 𝑆𝑚𝑎𝑥, water is more abundant for future uses, leading to lowering the value of an additional unit of 117 

water towards its minimum value 𝑝2 (see Figure 1). In practice, this paper will use the linear demand 118 



curve of equation (2), and the associated two-parameter end-of-year COSVF, to compare 119 

prescriptive and descriptive valuations. 120 

 121 

 122 

Figure 1. Relation between demand curve and benefit function of a surface reservoir, in the case of a linear 123 
demand function.  124 

In a river basin comprising multiple reservoirs, end-of-year carry-over storage values can be summed 125 

across all reservoirs, and a total end-of-year carry-over storage value function 𝐶𝑂𝑆𝑉𝐹𝑎𝑙𝑙 can be 126 

written as a function of the vector of system state x, usually including storage values at all the 127 

reservoirs, and the vector π of end-of-year COSVF parameters 𝜋𝑖 at each individual reservoirs: 128 

𝐶𝑂𝑆𝑉𝐹𝑎𝑙𝑙(𝑥; 𝜋) = ∑ 𝐶𝑂𝑆𝑉𝐹(𝑆𝑖; 𝜋𝑖)𝑛
𝑖=1   (3) 

where n is the number of reservoirs in the system. For instance with a linear demand function, 𝜋𝑖 129 

comprises the values of 𝑝1 and 𝑝2 at each reservoir i. 130 

2.2 Prescriptive water valuation 131 

Prescriptive water valuation corresponds to the storage valuations that are obtained by maximizing 132 

operating benefits from water uses in a water resource system over a given time frame [1, T], with 133 

discrete time-steps of a month or less. This is expressed by:  134 

𝑍 = 𝐸 [∑ 𝑓𝑡(𝑥𝑡, 𝑢𝑡, 𝑞𝑡)𝑇
𝑡=1 + 𝜈𝑇+1(𝑥𝑇+1, 𝑢𝑇+1)] (4) 

where E[.] is the expectation operator and ft (.) represents the net benefits from water usage 135 

(consumptive uses, hydropower generation, ecological benefits, etc.) at stage t. As introduced for 136 

equation (3), vector xt  is the state of the system at t, typically including storage in the different 137 

reservoirs. ut  is the vector of operational decisions taken at that stage t, such as reservoir releases 138 

and water allocations to spatially distributed users, including farmers, industries or domestic uses 139 

from cities. qt is the vector of inflows. Finally, νT+1 (.) is a final value function that expresses that 140 

reservoirs should not be simply emptied at the end of the optimization horizon, because water has 141 

value beyond that. In short, νT+1 (.) expresses the carry-over value of water within the system. This 142 

optimization problem is subject to a number of constraints such as the water balance equation, 143 

lower/upper bounds on flows and storage levels, or hydropower generation capacity, to name a few. 144 

Solving the stochastic maximization problem of equation (4) requires mapping decisions ut as a 145 



function of system state and expected inflows. Except for situations where specific assumptions such 146 

as convexity hold [40], this maximization problem is plagued by the well-known curse of 147 

dimensionality, whereby the required computational resources increase exponentially, making the 148 

resolution of large-scale problems intractable. 149 

Khadem et al. [6] proposed a general approximate solution methodology to the problem of 150 

maximizing (4), based on two key remarks. The first relates the general optimization problem of 151 

equation (4) to prescriptive water valuation in reservoirs across the water resource system of 152 

interest. Indeed, defining single-year maximization problems involves end-of-year COSVF as a final 153 

boundary condition.   For year (𝑘 =  1 … 𝐾) spanning [𝑡𝑘 + 1, 𝑡𝑘+1] , the single-year maximization 154 

objective can be written as a function ) of current year inflows 𝑄𝑘 = (𝑞𝑡𝑘+1, … , 𝑞𝑡𝑘+1) and end-of-155 

year COSVF parameter vector π: 156 

𝑍𝑘(𝑄𝑘 , 𝜋)  = ∑ 𝑓𝑡(𝑥𝑡, 𝑢𝑡 , 𝑞𝑡)𝑡𝑘+1
𝑡=𝑡𝑘+1 + 𝐶𝑂𝑆𝑉𝐹𝑎𝑙𝑙(𝑥𝑡𝑘+1; 𝜋) (5) 

Contrary to the stochastic problem of equation (4), each maximization of the single-year objective 157 𝑍𝑘  is a deterministic optimization problem that can be handled by state-of-the-art solvers (e.g. the 158 

30-reservoir problem in the application is solved in 15 seconds for each year). Then, the second key 159 

remark is that maximizing the objective of equation (4) can be approximated by the following 160 

objective function (see [6] for details):  161 

𝑍(𝜋) = ∑ (max𝑢𝑡 {𝑍𝑘(𝑄𝑘 , 𝜋)} − 𝐶𝑂𝑆𝑉𝐹𝑎𝑙𝑙(𝑥𝑡𝑘+1; 𝜋))𝐾
𝑘=1  (6) 

The problem of maximizing equation (6) and that of equation (4) are subject to the same physically-162 

based constraints (water balance, limits on reservoir storage and hydropower production, etc.), but 163 

crucially, equation (6) transforms the decision problem of equation (4) (intractable for large systems) 164 

into a problem of finding the end-of-year COSVF parameters in the system reservoirs. Evolutionary 165 

algorithms are well-suited to searching this large parameter space provided they can associate a 166 

value to each parameter vector. This value is:  167 min𝜋 𝐹𝑝𝑟𝑒𝑠 (𝜋) = min𝜋 [−𝑍(𝜋)] (7) 

It is interpreted as “prescriptive” and noted 𝐹𝑝𝑟𝑒𝑠 because the vector π that solves the maximization 168 

problem of equation (6) directly gives the functional form of end-of-year COSVF at each of a system’s 169 

reservoirs. This enables a prescriptive valuation of end-of-year water storage. 170 

2.3 Descriptive valuation 171 

In contrast to the prescriptive valuation, a descriptive valuation seeks end-of-year COSVF parameters 172 

that maximize the fit with benchmark time series, reflecting the system’s states (e.g., storages) 173 

across the study area. The descriptive case seeks to find COSVFs that reflect how water storage has 174 

been valued in practice, which is not necessarily equal to marginal benefits from future water uses in 175 

the prescriptive case. For a given vector π, we can compute 𝑍(𝜋) as in equation (6), by sequentially 176 

solving the single-year optimization problem of equation (5). Yet, instead of being interested in 177 

maximizing the value of the economic objective 𝑍(𝜋) itself, we are now interested in the vector of 178 

system states 𝑥(𝜋) that has been computed to obtain 𝑍(𝜋) – recall that those typically include 179 

reservoir storage. We explore the parameter space to find the parameter vector that minimizes the 180 

mean-squared errors with the benchmark: 181 



min𝜋 𝐹𝑑𝑒𝑠𝑐 (𝜋) = min𝜋 [ 1𝑁. 𝑇 ∑ ∑(𝑥𝑡,𝑖(𝜋) − 𝑥𝑡,𝑖𝑏𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘)2𝑇
𝑖=1

𝑁
𝑛=1 ] (8) 

where 𝑁 is the number of state variables used for calibration and  𝐹𝑑𝑒𝑠𝑐 is the descriptive objective 182 

function to minimize.  183 

  184 

2.4 Workflow 185 

For both water storage valuations, parameter values that maximize the respective objectives are 186 

found by evolutionary computation. Yet in both cases, many reservoirs will be refilled every year if p2 187 

is above a threshold value 𝑝20. Then, any value of p2 above this threshold (i.e., in [𝑝20, +∞[) produces 188 

the same operations – stored water is valuable enough to warrant the reservoir to be full at the end 189 

of any water year. Then, the algorithm could return a marginal water value of $5 million per MCM 190 

without affecting the system’s operations at all. To ensure the parameter values found by the 191 

algorithm make economic sense, a second objective is introduced to limit the value of p1 and p2 , 192 

similar to what was done in [6]: 193 

min𝑝 𝐹2 = min𝑝 1𝑁 ∑ 𝑝min 𝑛 + 𝑝max 𝑛2𝑁
𝑛=1  (9) 

This second objective turns the single objective optimization problem into a multi-objective 194 

optimization problem. This type of problem is solved by multi-objective evolutionary algorithms 195 

(MOEA) which are broadly similar to genetic algorithms except for the fact that they can optimize 196 

two objectives or more at once. As a result, contrary to traditional genetic algorithms that return a 197 

single solution, a MOEA generally returns a set of solutions such that one cannot improve any 198 

objective without degradation in another objective. These solutions are called non-dominated and 199 

are collectively called the Pareto front (see [41] for details on MOEA). In this work, the MOEA is 200 

meant to find the set of states such that one cannot find a better solution both in the minimization 201 

of the first objective (either 𝐹𝑛𝑜𝑟𝑚 or 𝐹𝑑𝑒𝑠𝑐) and in the minimization of the second objective 𝐹2. Each 202 

solution associates to these objectives a vector of parameters that fully define the COSVF for all 203 

reservoirs.  204 

2.5 Post-Pareto analysis 205 

The output of a multi-objective optimization problem is the Pareto front, a set of non-dominated 206 

‘best’ solutions. This often contains hundreds of solutions which sometimes complicate the decision-207 

making process: which solution or group of solutions are preferred? This paper answers this using a 208 

post-Pareto stage which prunes the non-dominated set of solutions following the concept of knee 209 

points [42]. In knee points, small improvement in either of objectives will cause a large degradation 210 

in other objective(s) [42]. This essentially means moving in either direction is less desirable. This 211 

method is chosen owning to the fact that without any knowledge about users’ preferences, the zone 212 

around the knee is most likely to be favourable for decision-makers [43]. 213 

Here, we measure the level of degradation of objectives by looking at slope (or difference) between 214 

any two adjacent solution points from the Pareto trade-off. The judgement on when a severe 215 

deterioration happened is made visually. This is where the slope notably changes compared to its 216 

next immediate value. This process creates a box within which lies Pareto non-dominated solutions 217 

with high optimality quality with respect to all objectives. This box is called “zone of concentration”. 218 



2.6 Risk aversion coefficient 219 

Since COSVFs are utility functions, a common way of comparing the two management practices (that 220 

is used to derive descriptive and prescriptive valuation) in terms of how cautious they are, is to 221 

illustrate it through risk aversion coefficient [37, 38]. This coefficient determines how much 222 

satisfaction or utility can be obtained from an experience, a commodity, or money [44]. We use 223 

Arrow-Pratt risk aversion coefficient (AP), also known as absolute risk aversion coefficient, which is 224 

mathematically described as: 225 

𝐴𝑃 = − 𝐶𝑂𝑆𝑉𝐹′′(𝑥𝑡𝑘+1)𝐶𝑂𝑆𝑉𝐹′(𝑥𝑡𝑘+1)  
(10) 

Considering the functional form of the quadratic COSVF used in this study (a and b being the 226 

quadratic and linear coefficients of COSVF respectively; see equation 21), the above equation for 227 

each reservoir sr is: 228 

𝐴𝑃𝑠𝑟 = − 2𝑎𝑡𝑘+1𝑠𝑟2𝑎𝑡𝑘+1𝑠𝑟 𝑥𝑡𝑘+1 + 𝑏𝑡𝑘+1𝑠𝑟  
(11) 

 229 

3 Application 230 

3.1 California’s Central Valley  231 

California’s Central Valley (Figure 2) is one of the world’s most productive agricultural regions [45] 232 

with over 2.3 million ha of irrigated farmland [46]. More than 250 different crops are grown in the 233 

Central Valley with an estimated value of $17 billion per year [47]. About 75 percent of California’s 234 

irrigated land is in the Central Valley, which depends heavily on surface water diversions and 235 

groundwater pumping [45]. Nearly 75 percent of renewable water supply originates in the northern 236 

third of the state in the wet winter and early spring while almost 80 percent of agricultural and 237 

urban water use is in the southern two-thirds of the state in the dry late spring and summer [48]. In 238 

the context of California’s Mediterranean climate, perfect within-year foresight is consistent with 239 

early spring measurements of the depth and water content of the snowpack which enable predicting 240 

discharge months ahead with reasonable accuracy and until the end of the water year [49]. The 241 

Central Valley often suffers from droughts such as 1918-20, 1923-26, 1928-35, 1947-50, 1959-62, 242 

1976-77, 1987-92, 2007-09, and 2012-16 [50]. 243 



 244 

Figure 2. The Central Valley reservoir and river system (Adopted from Khadem et al, 2018). 245 

The illustrative case of this paper is built upon CALifornia Value Integrated Network (CALVIN; [51]). 246 

CALVIN OP, a hydro-economic model [2] with perfect foresight, is the ‘unconstrained’ run of CALVIN 247 

used to simulate the Central Valley water system by maximizing the system-wide net economic 248 

benefit from water allocation. CALVIN OP applies economic drivers to allocate water rather than 249 

existing system of water rights and contracts [49]. Yet, the perfect hydrological foresight of CALVIN 250 

limits its applicability. We use an extended version of CALVIN OP for calibration which corrects the 251 

perfect foresight by dividing the planning horizon into year-long runs with initial condition of each 252 

run being the ending condition of the previous one and an end-of-year COSVF, representing the 253 

potential benefit of allocating water for future uses, set as the terminal condition of each run. 254 

Another extension to CALVIN comes from improving the groundwater pumping cost scheme. The 255 

CALVIN model represents pumping costs by multiplying the unit pumping cost of $49.42 per MCM/m 256 

lift ($0.20 per af/ft lift; MCM is a million m3) by a static estimate of the average pumping head in 257 

each aquifer [52]. The extended version of CALVIN includes pumping costs that dynamically vary 258 

with head in the aquifer. This head-dependent pumping cost introduces non-convexity into the 259 

problem.  260 



The water system is represented as a network of nodes and arcs [53], where nodes include surface 261 

and groundwater reservoirs, urban and agricultural demand points, junctions, etc., and arcs (links) 262 

include canals, pipes, natural streams, etc.. The water network of the Central Valley comprises 30 263 

surface reservoirs, 22 groundwater sub-basins, 21 agricultural demand sites, 30 urban demand sites, 264 

220 junction and 4 outflows nodes; and over 500 links (river channels, pipelines, canals, diversions, 265 

and recharge and recycling facilities). The period-of-analysis is 72 years, 1922-93, and monthly time-266 

steps are chosen for the hydro-economic model run. This accounts for the strong seasonality of 267 

water supply and demands, a key feature of many irrigated water systems [54].  268 

 269 

3.2 Model formulation 270 

This section describes in detail how the generic equation (7) was implemented for this California 271 

Central Valley application. For details, please see [6]. ft (.), the net benefit function at date t, is 272 

composed of the following terms: 273 𝑓𝑡(𝑥𝑡, 𝑢𝑡 , 𝑞𝑡) = 𝑈𝑅𝑡(𝑥𝑡) + 𝐴𝐺𝑡(𝑥𝑡) + 𝐻𝑃𝑡(𝑥𝑡) − 𝑁𝑊𝑡(𝑥𝑡) − 𝐺𝑊𝑡(ℎ𝑡, 𝑥𝑡) − 𝐼𝑁𝐹𝑡(𝑥𝑡) (12) 

with  𝑈𝑅𝑡(𝑥𝑡) = ∑ 𝑎𝑡𝑢𝑟𝑥𝑡2 + 𝑏𝑡𝑢𝑟𝑥𝑡𝑢𝑟  (13) 𝐴𝐺𝑡(𝑥𝑡) = ∑ 𝑎𝑡𝑎𝑔𝑥𝑡2 + 𝑏𝑡𝑎𝑔𝑥𝑡𝑎𝑔  (14) 𝐻𝑃𝑡(𝑥𝑡) = ∑ 𝑥𝑡ℎ𝑝𝑃𝐹𝑡ℎ𝑝𝑝𝑡ℎ𝑝       (15) 𝑁𝑊𝑡(𝑥𝑡) = ∑ 𝑐𝑡𝑖,𝑗𝑥𝑡𝑖,𝑗𝑖,𝑗  (16) 𝐺𝑊𝑡(𝑥𝑡, 𝑢𝑡) = ∑ 𝑃C𝑡𝑔𝑤𝑥𝑡𝑔𝑤,𝑗𝑔𝑤,𝑗  (17) 𝑃C𝑡𝑔𝑤,𝑗 = 𝑢𝑛𝑖𝑡𝑐 ∙ (𝑒𝑙𝑒𝑣𝑔𝑤 − ℎ𝑡𝑔𝑤) (18) ℎ𝑡𝑔𝑤 = ℎ𝑡−1𝑔𝑤 + 𝑞𝑡𝑔𝑤 + ∑ 𝑥𝑡𝑗,𝑔𝑤 − ∑ 𝑥𝑡𝑔𝑤,𝑗𝑗𝑗𝑠𝑐𝑔𝑤 ∙ 𝑎𝑟𝑒𝑎𝑔𝑤  (19) 𝐼𝑁𝐹𝑡(𝑥𝑡) = ∑ 𝑖𝑛𝑓𝑥𝑡𝑖,𝑗 ∙ 𝑚𝑖,𝑗  (20) 

Here, UR is the urban benefit (utility) function with aur and bur being the quadratic and linear 274 

coefficients of the function respectively and xt showing the flow to urban node ur; Similarly, AG is 275 

the agricultural benefits form allocating water to farms with aag and bag being the quadratic and 276 

linear coefficients of the utility function respectively; HP is the linear economic benefit produced 277 

from hydropower generation where PF is the power factor of hydropower plant hp that relates 278 

release to hydropower generation and p is the monthly-varying hydropower unit price; NW shows 279 

the network cost, cost incurred due to treatment, conveyance, and conjunctive uses with c 280 

representing such cost per unit of flow in link between nodes i and j; GW is the groundwater cost 281 

from aquifer gw which is the product of pumping cost PC and discharge rate x; PC varies dynamically 282 

as the piezometric head h in the aquifer changes. The calculation of PC follows storage coefficient 283 

formulation [55] where a unit pumping cost unitc is multiplied by the distance that water needs to 284 

be lifted to reach ground level for allocation. elev is the mean ground elevation above aquifer gw. 285 

According to the storage coefficient formulation, sc is the mean storage coefficient and area is the 286 

surface area of an aquifer. INF represents the infeasibility costs. Numerical infeasibilities may appear 287 

in the model, making the network problem infeasible. In order to guarantee feasibility, artificial 288 



inflows (infx) are made available to the model at each node. These flows are included in model’s 289 

conservation of mass equations to ensure that such flows are accounted for. These artificial flows 290 

which are in fact slack/surplus variables in a mathematical programming context, are not desirable 291 

therefore in order to deter the model from introducing infeasibility flows, they are penalised by a 292 

high cost (m) coefficient in the objective function. 293 

In implementing above equations for the case of California Central Valley few points must be 294 

considered: (1) A piece-wise linear equivalent of equation (14) was used for farms. This was due to 295 

the slope of the benefit function (marginal value of water delivered) at or near full demand being 296 

zero which caused farmers to opt not pumping as it would be more economic to not pay for 297 

groundwater pumping costs while any additional unit of allocated water produces near zero benefit. 298 

(2) In California, the presence of “high-head” facilities where the effect of reservoir storage on 299 

turbine head is small allows for a linear relationship between head and hydropower generation [56, 300 

57].  301 

As explained in Section 2, the model is solved sequentially on a year-by-year basis for all the 72 302 

hydrological years considered, using the maximization problem defined by equation (5). In that 303 

equation, end-of-year COSVFs are set as boundary conditions at the end of each year-long model run 304 

to prevent depletion of reservoirs. This function represents the potential benefit gained from not 305 

releasing for immediate uses and preserving water for future droughts. End-of-year COSVFs are 306 

quadratic utility function: 307 𝐶𝑂𝑆𝑉𝐹𝑡(𝜋; 𝑥𝑡) = ∑ 𝑎𝑡𝑠𝑟𝑥𝑡2 + 𝑏𝑡𝑠𝑟𝑥𝑡𝑠𝑟       ∀𝑡 = 𝑡𝑘+1 (21) 

where asr and bsr are the quadratic and linear coefficient of the COSVF for reservoir sr, deduced from 308 

the demand curve parameters π using equations (1) and (2). In this case, the end of year is the end 309 

of the water year, that is, September 30 in the U.S. 310 

 311 

3.3 Historical benchmark 312 

In order to produce water marginal values that are descriptive of historical operations, storage data 313 

from a historical benchmark are required. In the Central Valley, this benchmark is CALVIN BC, a ‘base 314 

case’ or ‘constrained’ run of the CALVIN model which applies constraints to reproduce historical 315 

events [51]. It is used because observed storage data is not available for all reservoirs for the entire 316 

period of analysis. CALVIN BC is an effort to integrate surface and groundwater hydrology developed 317 

for the two models of the Central Valley’s water system, i.e., DWRSIM and CVGSM. It reconciles 318 

inconsistent assumptions in these two separate models, as well as agricultural water demand 319 

assumptions with water deliveries. More details on CALVIN BC’s modeling approach and 320 

assumptions can be found in [51]. Khadem et. al., [6] compared observed storage level data of 321 

Shasta, the largest reservoir in the Central Valley, with those of CALVIN BC’s and demonstrated a 322 

close match between them. As such, we refer to CALVIN BC’s results as the historical benchmark 323 

hereafter [58]. 324 

 325 

3.4 Getting water values 326 

Borg [59] was used as the multi-objective evolutionary algorithm (MOEA) because Borg’s self-327 

adaptive features increase its robustness and effectiveness while minimizing the search 328 

parametrization by the user. Borg has been proved to be a top performing MOEA in systems 329 



comprising nonlinearities [60] and for multi-objective reservoir management problems [61]. There 330 

are 30 surface reservoirs, so there are 60 decision variables for the evolutionary algorithm to find. 331 

End-of-year carryover storage values are positive and bounded by the maximal value among the 332 

urban and agricultural water demand curves, i.e., $5,291,378 per MCM. For the case study, an initial 333 

population size of 100, 100,000 maximum number of function evaluations as the stopping criterion, 334 

and epsilon (search resolution) value of 100,000 MCM2, $1,000,000, and $8,107 per MCM ($10 per 335 

af) for the objective functions (Fdesc, Fpres,  and F2 respectively) were used. The nonlinear hydro-336 

economic model of the California system was coded in Generalized Algebraic Modeling System 337 

(GAMS) and solved using the Minos solver version 5.5 [62]. Minos applies the generalized reduced 338 

gradient method, which is suitable for nonlinear programming problems with linear constraints 339 

[63].The case presented here was solved using 96 Intel processors working jointly on a Unix-based 340 

computing cluster. Results took about 45,000 hours of computation time to produce for the 341 

descriptive valuations and 42,000 for the prescriptive valuation (see [6]). 342 

4 Results 343 

This section uses the solution analysed in-depth in [6] as the prescriptive solution. For this reason, 344 

Section 4.1 and 4.2 focus respectively on the obtaining of descriptive valuations and on their fit with 345 

the historical benchmark. Then, Section 4.3 compares the two valuations and Section 4.4 346 

investigates what they mean for water management in the Central Valley. 347 

4.1 Trade-off analysis for the descriptive valuation of storage 348 

A five-seed Random Seed (RS) analysis was performed to obtain the Pareto trade-off and to ensure 349 

robust algorithm convergence towards the same Pareto-set. By definition, a Pareto front (Figure 3) 350 

consists of non-dominated solutions with respect to the two objective functions, where any 351 

improvement on the value of either objective function comes at the expense of the other. 352 

 353 

 354 

Figure 3. Pareto non-dominated solutions of the two objective functions (arrows show the direction of 355 
preference). 356 

This analysis focuses on the zone of concentration (ZC) within the Pareto set (grey box in Figure 3, as 357 

outlined in section 2.5). Concentration of solution points in this zone suggest that the estimate for 358 

historical water marginal values can be sought there. The analysis will consider both this ensemble 359 
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of solutions and a “representative solution” obtained by simulating the system using for each 360 

reservoir the average 𝑝𝑚𝑖𝑛 and 𝑝𝑚𝑎𝑥 across all solutions within the zone of concentration. 361 

 362 

4.2 Quality of the fit with the historical benchmark 363 

The quality of the fit is evaluated through the classical Nash-Sutcliffe efficiency criterion (NSE; [64]) 364 

at individual reservoirs by comparing benchmark historical storage values with storage from the 365 

representative solution (Table 1 and Figure 4). NSE is chosen as a goodness-of-fit criterion because it 366 

is coherent with the MOEA’s first objective; it determines the relative magnitude of the residual 367 

variance compared to the observed data variance [65]. It has a range of (-∞,1], with NSE=1 368 

indicating a complete match between the modeled and observed values. A value between 0 and 1 369 

shows an acceptable calibration performance and a negative NSE means that observed value is a 370 

better predictor than the simulated value, which indicates unacceptable performance. In Table 1, 371 

NSE values ranging from 0.82 to 1 indicate an excellent fit with the historical benchmark, which 372 

becomes close to perfection for some reservoirs (Figure 4). To better understand the quality of 373 

different solutions across the Pareto trade-off (Figure 3), solutions with the best and worst quality 374 

(those with lowest and highest value of 𝐹𝑑𝑒𝑠𝑐 respectively) are compared to the representative 375 

solution (average of solutions from zone of concentration) in Table 1. The quality of fit is also 376 

expressed by the fact that average relative deviations from the historical benchmark are relatively 377 

low. 378 

This quality-of-fit at individual reservoirs holds across the ensemble of solutions within the zone of 379 

concentration, because operations are robust to different water valuations within this zone. 380 

Supplementary material illustrates this with three of the system’s major reservoirs. This said, it is 381 

worth noting that the zone of concentration figures a range of valuations and not a single valuation, 382 

be it at dead storage (Figure 5.a) or full storage (Figure 5.b). This means that this range, and not only 383 

the representative solution, must be used when comparing descriptive and prescriptive storage 384 

valuations. 385 
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Pareto trade-off (Figure 3): Worst NSE with the lowest value of Y axis, Average NSE with the values from the average of 389 
zone of concentration (ZC)-this is also called representative solution, and Best NSE with the highest value of Y axis.  390 

Reservoirs 
Worst NSE Average of ZC NSE Best NSE 

NSE Deviation (%) NSE Deviation (%) NSE Deviation (%) 

Shasta 0.87 3.29 0.89 3.12 0.95 2.31 

Whiskeytown 0.60 10.11 0.92 3.05 0.97 2.13 

Black Butte 0.82 9.42 0.97 3.53 0.98 2.50 

Oroville 0.78 2.85 0.82 1.51 0.98 0.47 

New Bullards Bar  0.94 4.19 0.95 3.27 0.95 3.17 

Camp Far West  0.87 7.46 0.99 2.04 0.99 1.15 

Folsom 0.91 5.09 0.94 3.96 0.96 3.22 

Indian Valley 0.99 1.78 1.00 0.12 1.00 0.12 

Berryessa 0.99 1.40 0.99 1.23 0.99 1.20 

Pardee  0.93 5.13 0.99 1.72 1.00 0.12 

New Hogan 0.95 4.50 0.98 2.26 0.98 2.05 

Los Vaqueros 0.65 5.32 0.97 1.00 1.00 0.21 

EBMUD  0.66 4.53 0.94 1.63 0.98 0.67 

New Melones 0.98 1.02 0.99 0.61 0.99 0.49 

Turlock 0.55 9.16 0.82 4.97 0.87 3.43 

Lloyd-Eleanor 0.96 4.09 0.98 2.38 0.99 1.68 

Don Pedro 0.99 1.02 1.00 0.19 1.00 0.12 

Hetch Hetchy 0.93 5.86 0.96 3.46 0.96 2.73 

Del Valle 0.59 10.37 0.80 2.35 1.00 0.14 

San Luis 0.97 1.12 1.00 0.15 1.00 0.03 

Santa Clara  0.57 12.92 0.91 5.05 0.96 2.98 

SF aggregate 0.22 8.74 0.79 4.03 0.93 1.87 

McClure 0.98 2.10 0.99 1.32 0.99 1.14 

Eastman 0.89 4.45 0.96 2.45 0.96 1.83 

Hensley 0.57 11.50 0.91 5.22 0.94 3.73 

Kaweah 0.75 8.62 0.96 5.51 0.97 3.07 

Success 0.78 11.27 0.95 5.12 0.97 3.95 

Isabella 0.98 2.00 0.99 1.21 0.99 1.09 

Pine Flat 0.95 3.04 0.97 1.69 0.97 1.51 

Millerton 0.96 3.43 0.99 0.95 0.99 0.65 

Note: EBMUD stands for East Bay Municipal Utility District and SF is San Francisco. 
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 393 

Figure 5. Dispersion of descriptive marginal water value solutions from zone of concentration at: a) dead 394 
storage, and b) full storage. 395 

4.3 Comparison of reservoir storage valuations 396 

Having verified that the descriptive valuation of water storage led to a good fit between the 397 

benchmark historical operations and simulated operations, we compare the descriptive and 398 

prescriptive storage valuations, using both the ensemble of descriptive solutions (Figure 6), and the 399 

representative solution (Table 2). Column (1) of Table 2 contains active storage (full storage – dead 400 

storage) of surface reservoirs in the last month of the water year, i.e. September. Note that 401 

maximum capacity varies per month due to flood control requirements. The second column shows 402 

the annual net inflow calculated as annual surface runoff minus any loss (e.g. seepage and 403 

evaporation). Columns (3) and (4) include the descriptive marginal water values for the 404 

representative solution. Values in column (5) are the average of values in columns (3) and (4), which 405 

corresponds to the average marginal value of water from the representative solution – total water 406 

value (Figure 6) is then the product of that figure and the active storage. Column (5) of Table 2 can 407 

be used as an economic proxy for comparing reservoirs valuation, and to contrast descriptive 408 

valuation against its prescriptive counterpart (column 6).  409 

 410 
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 412 

 413 

Figure 6. Distribution of the total storage value from the solution points of the zone of concentration. Red 414 
points show the maximum COSVF of the prescriptive solution. 415 

Table 2. Descriptive marginal water values of end-of-year surface reservoirs’ storage in the Central Valley, 416 
listed from north to south compared with prescriptive values.  417 

Reservoir 

End-of-year 

active 

storage 

(MCM) 

(1) 

Annual 

average 

net inflow 

(MCM) 

(2) 

Descriptive 

marginal value 

at dead storage 

($/MCM) 

(3) 

Descriptive 

marginal value 

at full storage 

($/MCM) 

(4) 

Descriptive 

average 

marginal value 

($/MCM) 

(5) 

Prescriptive 

average 

marginal value 

($/MCM) 

(6) 

Shasta 3,344 6,816 52,666 38,549 45,608 29,576 

Whiskeytown 138 1,144 12,484 9,542 11,013 39,923 

Black Butte 122 488 480 189 334 393 

Oroville 2,682 4,966 45,830 42,139 43,985 22,263 

New Bullards Bar 560 1,496 32,382 28,429 30,406 38,775 

Camp Far West 126 458 1,872 1,817 1,844 108 

Indian Valley 731 529 15 13 14 10,825 

Folsom 701 3,271 27,638 5,830 16,734 34,979 

Berryessa 1,926 438 18,915 18,865 18,890 10,656 

Pardee 235 840 107 14 60 13,334 

New Hogan 263 184 347 120 234 15,416 

New Melones 1,507 1,285 74,067 9,108 41,588 19,500 

EBMUD 63 0 516 286 401 48 

Los Vaqueros 41 0 145 27 86 8 

Lloyd-Eleanor 333 542 28,437 28,129 28,283 27,953 

Hetch Hetchy 399 936 7,911 7,104 7,507 1,403 

Del Valle 23 0 1,273 1,181 1,227 276 

Don Pedro 1,727 792 69,837 10,213 40,025 23,716 

Turlock 69 0 369 94 232 182 

McClure 907 1,128 42,123 5,940 24,032 20,314 

SF aggregate 277 0 1,071 650 860 0 

Eastman 99 82 959 10 485 264 

Santa Clara 209 156 1,766 727 1,246 89 

Hensley 79 101 329 135 232 30,892 
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San Luis 1,958 0 1,275 467 871 1 

Millerton 495 2,082 35,190 747 17,969 37 

Pine Flat 1,177 2,041 63,661 7,752 35,706 5,767 

Kaweah 101 581 5,884 5,747 5,816 913 

Success 81 170 281 8 144 5,387 

Isabella 453 876 1,670 1,011 1,340 526 

Note: EBMUD stands for East Bay Municipal Utility District and SF is San Francisco. 

 418 

Compared with the prescriptive valuation, the descriptive one is higher for most major reservoirs. 419 

Examples are Shasta, Oroville, Berryessa, New Melones, Don Pedro, San Luis, and Pine Flat; and 420 

those located in the Sierra Nevada on the eastern range of the Central Valley (e.g. Oroville, New 421 

Bullards Bar, Folsom, New Melones, Lloyd & Eleanor, Don Pedro, McClure, and Pine Flat – note how 422 

some reservoirs make both groups). These results hold for both Figure 6 and Table 2. This higher 423 

valuation in the descriptive solution means that operations conserve surface water in large reservoir 424 

by implicitly valuing it more than in smaller surface reservoirs and groundwater reservoirs alike. This 425 

has two consequences: (1) groundwater resources are first to supply water; and (2) when it comes 426 

to surface reservoirs, smaller reservoirs are prioritised for release. End-of-year COSVF for each 427 

reservoir can be derived from values in columns (3) and (4) of Table 2.  428 

COSVF of four large Central Valley reservoirs are compared (Figure 7). To better interpret this result, 429 

one can look at the average volumetric water value of these four reservoirs at their full storage i.e. 430 

maximum of COSV divided by maximum storage capacity. For the descriptive case, the average 431 

volumetric water values at full storage are 33419, 28527, 31605, and 34086 $/MCM for Shasta, 432 

Oroville, Don Pedro, and Pine Flat respectively. This suggests that attitudes to water conservation in 433 

the historical benchmark are similar across these large reservoirs, regardless of their situation within 434 

the basins. For the prescriptive case however, the same figures drop to 21672, 14439, 18727, and 435 

5505 $/MCM respectively. This suggests different water storage values depending on location within 436 

the basin: reservoirs situated upstream can redirect water for use in larger portions of the basin and 437 

this makes them more valuable than reservoir situated downstream. More generally, the 438 

comparison of these valuations confirms that the descriptive case values stored water more than the 439 

prescriptive case, regardless of location.  440 

 441 
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Figure 7. Comparison of the representative solution in descriptive and normative valuation, COSVF of 442 
reservoirs in (a) Shasta, (b) Oroville, (c) Don Pedro, and (d) Pine Flat. 443 

4.4 Consequences for water management in California 444 

The system-wide consequences of the difference between the two valuations of water storage are 445 

clear through comparison of aggregated surface and groundwater storage during 1922-93 (Figure 8). 446 

Implicit overvaluation of surface reservoirs with operations based on a descriptive valuation resulted 447 

in a comparative overexploitation of aquifers. At the level of individual reservoirs, columns (1) and 448 

(5) of Table 2 show that the historical operation favoured smaller reservoirs when it comes to 449 

surface reservoir releases. This can become problematic when a small reservoir is the sole supplier 450 

to a demand site (e.g. New Hogan supplying for Stockton). This overcautious operation has led to 451 

80% increase in the annual average scarcity volume [6] compared with operations derived from an 452 

“optimal”, prescriptive valuation, and to a 5% increase in the average unit pumping cost across the 453 

Central Valley. 454 
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 456 

 457 

Figure 8. Comparison of the historical simulation and the optimized model for: a) surface reservoirs over 1922-458 
57; b) surface reservoirs over 1958-93; and c) groundwater over 1922-93. 459 

To better demonstrate how risk averse the two reservoir operations are, the absolute risk aversion 460 

coefficient for each reservoir is computed and illustrated in Table 3. COSVFs derived from (equation 461 

1) the obtained marginal water values of Table 2 for the descriptive model and [6] for the 462 

prescriptive model, are used to calculate the risk aversion (AP). 463 

Table 3. Absolute risk aversion coefficient for each reservoir of the descriptive and the prescriptive model. 464 
Note that wherever no AP is reported, the first derivative of the COSVF i.e. marginal water value is zero. 465 

  

 Reservoirs 
September storage (MCM) 

AP of the descriptive model 

(1/MCM) 

AP of the prescriptive model 

(1/MCM) 

Dead 

storage 

Mean 

storage 

Full 

storage 

at dead 

storage 

at mean 

storage 

at full 

storage 

at dead 

storage 

at mean 

storage 

at full 

storage 

Shasta 1,220 2,892 4,564 0 0 0 0 0 0.002 

Whiskeytown 152 221 290 0.002 0.002 0.002 0.00`6 0.011 0.048 

Black Butte 12 73 134 0.005 0.007 0.013 0.008 0.016 - 

Oroville 1,453 2,794 4,135 0 0 0 0 0 0.000 

New Bullards Bar  310 590 870 0 0 0 0.001 0.002 0.003 

Camp Far West  1 64 127 0 0 0 0.007 0.012 0.052 

Folsom 102 453 803 0.001 0.002 0.005 0.001 0.002 0.016 
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Indian Valley 0 366 731 0 0 0 0.001 0.003 2.274 

Berryessa 13 976 1,939 0 0 0 0.001 0.001 - 

Pardee  15 133 250 0.004 0.007 0.028 0.004 0.008 - 

New Hogan 22 153 285 0.002 0.004 0.007 0.004 0.008 4.675 

Los Vaqueros 89 109 130 0.020 0.034 0.107 0.025 0.049 - 

EBMUD 102 134 165 0.007 0.009 0.013 0.016 0.032 - 

Turlock 14 48 83 0.011 0.017 0.042 0.014 0.029 - 

Lloyd-Eleanor 38 205 371 0 0 0 0 0 0 

Hetch Hetchy 45 245 444 0 0 0 0 0 0 

Santa Clara  46 128 210 0.004 0.005 0.009 0.005 0.009 0.035 

SF aggregate 38 158 278 0.002 0.002 0.003 - - - 

Kaweah 1 51 101 0 0 0 0.010 0.020 - 

Success 1 41 81 0.012 0.023 0.444 0.012 0.025 - 

Isabella 0 226 453 0.001 0.001 0.001 0.002 0.003 0.011 

Pine Flat 56 645 1,233 0.001 0.001 0.006 0.001 0.001 0.002 

New Melones 978 1,732 2,485 0.001 0.001 0.005 0 0.001 0.002 

San Luis 99 1,078 2,057 0 0 0.001 0.001 0.001 - 

Del Valle 12 23 35 0.003 0.003 0.003 0.045 0.089 - 

Millerton 148 395 643 0.002 0.004 0.093 0.002 0.004 - 

McClure 143 596 1,050 0.001 0.002 0.007 0.001 0.002 0.006 

Hensley 5 44 84 0.007 0.011 0.018 0.013 0.025 - 

Eastman 12 62 111 0.010 0.020 0.948 0.009 0.017 0.124 

Don Pedro  460 1,324 2,187 0 0.001 0.003 0 0.001 0.002 

Aggregate 

storage 
5,586 15,957 26,329 0.097 0.157 1.761 0.190 0.372 7.252 

Table 3 reveals that the prescriptive model is in fact more risk averse in the face of uncertain 466 

hydrology. This is consistent with the fact that prescriptive operations minimize shortage. Less 467 

intuitively, it shows that even though they value surface water storage more, operations observed in 468 

the historical benchmark are not necessarily less risk averse. In fact, this higher valuation is linked 469 

with excessive water conservation for future uses in a way that sometimes penalises current uses. 470 

This behaviour could be explained by regulatory constraints that water managers have to deal with, 471 

but that the model does not account for, such as stream temperature requirements that necessitate 472 

cold water released from deep reservoirs lakes to favour salmon habitats. 473 

5 Discussion and Conclusion 474 

This paper proposes a methodology to derive comparable descriptive and prescriptive valuations of 475 

water storage. In both approaches, values are deduced from a hybrid setup where an EA is linked to 476 

a hydro-economic model. While EA searches for the value of stored water, the role of the hydro-477 

economic model is to link water allocation decisions with the space and time distribution of the 478 

value of stored water for future uses. In the prescriptive approach, the EA aims at optimizing long-479 

term benefits from water use, whereas in the descriptive approach, the objective is to provide a 480 

valuation that calibrates a historical benchmark. To avoid unrealistic storage valuations in small 481 

reservoirs, an auxiliary objective is introduced, meaning that both problems are formulated as being 482 

multi-objective, and solved using an MOEA. The resulting modeling approach is generalizable 483 

because 1) its applicability is not plagued by the curse of dimensionality linked with system size, and 484 



2) it is assumption free, e.g., it does not require non-convexity assumptions that do not apply in 485 

conjunctive use systems. The proposed approach is illustrated through valuation of 30 surface 486 

reservoirs in California’s Central Valley water system. 487 

The descriptive approach is descriptive insofar as it matches a historical benchmark whose outcome 488 

– storage levels across time and space – reflects the regulatory and institutional setting that resulted 489 

in the operations that led to this outcome. Yet, the approach itself is not based on simulation but on 490 

hybrid optimization, in that it uses an intra-annual optimization model coupled with an EA. The EA 491 

calibrates water marginal values to find those that replicate real-world observations. This is done by 492 

first taking water marginal values as EA’s decision variables (calibration parameters). EA randomly 493 

assigns values to these parameters and the water resources system is simulated using these values 494 

and a hydro-economic model. Note that this optimization-based descriptive approach, though 495 

counter-intuitive, is necessary to adequately compare descriptive and prescriptive valuations. This 496 

approach is generalizable and can readily be used when market valuation is absent or inefficient and 497 

when non-market methods are plagued with non-convexity and/or curse of dimensionality. Yet, the 498 

necessity to assume intra-annual foresight means that this approach may be difficult to apply to 499 

tropical and temperate areas where runoff is not snow-dominated. 500 

Results are also interesting in several respects. First, they vindicate the choice to represent intra-501 

annual operations with a perfect foresight optimization models. This indicates that this complex 502 

system could be simulated with this simple assumption. In particular, it shows that regardless of the 503 

uncertainty concerning snowpack, monthly operations are robust to the consequences of that 504 

uncertainty. This robustness may break down on a finer, e.g. daily, timescale, but it is worth noting 505 

that most state-of-the-art global hydrological models representing complex multi-reservoir systems 506 

use a monthly time step [66], and that their results are not yet accurate enough [67] to justify a finer 507 

time resolution.  508 

Beyond, the comparison of descriptive and prescriptive operations is a two-way street. On one hand, 509 

it provides insights into the differences between the historical benchmark and optimized operations, 510 

by providing comparable valuations of surface water storage. In the case of California, this translates 511 

into showing how surface water valuation leads to using groundwater instead. On the other hand, 512 

interpreting this finding beyond the confines afforded by the models’ formulation provides insights 513 

into possible causes of historical management decisions. For instance, the quality of the calibration 514 

given constant storage valuations, constant groundwater pumping costs, and constant crop prices, 515 

shows a remarkable stability of their relative values throughout most of the twentieth century. But 516 

both groundwater pumping costs and crop retail prices have changed through time: the storage 517 

valuation could suggest that cheap energy may have favoured mining groundwater – a resource for 518 

which no strong management institutions exist in California – whereas surface water rights ensured 519 

a greater conservation of surface water. This would link cheap energy prices with unsustainable 520 

water management practices, a speculative insight that deserves further investigation. More 521 

generally, the difference in surface water valuation from the two approaches reflects the role of 522 

institutions providing incentives for surface water conservation, and that are traditionally difficult to 523 

represent in an optimization model of that size. This was evidenced by further analysis involving risk 524 

aversion coefficients. The exercise revealed that the prescriptive valuation showed a more risk-525 

averse approach to managing water resources. The overcautious operation observed in the historical 526 

benchmark was perhaps due to other constraints not seen in the model. 527 

Finally, it is worth elaborating on the fact that different storage valuations could lead to a similar fit 528 

of the descriptive model with the historical benchmark it is meant to reproduce. The existence of 529 

different parametrisations leading to similar goodness-of-fit is well-known in hydrology as 530 



equifinality [68, 69]. Equifinality had also been found in water resources systems models, but only in 531 

the fact of producing very different reservoir operations leading to similar value of an economic 532 

objective [70, 71]. In the descriptive approach proposed here, the opposite occurs as, similar to 533 

hydrological modeling; different parametrisations lead to similar operations. This finding runs 534 

contrary to the idea that there exists a unique water price that water markets can organically find to 535 

arrive to a near-optimal solution. 536 
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Supplementary Material: Impact of different water valuation clusters on major 712 

reservoirs’ operation 713 

Here we investigate how the diversity in reservoir storage valuation of Don Pedro, New Melones, 714 

and Pine Flat manifests in the operation of these reservoirs. The storage trajectory of these three 715 

reservoirs is simulated using valuation solutions that created average, minimum, and maximum 716 

values in Figure 6. These three valuations of storage are used in three separate runs of the model, 717 

with all other parameters unchanged (including COSVF from other reservoirs). This is depicted in 718 

Figure S 1. Resulting end-of-year storage levels of the above three reservoirs prove to be identical 719 

regardless of which marginal value of water is chosen (Figure S 1). Therefore, it is the “average” 720 

valuation that is reported in Table 2 and forms the ‘representative solution’. 721 

 722 

 723 

 724 

Figure S 1. Calibrated storage trajectories with average, minimum and maximum valuations in: a) Don Pedro, 725 

b) New Melones, and c) Pine Flat. 726 
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