
This is a repository copy of Experiencing the Sheffield team software project: a project-
based learning approach to teaching agile.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/157674/

Version: Accepted Version

Proceedings Paper:
Olayinka, O. and Stannett, M. orcid.org/0000-0002-2794-8614 (2020) Experiencing the
Sheffield team software project: a project-based learning approach to teaching agile. In:
Proceedings of 2020 IEEE Global Engineering Education Conference (EDUCON). 2020
IEEE Global Engineering Education Conference (EDUCON), 27-30 Apr 2020, Porto,
Portugal. IEEE , pp. 1299-1305. ISBN 9781728109312

https://doi.org/10.1109/EDUCON45650.2020.9125175

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other users, including reprinting/ republishing this material for advertising or
promotional purposes, creating new collective works for resale or redistribution to servers
or lists, or reuse of any copyrighted components of this work in other works. Reproduced
in accordance with the publisher's self-archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by White Rose Research Online

https://core.ac.uk/display/287608393?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Experiencing the Sheffield Team Software Project:
A project-based learning approach to teaching

Agile

Olakunle Olayinka
Department of Computer Science

The University of Sheffield

Sheffield, United Kingdom
o.olayinka@sheffield.ac.uk

Mike Stannett
Department of Computer Science

The University of Sheffield

Sheffield, United Kingdom
m.stannett@sheffield.ac.uk

Abstract— Graduates of computer science and software

engineering degrees are often expected by employers to

possess various technical skills as well as competencies in

project management, testing, teamwork, and other soft skills.

Extant literature has identified that these competencies are

often not addressed by traditional teaching approaches such

as lectures and labs. In this paper, we present a project-based

learning approach to teaching agile software development

where students work in multicultural teams to develop

software for clients. This approach to teaching software

development addresses some of the competencies required by

employers, and the feedback from students, clients, and tutors

are discussed and analysed critically.

Keywords— Project-based learning, Agile, Teamwork,

Software development, Scrum framework

I. INTRODUCTION

The ability to work in teams is recognised as a crucial
asset both in industry and in academia, and accreditation
bodies regard it as an essential component of any
meaningful degree programme. Today, software
engineering graduates are expected to start on their first job
as software engineers or developers and actively contribute
to the team [1]. However, university group projects often
fail to adequately simulate complex organisational
structures and collaboration that make students work-ready
[2].

Furthermore, most university curricula focus heavily on
the theoretical underpinnings [1][3] of the subject and
although these are essential, other relevant practical skills
that a student needs to apply in a work environment are
equally important [4]. Today, most software projects in
organisations are complex, requiring an average team of
eight [5] to tackle, and in larger organisations development
teams often have thousands of developers [6] working on
several projects that interface with each other. For an
employee to be productive in such an environment, the need
for communication and collaboration is extremely
important [7], but how well does the software engineering
curriculum today prepare them for such an environment?

To make students work-ready, project-based learning is
a pedagogical approach that has been used over the years in
disciplines such as creative design [8] and game
development [9] to teach the subject matter while also
preparing students for life after university. In recent times,
this approach has also been applied to computer science and
software engineering modules, to teach a combination of
technical and non-technical concepts. Also, given the

increased demand for companies to review GitHub profiles
of prospective graduate developers, universities have
increasingly encouraged their students to build up a
portfolio of projects by applying this approach to teaching
some final year modules [10]. However, some academics
have argued that this approach to teaching has limitations
and might be inappropriate for teaching subjects where
several deliverables and feedback are required [11][12] but
others have applied this approach with great feedback from
students [13][14].

Over the last two decades, there has been an increase in
the adoption of Agile software methodologies by companies
of various sizes [15]. The benefit of deploying Agile
practices in an organisation cannot be overemphasised as it
encourages quicker development and regular dialogue
between the business and development teams [16]. As a
result, computer science and software engineering degrees
now consider including agile software development
modules in their curriculum for both undergraduate and
postgraduate degrees [17][16]. However, some of these
modules are heavily theoretical and lumped with teaching
other concepts such as learning a new programming
language, understanding coding styles and several others
without a strong emphasis on teaching Agile on its own [1].

Some researchers have explored the use of problem-
based learning [3], active learning [18], and other
approaches to teaching agile software development
practises to both undergraduate and postgraduate students
with varying results. In our work, we take a project-based
learning approach to teaching agile software development
in an MSc module. The ideas, though unique, leverage
learnings from Genesys Solutions, a Sheffield University
module where fourth-year students run their own software
house [19], and Software Hut [20]. In this paper, we discuss
the goals of the module, as well as the hurdles that had to be
overcome while teaching it and useful lessons learned.

Outline. Section II reviews existing literature and
related work on the use of project-based learning to teach
software engineering and teamwork. Section III gives the
background to the module and the module structure; section
IV discusses our methods and results, together with
evaluations of the modules from various stakeholders’
perspectives. Section V preincludessents ideas for
improvement, while section VI concludes the paper.

II. RELATED WORK

Research has shown that students learn faster and better
when taking an active position in the learning process as

opposed to passively listening [21][22]. Of the several
approaches to implement active learning, project-based
learning has been gaining ground in recent years [23],
particularly in engineering disciplines where abstract
concepts are taught and theoretical information, without
adequate practical experience, is insufficient for the students
to understand the subject [12].

Attesting to the challenge faced when teaching software
engineering in a traditional classroom setting to
undergraduate students, and the need for a more involving
approach, [24] developed a “mock software company” for
undergraduate students to learn software engineering
principles and teamwork. In this module, the students
worked for 10 weeks in teams which were subdivided into
management and software development teams to develop an
Algorithm Animation project. Each year the module is run,
the students inherit the project code and artefacts from the
previous year, thus providing an opportunity to experience
challenges such as refactoring other people’s code.

In a similar vein, [25] created a capstone course where
students created a “mock” consulting company to work with
a corporate sponsor on a project. A large part of the project
was to develop an actual product that the corporate clients
could use, and throughout the two-semester course the
student teams met bi-weekly with corporate sponsors and
faculty members. At the end of the course, one corporate
healthcare sponsor reported that one team saved them over
$100,000 in consulting services. [26] also created a four-
semester capstone project called the ‘Software Enterprise’
that relied on a combination of lectures, problem-centered
learning, and project work to expose students to industry
practice.

In order to foster industry and academia collaboration
and enable students to learn from industry partners acting as
more than simply clients, [27] developed an industry-
academia team-teaching capstone course for software
engineering undergraduate students that ran over two
semesters and was coordinated by two instructors - one from
academia and the other from industry. Likewise, [28]
developed a software engineering course that provided a
real-world enterprise simulation that used agile for students
to learn the competencies necessary for a software
engineering job. In this course, 25-26 students formed a
virtual company and competed on developing a specific
large-scale software project.

Similarly, [10] adopted a project based learning
approach to teaching a software engineering project course
to a large cohort of 156 students. The course aimed not only
to provide students with relevant theoretical knowledge but
also to improve students’ employability skills by ensuring
the projects were industry oriented. The course was
designed to cover agile project delivery, requirements
engineering and software architecture and upon execution
of this course, the feedback from the students and industry
partners was very positive and resulted in an improved
satisfaction rate.

However, one main challenge faced during the
execution of the course was that the contact hours required
for the module were too much for the students. This
challenge was also identified by [12], however in their
module, it was deemed a mere perception by the students
and not the actual reality. Nonetheless this emphasises the

need to consider student workload and manageability, when
designing modules that use project based learning.

Furthermore, while some academics have taken to
project based learning as an approach to tackle the issue of
teaching team work and employability skills to their
students, [14] argues that many of these competencies are
not addressed by regular lectures and project based learning.
They accordingly designed a module using the scrum
framework to teach software engineering competencies.
Their module incorporated real customers from the industry
who presented their projects at a kick off meeting; students
were allowed to select projects and form their own teams (of
5-7 students). The module has run for more than 8 years and
the feedback from all stakeholders has been quite good;
particularly with students and customers commenting on the
technical and non-technical competencies gained.

To expose the student to true agile projects and
practices, [29] developed a “tech start-up model” approach
to teaching agile software development to software
engineers by leveraging collaboration with an
entrepreneurship class. Through a combination of agile and
lean start-up practices their module provided an
interdisciplinary mix, where the students were able to learn
from each other, and enabled the software engineering
students to heavily involve users and business people
(entrepreneurship students) in their development process.

Because most students enrolling in their software
engineering class did not have significant teamwork or
project experience, [13] developed a new software
engineering module to meet these needs. The module
consisted of “local” groups of students from two different
universities, one in the US and the other in Germany, so as
to simulate a small software company with teams of 4-6
students working in a virtual environment. While this
module design did facilitate collaboration and created a
multi-cultural environment, it appears to be a complex
model to replicate.

Furthermore, as a way to address both technical skill and
employability skills required by engineering graduates, [30]
developed a course to simulate industry projects. In this
course, students worked with industry partners to develop
solutions to contemporary, real-world problems such that
software developed by students was regularly incorporated
into the code base of industry partners. The course was
targeted at both 3rd and 4th year students; the 3rd year
students worked as members of the team while 4th years
acted as team leaders. Feedback from stakeholders has been
encouraging and the students acknowledged that the course
helped them gain strong professional skills.

Similarly, [31] developed a capstone project course with
industrial customers to teach real-world software
engineering by simulating full software development
projects, and creatively used master’s students as project
managers and undergraduates as developers. However,
while these approaches, modules, and courses have
recorded reasonable success, the modules mostly targeted
undergraduate students and focused predominantly on
teaching students’ technical content while working in teams.
Thus, the soft skills required for appropriate teamwork were
not always emphasised.

Using a case study strategy [32] informed by an
inductive approach [33] and qualitative methodology [34],

we critically examine the process of creating our own
module, teaching the module, and reviewing what students
learned. Specifically, this paper aims to address three
research questions: RQ1) What approaches have been
adopted to teach technical and soft skills required by
employers of software engineering graduates? RQ2) What
skills do students acquire when working in a multicultural
team to develop software? RQ3) What did we want students
to come away with, and to what extent did we succeed?

III. BACKGROUND AND METHODOLOGY

The Department of Computer Science at Sheffield
University has an annual intake of around 210 MSc
students, split across six programmes. Of these, just over
100 are studying MSc Advanced Computer Science (ACS)
or MSc Computer Science with Speech and Language
Processing (CSSLP, a specialised version of ACS). Both
programmes are well established and have been running for
many years - nonetheless regular reviews are undertaken,
both to keep the programmes current and for BCS
accreditation purposes. Following the most recent review, it
was decided to boost the amount of teamwork by
introducing a new second-semester 15-credit Team
Software Project module for both ACS and CSSLP students.
This was launched last year, running for the first time during
the 2018-2019 session.

A total of 104 students were enrolled on the module (20
CSSLP, 84 ACS). In order to keep team sizes manageable,
these were split into 18 teams whose members were
assigned by the module leaders (fourteen teams had six
members, four teams had five members, and each team
included at least 1 CSSLP student). There were three
different projects, with six teams competing on each. The
majority of students taking the module were from non-
British backgrounds, and this resulted in much of the
teamwork having an unexpected multicultural dimension.
While this introduced additional communication overheads
for many teams, overcoming this problem had unexpected
side benefits for many of the students.

For this first run of the module, all three projects were
specified from within the department, and dealt with
problems associated with monitoring departmental
learning/teaching activities that were directly relevant to the
modules taken by the students themselves. It was felt that
this would both help motivate the students, and also make it
easier for them to understand the relevant organisational
context. Project 1 required the development of a system for
monitoring the spread of assessment loadings on students
across the academic year (this varies from student to
student, depending on the modules they have chosen), so as
to help year tutors identify and mitigate overloading. Project
2 required teams to extend and improve an existing in-house
system for detecting plagiarism of program code. Project 3
asked for a system capable of relating module-level
assessments to programme-level learning outcomes, so as to
enable automatic year-on-year checking that these outcomes
remain fully supported and assessed as new modules are
introduced and old ones deleted from the curriculum.

We employed three PhD students as project mentors,
one for each project, to provide individual advice to the
teams working on their project and attend their weekly
stand-up meetings.

The first task for each of the teams was to come up with
a team name and choose which project they would like to
work on by indicating their first, second and third choice.
The actual assignment of teams to projects was done by the
module tutors. While it was not possible to allocate all teams
their preferred projects, all but four teams were assigned
either their first or second choice.

It was explained during the Week 1 presentations that
the main focus of the module was on teamwork, and that
while we would be looking at the systems they produced,
we were keen that teams should manage themselves as
effectively as possible. This allowed students with, e.g.,
excellent writing skills to contribute fully to their teams’
outputs by focussing on documentation even when their
programming skills were limited (these skills are already
assessed in other modules).

Nonetheless, the information we provided at this stage
was deliberately incomplete; students had to establish team
dynamics for themselves, while at the same time analysing
their project requirements, deciding on development
techniques, and deciding who would do what. This was
always going to be stressful for team members, but we took
the time to answer questions promptly as and when they
arose, held weekly debriefing meetings with the mentors
and allowed teams the whole of Sprint 1 (a period of 3
weeks) to sort themselves out and establish their working
arrangements.

At the end of each sprint, the teams were required to
produce a short report detailing what they had planned to do
during the sprint, what they eventually achieved, the plan
for the next sprint and evidence of their regular meetings.
This report allowed the module tutors to provide timely
formative feedback to each team before the end of the
second sprint, thus providing an opportunity for the students
to learn from mistakes in the earlier sprints. Table 1 below
provides a breakdown of the structure of the module

TABLE I. STRUCTURE OF THE MODULE

Time Activity

Week 1

• Introductory lecture

• Project briefing session

• Meet your team members

End of Week 1 • Indicate Team preferences

Week 2-4 • Sprint 1

End of Week 4 • Submission of progress report

Week 5-7
• Sprint 2

• Client meetings

End of Week 7 • Submission of progress report

Week 8-10 • Sprint 3

Week 11 • Team Presentation & Submission

Just like in a typical agile project, the clients were
actively involved in the module: by providing a written
project brief describing the core features of the software, its
target audience and technology limitations; presenting the
projects to the students; fielding questions throughout the
project either in person or by email; meeting students at the
end of the first sprint to provide feedback on what had been
achieved so far; attending the final presentations; assessing

the software developed and providing feedback to the
teams. The clients were also available to clarify
requirements via emails or for a face-to-face meeting with
the teams depending on the teams preferences.

General communication skills, motivation and
engagement were monitored and facilitated via meetings
with the mentors, and the module was assessed on the basis
of five key deliverables/criteria:

• Team Documentation - This showed whether the teams
could adequately describe/present their solution so that
it could be used by the client in their absence. Skills
assessed included: critical assessment of information,
the organisation and expression of ideas, and evidence
of appropriate use of agile processes.

• Software Developed – We (with the client) assessed
how well the delivered software met the requirements
specified from a functional and usability perspective.
Evidence of adequate testing and overall code quality
were also taking into consideration.

• Teamwork - We examined how the team self-managed.
Specifically, we examined the contribution of team
members, how work was split amongst the members
and reviewed notes made by the mentors during the
weekly stand-ups.

• Presentation - Each team was allocated 15 minutes and
every member of the team was expected to contribute
to this activity. The teams presented their solution and
approach to a panel comprising their client, their
mentor and one of the module tutors.

• Individual Reflection - At the end of the module, each
student was required to submit a short reflection on
what their contribution to the project had been, and
what had been learnt.

In addition to forming the basis for the students’ grades, this
substantial body of information also provided us with a
basis for assessing how well we achieved our own goals. In
particular, the individual reflections provided information
about soft skills and learning outcomes, as seen by the
students themselves, as well as general information about
their confidence in using these newly acquired skills, and
the extent to which team members contributed equally. Our
weekly meetings with the mentors provided information as
to how team dynamics developed and the extent to which
members supported each other and the team as a whole. The
inclusion of clients in all stages of the project (including
assessment) allowed us to assess how well a module of this
kind can address complex requirements over periods as
short as a single semester.

An anonymous Module Evaluation Survey was also sent to
the students towards the end of the module. This was part of
a general survey of modules undertaken each year and
reviewed by both the department’s Teaching Operations
Committee and it Staff-Student Liaison Committee
(SSLCOM). The survey affords students an opportunity to
give their views on module content and delivery, both by
giving basic satisfaction ratings and by providing free-text
responses. The results are collated and presented to module
leaders, who are then required to provide a timely response
to SSLCOM, commenting on the feedback and outlining
any changes that they intend making for the coming year.

IV. RESULTS AND LESSONS LEARNED

In order to minimise problems associated with students
being unwilling to criticise their colleagues in public, we
also provided means for students to comment anonymously
at any time and on any aspect of the module (including
module content, mentors, clients, module leaders and fellow
team members). Surprisingly, only one such comment was
received, detailing the concern a student had for the
apparent non-contribution of a fellow team member – they
felt unable to discuss this openly during team meetings. In
addition, one student approached us privately to discuss
what appeared to be a culturally-motivated dispute between
two of their team members. We dealt with this (to the
student’s satisfaction) by informally reminding all teams, as
part of our general ongoing feedback, of the potential
benefits of combining members with very different
backgrounds and skills, and the advantages of maintaining
team harmony.

Feedback from both the mentors and the clients
confirmed that students were extremely nervous at first as
to what was required of them, but by the end of the first
sprint this nervousness had largely subsided, and anecdotal
evidence (including details in their Individual Reflections)
suggests that students ended the module with an enhanced
sense of their own ability to handle ill-defined requirements.
Some international students, in particular, whose English
language skills had initially been weak, expressed surprise
at how fast their conversational skills improved once they
started having regular stand-up meetings with their
colleagues.

Overall, the students engaged very well, with very good
attendance record and team spirit, and clients rated the
quality of the delivered systems as very good. For many of
the students, they started the module with no knowledge of
Agile methodology and at the end of the module, they
expressed confidence with the various concepts and
ceremonies in a scrum based agile project. For many, this
was their first experience working in a multi-cultural team,
developing real-world software to the specification
provided by a client.

Particularly, this module provided several students the
opportunity to leverage existing skills (programming,
automated testing, documentation) and acquire new ones
like GIT version control and working with complex
databases. In many teams, there was also evidence of self-
directed peer learning; one student indicated, for example,
that they had learnt Python and RESTFUL API
development in support of a requirement self-imposed by
the team. By working together in teams developing software
to meet the deadlines, the feedback suggests that students
quickly realised the need for effective communication and,
in particular, that version control tools do not replace the
need to clarify technical direction with other members of the
team.

 Another student commented on how the use of
prototyping could help clarify complex requirements and
explained how their team used that approach. In general, the
students were also able to experience project management
first-hand, with some students particularly taking leadership
roles within their scrum teams such as development team
lead and project manager.

With regard to the Module Evaluation Survey, 73
responses were received (69.5% of students taking the
module). Of these, 80% indicated that the module was
interesting, challenging and helped them to learn, while
91% indicated that they were able to use the feedback
provided effectively and 90% indicated that they were
satisfied with the module. Indeed, levels of engagement
were so high that many students seem to have contributed
significantly more time to their work than the credit value
of the module warranted. While this led to a remarkably
high average module grade of 74% for students taking the
module, it is possible this was achieved at the expense of
lower grades in other modules, and steps will be needed to
ensure that students are aware of the potential consequences
of allocating time unevenly across the curriculum.

Communications were a major factor in multicultural
teams. For example, a typical team might comprise three
Chinese and two English students, with at least one of the
Chinese students having poor English and at least one of the
English students having poor (or non-existent) Mandarin.
Of the two English students, one might be a CSSLP student
with little system design experience. There are thus two
cultural divides at work, and these were left to the students
to resolve; they did so in a variety of ways. In some cases,
students who were excellent at both languages were
appointed to translate during team meetings (and likewise,
translators might be appointed to explain technical details to
students with non-programming backgrounds). In others,
the two groups held separate ad-hoc meetings, and then
came back together at (translator facilitated) weekly stand-
ups to ensure everything remained on track. Many teams
used international communication platforms to
communicate (especially WeChat). The use of diagrams and
sketches was also a useful cross-language tool.

Although the focus of the module was on teamwork, the
quality of systems produced by the teams was extremely
high. Teams typically identified a large number of
technologies and languages that would be needed to
complete the project, and then put in a considerable amount
of effort to master them (different team members were
allocated different technologies and languages to focus on,
none of which were formal components of either the ACS
or CSSLP programmes). It appears that providing only
limited information at the start of the module prompted the
students to identify required skills for themselves, and then
to share the workload involved in acquiring them.

A common problem with teamwork-based modules is
the feeling of some students that their teammates are not
pulling their weight. The team documentation, individual
reflections and (lack of) complaints all suggest that this
problem largely evaporated, because students with weak
programming skills explicitly acknowledged that they
would take on roles that contributed to overall team output,
even if no programming was involved. It likewise helped
the excellent programmers who were poor at expressing
themselves in writing. Each student was able to use their
own skills to the full, knowing their fellow team members
could be trusted to fill the gaps.

Given the number of students taking the module, one of
the expected challenges was the complexity involved in
managing the module, ensuring that students were able to
learn the course material, and providing timely formative
feedback to the students. But by adopting the module

structure and leveraging the scrum framework, several
forms of formative feedback were provided on a continual
basis through the team mentors/scrum masters, the clients
and also on the feedback on the report of progress provided
by the module tutors after every sprint.

Overall, the clients were pleased with the amount of
work completed by most teams. While some did not deliver
all the features asked for, others put in extra time and
ensured that they delivered all the features in the project.
The level of professionalism displayed by the teams
throughout the project and particularly during the
presentations was commented on by both the clients and the
module tutors.

V. AREAS FOR IMPROVEMENT

While this initial run of the module has gone well, we
feel that a number of changes/additions could be made.
First, to further increase the relevance of this module to the
students’ employability, the students could be assigned
projects hosted on public Git repositories such as GitHub as
this will add to their portfolios for review by potential
employers. This year, the projects were not particularly
confidential, but perhaps still not appropriate to be hosted
publicly.

Secondly, most of the systems were implemented as
web-based software applications that could be tackled by
any team of computer science students but feedback from
CSSLP students shows they lacked opportunities to fully
leverage their specialist knowledge. In future we will
consider sourcing projects that are entirely (or at least, more
specifically) relevant to CSSLP students. This might,
however, mean segregating the ACS and CSSLP students,
and needs further consideration.

Also, the feedback we received suggests that some
teams were confused by the various agile terminologies
presented during the introductory period (although the team
mentors were able to help clarify some of this and the
module tutors provided further slides/resources to help
resolve the problem). In the next run of the module, we
believe it would be beneficial to the students to have more
lectures available for those teams that need them, perhaps
delivered by way of pe-recorded videos providing some
form of blended learning [12].

VI. CONCLUSIONS

Based on module feedback and the students’ individual
reflections, the students gained a wide range of soft skills
including teamwork, project management, communication,
problem-solving, accountability and time management as
well as technical skills such as source control (using Git),
testing, debugging, algorithm development and knowledge
of agile; all of which are relevant for a software engineering
or computer science career in industry.

In this paper, we have presented a unique module design
that focuses on helping students acquire non-technical
competencies that are relevant for a software engineering
career which makes use of a combination of project based
learning and an agile-based scrum framework.

With respect to research question 1 (RQ1), we
conducted a literature review of various approaches that
have been utilised to teach the technical skills required by
employers, including project-based learning, practical
laboratory sessions and traditional teaching approaches. To
teach soft skills, some modules have embedded guest
lectures from industry into their design, having industry
practitioners act as lecturers or mentors, explored project-
based learning with students working as consultants to
companies, and approaches which involve students starting
a start-up or a digital agency. However, in many approaches
the teaching of soft skills was implemented as an ‘add-on’
to modules mostly focused on technical content. Overall,
we found that modules, where a decent balance of technical
and soft skills were acquired by the students, made use of
active learning and contained project elements.

To address RQ2, we reviewed the students' feedback
provided at the end of the module, including individual
reflection submitted by all 105 students, and reflected on
notes made by the module tutors and mentors during the
semester, as well as client feedback. The evidence, though
anecdotal, suggests that students have been able to gain
several key technical skills (new languages, familiarity with
Git, requirement elicitation skills) as well as knowledge of
agile. Moreover, the module appears to have achieved its
learning outcomes of getting students to engage with many
key aspects of team working: presentation, collaboration,
mutual support, project management, communication,
problem-solving, accountability and time management.

With respect to RQ3, the module was designed to
provide students an opportunity to work as constructive and
effective members of a team, and to improve their
professional and interpersonal skills while solving real
world software problems. Through our approach of using
project-based learning facilitated by the use of an agile
based scrum framework, we succeeded in providing the
students an opportunity to learn new technical skills,
acquiring knowledge on agile and experiencing what
working as a software engineer feels like in practice.

Nonetheless, key questions remain. In particular, given
cultural differences in attitudes towards competition, how
much does competition within teams depend on the cultural
backgrounds of its members, and does this have positive or
negative effect on team dynamics? Our experience shows
that language problems can largely be overcome, but how
well do the ad hoc solutions adopted by our teams translate
to the much larger projects prevalent in some IT sectors?
Likewise, we specifically appointed mentors we knew
would be capable of handling the various teams – but in a
more general setting, to what extent would the mentor’s own
experience be a key factor in overcoming problems arising
through multicultural alignments and differences?

In summary, while our approach has many features to
recommend it, and in particular appears to have succeeded
in overcoming problems associated with multicultural team
working, further work is, as always, required.

REFERENCES

[1] S. Heggen and C. Myers, “A Study in Developing Self-Confidence
and Marketable Skills,” pp. 32–39, 2018.

[2] L. M. Grabowski, C. F. Reilly, and W. A. Lawrence-fowler,
“Emulating a Corporate Software Development Environment

Through Collaboration Between Student Projects in Six Courses,”
2014.

[3] N. H. El-khalili, “Teaching Agile Software Engineering Using
Problem- Based Learning,” Int. J. Inf. Commun. Technol. Educ.,
vol. 9, no. September, 2013.

[4] M. E. Morales-Trujillo and G. A. Garcia-Mireles, “Participating in
an industry based social service program: A report of student
perception of what they learn and what they need,” Proc. 2019 Fed.
Conf. Comput. Sci. Inf. Syst. FedCSIS 2019, vol. 18, pp. 861–870,
2019.

[5] P. Grimaldi, L. Perrotta, V. Corvello, and S. Verteramo, “An agile,
measurable and scalable approach to deliver software applications in
a large enterprise,” Int. J. Agil. Syst. Manag., vol. 9, no. 4, pp. 326–
339, 2016.

[6] J. Marino, “Goldman Sachs is a tech company,” Business Insider,
2015. [Online]. Available:
https://www.businessinsider.com/goldman-sachs-has-more-
engineers-than-facebook-2015-4?r=US&IR=T. [Accessed: 28-Dec-
2019].

[7] D. Mishra, A. Mishra, and S. Ostrovska, “Impact of physical
ambiance on communication, collaboration and coordination in agile
software development: An empirical evaluation,” Inf. Softw.
Technol., vol. 54, no. 10, pp. 1067–1078, 2012.

[8] M. Liu and Y.-P. Hsiao, “Middle school students as multimedia
designers: A project-based learning approach,” J. Interact. Learn.
Res., vol. 13, no. 4, pp. 311–337, 2002.

[9] D. Topalli and N. E. Cagiltay, “Improving programming skills in
engineering education through problem-based game projects with
Scratch,” Comput. Educ., vol. 120, no. July 2017, pp. 64–74, 2018.

[10] M. Spichkova, “Industry-oriented project-based learning of software
engineering,” Proc. IEEE Int. Conf. Eng. Complex Comput. Syst.
ICECCS, vol. 2019-Novem, pp. 51–60, 2019.

[11] J. A. Maćias, “Enhancing project-based learning in software
engineering lab teaching through an e-portfolio approach,” IEEE
Trans. Educ., vol. 55, no. 4, pp. 502–507, 2012.

[12] A. Meikleham, R. Hugo, and R. Brennan, “BLENDED AND
PROJECT-BASED LEARNING : THE GOOD , THE BAD , AND
THE UGLY,” in 14th International CDIO Conference, 2018.

[13] D. Petkovic, R. Todtenhoefer, and G. Thompson, “Teaching
Practical Software Engineering and Global Software Engineering :
Case Study and Recommendations,” pp. 19–24, 2006.

[14] A. Heberle, R. Neumann, I. Stengel, and S. Regier, “Teaching Agile
Principles and Software Engineering Concepts through Real-Life
Projects,” pp. 1723–1728, 2018.

[15] J. Siegeris and H. Barke, “Agile for agile - new ideas for the
transformation of student projects Juliane,” in Lecture Notes in
Informatics (LNI), Gesellschaft für Informatik, 2019, no. October,
pp. 151–163.

[16] V. Devedžić and S. R. Milenković, “Teaching agile software
development: A case study,” IEEE Trans. Educ., vol. 54, no. 2, pp.
273–278, 2011.

[17] J. H. Sharp and G. Lang, “Agile in teaching and learning: Conceptual
framework and research agenda,” J. Inf. Syst. Educ., vol. 29, no. 2,
pp. 45–52, 2018.

[18] C. Sibona, S. Pourreza, and S. Hill, “Origami: An active learning
exercise for scrum project management,” J. Inf. Syst. Educ., vol. 29,
no. 2, pp. 105–116, 2018.

[19] M. Holcombe, M. Gheorghe, and F. Macias, “Teaching XP for real:
Some initial observations and plans,” pp. 14–17, 2001.

[20] A. Stratton, M. Holcombe, and P. Croll, “Improving the quality of
Software Engineering courses through University Based Industrial
Projects .,” 1998.

[21] S. Ul Huda, T. S. Ali, K. Nanji, and S. Cassum, “Perceptions of
Undergraduate Nursing Students Regarding Active Learning
Strategies, and Benefits of Active Learning,” Int. J. Nurs. Educ., vol.
8, no. 4, p. 193, 2016.

[22] S. Freeman et al., “Active learning increases student performance in
science, engineering, and mathematics,” Proc. Natl. Acad. Sci., vol.
111, no. 23, pp. 8410–8415, Jun. 2014.

[23] L. O. Seman, R. Hausmann, and E. A. Bezerra, “On the students’
perceptions of the knowledge formation when submitted to a
Project-Based Learning environment using web applications,”
Comput. Educ., vol. 117, no. October 2017, pp. 16–30, 2018.

[24] M. Bernstein, K. M. Fitzgerald, J. P. Macdonell, and A. I.
Concepcion, “AlgorithmA Project : The Ten-Week Mock Software
Company,” pp. 142–146, 2005.

[25] R. E. Bruhn and J. Camp, “Capstone Course Creates Useful Business
Products and Corporate-Ready Students,” vol. 36, no. 2, pp. 87–92,
2004.

[26] K. Gary, B. Gannod, G. Gannod, H. Koehnemann, T. Lindquist, and
R. Whitehouse, “Work in Progress – The Software Enterprise,” pp.
19–20, 2005.

[27] A. Rusu and M. Swenson, “An Industry-Academia Team-Teaching
Case Study for Software Engineering Capstone Courses,” pp. 18–
23, 2008.

[28] F. Meawad, “The Virtual Agile Enterprise : Making the Most of a
Software Engineering Course,” pp. 324–332, 2011.

[29] K. Buffardi, C. Robb, and D. Rahn, “Learning Agile with Tech
Startup Software Engineering Projects,” pp. 28–33, 2017.

[30] L. Johns-boast and S. Flint, “Simulating Industry : An Innovative
Software Engineering Capstone Design Course,” in 2013 IEEE
Frontiers in Education Conference (FIE), 2013, pp. 1782–1788.

[31] J. Vanhanen, T. O. A. Lehtinen, and C. Lassenius, “Teaching Real-
World Software Engineering through a Capstone Project Course
with Industrial Customers,” in Proceedings of the First International
Workshop on Software Engineering Education Based on Real-
World Experiences, 2012, pp. 29–32.

[32] R. K. Yin, Case Study Research and Applications: Design and
Methods. SAGE Publications, 2017.

[33] D. E. Gray, Doing Research in the Business World. SAGE
Publications, 2016.

[34] D. Silverman, Interpreting Qualitative Data. SAGE Publications,
2015.

[35] M. Kropp, A. Meier, and R. Biddle, “Teaching agile collaboration
skills in the classroom,” Proc. - 2016 IEEE 29th Conf. Softw. Eng.
Educ. Training, CSEEandT 2016, pp. 118–127, 2016.

