
This is a repository copy of Tighter dimensioning of heterogeneous multi-resource
autonomous CPS with control performance guarantees.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/157533/

Version: Accepted Version

Proceedings Paper:
Roy, Debayan, Chang, Wanli orcid.org/0000-0002-4053-8898, Mitter, Sanjoy et al. (1 more
author) (2019) Tighter dimensioning of heterogeneous multi-resource autonomous CPS
with control performance guarantees. In: DAC '19: Proceedings of the 56th Annual Design
Automation Conference 2019. .

https://doi.org/10.1145/3316781.3317925

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Tighter Dimensioning of Heterogeneous Multi-Resource
Autonomous CPS with Control Performance Guarantees

Debayan Roy
Technical University of Munich

debayan.roy@tum.de

Wanli Chang
University of York

wanli.chang@york.ac.uk

Sanjoy K. Mitter
Massachusetts Institute of Technology

mitter@mit.edu

Samarjit Chakraborty
Technical University of Munich

samarjit@tum.de

ABSTRACT

In modern autonomous systems, there is typically a large number
of connected components realizing complex functionalities. For
example, in autonomous vehicles (AVs), there are tens of millions of
lines of code implemented on hundreds of sensors, controllers, and
actuators. AVs have been deployed, mostly in trials and restricted
environments, showing that substantial progress has been made in
functionality development. However, they are still faced with two
major challenges: (i) performance guarantee of safety-critical func-
tions under all possible scenarios; (ii) functionality implementation
with limited resources. These two challenges are conflicting because
safety guarantees necessitate a worst-case analysis that is often
very pessimistic for complex hardware/software systems, and thus
require more resources. To address this, we study an abstraction of
a heterogeneous cyber-physical systems architecture consisting of
a mix of high- and low-quality resources, such as time- and event-
triggered resources, or wired and wireless resources. We show that
by properly managing such a mix of resources and formulating
a formal verification (model checking) problem, it is possible to
tightly dimension the high-quality resource to the minimum (50%
in certain cases) while providing control performance guarantees.

KEYWORDS

Cyber-physical systems, autonomous vehicles, heterogeneous re-
source, resource-efficient design, formal verification

1 INTRODUCTION

In cyber-physical systems (CPS), there is a tight coupling between
the dynamics of the physical plants and the cyber platform, imple-
menting control algorithms using computation and communication
resources. Autonomous systems (AS), such as autonomous vehicles
(AVs), are instances of CPS, where safety is of utmost importance. It
is required to guarantee safe behavior of the AS under all possible
scenarios. Currently, the electrical and electronic (E/E) architec-
tures of AS are highly heterogeneous consisting of different types of

This work was supported by Deutsche Forschungsgemeinschaft (DFG) through the TUM Interna-
tional Graduate School of Science and Engineering (IGSSE).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

DAC ’19, June 2ś6, 2019, Las Vegas, NV, USA

© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6725-7/19/06. . . $15.00
https://doi.org/10.1145/3316781.3317925

Steady Non-Preemptive TT

ET Wait
Highest
Priority?

Slot
Idle?

Preempt
Slot?

Preemptive TTET Safe

Figure 1: The proposed switching control strategy.

resources. A high-quality resource often has straightforward timing
guarantees while being scarce and expensive. The challenge is to
achieve tighter dimensioning of the high-quality resources while sat-
isfying the performance requirements. This is particularly important
for the cost-sensitive domains, such as AVs.

High-level idea: In this context, we consider a multi-resource CPS
setup. A switching control strategy is proposed that exploits the
heterogeneity in platform architecture to achieve better resource
utilization. A formal verification problem is formulated to ensure
that the control performance requirements are satisfied under all
scenarios. With the interplay of control theory, scheduling, and
model checking, the resource provisioning is tightened and safe
behavior is guaranteed. While formal methods often suffer from
state space explosion, we are able to get a result within reasonable
time (seconds to 15 minutes).

Technical contributions and related work:We study a problem
setting, where multiple distributed control applications in an AV
exchange control signals over a FlexRay [5] bus. FlexRay allows
both time-triggered (TT) communication (high-quality resource)
and event-triggered (ET) communication (low-quality resource).
Note that the essential idea proposed in this paper can be generally
applied to other types of heterogeneous resources, such as wired
and wireless communication. Previous works have considered a
straightforward switching control strategy [9], where multiple ap-
plications share one TT slot and a non-preemptive scheduling policy
decides which application gets the slot. An application uses the
ET communication in the steady state and requests for a TT slot
during a disturbance. Once it gets the TT slot, it will continue to
use it until the disturbance is completely rejected. Such a switching
strategy leads to a very conservative provisioning of TT slots.

In this work, we precisely study the switching dynamics and pro-
pose a control strategy that enables a tighter resource dimensioning.
For a certain timeTw that an application has waited for the TT slot
after a disturbance, we can predetermine the minimum time T−

dw
that it must use the slot to meet the performance requirement. Cor-
responding toTw , there is also a maximum timeT+

dw
after which the

performance will not get improved even if the application contin-
ues to use the TT communication. Hence, the proposed switching
strategy is as depicted in Fig. 1. Here, once an application gets the
TT slot, it uses the slot free of preeemption till T−

dw
. After T−

dw
, the

priority of the application is set to be the lowest, i.e., any applica-
tion experiencing disturbance and requesting the TT slot, is able
to preempt it. However, if the application is not preempted then it
continues to use the TT slot till T+

dw
to improve its performance.

AfterT+
dw

, it switches back to the ET communication. Essentially, we

provide each application with the minimum TT resource to guarantee
the required performance. And the goal is to let as many applications
share one TT slot as possible.

Towards this goal, we need to solve a verification problem. That
is, when multiple applications share a TT slot, can we formally
guarantee that each will meet its performance requirement in all
possible scenarios? Previous work has approached this as a standard
schedulability analysis problem introducing significant conserva-
tiveness [9]. We formulate an exact timed automata model of the
system and apply model checking for the verification. While there
have been previous works on formulating schedulability analysis as
model checking problems (e.g., [6], [4]), the main challenge here is
to accurately characterize the interplay between the control system
dynamics and the scheduling policy.

Studying the closed-loop dynamics of the switched system, we
can determine a maximum timeT ∗

w that an application can wait (af-
ter a disturbance) for the TT slot without violating its performance
requirement. We can also calculate T−

dw
and T+

dw
for all possible

values of Tw . Using these timing variables T−
dw

, T+
dw

, Tw and T ∗
w , it

is possible to abstract the behavior of the system during a distur-
bance as a timed automaton. Furthermore, we consider that when
multiple applications are simultaneously contesting for the TT slot,
the application closest to its maximum waiting time T ∗

w has the
highest priority and gets the slot. Such a scheduling policy can also
be represented as a timed automaton. Therefore, the whole system
can be modeled as a network of timed automata. And we can verify
that each of the applications must get TT slot before its T ∗

w expires.
Note that the controllers are implemented according to a cer-

tain sampling period, and therefore, control signals are also sent
at regular intervals. Correspondingly, switching between ET and
TT communications can only take place at discrete time instants.
Moreover, we are only interested in switching instants that satisfy
the performance requirement while all other possibilities are ab-
stracted byT ∗

w . Therefore, the timing variables can only take a finite
number of values (very few). And there is no issue of state-space
explosion for this problem formulation.

2 PRELIMINARIES

In this section, we briefly discuss the background on heterogeneous
communication resources and how to model and design control
systems for different types of resource.

Heterogeneous communication resources: In this work, we
consider a provision of both TT and ET communication, such as in
FlexRay. A FlexRay bus cycle is composed of a static and a dynamic
segment. The static segment exhibits TT communication and com-
prises a number of TDMA (time division multiple access)-like slots
of equal length Ψ. A message assigned to a static slot is transmitted
within the corresponding time window. Thus, the start and the
end of a message transmission are precisely known. The dynamic

segment implements ET communication and is partitioned into a
number of mini-slots of equal length ψ , where typically ψ ≪ Ψ.
A message assigned to the dynamic segment may consume more
than one mini-slot. Thus, the timing of a message depends on other
preceding messages. This results in time-varying transmission de-
lay while the worst case may still be determined [11]. Note that
the proposed switching between TT and ET communication would
require FlexRay to be runtime-configurable, which is not the case.
Towards this, a communication middleware is proposed in [8].

Control systems:We consider discrete-time linear time-invariant
(LTI) plant models given by

x[k + 1] = ϕx[k] + Γu[k], y[k] = Cx[k], (1)

where x , u and y represent respectively the plant states, the control
input, and the system output. ϕ, Γ, and C are system matrices. x[k]
is the plant state at the time instant t[k]. In a typical distributed
setting, control data is sent over a communication bus, such as
FlexRay. The sampling period between two consecutive sensing
operations at t[k] and t[k + 1] is a constant h.

For FlexRay, time-deterministic static slots allow to optimally
implement controllers with negligible sensing-to-actuation delay.
The state-feedback controller can be designed as

u[k] = −KT x[k], (2)

where KT is the feedback gain. Combining 1 and 2, the closed-loop
system dynamics is

x[k + 1] = (ϕ − ΓKT)x[k]. (3)

Eigenvalues of the closed-loop system matrix ϕ − ΓKT determine
the control performance, such as settling time. Optimization-driven
pole-placement controller design technique can be found in [2].

On the other hand, when the control message is transmitted over
the dynamic segment, the worst-case sensing-to-actuation delay
needs to be considered. In this work, we assume a one sample delay
where at t[k], u[k − 1] is applied to the plant and is held till t[k + 1].
Thus, the plant model becomes

x[k + 1] = ϕx[k] + Γu[k − 1], y[k] = Cx[k]. (4)

In this case, an augmented state vector z[k] =
[
x[k] u[k − 1]

]T

is considered, and therefore, the control law becomes

u[k] = −KEz[k] = −KE

[
x[k]

u[k − 1]

]
. (5)

For the system with augmented state z[k], standard pole-placement
can be applied to design KE . Details can be found in [2].

3 SWITCHING CONTROL STRATEGY

We consider a problem setting where several distributed control
applications {Ci } share a FlexRay bus. These applications can send
control data in either or both of the static and the dynamic segments.
For communication over the static segment, negligible sensing-to-
actuation delay can be realized, and accordingly, a fast stabilizing
controller KT can be designed. However, when data is sent over
the dynamic segment, provisioning for the worst-case may only
allow to design a slow controller KE .

Typically, safety-critical control applications have stringent per-
formance requirements. As a performance metric, we define settling
time J as the time taken by a controller to bring the system back to
a steady state after a disturbance. We denote J∗ as the minimum
settling time requirement. Let JT (or JE) be the settling time of the

system when KT (or KE) is applied and static (or dynamic) segment
is used for data transmission. If JT < J∗ < JE , the current practice
is to reserve a TT slot for the application to guarantee safety. When
several applications share a FlexRay bus, TT slots might become
scarce. And the main challenge is to use these slots efficiently.

In this context, we exploit the hybrid communication protocol
and propose a bi-modal switching control strategy. In mode MT ,
KT is applied to the system and a TT slot is used. Thus, the system
dynamics is given by (1) and (2). In modeME , control input is deter-
mined by KE and is sent over the dynamic segment. Accordingly,
the closed-loop system model is represented by (4) and (5). When
the system is in steady state, it is sufficient to apply stable control,
and thus, the controller can stay in mode ME . However, when a
disturbance arrives, the controller must be fast enough to stabilize
the system within J∗. As JE > J∗ > JT , the controller must switch
toMT for a certain minimum time duration to ensure J ≤ J∗.

Based on the above observation, we can infer that a TT slot might
be shared among multiple applications. However, when disturbance
arrives simultaneously at two or more application, then only one
gets the slot while others wait. Let a controller switch fromME to
MT after a wait timeTw . For a certainTw , letT−

dw
be the minimum

dwell time the controller must stay at MT to meet J ≤ J∗ while
T+
dw

be the maximum dwell time after which even if it stays atMT

it will not improve the settling time. Accordingly, the proposed
switching strategy considers that once an application gets a TT
slot, it uses the slot non-preemptively till T−

dw
after which it can

be preempted by a waiting application. However, when no other
application is contesting the slot then it can be used till T+

dw
. Once

an application is preempted it will not come back toMT even if it
has not stayed till T+

dw
.

Given the requirement J∗ and the controllers KT and KE , we can
simulate the system for all possible switching sequences allowed
by the proposed strategy. Thus, we can precalculate T−

dw
and T+

dw
for all possible Tw and also find the maximum time T ∗

w after which
switching toMT will not give J ≤ J∗. Note that we can choose Tw
with a certain granularity to enhance scalability. This approach also
allows to implement the control strategy using less memory. There
is a trade-off between conservativeness and memory requirement.

Comments on switching stability: In this work, we assume the
standard sporadic disturbance model with a minimum disturbance
inter-arrival time r , where J∗ < r . If we can guarantee that J ≤ J∗

using the proposed control strategy then we can conclude that the
systems is stable. However, the objective here is to meet the require-
ment with minimal samples ofMT . Intuitively, if two control modes
are not switching stable, the energy of the system may increase
on switching. For certain switching sequences, this might lead to a
higher settling time. Thus, we suggest that the controllers KT and
KE are designed considering switching stability, i.e., the closed-loop
systems inMT andME must have a common Lyapunov function [7].
In Sec. 3.1, using a motivational example, we experimentally evalu-
ate the impact of switching stability on the settling time.

3.1 A motivational example

A DC motor position control system [13] is considered for which
the discrete-time plant model is given by

ϕ =



1 0.0182 0.0068
0 0.7664 0.5186
0 −0.3260 0.1011


, Γ =



0.0015
0.1944
0.2717


, C =

[
1 0 0

]
. (6)

0 0.2 0.4 0.6 0.8 1

time (s)

0

0.2

0.4

0.6

0.8

1

y
(t

)

K
T

K
E

s

K
E

u

4K
E

u
+4K

T
+nK

E

u

4K
E

s
+4K

T
+nK

E

s

Figure 2: Response curves for different control strategies.

0
10

0.2

8

0.4

40
S

e
tt

lin
g

 T
im

e
(s

)

0.6

6 30

Dwell Time

0.8

Wait Time

4 20

1

2 10
0 0

K
T
+K

E

s

K
T
+K

E

u

Figure 3: Performance with and without switching stability.

It is desired to keep the position at y = 0 and on disturbance the

system moves to a state given by x =
[
1 0 0

]T
. The settling

time threshold is assumed as | |y[k]| | ≤ 0.02, ∀k ≥ J .
For a sampling period of h = 0.02s, we design a controller KT

for modeMT and two controllers Ks
E
and Ku

E
for modeME . They

are given as follows:

KT =
[
30 1.2626 1.1071

]
, (7)

Ks
E =

[
13.8921 0.5773 0.8672 1.0866

]
, (8)

Ku
E =

[
2.9120 −0.6141 −1.0399 0.1741

]
. (9)

Switching between Ks
E
and KT is stable while this is not the case

for Ku
E
and KT .

As shown in Fig. 2, the settling time for KT is 0.18s while for Ks
E

and Ku
E
it is 0.68s. The system response using the switching control

strategy for two different cases are also plotted. In both cases, the
application stays inME for 4 samples after a disturbance, followed
by 4 samples in MT , before returning to ME again. As expected,
better settling times are obtained by using 4 samples of MT as
compared to none. However, when Ks

E
and KT are used it gives a

better settling time of 0.28s, as compared to 0.58s which is obtained
when Ku

E
and KT are used. This difference in performance strongly

suggests that, for our proposed strategy, the two controllers used
in modesMT andME must satisfy switching stability constraint.

We have also simulated the system for all possible switching
combinations considering both pairs of controllers, i.e., KT + K

s
E

and KT + K
u
E
. J as a function of Tw and Tdw (dwell time) is plotted

in Fig. 3. Here, Tw and Tdw are measured in terms of no. of sam-
ples. The result shows that the system design without considering
switching stability is resource-inefficient.

-1 0 1 2 3 4 5 6 7 8 9 10 11 12

T
w

 (no. of samples)

2

3

4

5

6

7

T
d
w

-
 a

n
d
 T

d
w

+

 (
n
o
.
o
f
s
a
m

p
le

s
)

0.36

0.28

0.34 0.36 0.34 0.36 0.34 0.36 0.36

0.34

0.36

0.36

0.18 0.2

0.22 0.24 0.26

0.26

0.28 0.3

0.32

0.34

T
dw

-
T

dw

+

Figure 4: Minimum andmaximum dwell times vs wait time.

Now, using KT and Ks
E
, the system is simulated for all possible

switching combinations according to the proposed strategy. For
J∗ = 0.36s, we determine the minimum and maximum dwell times
(T−
dw

and T+
dw

) for each possible wait time Tw , as shown in Fig. 4.

Each point is annotated with the corresponding settling time val-
ues in seconds. Note that the minimum achievable settling time
(corresponding to T+

dw
) is non-decreasing with increase in Tw . For

Tw = 0, if we switch from MT to ME after 6 samples, we can still
get the same performance as with a dedicated TT slot. Thus, it is
very pessimistic to stay inMT till the whole disturbance is rejected.
It can be observed that T−

dw
and T+

dw
varies with Tw .

4 CONTROL PERFORMANCE VERIFICATION

We consider a scheduling policy similar to the earliest deadline first.
Here, the deadline D is the time till which an application must be
allocated a TT slot, i.e., D = T ∗

w − Tw . When a slot is idle or the
application using it can be preempted, the waiting application with
the lowest value of D will get it. The scheduler can therefore be
implemented as a multiplexer which selects the application that
will use the TT slot for data transmission. We understand that such
an implementation has a certain computation overhead, however,
the main focus of this work is to minimize the use of expensive
communication resource.

For this policy and the proposed control strategy, we must verify
that all applications mapped on a slot will meet their requirements
in all possible scenarios. The problem can be reformulated to verify
that each application gets the TT slot before T ∗

w has elapsed. To-
wards this, we propose to model the whole system as a network of
timed automata and verify the model using UPPAAL [1]. Here, we
abstract the control dynamics using timing variables like Tw , T

∗
w ,

T−
dw

and T+
dw

. For each application, T ∗
w and the variation of T−

dw
and T ∗

dw
with Tw can be predetermined. Here, the assumption is

that the control models are fully known with no uncertainties.
A timed automaton (TA) is a finite state automaton with a finite

set of real-valued clocks which progress synchronously. Different
TAs can communicate via shared variables and synchronization
channels. Our system model consists of TAs representing the appli-
cations, the scheduler and the arbitration policy.

There are two main challenges in modeling the system as timed
automata. (i) The system under study is discrete-time, i.e., distur-
bances can be sensed only at periodic instants. However, timed
automata has continuous-time semantics. Thus, it is challenging
to model that the scheduler sees multiple slot requests at the same

C

leave[id]==1

leaveTT[id]?

get[id]=0

TT
ET_SAFE

time[id]<=A[id].r

time[id]==A[id].r

Steady
req=1

dist=id

time[id]=0

reqTT!

Dist_init ET_Wait

time[id]>

A [id].mWT

Error

getTT[id]?

get[id]==1

DT-[id]=minTT()

DT+[id]=maxTT()

leave[id]=0

Figure 5: An application automaton.

C C

buffer0.len==0

donePolicy!

time[buffer0.req[buffer0.len-1]]=0,

WT[buffer0.req[buffer0.len-1]]=0

buffer0.len>0

findPlace!

callPolicy?

remove_buffer0()

placeFound?

C C
insert_buffer()

place=0
findPlace?

place==buffer.len ||
time[buffer0.req[buffer0.len-1]]-
time[buffer.req[place]] >
A [buffer0.req[buffer0.len-1]].mWT-
A [buffer.req[place]].mWT

place++

place<buffer.len &&
time[buffer0.req[buffer0.len-1]]-
time[buffer.req[place]]<=
A [buffer0.req[buffer0.len-1]].mWT-
A [buffer.req[place]].mWT

Figure 6: Policy (top) and Sort (bottom) automata.

time. (ii) For a certain Tw , the values of T
−
dw

and T+
dw

need to be

looked up from a precomputed table. Tw can be measured using
a clock. However, this clock cannot be used to reference table el-
ements. Next, we describe the TAs used to model the system and
explain how these challenges are addressed.

Application automaton: Each application automaton has an id
and uses a clock time[id]. As depicted in Fig. 5, it starts in the Steady
state. In the event of a disturbance, it requests the scheduler for a
TT slot using the synchronization channel reqTT and moves to the
state ET_Wait. In this state, it waits for the TT slot. Here, time[id]
measures the time that has elapsed since the disturbance is sensed.
The transition from the ET_Wait state to the Error state can be taken
if maximum waiting time has elapsed, i.e., time[id] is greater than
T ∗
w . Thus, an application meets the requirement in all scenarios
only if it never reaches the Error state. On the other hand, TT slot
allocation is notified via the synchronization channel getTT[id].
Correspondingly, the automaton takes the transition to the state TT.
During this transition, the minimum and the maximum dwell times
(DT-[id] and DT+[id]) is looked up based on the shared variable
WT[id] which stores Tw . The scheduler preempts the application
from the slot via the synchronization channel leaveTT[id]. The
automaton correspondingly moves to the state ET_SAFE. It waits
here till the minimum disturbance inter-arrival time elapses, i.e.,
time[id] ≤ r , after which it moves to the Steady state again.
Automata for arbitration policy: Two nested TAs (Policy and
Sort), as shown in Fig. 6, implement the arbitration policy. They
basically sort the slot requests and keep them in the order it will
be served. The scheduler maintains two queues, i.e., buffer0 and
buffer. Any requests coming in between two time samples are first

C

C

C

CC C

C

C C

C

slot_idle()

leave[app]=1

run=0
cT==DT+[app]

d
o

n
e

P
o

li
cy

?

callPolicy!

buffer0.len>0
upd_WT()

x==1

req==1

reqTT?

x<=1

x=0

cT>=DT-[app] &&

cT<DT+[app] &&

empty()

cT>=DT-[app]

&& cT<DT+[app]

&& !empty()!e
m

p
ty

()

g
e

t[
b

u
ff

e
r.

re
q

[0
]]

=
1

,

a
p

p
=

b
u

ff
e

r.
re

q
[0

],

ru
n

=
1

remove(),

cT=0, x=0

getTT[app]!

insert_buffer0(),

req=0

cT
<

=
D

T
-[

a
p

p
]

leaveTT[app]!

Figure 7: Scheduler automaton.

stored in buffer0. At each time sample, the scheduler invokes these
automata to transfer requests from buffer0 to buffer and sort them
according to their respectively deadlines. Time does not pass dur-
ing this operation and requests are served from buffer only after
this operation. This partially addresses the first challenge where
scheduler sees the disturbances that arrive during a period together
at the next time instant. Here, Policy automaton checks for new
requests in buffer0. For each new request in buffer0, Sort is invoked
to insert the request correctly in buffer. Note that when a request is
transferred from buffer0 to buffer, the corresponding clock time[id]
and the waiting time counterWT[id] are reset. This marks the time
sample when the scheduler sees the disturbance for the first time.
To place a new request correctly, Sort iterates through the requests
in buffer one by one and compares their absolute deadlines to that
of the incoming request.
Scheduler automaton: It implements the scheduler and is shown
in Fig. 7. It can register asynchronous requests from applications
in between time samples via the synchronization channel reqTT.
These requests are stored with the application id in buffer0. Besides,
it also invokes a sequence of operations at every time sample based
on a clock x which resets every time unit. This is done to implement
a discrete-time scheduler and thereby addresses the first challenge.
At each sample, the scheduler first increments the waiting time
counter of each applicationWT[id] in ET_Wait state.WT[id] is used
to reference the look-up table of minimum and maximum dwell
times during the transition to the TT state. This addresses the sec-
ond challenge. After updating the wait time counters, the scheduler
automaton calls Policy and Sort if buffer0 is not empty. After the
requests are arranged in buffer, it checks if the slot is idle. When
the slot is free and the buffer is not empty, the first application in
the buffer gets the slot and the corresponding request is removed
from the buffer. The application is simultaneously notified via the
synchronization channel getTT and the clock cT is reset. On the
other hand, if the slot is occupied then the scheduler checks if the
allocated application can be preempted. Here, it uses the clock cT
and the shared variable DT-[·] to check if the minimum dwell time
has elapsed. If yes, the application is preempted via the synchro-
nization channel leaveTT[·]. After an application is preempted, the
free slot can be assigned to a waiting application (if any). After
completion of all the operations, the clock x is reset.

Verification: The whole system is schedulable or the performance
requirements of all applications will be met if no application reaches
its Error state. Thus, the problem boils down to reachability analysis.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

time (s)

0

0.2

0.4

0.6

0.8

1

y
(t

)

C
3
 (TT)

C
5
 (TT)

C
4
 (TT)

C
1

(TT)

C
3

C
4

C
5

C
1

Figure 8: Responses of C1, C3, C4 and C5 using slot S1.

5 EXPERIMENTAL RESULTS

Case Study: 6 control applications are considered. C1 [13] and
C2 [10] are DC motor position control. C3 [3], C4 [10] and C5 [12]
represent DC motor speed control. C6 [10] is a cruise control. The
plant models are provided in Table 1. For h = 0.02s, controllers
KT and KE (see Table 1) are designed considering the switching
stability condition. For the given J∗, KT and KE , we can simulate
the system to calculate JT , JE , T

∗
w , T

−
dw

and T+
dw

. All these results

are shown in Table 1. Note that T−
dw

and T+
dw

are arrays and array

indices give Tw where 0 ≤ Tw ≤ T ∗
w . These arrays can be stored in

a memory-efficient way exploiting the fact that T−
dw

and T+
dw

take

only a fewvalues.

Resource mapping:We apply the first-fit heuristic to map appli-
cations to slots. Applications are first sorted in the ascending order
of T ∗

w . When two applications have the same T ∗
w , the one with a

lower value of T−∗
dw

is considered first (T−∗
dw

is the maximum value

of T−
dw

for 0 ≤ Tw ≤ T ∗
w). Accordingly, the applications are sorted

as {C1,C5,C4,C6,C2,C3}. We start with one slot and map the first
application in this list to the slot. Subsequently, we pick one ap-
plication at a time in the sorted order and try to first map it to an
existing slot. If performance verification fails, we assign a new slot
for the application. To verify control performance of applications
mapped onto a slot, we use UPPAAL (as described in Sec. 4). Apply-
ing this mapping algorithm, we obtain the following slot partitions:
(i) {C1,C5,C4,C3} mapped to slot S1 and (ii) {C6,C2} share slot S2.

We also apply the two scheduling strategies proposed in [9] on
the case study. The first strategy is similar to the standard non-
preemptive deadline monotonic scheme. In the second strategy, the
slot requests from the lower priority applications are delayed to
reduce the blocking time for higher priority applications. Using the
schedulability analysis and the first-fit heuristic proposed in [9],
these applications require minimum 4 slots to meet their require-
ments. The slot partitions are {C1,C5}, {C4,C3}, {C6} and {C2}.
Thus, our proposed switching control strategy allows a tighter and
accurate dimensioning of TT slots and saves 50% slots.

Simulation results: Using UPPAAL, we simulate the timed au-
tomata models representing two slot partitions for the following
two cases: (i) Disturbances arrive simultaneously at C1, C3, C4 and
C5. (ii) Disturbance arrives at C6 10 samples after the disturbance
at C2. Using the obtained switching sequences, we simulate the
control loops in MATLAB. The response curves for the two cases
are shown in Fig. 8 and 9 respectively. The shaded regions indicate

Table 1: Case study data and results (Time is measured in no. of samples)

Ci Plant Model KT KE r J ∗ JT JE T ∗
w T −

dw
T +
dw

C1 Eq.(6) Eq. (7) Eq. (8) 25 18 9 35 11
[3,4,3,3,3,3,
3,3,3,4,4,5]

[6,6,5,5,5,6,
5,5,4,4,5,5]

C2
ϕ =

[
1 0.0117 0.0001
0 0.3059 0.0018
0 −0.0021 −1.2228 × 10−5

]

,

Γ =
[
0.2966 24.8672 0.0797

]T
, C =

[
1 0 0

]

[
0.1198
−0.0130
−2.9588

]T 

0.0864
−0.0128
−1.6833
0.4059



T

100 25 15 50 13
[7,7,6,7,6,7,6,
7,6,7,6,7,7,8]

[10,10,9,10,8,9,
9,10,8,8,9,8,8,8]

C3 ϕ =

[
0.9900 0.0065
−0.0974 0.0177

]
, Γ =

[
2.8097
319.7919

]
, C =

[
1 0

] [
0.0500
−0.0002

]T [
0.0336
0.0004
0.4453

]T
50 20 10 31 15

[4,4,4,4,4,4,4,4,
4,4,4,4,4,4,4,4]

[8,8,7,7,7,6,6,6,
6,5,5,5,5,4,4,4]

C4 ϕ =

[
0.8187 0.0178
−0.0004 0.9608

]
, Γ =

[
0.0004
0.0392

]
, C =

[
1 0

] [
100.0000
15.6226

]T [
−77.8275
24.3161
1.0265

]T
40 19 10 31 12

[5,5,5,5,5,5,5,
5,5,5,5,5,5]

[9,8,8,8,8,7,7,
7,7,6,6,6,5]

C5 ϕ =

[
0.8187 0.0156
−0.0031 0.7408

]
, Γ =

[
0.0034
0.3456

]
, C =

[
1 0

] [
10.0000
1.0524

]T [
−2.4223
0.7014
0.2950

]T
25 18 10 25 12

[4,3,3,3,3,3,3,
4,4,4,4,4,4]

[9,8,7,8,7,6,7,
6,5,5,4,4,4]

C6 ϕ = −0.999, Γ = 1.999 × 10−5 , C = 1 15000

[
8125.6
0.8659

]T
100 20 11 41 12

[7,8,7,8,7,8,7,
8,7,8,7,8,8]

[11,11,10,10,10,
10,9,9,9,8,8,8,8]

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

time (s)

0

0.2

0.4

0.6

0.8

1

y
(t

)

C
2
 (TT)

C
6
 (TT)

C
6

C
2

Figure 9: Responses of C2 and C6 using slot S2.

the slot occupants. It can be verified that all applications meet their
requirements.C3 uses S1 forT

+

dw
= 5 slots as there is no preemption

while all others using S1 are preempted at T−
dw

. C2 and C6 are not

preempted and can achieve the maximum performance equal to JT .
C2 uses only 10 TT samples to achieve a J = JT = 0.3s while the
conservative switching in [9] would requireC2 to stay in TT for 15
samples and still obtain the same performance.

Comments on verification time: In our case study, all except one
verification took less than a minute. A particular case of mapping
{C1,C5,C4,C3} to one slot took close to 5 hours. However, it is
possible to accelerate the verification if we do not consider infinite
instances of disturbance. And for each application, we can calculate
themaximumnumber of disturbance instances in other applications
that can coincide with its disturbance. Accordingly, we can adapt
themodel and verify.With this approach, we can verify themapping
of {C1,C5,C4,C3} in one slot within 15 minutes (i.e., a speed up of
20 times). We used a computer with Intel(R) Core(TM) i7 − 5600U
CPU@2.60 GHz processor and 8 GB RAM for the verification. Note
that for the problem setting we study here, it may not be required
to analyze too many applications in one slot. And moreover, since
this whole process is offline, time is not the main constraint here.

6 CONCLUDING REMARKS

In this paper, we propose a resource-efficient switching control
strategy for autonomous CPS exploiting heterogeneous platform
architectures. The proposed strategy ensures that an application
gets the high quality resource for a certain minimum time such

that its performance requirement is met. To accurately provision
for the high quality resources, we model the applications and the
scheduling policy as timed automata. We apply model checking to
verify that each application meet its control requirement. Although
our proposed scheme can achieve tighter resource dimensioning, it
does not optimize the average control performance. We preempt an
application as soon as the minimum dwell time expires in case there
is a waiting application. However, in certain cases, delaying the
preemptionmight improve the performance of the current occupant
of the high quality resource without degrading the performance of
the waiting applications. In the future, we can investigate if machine
learning techniques can improve the decision making while still
guaranteeing a minimum control performance.

REFERENCES
[1] G. Behrmann, A. David, and K. G. Larsen. 2006. A Tutorial on UPPAAL 4.0.

Retrieved Nov 24, 2018 from http://www.uppaal.org/
[2] W. Chang and S. Chakraborty. 2016. Resource-Aware Automotive Control Sys-

tems Design: A Cyber-Physical Systems Approach. Foundations and Trends in
Electronic Design Automation 10, 4 (2016), 249ś369.

[3] W. Chang, A. Pröbstl, D. Goswami, M. Zamani, and S. Chakraborty. 2014. Battery-
and Aging-Aware Embedded Control Systems for Electric Vehicles. In Real-Time
Systems Symposium (RTSS).

[4] A. David, J. Illum, K. G. Larsen, and A. Skou. 2009. Model-based framework
for schedulability analysis using uppaal 4.1. Model-Based Design for Embedded
Systems.

[5] Flexray Consortium. 2005. The FlexRay Communications System Specifications.
Ver. 2.1.

[6] Z. Gu, Z. Wang, H. Chen, and H. Cai. 2014. A model-checking approach to
schedulability analysis of global multiprocessor scheduling with fixed offsets.
International Journal of Embedded Systems 6 (2014), 176ś187.

[7] H. Lin and P. J. Antsaklis. 2009. Stability and Stabilizability of Switched Linear
Systems: A Survey of Recent Results. IEEE Trans. Automat. Control 54, 2 (Feb.
2009), 308ś322.

[8] D. Majumdar, L. Zhang, P. Bhaduri, and S. Chakraborty. 2015. Reconfigurable
communication middleware for FlexRay-based distributed embedded systems.
In International Conference on Embedded and Real-Time Computing Systems and
Applications (RTCSA).

[9] A. Masrur, D. Goswami, S. Chakraborty, J.-J. Chen, A. Annaswamy, and A. Baner-
jee. 2012. Timing analysis of cyber-physical applications for hybrid communica-
tion protocols. In Design, Automation and Test in Europe (DATE).

[10] W. C. Messner and D. M. Tilbury. 1998. Control tutorials for MATLAB and
Simulink: a web-based approach. Retrieved Nov 23, 2018 from http://ctms.engin.
umich.edu/CTMS

[11] T. Pop, P. Pop, P. Eles, Z. Peng, and A. Andrei. 2008. Timing Analysis of the
FlexRay Communication Protocol. Real-Time Systems 39, 1 (2008), 205ś235.

[12] R. Schneider, D. Goswami, S. Zafar, M. Lukasiewycz, and S. Chakraborty. 2011.
Constraint-driven synthesis and tool-support for FlexRay-based automotive
control systems. In International Conference on Hardware/Software Codesign and
System Synthesis (CODES+ISSS).

[13] N. Thomas and P. Poongodi. 2009. Position Control of DC Motor Using Genetic
Algorithm Based PID Controller. In World Congress on Engineering (WCE).

	Abstract
	1 Introduction
	2 Preliminaries
	3 Switching Control Strategy
	3.1 A motivational example

	4 Control Performance Verification
	5 Experimental Results
	6 Concluding Remarks
	References

