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Abstract

Reaction-based de novo design refers to the in-silico generation of novel chemical structures by combining reagents using 

structural transformations derived from known reactions. The driver for using reaction-based transformations is to increase 

the likelihood of the designed molecules being synthetically accessible. We have previously described a reaction-based de 

novo design method based on reaction vectors which are transformation rules that are encoded automatically from reaction 

databases. A limitation of reaction vectors is that they account for structural changes that occur at the core of a reaction only, 

and they do not consider the presence of competing functionalities that can compromise the reaction outcome. Here, we 

present the development of a Reaction Class Recommender to enhance the reaction vector framework. The recommender 

is intended to be used as a ilter on the reaction vectors that are applied during de novo design to reduce the combinatorial 

explosion of in-silico molecules produced while limiting the generated structures to those which are most likely to be syn-

thesisable. The recommender has been validated using an external data set extracted from the recent medicinal chemistry 

literature and in two simulated de novo design experiments. Results suggest that the use of the recommender drastically 

reduces the number of solutions explored by the algorithm while preserving the chance of inding relevant solutions and 

increasing the global synthetic accessibility of the designed molecules.

Keywords De novo design · Reaction class recommender · Multi-label classiication · Reaction vector

Introduction

The aim of de novo design is to generate molecules in-silico 

to it a set of design constraints [1]. The irst methods for 

de novo design were described in the late 1980ƍs, however, 

despite approximately 30 years of research it remains a very 

challenging problem. The diiculties arise from the astro-

nomically large number of compounds that could potentially 

exist and the complexities associated with the accurate scor-

ing of potential solutions to drive the search towards desira-

ble compounds [2]. Early approaches to de novo design were 

largely agnostic of chemical synthesis. Molecules were con-

structed either atom-by-atom or fragment-by-fragment using 

rules of chemical valency, with the result that the designed 

compounds were often unattractive to medicinal chemists. 

This lack of synthetic accessibility was a signiicant factor 

that limited the uptake of the early methods.

A signiicant advance in de novo design methods was 

the introduction of reaction-based methods in which the 

issue of synthetic accessibility is addressed directly [3, 4]. 

In reaction-based de novo design, reaction “rules” are used 

to transform a starting material into a product molecule. The 

rules are derived from commonly used reactions in medici-

nal chemistry, thereby increasing the chance that the in-

silico molecules can be synthesised. The irst generation of 

these approaches was based on hard-coded sets of reactions.

A more recent development in de novo design is the use 

of AI-based techniques which mainly rely on the use of gen-

erative and predictive models obtained using deep learn-

ing techniques [5]. For example, variational autoencoders 

have been used to map chemical structures represented as 
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SMILES strings into a continuous latent space [6, 7]. New 

structures are generated by searching for optimal solutions 

in the latent space and then decoding these back to SMILES 

strings. Recurrent neural networks (RNNs) have also been 

applied to de novo design [8, 9]. The RNNs are irst trained 

on large numbers of existing SMILES in order to learn the 

underlying probability distribution of the SMILES syntax, 

they are then used to generate new SMILES that are not 

present in the training data. Although promising, the AI 

approaches do not currently account for synthetic acces-

sibility directly. It can be argued, however, that synthetic 

accessibility is implicit in the methods since the training 

data consists of real compounds thereby presenting a bias 

towards synthesisable molecules.

We have developed a reaction-based de novo design 

approach which, rather than being based on hard-coded 

reaction rules, is based on transformation rules which can 

be derived automatically from large sets of reactions [10, 

11]. Our motivation has been to develop a tool that is able 

to exploit the wealth of information on chemical reactions 

that is available in publicly available data sets, commercial 

databases and in-house electronic lab notebooks (ELNs). 

The knowledge-base of transformations is separated from 

the structure generator so that the de novo design tool can 

be easily tailored, for example, to use reactions that are 

frequently encountered in medicinal chemistry, or to use 

more innovative, less well establish reactions, such as those 

used within academic settings. The transformation rules are 

encoded as reaction vectors which account for the structural 

changes that take place in converting one or more starting 

material(s) into one or more product(s). A structure genera-

tion algorithm has been developed whereby a reaction vector 

can be applied to an unseen starting material and, assum-

ing the required elements of the reaction centre are present, 

be used to generate an in-silico product molecule. We have 

demonstrated a high degree of success in reproducing the 

known product(s) of a reaction based on known reactants 

and their associated reaction vectors [12]. In a recent publi-

cation we describe the generation of reaction vectors from 

the 1.8 million reactions extracted from the US patent litera-

ture in the development of a data-driven reaction classiica-

tion method called SHREC [13]. SHREC takes a reaction 

vector as input and outputs a reaction class.

Although efective at reproducing known reactions, a 

limitation of the reaction vector approach to de novo design 

is that it does not take account of functionality outside of 

the immediate vicinity of the reaction centre. For example, 

the presence of a deactivating group beyond the reaction 

centre is ignored by the structure generation tool so that a 

molecule may be generated which, although consistent with 

a reaction vector, may not be synthetically accessible. Here 

we describe the development of a machine learning approach 

that aims to associate recommended reaction classes with 

a given input molecule. We have named our approach a 

Reaction Class Recommender. The recommender is trained 

using starting materials extracted from a large collection 

of reactions which are described using molecular features 

(e.g. ingerprints) and labelled by reaction class. The use of 

whole molecule descriptors allows the wider environment 

of a reaction to be encoded in the recommender. Starting 

materials described by the same sets of features (i.e., identi-

cal ingerprints) are grouped to form a single entry asso-

ciated with multiple reaction classes. The recommender is 

then trained on sets of molecular features associated with 

multiple reaction classes, and, given a starting material rep-

resented by the same molecular features, it will output a 

list of recommended reaction classes. Training the recom-

mender is, therefore, conigured as a multi-label classiica-

tion problem [14]. Multi-label classiication approaches have 

previously been used to predict the activity proiles of small 

molecules against a panel of protein targets [15–19], drug 

side-efects [20], and to identify possible plant sources for 

natural products [21].

The reaction classes output by the recommender can be 

used in reaction-based de novo design to limit the reactions 

that are applied to those that are more likely to work in real-

ity. For example, the recommender can act as a ilter with 

only those reaction vectors that are within the recommended 

reaction classes being applied. In the case of fully automated 

de novo design, the recommended reaction classes can be 

used to automatically ilter the reaction vectors which are 

applied to a given input molecule with the aim of reduc-

ing the chemical space that is enumerated. In augmented de 

novo design, the recommended reaction classes can be pre-

sented to the user to provide greater control over the design 

process.

The manuscript is organised as follows. We irst present 

an overview of the approach before describing the meth-

ods in detail. The experimental section presents the results 

of an extensive set of parameterisation experiments aimed 

at determining the best performing Reaction Class Recom-

menders which are then evaluated in two diferent de novo 

design settings.

Methods

Overview

The Reaction Class Recommender is designed to identify 

a set of recommended reaction classes for a given start-

ing material in order to restrict the generated molecules to 

those that are most plausible for synthesis. Its intended use 

is shown in Fig. 1. The existing de novo design worklow 

[10, 11] is shown on the left and typically involves three 

sets of inputs: one or more starting materials (SM); a set of 
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reagents (R); and a set of reaction vectors (RV). Reaction 

vectors are based on a combination of atom pair 2 and atom 

pair 3 descriptors (AP2 + AP3) [22] and are calculated from 

balanced reactions by irst summing the descriptors for the 

products and the reactants, respectively, and then subtract-

ing the reactant descriptors from the product descriptors. A 

reaction vector consists of negative atom pairs which repre-

sent those lost from the reactant(s) and positive atom pairs 

which represent those gained in the product(s). For each 

starting material, the set of reaction vectors is scanned and 

all those that are applicable are identiied. A reaction vector 

is applicable if all of the negative atom pairs are present in 

either the starting material itself or in the starting material 

combined with a reagent. The applicable reaction vectors 

and optional reagents then form the inputs to the structure 

generator which attempts to generate a product molecule. 

The image on the right illustrates the use of the Reaction 

Class Recommender. A list of recommended reaction classes 

is generated for each starting material. The reaction vectors 

are then iltered and only those that are in the recommended 

reaction classes are taken forward for the applicability test 

and subsequent structure generation, thus limiting the prod-

ucts that are generated.

The Reaction Class Recommender is trained on a set 

of classiied reactions. Each starting material is extracted, 

labelled according to the reaction class, and then repre-

sented by a set of whole molecule descriptors. Whole 

molecule descriptors are used since the aim is to include 

information beyond the immediate reaction centre and 

encode elements of the wider structural environment in 

which reactions occur. The de novo design will then be 

focused on typical starting material-reaction class com-

binations seen in historical data. Depending on the level 

of generalisation of the descriptors used to represent the 

starting materials, this process will result in duplicates 

whereby diferent starting materials are grouped accord-

ing to identical descriptors. In this case, the entries are 

combined and their reaction labels aggregated. To take a 

highly contrived example, a molecule represented solely 

by an aldehyde group could potentially react with either 

a Grignard reagent or an ammonia derivative to form a 

C–C or a C–N bond, respectively. Assuming the training 

data contains examples of both reactions, the molecules 

(or more precisely the descriptor sets derived from the 

molecules) will be merged to a single input which is asso-

ciated with two reaction class labels.

Another hypothetical example is reported in Fig. 2 to 

demonstrate the aim of the recommender. Two starting mate-

rials extracted from the US Patent Database (USPD) are 

shown together with their reaction class labels. Assume that 

the starting materials are represented by functional group 

descriptors, and that each starting material is represented by 

the presence of the amine (NH) and hydroxyl (OH) groups 

only. Given the identical descriptors, the two starting mate-

rials would be merged to a single entry with two reaction 

class labels; Functional Conversion and Protection. When 

these two functional groups occur within the same molecule 

they can compete for many reactions such as coupling and 

condensation reactions, and a chemist would be required to 

block one of them before proceeding with a reaction that 

could otherwise occur at multiple reaction centres. The reac-

tion vectors alone are agnostic of the competing nature of 

the functional groups and may therefore result in in-silico 

products that are unlikely in reality. The recommender, how-

ever, will not suggest coupling or condensation reactions for 

Fig. 1  An overview of the use of the Reaction Class Recommender 

in de novo design. a Shows one iteration of the de novo design work-

low consisting of one or more starting materials, a set of reagents 

and a set of reaction vectors. The reaction vectors are scanned for 

each starting material. Applicable reaction vectors are those for which 

the negative atom pairs are wholly present in the starting material 

or which are present in the starting material and a reagent. In b the 

Reaction Class Recommender is used to obtain a list of recommended 

reaction classes based on the characteristics of the starting material 

and only those reaction vectors in the recommended classes are con-

sidered further
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a molecule that contains both these functional groups if there 

is an absence of such examples in the training data.

The process for generating the training data for model 

building from a set of annotated starting materials is shown 

in Fig. 3. The process starts with a set of classiied reac-

tions. We use the hierarchical reaction classiication system 

SHREC [13] which is compatible with the reaction vector 

approach and is summarised briely below.

SHREC is distributed across four hierarchical levels rang-

ing from general reaction categories to increasingly more 

speciic subclasses. The hierarchy allows the most speciic 

reaction classes to be merged into more generic categories 

(e.g., “C–C Bond Formation (Condensation)” and “C–C 

Bond Formation (Coupling)” can be merged into “C–C 

Bond Formation” by moving up a level in the hierarchy, 

and vice versa. The irst (highest) level in the hierarchy 

describes a reaction according to some basic chemistry dei-

nitions (e.g., C–C bond formation, Functional Conversion, 

Protection, etc.); the second level describes the type of the 

transformation (e.g., Coupling), or in some cases, a speciic 

substrate involved in the reaction (e.g., Alcohol to alkene). 

The third and fourth levels contain additional information 

on the substrates/products (e.g., Isocyanate + amine), reac-

tion inventors (e.g., Suzuki) or functionalities (e.g., Bromo). 

The diferent levels in the hierarchy are shown by the use of 

parentheses. Examples are given in Table 1 for C–C bond 

Fig. 2  Examples of two mol-

ecules which are represented 

by identical functional groups 

consisting of the amine (NH) 

and hydroxyl (OH) groups only. 

They would be merged to a 

single entry in the training data 

which is associated with the two 

reaction classes shown

Fig. 3  Starting materials are 

extracted from a set of classiied 

reactions along with their asso-

ciated reaction class label. The 

starting materials are character-

ised by whole molecule descrip-

tors (represented as vectors) and 

duplicate descriptors are merged 

into a single entry by appending 

the appropriate reaction class 

labels. Thus, each entry in the 

training set represents one or 

more starting materials and a 

multi-label classiication repre-

sented as a binary vector
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formation reactions. The reaction classifier was trained 

on data extracted from the USPD which was originally 

annotated with NameRxn classes, and a table showing the 

mapping of the original NameRxn labels to the four-level 

SHREC is shown in the Supporting Information of Ghian-

doni et al. [13]. Note that the four-level hierarchical labelling 

in SHREC is not exhaustive in terms of nomenclature due to 

its bias towards the USPD and NameRxn.

Data

The training data is derived from USPD Grants 1976-2016 

data set [23]. The original data set consists of approximately 

1.8 million reactions of which 1.1 million are annotated with 

classiication labels generated using the NameRxn classi-

ication tool. The classiied reactions were extracted and 

the NameRxn labels translated to SHREC labels. A total 

of 735 NameRxn reaction classes were present in the data, 

however, the Reaction Classiication model was trained on 

336 of these only (a threshold of at least 30 examples per 

reaction class was used in that work and the removal of a 

large number of classes relects the highly skewed nature of 

the USPD data). Reactions in classes that fall outside of the 

scope of the SHREC classiier were removed (approximately 

5%) from the data set used to train the recommender, see 

Table 2. The composition of reaction classes in the USPD 

Grants subset is shown in Figure 4 for the highest level of 

SHREC (level-1).

The reactions were then mapped using the Indigo Mapper 

node in the “Indigo Toolkit” in KNIME Analytics Platform 

[24] and unmapped components (for example, solvents and 

catalysts) were removed. Reactions were balanced as far as 

possible by inserting missing fragments or splitting reactions 

into two separate entries in the case of isomeric products, 

in order to achieve the same number of carbon atoms on 

each side of the reaction [10]. The starting material for each 

reaction was then extracted. Where there was more than one 

starting material, the one with the highest number of mapped 

atoms was retained, or if there was ambiguity (i.e., the same 

number of mapped atoms) the entry was discarded. 34,929 

molecules were discarded at this stage. The properties of 

the starting materials were calculated by iltering out InChI 

Table 1  Mapping of NameRxn 

labels to the SHREC for a set of 

C–C bond formation reactions

SHREC

NameRxn class Level-1 Level-2 Level-3 Level-4

Bromo Heck reaction C–C Bond Formation Coupling Heck Bromo

Negishi coupling C–C Bond Formation Coupling Negishi –

Chloro Stille reaction C–C Bond Formation Coupling Stille Chloro

Iodo Sonogashira coupling C–C Bond Formation Coupling Sonogashira Iodo

Iodo Suzuki coupling C–C Bond Formation Coupling Suzuki Iodo

Table 2  Training data

*Reaction classes determined by the NextMove NameRxn algorithm

**Reaction classes determined using SHREC. There are fewer distinct reaction classes at Level-2 due to 

the duplicate removal stage. If a given starting material is associated with the reactions “C–C Bond Forma-

tion (Coupling) (Suzuki)” and “C–C Bond Formation (Coupling) (Heck)”, in the level-3 setup the entry 

will appear twice, while using level-2 (“C–C Bond Formation (Coupling)”), one of the two entries will be 

iltered out as a duplicate

Data set Number of entries Number of classes Median number of 

examples per class

USPD Grants NameRxn 1,114,953 reactions 735* 160

USPD Grants SHREC 1,056,836 starting materials 336** 799.5

Level-3 subset 430,543 starting materials 319 342

Level-2 subset 424,138 starting materials 259 290

Fig. 4  The composition of reaction classes in the clean USPD Grants 

subset using the highest level of the classiication (level-1)
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Key duplicates, without considering their association with 

diferent reaction classes. 360,477 unique molecules were 

retained, representing a reduction of 66% of the SHREC 

classiied reactions (Table 2). This large reduction is likely 

due to the nature of the data set which has been derived from 

the patent literature and represents lead optimisation series. 

The distributions of properties are plotted in normalised his-

tograms in Fig. 5.

The set of starting materials was then considered at dif-

ferent levels of the classiication system with the number of 

classes at level-3 and level-2 yielding 319 and 259 unique 

reaction class labels, respectively. Duplicates from these two 

subsets were removed: an entry was considered a duplicate 

if both the starting material and the reaction class matched 

with another entry. The inal numbers of unique entries are 

shown in Table 2 where it can be seen that duplicate removal 

(starting material and reaction class) reduced the data by 

59% and 60% for level-3 and level-2 labels, respectively. 

A higher median number of examples per class was found 

for level-3 labels (342) compared to level-2 (290), although 

the mean values show the opposite trend (1350 and 1638 

for level-3 and level-2, respectively). The distribution of 

examples across reaction classes at level-2 shows that some 

classes are more enriched compared to level-3 labels, see 

Fig. 6.

Descriptors

A variety of diferent binary descriptors were investigated 

including atom, pharmacophore and functional group 

descriptors. These are: Avalon (1024-, 2048-, 4096-bit in-

gerprints); CDK Functional Group; FeatMorgan (Radius 

1) (1024-bit); FeatMorgan (Radius 2) (1024-, 2048-bit); 

MACCS; and OChem EFG+ , as shown in Table 3. In addi-

tion to those shown in the table, we also investigated the use 

of the following: atom-pairs; ChemAxon Functional Groups; 

Chi and Kappa descriptors; Layered; Morgan; Pattern; and 

RDKit ingerprints, however, these all gave considerably 

poorer performance and so results for these are not reported 

here.

The starting materials in the level-3 and level-2 data 

sets were encoded as descriptors and duplicate entries were 

merged by appending the relevant reaction classes, as illus-

trated in Fig. 3. The data set sizes for the diferent descriptors 

are shown in Table 4. The diferent descriptors resulted in 

diferent sized data sets due to the pivoting process whereby 

identical descriptors labelled by diferent reaction classes 

are aggregated to a single entry. Training and test sets were 

generated for each data set using stratiied sampling based 

on the number of labels associated with each entry, to give 

80% training and 20% test, respectively.

Multi‑label classiication

Multi-label classiication problems are generally addressed 

using two alternative methods: Problem Transformation 

(PT), where the multi-label problem is transformed to be 

compatible with traditional classifiers such as Random 

Forests (RF) or Support Vector Machine (SVM); and Algo-

rithm Adaptation (AA) methods (e.g. Multi-Label k-Nearest 

Neighbors (MLkNN)), where classiiers are modiied to deal 

with the multi-label nature of the problem [14]. In prelimi-

nary work, not reported here, the PT method gave better 

performance than AA hence we focused on these methods.
Fig. 5  Property distributions of the starting materials extracted from 

the clean USPD Grants subset. Calculations were using the RDKit 

descriptor calculation node in KNIME

Fig. 6  The distribution of examples for each of the reaction classes. 

The level-3 set consists of 319 classes and the level-2 set consists of 

259 classes
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PT methods can be divided into Binary Relevance, Clas-

siier Chain, and Label Powerset. Binary Relevance (BR) 

simply converts each label into a binary classiication prob-

lem, thus ignoring any potential correlations between labels. 

Classiier Chain (CC) works similarly to Binary Relevance, 

however, it converts the output from each binary prediction 

into an additional feature column that is used to produce 

the next predictions, thus creating a connection between the 

labels. Label Powerset (LP) enforces this connection fur-

ther by forming a single multi-class problem by combining 

the original labels into all possible combinations, with each 

combination becoming a new derived label. LP often yields 

highly unbalanced data sets where some combinations of 

labels have very low frequencies and are associated with 

only a few training examples, thereby afecting prediction 

performance. Another issue is the potentially huge number 

of label-sets that can be created which can lead to memory 

issues. For example, a 50-class multi-label problem can 

potentially yield a maximum number of  250 label-sets. In 

reality, this number is always much smaller but LP can still 

be very memory intensive. RAkEL (Random k-Labelsets) is 

an ensemble method designed to overcome potential issues 

related to LP [29]. RAkEL works through the construc-

tion of an ensemble of LP classiiers that are trained using 

smaller label-sets obtained from the random selection of k 

label subsets from the original label set. Thus, the task is 

computationally less demanding and the label-set distribu-

tion is less skewed.

The following problem transformation approaches were 

used: BR, CC and RAkEL. We used two diferent RAkEL 

methods: disjoint RAkEL (RAkELd) where the subsets 

of labels are non-overlapping and overlapping RAkEL 

(RAkELo) where overlap of the diferent label subsets is 

permitted. The use of LP was not possible due to the large 

number of reaction class labels. The multi-label approaches 

were combined with Random Forests (RF) and Support Vec-

tor Machine (SVM) classiiers using default parameters as 

reported in Table 5. The RAkEL methods were conigured 

using default parameters as suggested by Tsoumakas et al. 

[30].

Model construction

Models were created by combining the diferent components 

combinatorially as shown in Fig. 7.

Evaluation

In a binary classiication problem, a given prediction is 

either correct or wrong, whereas in multi-label classiica-

tion, it can be fully correct, fully wrong, or partially cor-

rect/wrong when some of the labels are predicted correctly 

but others are not. According to Tsoumakas et al. [31], two 

techniques are generally adopted to measure performance 

in multi-label classiication: example-based and label-based 

techniques. The irst is row-wise and involves comparing 

true and predicted labels for every example in the test set, 

whereas, the second is column-wise and computes metrics 

for each label and averages over all labels, ignoring any label 

dependencies. The example-based methods are most appro-

priate for the Reaction Class Recommender, since the quan-

tiication of individual label performance is not relevant.

Table 3  The molecular descriptors investigated

Molecular descriptor Description

Avalon Hashed ingerprint mainly describing atom presences, paths, bonds, rings, and hydrogen features; implemented in the 

RDKit library [25]

CDK Functional Group SMARTS-based dictionary ingerprint developed by Inte:Ligand and implemented using RDKit, which encodes the 

presence of 307 diferent functional groups [26]

FeatMorgan Pharmacophore-based ingerprint implemented in the RDKit library, that encodes inter-distances between features and 

neighbour information within a deined radius [27]

MACCS SMARTS-based implementation in the RDKit library of 166 public MACCS keys by MDL Information Systems

OChem EFG+ Integrated version of the OChem EFG ingerprint implemented using RDKit, which encodes the presence of 2080 

structural features [28]

Table 4  Data set size per descriptor-type generated from the pivoting

Molecular descriptor Bit string length Number 

of unique 

entries

Avalon 1024 358,648

Avalon 2048 358,765

Avalon 4096 359,019

CDK functional group 307 244,980

FeatMorgan (Binary) (Radius 1) 1024 270,049

FeatMorgan (Binary) (Radius 2) 1024 338,842

FeatMorgan (Binary) (Radius 2) 2048 338,879

MACCS 166 324,086

OChem EFG+ 2080 241,230
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The performance of the models was assessed using 

Recall, Precision and the F1-score, all of which can be 

derived from the numbers of true positives (TP), true nega-

tives (TN), false positives (FP) and false negatives (FN), see 

Table 6. Recall is the ratio of true positives (TP) to the total 

number of positives in the test set (TP + FN), and provides 

a measure of the quantity of positive predictions without 

accounting for false positives. Precision represents the ratio 

of true positives to the total number of predicted positives 

(TP + FP), and provides a measure of the quality of the posi-

tive predictions without considering the false negatives. In 

multi-label classiication, these two metrics are usually 

Fig. 7  Model creation tree diagram: the bolded nodes with directed edges represent example combinations of label-type, descriptor-type, inger-

print size, multi-label approach and classiier type

Table  5  Multi-label approach and classiier parameters

Classiier Parameters

RF n_estimators=10, criterion=’gini’, max_depth=None, min_sam-

ples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, 

max_features=’auto’, max_leaf_nodes=None, min_impu-

rity_decrease=0.0, min_impurity_split=None, bootstrap=True, 

oob_score=False, n_jobs=4, random_state=11, verbose=0, warm_

start=False, class_weight=None

SVM penalty=’l2ƍ, loss=’squared_hinge’, dual=True, tol=0.0001, C=1.0, 

multi_class=’ovr’, it_intercept=True, intercept_scaling=1, class_

weight=None, verbose=0, random_state=11, max_iter=1000

BR require_dense=[True, True]

CC require_dense=[True, True], order ()

RAkELd labelset_size=3

RAkELo labelset_size=3, model_count=(number of labels multiplied by 2)
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computed as averages using the ‘micro’ method which is 

based on global counts of TP, FNs and FPs (rather than cal-

culating the values for each label independently and then 

averaging, which is the macro method). Micro values are 

preferable in the case of unbalanced data, since they avoid 

the issue of giving more emphasis to majority classes. The 

F1-score is the harmonic average of Recall and Precision and 

balances both factors.

The selection of metrics was based on considering the 

intrinsic nature of the problem. In a reaction class recom-

mendation scenario, false positives and false negatives can 

be weighted diferently according to the needs of the inal 

user. For example, if a user wishes to limit the output to solu-

tions that are more reliable, the presence of a few false posi-

tives will be considered less acceptable than the presence of 

a few false negatives. In contrast, if the user is attempting to 

catch all the recommended classes while still reducing the 

enumeration time, the presence of a few false positives may 

be preferred to the presence of a few false negatives.

Implementation details

The machine algorithms used in this project are distrib-

uted by scikit-multilearn [32] and scikit-learn [33]. These 

include two scikit-multilearn Problem Transformation (PT) 

(skmultilearn.problem_transform) approaches (BinaryRel-

evance and ClassiierChain) and two Ensemble Methods 

(skmultilearn.ensemble) (RakelO and RakelD) combined 

with Random Forests or Support Vector Machine classiiers 

(sklearn.ensemble.RandomForestClassiier) (sklearn.svm.

LinearSVC) which were conigured using default param-

eters. All descriptors were based on RDKit implementa-

tions. The multi-label approach and classiier parameters 

are described in Table 5.

Results

Model optimisation

The theoretical number of combinations of descriptor types, 

classiication label types and machine learning approaches is 

144 (nine descriptors; two sets of classiication labels; four 

multi-label approaches; and two modelling methods). Rather 

than evaluate all possibilities, a staged approach was taken.

First, the level-2 and level-3 classiication levels were 

compared using the BR and CC multi-label classiication 

approaches, combined with RF and SVM, and the nine dif-

ferent descriptors. Only 68 of the possible 72 combinations 

produced valid solutions. SVM failed for two descriptor/

classiication label conigurations possibly due to a library 

bug. These, were OChem EFG + and the level-2 classiica-

tion and FeatMorgan 1024-bit (Radius 2) and the level 3 

classiication, with both combinations failing for both the 

BR and CC approaches. Figure 8 shows the distribution of 

micro Recall, Precision, F1-scores as histograms for the 68 

models with the level-2 classiication results in dark blue and 

the level-3 results in light blue. The level-2 labels resulted 

in a higher number of best performing models according to 

their micro F1-scores. The best level-2 model was found 

for Avalon 2048-bit (micro F1-score of 0.45), whereas, the 

best level-3 model (micro F1-score of 0.44) was based on 

Avalon 4096-bit. The level-3 classiication approach was 

Table 6  Performance measures using to evaluate the models

Performance measure

Recall =
TP

TP+FN

Precision =
TP

TP+FP

F1 = 2 ×
Recall×Precision

Recall+Precision

Fig. 8  Comparison of the models built using the level-2 and level-3 

classiication systems. A total of 68 models are shown which vary by 

descriptor, multi-label approach, modelling method and classiica-

tion level. The models built using the level-2 classiication are in dark 

blue; those built using the level-3 classiication are in light blue
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chosen for the next series of experiments since it is capable 

of recognising a higher number of labels and because these 

can be generalised to level-2 labels, if required, due to the 

hierarchical nature of the classiication scheme.

Models were then built using the level-3 data set, the nine 

descriptors, two PT multi-label approaches (BR, CC) and 

two ensemble techniques (RAkELd and RAkELo), and both 

RF and SVM. This time, 70 of the possible 72 models were 

generated; as for the previous experiment, SVM models 

could not be generated for FeatMorgan 1024-bit (Radius 2) 

for the BR and CC approaches. Micro Recall, Precision and 

F1-scores are shown in Fig. 9 and summarised in Table 7. 

The PT approaches (BR and CC) resulted in better micro 

Recall, while the EMs (RAkELo and RAkELd) produced 

better micro Precision. Table 7 also shows that CC gener-

ally resulted in better performance compared to BR, except 

for micro Precision and RAkELd outperformed RAkELo, 

possibly suggesting that the disjoint method can account 

for more label dependence. A one-way ANOVA analysis of 

the performances of the BR, CC, RAkELd, and RAkELo 

approaches showed that the diferences were not signiicant 

at the p-value < 0.05 level for the four conditions, except for 

Precision where they were signiicant (p-value = 0.01).

The memory requirements were then compared consid-

ering descriptor type and multi-label approach, (Table 8). 

Classiier type was not discriminated at this stage; hence the 

reported values represent the maximum amounts required 

by the most memory-consuming classiier per coniguration 

during the model training. CC was selected as the multi-

label classiication method for the subsequent experiments 

since the performance was marginally better than BR 

(Table 7) and the memory requirements were lower than for 

the RAkEL methods (Table 8).

Next, the machine learning methods RF and SVM were 

compared over the nine descriptors, using CC and the level-3 

classiication scheme, as shown in Fig. 10 and Table 9, 

where the results are sorted on micro F1. The FeatMorgan 

Fig. 9  BR, CC, RAkELo, and RAkELd approaches comparison using the level-3 classiication scheme

Table 7  Performance metrics 

for BR, CC, RAkELo, and 

RAkELd approaches using RF 

and SVM and the level-3 data

Method Micro recall Micro precision Micro F1-score

Min Mean Max Min Mean Max Min Mean Max

BR 0.13 0.25 0.35 0.53 0.66 0.75 0.21 0.35 0.43

CC 0.15 0.27 0.37 0.53 0.64 0.76 0.24 0.37 0.44

RAkELo 0.11 0.23 0.32 0.57 0.72 0.80 0.19 0.34 0.43

RAkELd 0.11 0.24 0.32 0.51 0.69 0.74 0.19 0.35 0.43

Table 8  Comparison of maximum memory requirements for the PT 

multi-label approaches BR and CC and the ensemble approaches for 

the diferent descriptors

Molecular descriptors Features Maximum memory 

request (GB)

BR/CC RAkELo/

RAkELd

Avalon 1024 15.3 16.6

Avalon 2048 26.4 27.6

Avalon 4096 48.7 49.8

CDK Functional Group 307 5.8 10.1

FeatMorgan (Binary) (Radius 1) 1024 11.6 16.3

FeatMorgan (Binary) (Radius 2) 1024 13.4 16.0

FeatMorgan (Binary) (Radius 2) 2048 24.8 25.3

MACCS 166 5.6 9.1

OChem EFG+ 2080 18.3 21.2

Average 18.8 21.3
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1024-bit (Radius 2) CC-SVM model does not appear among 

the results since the SVM classiier did not work with this 

descriptor using level-3 labels. The RF models generally 

performed better than the corresponding SVM models 

based on the F1 score, with the average values across nine 

and eight models, respectively, corresponding to 0.39 and 

0.35, respectively. RF was therefore chosen as the machine 

learning approach. Another factor favouring the use of RF 

is that the scikit-learn implementation of RF supports multi-

threading making it signiicantly quicker than SVM, which 

is an important factor to bear in mind given the intended use 

of the model in iterative de novo design.

Comparing the diferent descriptor types, the hashed 

fingerprints were more effective than dictionary-based 

ingerprints with Avalon and FeatMorgan giving the best 

performance followed by MACCS, OChem EFG + , and 

CDK Functional Groups. The best performance according 

to the F1-score was found for Avalon 4096, with its 2048- 

and 1024-bit versions performing similarly and being pre-

ferred due to their signiicantly lower memory requirements 

(Table 8). FeatMorgan Radius 2 produced better models than 

FeatMorgan Radius 1, possibly due to the wider environment 

encoded by the descriptors.

MACCS also produced one useful model (i.e., CC-RF) 

which is surprising considering that the multi-label clas-

siication guidelines suggest to use a number of features 

higher than the number of labels to be predicted by the 

model [34]. In addition, MACCS models required a maxi-

mum of 5.6 GB of memory in the inal model validation 

(Table 8) which is signiicantly lower than any of the other 

descriptors. OChem EFG + combined with RF had simi-

lar performance to MACCS, but required 3.3 times the 

Fig. 10  Comparison of RF and SVM, across the nine descriptors, using CC and the level-3 classiication scheme

Table 9  Level-3 CC-RF model 

performance metrics
Fingerprint Setup Micro recall Micro precision Micro F1-score

Avalon 4096-bit CC-RF 0.31 0.75 0.44

Avalon 4096-bit CC-SVM 0.37 0.53 0.44

Avalon 2048-bit CC-RF 0.30 0.75 0.43

Avalon 1024-bit CC-RF 0.29 0.76 0.42

FeatMorgan 2048-bit Radius 2 CC-RF 0.29 0.75 0.42

Avalon 2048-bit CC-SVM 0.33 0.54 0.41

FeatMorgan 1024-bit Radius 2 CC-RF 0.29 0.75 0.41

FeatMorgan 2048-bit Radius 2 CC-SVM 0.31 0.6 0.41

Avalon 1024-bit CC-SVM 0.29 0.56 0.38

MACCS CC-RF 0.25 0.69 0.37

OChem EFG+ CC-RF 0.26 0.57 0.36

FeatMorgan 1024-bit Radius 1 CC-RF 0.23 0.66 0.34

CDK Functional Group CC-RF 0.23 0.57 0.33

OChem EFG+ CC-SVM 0.23 0.63 0.33

FeatMorgan 1024-bit Radius 1 CC-SVM 0.20 0.60 0.30

MACCS CC-SVM 0.19 0.59 0.28

CDK Functional Group CC-SVM 0.15 0.62 0.24
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amount of memory. CDK Functional Groups resulted in 

the worse performing models. This is possibly due to the 

low number of features and therefore the lower discrimi-

native ability compared to OChem EFG + . On the basis 

of performance and memory requirements, Avalon 1024-

bit CC-RF and MACCS CC-RF were selected for further 

evaluation.

Validation

The Reaction Class Recommender is aimed at reducing the 

number of product molecules that are generated during de 

novo design while improving the synthetic accessibility 

of the designed molecules. The irst validation experiment 

investigates the extent to which the Reaction Class Recom-

mender is able to reproduce the known reaction classes 

for a set of reactions extracted from the literature. The 

second validation compares the performance of single step 

de novo design with, and without, the use of the Reaction 

Class Recommender. The inal experiment demonstrates 

the use of the recommender in a retrospective de novo 

design setting based on known drugs.

Journal of Medicinal Chemistry (JMC) class 
prediction

The Reaction Class Recommender was applied to a set 

of starting materials extracted from the reaction litera-

ture for which the reaction classes had been determined 

using SHREC. The recommended reaction classes were 

compared with the annotated classes and the level of 

agreement determined. One of three possible outcomes 

was recorded for each starting material: if the recom-

mended classes contained the annotated class, then the 

recommender was considered to be correct; if the recom-

mended classes did not contain the annotated class, the 

recommender was considered as wrong or incorrect; if the 

recommender did not make any recommendations, then 

no-recommendation was recorded. (Note that multi-label 

approaches are essentially ensembles of binary classiiers 

and do not return any label if none of the binary clas-

siication tasks return a positive result. This difers from 

multi-class methods which will assign a label to one or 

more classes.) The number of recommendations made for 

each starting material was also recorded.

A set of 26,757 single-step reactions was extracted from 

Journal of Medicinal Chemistry (JMC) publications cov-

ering the period January–September 2018, using Reaxys. 

The reactions were cleaned using the same protocol as 

applied to the USPD (24,606 were retained); reaction vec-

tors were calculated; the reactions were classiied using 

SHREC and all entries associated with a high prediction 

probability were retained, based on a minimum credibil-

ity score of 0.25 as described in Ghiandoni et al. [13]. 

16,582 entries remained at this stage. The reaction classes 

were represented at level-3 of the SHREC hierarchy and 

duplicates, that is, identical starting materials and identi-

cal class labels, were iltered out leaving 11,544 entries. 

The chemical structures were then checked to verify their 

integrity by converting them to RDKit objects and recon-

verting them to SMILES. A total of 11,539 reactions were 

retained.

The data set was also described by level-1 reaction class 

labels and its reaction class composition was compared 

with the USPD Grants data set used to train the Reaction 

Class Recommender. The class composition is reported in 

Fig. 11 which shows that the composition of reaction classes 

is similar to that of the training data. The distributions of 

the physicochemical properties of the starting materials are 

shown in Fig. 12 and are also broadly comparable with the 

training data.

Reaction Class Recommenders trained on the USPD using 

two diferent descriptors (Avalon 1024-bit and MACCS in-

gerprints) were applied to the JMC data and evaluated at 

diferent levels of the classiication hierarchy (i.e., level-3, 

2 and 1). Results (correct, wrong and no-recommendation), 

expressed as percentages, are reported in Table 10. The aver-

age numbers of recommendations per starting material are 

1.9 (3.4 excluding the starting materials returning no-rec-

ommendation) and 2.7 (4.4 excluding the starting materials 

returning no-recommendation) for the Avalon 1024-bit and 

MACCS recommenders, respectively. Although the percent-

age of examples for which no recommendation is made may 

appear to be high, these represent examples that fall outside 

of the domain of the recommender, and in a de novo design 

setting, this would simply mean that no iltering on the reac-

tion vectors should be applied.

The MACCS Reaction Class Recommender resulted in 

higher percentages of both correct and wrong recommenda-

tions compared to the Avalon Reaction Class Recommender 

which, in contrast, returned a higher percentage of starting 

materials for which no recommendation was made. This 

inding is consistent with the lower compression rate seen 

for Avalon descriptors in the training data whereby the start-

ing materials are generally associated with fewer reaction 

classes compared to those seen for the MACCS descriptors. 

Moving up the levels in the classiication hierarchy does 

not change the percentage of starting materials for which no 

recommendations were made, however, it does increase the 

chance of matching the correct label due to the reduction in 

the total number of classes that could be matched. Although 

this may suggest that the Reaction Class Recommender is 

more accurate, it is not as useful from the perspective of de 

novo design since the broader reaction classes encompass a 
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large number of more speciic reaction classes so that fewer 

reaction vectors would be iltered out.

The Reaction Class Recommenders were further ana-

lysed by plotting the percentages of correct, wrong, and 

no-recommendation entries for diferent property ranges 

of the starting materials, Fig. 13. The relative percentages 

of correct and wrong entries are broadly similar across the 

property ranges and both decrease as the molecules become 

larger. However, the percentage of no-recommendation 

entries increases as the molecule size increases. This can 

be rationalised by comparing these distributions with the 

training data properties reported in Fig. 6. As the test start-

ing materials start to move away from the domain of the 

training set, the algorithm tends to be unable to make rec-

ommendations for them. In particular, both models maintain 

low percentages of no-recommendations in fragment-like 

space (MW < 300), however, the ratio of no-recommenda-

tions increases at higher molecular weights presumably due 

to the sparsity of starting materials with higher molecular 

weights in the training data.

The Reaction Class Recommenders were also analysed 

at the most general class labels (i.e., level-1) to determine 

whether wrong predictions and no-recommendations were 

more frequent for some reaction classes. The absolute num-

bers of wrong predictions and no-recommendation entries 

per class were divided by the total numbers of examples 

in the data set to obtain normalised statistics as shown in 

Table 11 along with the total numbers of examples per class. 

Comparing these results with the proportions of level-1 reac-

tion classes in the training data reported in Fig. 4 shows that 

the reaction classes that generally result in higher numbers 

of wrong predictions are those that are less frequent in the 

training data, or they represent reaction classes with greater 

ambiguity. For example, “Deprotection” and “Functional 

Fig. 11  Level-1 reaction classiication of the JMC data set

Fig. 12  Property distribution of the starting materials extracted from 

the classiied JMC 2018 test set

Table 10  Performance of the Avalon and MACCS Reaction Class 

Recommenders on the JMC data expressed as percentages

Model Label-type Correct Wrong No-recom-

mendation

Avalon 1024-bit Level-3 33.5 21.9 44.6

Level-2 34.4 21.0 44.6

Level-1 41.9 13.5 44.6

MACCS Level-3 37.1 23.1 39.8

Level-2 38.0 22.2 39.8

Level-1 45.0 15.2 39.8

Fig. 13  Property distributions for the starting materials coloured by 

correct (green), wrong (red), and no-recommendation (blue) follow-

ing application of the Reaction Class Recommenders
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Conversions” are similarly frequent in the training set (~ 13% 

and 20%, respectively) but there are almost 7 times as many 

errors for “Functional Conversions” compared to “Deprotec-

tion” for the MACCS Reaction Class Recommender (0.03 

and 0.2, respectively). This can be rationalised by protect-

ing groups being easily identiied by molecular descriptors, 

whereas functional groups can be present in molecules for 

different purposes other than the intended reaction, for 

example, they may be responsible for biological activity 

in the inal structures. The ratios of no-recommendation 

entries are broadly similar across the two Reaction Class 

Recommenders.

The Reaction Class Recommenders were further com-

pared by examining the intersection of the wrong predic-

tions. The Avalon 1024-bit Reaction Class Recommender 

and the MACCS Reaction Class Recommender resulted in 

2531 and 2661 wrong predictions, respectively, of which 

1585 are shared (63% and 60% of the total number of 

wrongly predicted entries). This relatively high intersection 

indicates a strong relationship between the two Reaction 

Class Recommenders, however, the percentages of non-

shared wrong predictions suggest that the two Reaction 

Class Recommenders treat some of the test data in diferent 

ways.

The wrong predictions were further analysed by man-

ual inspection and revealed that although the true reaction 

classes were missing in the recommended classes, most of 

the entries actually received meaningful recommendations 

from both models. An example of a meaningful but “wrong” 

recommendation is shown in Fig. 14. The annotated class 

for the top molecule is Functional Conversion (Hydrogena-

tion) (Alkene to alkane) whereas the recommended class is 

Functional Conversion (Nitro to amino) which is, therefore, 

labelled as wrong. However, application of reaction vectors 

consistent with the recommended class (Nitro to amino) 

produces the bottom molecule for which the recommender 

outputs the hydrogenation reaction. Thus, although the irst 

application of the recommender is “wrong” with respect to 

the annotated class, the sequential application of the recom-

mender can still drive the algorithm towards the selection 

of appropriate reaction classes even if the correct recom-

mendations are not produced in the irst round. The underly-

ing reason for this behaviour is the increased frequency of 

hydrogenations in the presence of amine groups relative to 

hydrogenations in the presence of nitro groups within the 

training data.

Single‑step de novo design

The use of the Reaction Class Recommender for single step 

de novo design was evaluated using our reaction-based de 

novo design method which is described in the Introduction. 

A de novo design worklow was constructed consisting of a 

set of fragments as starting materials, a set of reagents and 

a set of reaction vectors. A control experiment was run irst 

which consisted of a full enumeration without the use of 

the Reaction Class Recommender. The experiment was then 

rerun using the Reaction Class Recommender with the rec-

ommended reaction classes acting as a ilter on the reaction 

vectors, so that only those belonging to the recommended 

classes were considered for de novo design. The two experi-

ments were compared on the number of products obtained, 

the synthesisability of the products and execution time.

Twenty six fragments were selected from the commercial 

screening library DSPL [35, 36] as starting materials. Each 

of these was known to reproduce one or more compounds 

Table 11  Ratios of wrongly 

predicted entries and entries for 

which no recommendation was 

made for each reaction class at 

level-1 of the hierarchy for both 

Reaction Class Recommenders

Class Total examples No-recommendation ratios Wrong prediction ratios

Avalon 1024-bit MACCS Avalon 1024-bit MACCS

C–C bond formation 941 0.40 0.32 0.16 0.11

C–N bond formation 3495 0.50 0.47 0.13 0.11

C–O bond formation 1019 0.32 0.32 0.19 0.18

C–S bond formation 4 0.25 0.50 0.50 0.75

Cleavage 33 0.82 0.85 0.06 0.12

Cyclization 16 0.19 0.25 0.31 0.44

Cycloaddition 2 0.50 0.50 0.50 0.00

Deprotection 2268 0.52 0.42 0.05 0.03

Functional conversion 2384 0.40 0.35 0.22 0.2

Functional elimination 44 0.41 0.50 0.36 0.39

Functional introduction 567 0.35 0.31 0.18 0.20

Other bond formation 209 0.52 0.50 0.22 0.21

Protection 165 0.27 0.26 0.37 0.42

Rearrangement 10 0.20 0.50 0.50 0.80

Synthesis 382 0.38 0.34 0.23 0.21
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for which activity data is reported in the ExCAPE database 

[37], i.e., every starting material was known to be the pre-

cursor of an active compound therein. The starting materials 

were restricted to those for which recommender produced 

recommendations and for which the known active could be 

generated using reaction classes that the recommender was 

trained on. A set of reagents was selected from the Sigma-

Aldrich commercial catalogue as a source of reagents. The 

reaction vectors consisted of a set of 11,545 unique reaction 

vectors which were classiied using our classiication model 

with 46% receiving classiication labels.

The starting materials were described by MACCS inger-

prints and the MACCS Reaction Class Recommender was 

used to make recommendations for each starting material. 

The recommendations were made at level-3, and then ana-

lysed at levels 3, 2 and 1 by moving through the classiica-

tion hierarchy. Table 12 shows that moving up the hierarchy 

to more general reaction classes reduces the mean number of 

recommendations per starting material. However, this gen-

eralisation actually increases the number of applicable reac-

tions rather than reducing it, as discussed above. For exam-

ple, the level-3 recommendations of “C–C Bond Formation 

(Coupling) (Suzuki)” and “C–C Bond Formation (Coupling) 

(Heck)”, would result in the application of reaction vectors 

that fall within their reaction sub-classes only (six reaction 

classes in total); whereas the overarching level-1 reaction 

class “C–C Bond Formation” includes 56 types of “C–C 

Bond Formation” reaction classes. Hence, the use of more 

general labels is expected to increase the number of appli-

cable reaction vectors, and therefore the size of the product 

library that is generated.

The de novo design tool was then run in the four diferent 

modes (Control and using the Reaction Class Recommender 

at the three diferent classiication levels) for the 26 starting 

Fig. 14  Analysis of a wrong recommendation using the CC-RF MACCS model. The recommender did not suggest the correct class associated 

with the top molecule. However, application of the suggested transformation produces a new product for which the correct class is predicted

Table 12  The minimum, 

maximum, mean and median 

number of recommended 

classes per starting material for 

the diferent classiication levels 

along with the numbers of 

applicable reaction vectors

The Control represents a full enumeration (without the use of the Reaction Class Recommender)

Classiication level Number of recommended classes Number of applicable reac-

tion vectors

Minimum Mean Median Maximum Absolute 

number

Relative value

Level 3 1 2.15 1.5 12 85 1.0

Level 2 1 2.08 1.5 11 94 1.1

Level 1 1 1.46 1 3 170 2.0

Control – – – – 357 4.2
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materials. Each of the four product libraries was analysed 

as follows. The total number of unique products was deter-

mined by iltering out InChI Key duplicates; the percent-

age overlap of the generated compounds with ExCAPE was 

determined by comparing the library InChI Keys with the 

ExCAPE InChI Keys; and average synthetic accessibility 

estimates were calculated using RSynth [38] and SAscore 

[39]. In addition, the time required to enumerate each prod-

uct library was recorded.

Results are summarised in Table 13 where it can be 

seen that the recommended and control pipelines difer 

substantially in the number of unique products generated. 

The level-3 and level-2 recommendations produced simi-

lar numbers of products, whereas the level-1 and control 

pipelines generated collections that are 1.68 and 3.23 times 

larger than the level-3 library, respectively. Table 13 also 

shows decreasing enumeration times as the speciicity of 

the labels increases, and demonstrates that the use of the 

recommender speeds up the design process, with the level-3 

recommender taking approximately one third of the time of 

the control experiment. All of the Reaction Class Recom-

mender pipelines present higher percentage overlap with 

ExCAPE compared to the control pipeline. This enrichment 

of known compounds is evidence of the ability of the Reac-

tion Class Recommender to suggest reaction classes that are 

more likely to be applied in reality.

Average RSynth and SAscore across the libraries are 

also shown in Table 13. The RSynth scores range between 

0 and 1, where higher values mean higher accessibility; 

whereas, the SAscores range between 1 and 10, with higher 

values representing lower accessibility. For both scores, 

as the speciicity of the labels increases, the average syn-

thetic accessibility increases. Note that, although the librar-

ies generated with the use of the recommender correspond 

to subpopulations of the control library, they all describe 

a clear shift toward higher synthetic accessibility values. 

An independent-samples t-test was conducted to com-

pare RSynth and SAscore in the control  (MRSynth = 0.524, 

 SDRSynth = 0.201,  MSAscore = 2.291,  SDSAscore = 0.333) 

and recommended libraries (Level-1  (MRSynth = 0.543, 

 SDRSynth = 0.190,  MSAscore = 2.227,  SDSAscore = 0.301), 

Level-2  (MRSynth = 0.563,  SDRSynth = 0.033,  MSAscore = 2.177, 

 SD SAscore  =  0 .280 ) ,  Leve l -3   (M RSyn t h  =  0 .571 , 

 SDRSynth = 0.181,  MSAscore = 2.173,  SDSAscore = 0.283)). A 

signiicant diference (p-value < 0.0001) in the scores was 

found for all pair-wise comparisons at a conidence level 

of 95%. The efect sizes for these analyses were found to 

exceed Cohen’s [40] convention for a small efect (d = 0.20) 

except for the control-level-1 which reported Cohen’s  dRSynth 

lower than 0.20.

The RSynth and SAscore values are plotted as overlap-

ping density plots in Fig. 15 which show the shifts in syn-

thetic accessibility scores towards improved values.

The product libraries were then analysed by reaction 

class composition in order to determine possible efects of 

the Reaction Class Recommender on the distributions of 

reaction classes. Results for the level-1 reaction classes are 

shown as pie charts in Fig. 16.

The distributions of reaction classes at level-1 of the hier-

archy are similar for the three Reaction Class Recommender 

experiments, whereas there is a wider variety of classes in 

the control experiment. More speciically, “C–O Bond For-

mation”, “Functional Elimination”, and “Protection” are not 

present at all in the recommended libraries indicating that 

these classes were not suggested for any of the starting mate-

rials. Although 7 of the 26 starting materials presented func-

tional groups suitable for “C–O Bond Formation” reactions, 

this reaction class was not recommended for any of these 

structures. This can be explained by a lack of related exam-

ples in the training data, see Fig. 4, although, interestingly, 

the rarer class “Other Bond Formation” was recommended 

for three of the starting materials. “Functional Elimination” 

and “Protection” were not recommended at all, possibly 

because of the low functionalisation of the starting materi-

als or because of the lack of examples in the training data.

The libraries were analysed further by evaluating the top 

25 biological targets associated with the reproduced active 

molecules in each data set, to examine possible efects of the 

Reaction Class Recommender on the distribution of target 

hits. The target information was extracted from ExCAPE. 

Results are reported in Fig. 17 which shows that the level-3 

and level-2 distributions are identical, thus indicating the 

presence of the same actives in the two data sets, whereas 

the level-1 and control distributions report slightly diferent 

distributions including a higher percentage of “Other Tar-

gets”, indicating that the application of more reaction classes 

Table 13  Library statistics 

for recommended and control 

pipelines

No. of unique 

products

% Overlap with 

ExCAPE

Mean RSynth Mean SAscore Time (s)

Level 3 43,952 0.22 0.57 1.69 381.22

Level 2 49,988 0.20 0.56 1.78 412.47

Level 1 73,741 0.19 0.54 1.83 585.03

Control 141,834 0.12 0.52 1.80 991.65
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possibly expanded the target coverage. This hypothesis was 

veriied by determining the number of unique targets hit per 

library which increased from 16 targets for the level-3 and 

level-2 libraries to 40 and 44 targets for level-1 and control 

libraries, respectively.

Retrospective de novo design

The use of the Reaction Class Recommender was further 

assessed in retrospective reaction-based de novo design 

aimed at rediscovering a set of small-molecule drugs. The de 

Fig. 15  RSynth and SAscore 

distributions per library

Fig. 16  Level-1 reaction class distributions across libraries
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novo design scenarios were compared with and without the 

use of the Reaction Class Recommender with the analysis 

focusing on the size of the chemical space explored along 

with the ability to rediscovery the known drugs.

The validation consists of an in-house pseudo-retrosyn-

thetic framework called RENATE (i.e., Retro synthEtic 

desigN using reAcTion vEctors) which is similar to that 

implemented in Flux by Fechner and Schneider [41, 42]. 

Flux cleaves a reference ligand into fragments by applying 

the RECAP bond cleavage rules. It then searches a database 

of fragments which was also created using the RECAP rules 

and replaces fragments in the reference with examples in the 

database with similar attachment points.

In RENATE, a reference molecule is fragmented in a 

similar way to Flux (here using the BRICS implementa-

tion in RDKit) to form a set of reference fragments, using a 

minimum fragment size of ive heavy atoms. The reference 

fragments are sorted on number of attachment points and 

then number of atoms. The fragment at the top of the ranked 

list is identiied as the scafold or starting material, with the 

remaining fragments considered as substituents or reagents. 

This heuristic ensures that the structure generation starts 

from highly connected fragments in order to build candi-

dates from ‘the inside outside’. For each reference fragment, 

similar fragments are retrieved from a database of commer-

cial reagents. The new fragments are then combined as fol-

lows. In the irst iteration, RENATE combines the fragments 

retrieved for the starting material with those retrieved for the 

next fragment in the ranked list. For example, the sets {a1, 

a2, …, ax} and {b1, b2, …, by} are combined combinatori-

ally: for each pair of fragments (one from set a and one from 

set b), the set of reaction vectors is searched and a product 

is generated for each applicable reaction vector. Hence, a 

set of product molecules is produced (e.g. {a1–b3,  b2–a5, 

Fig. 17  Target hits distributions across libraries
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 a9–b11}) which are scored and the top scoring products form 

a new set of starting materials. These are then input to the 

structure generator to be combined with the next fragment 

set (e.g. {c1,  c2, …,  cz}). The main diference compared to 

Flux, is the use of real reagents and real reactions (as deined 

by reaction vectors) in the assembly step. Note that the redis-

covery of the drug is not guaranteed using this setup since 

this requires the appropriate fragmentation of ligands using 

BRICS, and the presence of appropriate reagents and reac-

tion vectors.

A set of six drugs was selected which were known to 

be correctly fragmented and regenerated by RENATE, 

as shown in Fig. 18. The reagent set consisted of a set of 

746,245 cleaned building blocks (sanitised using RDKit, 

neutralised and duplicates removed) provided by Enamine 

[43] and the reaction vectors consisted of a set of 92,530 

derived from the USPD Grants reactions (these are a subset 

of the 115 K unique classiied reaction vectors described 

in Ghaindoni et al. [13] which could processed correctly 

by the structure generation algorithm). Each drug was frag-

mented, the top 1000 reagents were selected for each refer-

ence fragment (based on RDKit Morgan count ingerprints 

(1024-bit radius 2) and Euclidean distance) and the reagents 

were assembled into product molecules using the reaction 

vectors as described above. The inal products were scored 

on similarity against the reference drug, also using RDKit 

Morgan count ingerprints (1024-bit radius 2) and Euclidean 

distance.

RENATE was irst run for each drug without the Reac-

tion Class Recommender to determine the total number of 

products generated. It was then run with the Avalon 1024-bit 

Reaction Class Recommender conigured to produce level-3 

reaction class recommendations which were used to ilter 

the reaction vectors that were applied. Note that when the 

recommender was unable to make recommendations, then 

no ilter was applied. The total number of products gener-

ated with the recommender was recorded along with the 

enumeration times.

Results are shown in Table 14. In all cases, the known 

drug was regenerated successfully for the runs without, and 

with, the use of the Reaction Class Recommender. In all 

cases, the recommender led to a signiicant reduction in the 

number of products generated (i.e., solutions explored by 

the algorithm) and enumeration times, suggesting that it 

provides a much more eicient management of the com-

putational resources while preserving the chance of inding 

relevant molecules. The mean reduction in generated prod-

ucts and enumeration times correspond to 62% and 50%, 

respectively.

Fig. 18  The small-molecule drugs selected for the retrospective vali-

dation

Table 14  Results from the 

retrospective validation

Each ligand is described in the number of steps required for its regeneration, number of products generated 

by the algorithm and enumeration times, without and with the use of the Reaction Class Recommender

Drug Steps Number of products generated Enumeration times (h)

Without rec-

ommender

With recommender Without rec-

ommender

With recommender

Brimonidine 1 333,361 97,842 (− 71%) 3.0 1.2 (− 60%)

Glipizide 2 732,705 251,821 (− 66%) 5.2 2.5 (− 52%)

Glyburide 2 1,317,776 1,016,319 (− 23%) 7.5 6.3 (− 16%)

Levoloxacin 1 732,285 135,084 (− 82%) 4.1 1.5 (− 63%)

Naproxen 1 425,693 113,726 (− 73%) 3.1 1.3 (− 58%)

Rivaroxaban 3 1,282,308 536,212 (− 58%) 7.7 3.9 (− 49%)
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Conclusions

Reaction-based de novo design aims to address synthetic 

accessibility by applying structural transformations that 

occur in real synthetic routes. Reaction vectors provide 

an automated way of extracting such transformation rules 

from reaction databases and when coupled with a structure 

generation method they provide a highly customisable de 

novo design tool. A limitation of reaction vectors, how-

ever, is that they only account for the structural changes 

that occur at the reaction centre itself, and they do not con-

sider the presence of more distant functionalities that can 

afect the transformations. Here, we have combined reac-

tion vector-based de novo design with a Reaction Class 

Recommender that takes account of whole molecule fea-

tures of the input molecule to suggest only those reaction 

class which are more likely to occur in a given environ-

ment. The Reaction Class Recommender acts as a ilter on 

the reaction vectors that are applied to a given molecule 

in de novo design to reduce the number of products that 

are generated to those which are more likely to be syn-

thesisable in practice. The Reaction Class Recommender 

has been conigured as a multi-label classiication problem 

and trained on starting materials and reaction class labels 

extracted from reactions in the USPD pharmaceutical pat-

ents. A systematic investigation was carried out over a 

variety of molecular descriptors, label types, multi-label 

approaches, and classiiers in order to identify the best 

performing conigurations.

The two best performing Reaction Class Recommenders 

were validated by irst applying them to a set of starting 

materials annotated with their original reaction classes and 

extracted from the medicinal literature. Both recommenders 

were shown to be capable of correctly identifying the known 

reaction classes in just under half the cases. An investiga-

tion of the wrong classiications revealed that many of these 

were also meaningful. No recommendations were made for 

around 40% of the data with this relatively high percentage 

likely to be due to the limited coverage of the training data. 

The high proportion of molecules for which no recommen-

dations was made is not seen as problematic for de novo 

design, since no ilter would be applied on the reaction vec-

tors in this scenario. A simulated de novo design validation 

was then carried out to demonstrate the efectiveness of the 

Reaction Class Recommender in an actual design scenario. 

Signiicant reductions in the total numbers of structures gen-

erated and in the enumeration times were seen while at the 

same time the estimated synthetic accessibility distributions 

of the generated structures were shifted toward improved 

values. Finally, the recommender was used in retrospective 

de novo design where the aim was to generate known drugs. 

The target compound was generated in all cases with the 

recommender resulting in a signiicant reduction in the total 

number of compounds generated.

The Reaction Class Recommender has been developed 

to enhance the de novo design of synthetically accessible 

molecules and to complement the use of reaction vectors. 

Whereas the reaction vector focuses on the reaction centre 

and the structural changes therein, the Reaction Class Rec-

ommender is trained on whole molecules and is therefore 

able to take into account features related to reactivity that 

are outside of the reaction centre itself. The Reaction Class 

Recommender has been designed to act as a ilter on the 

reaction vectors that are applied during de novo design and 

to be used both within a fully automated de novo design 

cycle and in augmented de novo design.
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