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Improving Automated GUI Testing by Learning to

Avoid Infeasible Tests

Neil Walkinshaw

Department of Computer Science

The University of Sheffield, UK

Email: n.walkinshaw@sheffield.ac.uk

Abstract—Most modern end-user software applications are
controlled through a graphical user interface (GUI). When it
comes to automated test selection, however, GUIs present two
major challenges: (1) It is difficult to automatically identify
feasible, non-trivial sequences of GUI interactions (test cases),
and (2) each attempt at a test case execution can take a long time,
eliminating the possibility of rapidly attempting large numbers of
alternatives. In this paper we present an iterative approach that
infers state-machine models from previous test executions, and
increases the utility of tests by learning which sequences to avoid.
The approach is evaluated on a selection of Java applications, and
the results indicate that our approach is successful at achieving
higher code coverage and longer sequences than the state of the
art, albeit with a time-overhead caused by the repeated invocation
of a Machine Learner.

I. INTRODUCTION

GUIs raise several challenges when it comes to automated

software testing. They can comprise a large variety of windows

with different combinations of of widgets (e.g. buttons, check-

boxes, text-entry fields, etc.), where the appearance or contents

of certain windows and widgets can depend upon previous

inputs. Accordingly, test cases that seek to fully explore the

behaviour of the underlying system can be required to include

complex sequences of selections and inputs.

There exists a very large number of GUI-testing tools,

spanning mobile apps, web-apps, and desktop GUIs. The goal

is the same as with any testing technique - to identify a

manageably small set of test cases that is sufficiently rigorous

and diverse to expose any faults. However, the challenge

with GUIs is especially challenging because (1) GUI-based

applications can take a long time to initialise and execute, (2)

the GUI interface is invariably dynamic – the input ‘surface’

can change from one interaction to the next, and as a result

(3) ‘test cases’ amount to potentially complex sequences of

widget clicks, drags, gestures, etc.

In this paper we investigate a solution for scenarios where

there is no capability of analysing and querying the run-time

GUI state. We may, for example, be interested in testing an

application across a multitude of platforms. We consider the

scenario where we are able to supply the SUT with a range

of inputs (in a programmable way via some testing interface).

We also presume that we start from a possibly large set of

potential test sequences, which may arise from some GUItar-

style analysis of the SUT [1], be randomly generated, they may

be a product of fuzzing [2]. In any case, a large proportion

of these test cases are liable to be trivially invalid, and lead

to (expensive) application re-starts after only few interactions.

We do not assume that we are able to query or scrutinise the

state of the system under test during a test execution (e.g. to

determine which inputs are feasible at any given point).

Our solution is superficially similar to existing solutions

[3], [4]. We use a state machine inference to infer models of

what has been tested so far and use this model to inform

the selection of new test cases. However, in our scenario

it is especially important that the inferred model is able

to discriminate between sequences of events that have been

explored so far, and sequences of events that have been

explored but should be avoided in future executions because

they will lead to some undesirable outcome (e.g. a time-out).

To address this, our paper makes the following contributions:

• We show how GUI test-executions can be fed to the

EDSM state machine inference algorithm [5](previously

used for Android SwiftHand [3]), in a way that takes

advantage of its capacity to distinguish between positive

and negative examples to produce models that are capable

of distinguishing between interaction sequences that have

been attempted, and sequences that are likely to be invalid

or lead to time-outs.

• We present an algorithm that uses the resulting model to

filter-out and prioritise GUI test cases.

• We have developed an openly available implementation

of the approach.

• We present an empirical evaluation on five GUI-based

Java applications, which demonstrates that the use of our

approach leads to longer interactions and greater code

coverage than a quasi-random use of GUItar.

II. BACKGROUND AND RELATED WORK

We start with a brief introduction to the landscape of

automated GUI testing. Since state machine inference has

played a reasonably prominent role in GUI testing (and forms

the basis for our approach too) we provide a brief introduction

to state machines and state machine inference. We then discuss

some of the specific ways in which state machine inference has

been used for GUI testing, and discuss some of the weaknesses

(or missed opportunities) of these approaches.



A. Automated GUI Testing

There has been a gradual evolution of GUI-testing tools.

Early GUI-testing tools, most notably GUItar [6] and its

mobile version MobiGuitar [7], worked in two phases. In the

first phase, an analysis of the source code, perhaps enhanced

by a dynamic analysis, would construct a model of capturing

the possible range of interactions with the SUT. This is then

followed by a test selection process [1], where the goal is to

meet various objectives - to achieve maximum coverage of

the model (and code), with the fewest possible number of test

cases (because application restarts for new tests are especially

time-consuming).

In GUITar and MobiGUItar the model of the target GUI

was encoded as an Event Flow Graph [1]. This is a graph that

contains labels corresponding to GUI events, where transitions

indicate the order in which these events are deemed to be

possible.

Definition 1: An EFG is a directed graph (V,E, I), where

each element v ∈ V corresponds to an event in the GUI. E is a

set of edges (vi, vj), indicating that event vi can be succeeded

by vj . I ⊆ V is a set of initial vertices, indicating that these

can act as starting points for a GUI interaction.

One major limitation of this approach is the fact that the

model constructed in the first phase is not entirely accurate.

The use of static analysis invariably means that the model will

indicate that certain sequences of events should be possible

when they are not. As a result, such approaches can end up

attempting large numbers of test cases that are futile [8], [9],

leading to many re-starts of the application without achieving

significant coverage [4].

In recent years, GUI-testing tools have worked around the

limitations posed by such a-priori models by exploiting the

emergence of increasingly sophisticated technical facilities

within APIs to query and log GUI-interactions. As a result a

large range of Android-based testing tools [3], [10], [11], [12],

[2], [4] have emerged, which take advantage of such capabili-

ties, and are able to successfully generate long, exploratory test

sequences. Similarly for Windows applications, Testar [13],

[14] has emerged as a leading tool, able to query the state of

a GUI during execution via the Windows accessibility layer.

This progress does however come at a cost. These tech-

niques and tools tend to be tied to the underlying platform for

which they have been developed, vulnerable to any sudden

changes to interfaces within the target API or OS platform.

They can only be re-engineered to an alternative platform if

it offers a comparable interface with runtime access to the

underlying GUI state.

B. State Machines

Definition 2: A Deterministic Finite Automaton (DFA) is a

quituple (Q,Σ,∆, F, q0), where Q is a finite set of states, Σ is

a finite alphabet, ∆ : Q×Σ→ Q is a partial function, F ⊆ Q
is a set of final (accepting) states, and q0 ∈ Q. A DFA can

be visualised as a directed graph, where states are the nodes,

and transitions are the edges between them, labelled by their

respective alphabet elements.

Algorithm 1: Basic State Merging Algorithm

Input: Two samples S+ and S− containing positive and

negative examples respectively

Result: A DFA consistent with S+ and S−

1 Infer(S+, S−) begin

2 PTA←initialize(S+, S−);

// Let N denote the number of states

in the PTA

3 π ← {{0}, {1}, . . . , {N − 1}};
4 while (Bi, Bj)← ChoosePair(π) do

5 πnew ← Merge(π,Bi, Bj);

6 if Compatible(PTA/πnew, S
−) then

7 π ← πnew;

8 return PTA/π

// Merge pair of states and ensure that

the result is deterministic

9 Merge(π,Bi, Bj)begin

10 π ← π \ {Bi, Bj} ∪ {Bi ∪Bj};
11 while

(Bk, Bl)←FindNonDeterminism(π,Bi, Bj) do

12 π ←Merge(π,Bk, Bl);

When discussing the behaviour of a DFA, we are referring

to the possible (and impossible) sequences of elements in Σ
(denoted Σ∗). The set of all possible sequences in a DFA is

referred to as its language. To define this formally, we draw

on the inductive definition for an extended transition function

δ̂ used by Hopcroft et al. [15]. For a state q and a string w,

the extended transition function δ̂ returns the state p that is

reached when starting in state q and processing sequence w.

For the base case δ̂(q, ǫ) = q. For the inductive case, let w
be of the form xa, where a is the last element, and x is the

prefix. Then δ̂(q, w) = δ(δ̂(q, x), a).
Definition 3: The language L(A) of a DFA A is the set

of strings reaching any state in A from its initial state. L(A)
is defined as follows: L(A) = {w ∈ Σ∗ | δ̂(q0, w) ∈ F}.
The complement of a language L is denoted LC (i.e. the set

Σ∗ \L of strings that do not belong to L). Sequences w ∈ Σ∗

for which δ̂(q0, w) is not defined are considered to be rejected

by the automaton.

C. State Machine Inference

Although the challenge of inferring an exact state machine

has been shown to be NP-hard [16], several algorithms have

emerged that have been shown to be capable of inferring

reasonably accurate approximations. It has been shown that,

given a sufficiently diverse set of positiven and negative ex-

amples, it is possible to infer a state machine that is ‘Probably

Approximately Correct’ [17] in polynomial time [18], [19].

Amongst a variety of inference algorithms, the State Merg-

ing algorithm [19], [5] is is particularly prevalent in Software

Engineering [20], [21], [22], [3], [23], [24], [25], [26], [27],



[28], [29], [30], and is detailed in Algorithm 1. In essence,

the approach starts from two sets of sequences: S+ - a set of

sequences that are accepted by the subject, and S− - a set of

sequences that are not. From these it constructs a tree-shaped

automaton (a ‘prefix-tree automaton’) that exactly represents

a given set of sequences (line 2). It then adopts some form

of heuristic to select which pairs states to merge with each

other (lines 4-5, 9-12), thereby producing a state machine that

generalises on the initial set of sequences. If the resulting

machine correctly rejects all sequences in S− (it accepts all

strings in S+ by construction), then the merge is accepted and

the process iterates (lines 6-7) until no further merges can be

identified and the final machine is returned (line 8).

Software engineering applications, including the various

inference-based testing approaches, have largely been based

on situations where there are no ‘negative’ sequences for S−,

but only instances of observed execution traces belonging

to S+. In such situations, to prevent the merging process

from over-generalising to produce a single-state machine that

trivially accepts all sequences, it is necessary to constrain the

ChoosePair function. To this end, techniques such as k-

tails [21], [22] tend to only select merge-candidates if their

outgoing paths fulfill some sort of ‘similarity’ criterion (e.g.

outgoing paths must match each other up to some specified

length k).

D. State Machine Inference and GUI Testing

State machine inference has been successfully applied to test

sequential software systems that are not GUI-driven (notably

network protocols) in the past [31]. There is a natural link

between GUIs and state machines, which has been the subject

of an extensive amount of research [32], and which makes

GUIs apparently ideal candidates for testing approaches that

incorporate state machine inference. The idea was first ex-

plored by Mariani et al. with the AutoBlackTest approach [12],

which used QLearning [33] to infer behaviours from the GUI

under test as it is being tested, and to then use this as a basis

for selecting new inputs. Subsequently, Choi et al. developed

the SwiftHand [3] Android testing tool (which is based upon a

state merging algorithm). The subsequent FSMDroid [4] was

also based on a similar premise, whilst including stochastic

weights in the state machine.

The evidence to corroborate the performance of these ap-

proaches is mixed. In the domain of Android testing, a 2015

study [10] saw techniques such as SwiftHand comprehensively

outperformed by the very Android Monkey tool. Studies

that examine the relative performance of AutoBlackTest and

GUITar subject to the caveat that their relative performance

can vary significantly depending on configurations and subject

systems [34]. However results by FSMDroid appear to be

promising [4] (outperforming successful tools such as Sapienz

[2]). Invariably, when comparing techniques it can be difficult

to disentangle performance gains that are due to tool imple-

mentation details from gains that are due to the underlying

technique.
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Fig. 1. Testing set up.

One characteristic that applies to all of these techniques is

that they build a model from a single set of test executions

(or dynamic traces obtained before testing). All test executions

are treated the same – regardless of whether they terminated

successfully or ended in a time-out and had to be aborted.

In the terms of the state merging algorithm presented in

Algorithm 1, all of the traces belong to set S+ and S− is

empty.

This severely hampers model inference; without any nega-

tive examples, the inference algorithm is vulnerable to over-

generalisation [16], [19]. In a pathological worst-case this

would result in a single-state DFA where all sequences lead to

the same positive outcome. To avoid this scenario, techniques

are reduced to either crudely guessing whether two states are

equivalent (e.g. by means of the k-tails heuristic [21], [22]),

or by using run-time GUI querying APIs to inspect the current

GUI state.

Aside from the problems of inference-accuracy, there is

also a consequence for the semantics of the inferred model.

Without any negative information the inferred models tend

to be ‘prefix-closed’, meaning that any sequence and prefix

thereof through the inferred model is valid. This leads to

a simplified form of DFA (formally a Labelled Transition

System (LTS) [35]) where F = Q; every state is a potential

final state, and there is no ability to discriminate between

sequences that are valid, and those that should be avoided

(e.g. because they lead to costly time-outs and restarts [9]).

III. INFERENCE WITH NEGATIVE GUI TEST SEQUENCES

This paper is based on the observation that the context of

GUI-testing offers plenty of sources of ‘negative’ information.

In an inference-supported testing context, these sources of

information can be easily incorporated into well-established

inference techniques. This raises the possibility of inferring

more accurate models, and using these models to suppor the

selection of better test-cases.

A. Testing Scenario

We demonstrate this process with respect to the traditional

“gui-ripping” testing scenario [1]. For the sake of practicality,

we seek to limit our practical requirements where possible. We

describe the key components (and distinguish between those

that are absolutely necessary and those that are desirable) with



respect to the GUI-testing setup illustrated in the grey-shaded

elements in Figure 1.

The most important requirement is access to a GUI testing

setup that is able to interact with the SUT (we refer to this as

the “interaction layer” - 1). This is what enables us to supply

test sequences (sequences of interactions) and for them to be

applied as GUI interactions with the SUT. One particularly

important requirement is that we are able to surmise whether

or not an attempted test execution has completed or not.

In GUITar, for example, there is a logging facility (2) that

records, for each test execution, which events were executed

and at what point (if any) an attempted interaction failed or

resulted in a time-out. We do not assume run-time access to

the test execution, or an ability to query the GUI during test

executions.

We assume that there is some test generator (3) by which

to generate a set of potential test sequences (4). Since we are

operating in a “gui-ripping” setting, we assume that the ripped

information (obtained by some mixture of static and dynamic

analysis of the SUT) is available in the form of an EFG (5 - see

also Definition 1). Although the EFG itself is not essential to

our approach, it can be helpful during state machine inference.

An EFG-supported extension to the state merging algorithm

in Algorithm 1 is provided in Appendix A.

B. Adaptive Test Selection with Input from Negative Inputs

The goal is to identify a manageable sub-set of test cases

that will, reach the widest possible range of GUI functionali-

ties. This is challenging because test cases can require a long

time to execute. Although GUI Rippers may have the EFG

graph, these can be of limited practical use because of their

scale, and the fact that many paths through them are infeasible

in practice. For example, the ripped EFG for the smallest of

our case study systems (Rachota) contains 149 possible events

(nodes) and 1344 edges connecting them.

We use state machine inference to address this problem by

developing a test selection framework (6 in Figure 1). As with

previous learning-based GUI testing approaches [12], [3], [4],

our approach uses the inferred model to identify test cases.

However, there are two key differences with our approach –

one obvious, the other subtle. The obvious difference is that

our approach explicitly incorporates negative information, by

learning models that distinguish between failures to execute

a test properly, and test executions that terminated without

problems. The more subtle difference is that we frame our

approach as a ‘test selection’ approach; we use the inferred

model to filter an existing set of proposed test sequences,

where the construction of these sequences is delegated to some

external test-generation algorithm (for example, an existing

EFG-based test generator [1]).

The details of our test selection process are presented

in Algorithm 2. The approach takes three inputs: A set of

candidate test cases T (e.g. as generated by some GUI testing

framework), a number of iterations i representing the number

of test-inference loops to be run, and j the number of tests

to be generated per iteration (the choice of values for these

Algorithm 2: Test Selection Algorithm

Input: A set of candidate test cases T , iterations i,
number of tests per iteration j.

Result: A set FinalTestSet ⊆ T , where

|FinalTestSet| = i ∗ j

1 Select(T, i, j) begin

2 FinalTestSet← ∅;
3 S+ ← ∅;
4 S− ← ∅;
5 for 1 to i do

6 Potential← T \ FinalTestSet;
7 if S+ ∪ S− 6= ∅ then

8 DFA← inferDFA(S+, S−);
9 Potential← Potential ∩ L(DFA);

10 Tests← randomSelection(Potential, j);
11 FinalTestSet← FinalTestSet ∪ Tests;

12 for t ∈ Tests do

13 e← execute(t);
14 if e = t then

15 S+ ← S+ ∪ {e};
16 else

17 S− ← S− ∪ {e};

18 return FinalTestSet;

parameters will be discussed after we briefly present the

various steps in algorithm). The algorithm proceeds as follows:

2-4 Before iterating, the set of test cases to be returned

FinalTestSet is initialised, along with the set of positive

and negative test executions (S+ and S−).

5-6 For each iteration, we remove the set of tests executed

so far FinalTestSet from the pool of generated tests T ,

and store this as the set Potential.
7-8 If this is not the first iteration (i.e. S+∪S− 6= ∅), a DFA

DFA is inferred from the sequences in S+ and S−, using

the inference algorithm in Algorith 1.

9 The pool of potential tests Potential is filtered by

retaining only those tests that are accepted in the inferred

DFA (i.e. belong to L(DFA)).
10-11 A random sub-set of size j is selected from Potential,

is stored as a separate set Tests, and is added to

FinalTestSet.
12-13 Each of the tests t ∈ Tests is executed. The execute

function returns the sub-sequence of elements e in t that

are successfully executed. In practice tests are executed

by using whatever test execution mechanism is built

into the GUI testing framework (e.g. the JFCReplayer

in GUItar).

14-17 If t and e are identical, then the sequence e can be added

to S+. Otherwise it is added to S−.

18 After the i iterations, the final test set FinalTestSet is

returned.



TABLE I
SUBJECT SYSTEMS

Name Version LOC Windows Events

Rachota 2.3 8,803 10 149
Buddi 3.4.0.8 9,588 11 185
JabRef 2.10b2 52,032 49 680
JEdit 5.1.0 55,006 20 457
DrJava 20130901-r5756 92,813 25 305

C. Implementation

The proof of concept tool was implemented as an ap-

proximately 1KLOC extension to the MINT EFSM inference

tool1 [36]. Our implementation is tailored to GUItar, but is

implemented to be adaptable to alternative GUI testing frame-

works. The test-inference loop happens through command-

line invocations, and parsing of log-files, there are no API

dependencies.n Although we use the EFG-driven compatibility

function (see Appendix A), this could in principle be replaced

with alternative state machine inference algorithms that do not

require the EFG.

To obtain the initial large set of potential test sequences

from which we are selecting tests, we generate all shortest

paths from the EFM using the Floyd-Warshall algorithm [37].

In principle, any test-generation algorithm could be used at

this point. It is however desirable that the base set of test cases

exercises every event in the GUI, and this level of coverage

is guaranteed by the Floyd-Warshall algorithm (accepting, of

course, that many of the proposed tests will invariably not be

feasible).

IV. PRELIMINARY EVALUATION

The goal of our technique is to identify test sets that are

‘efficient’. By skipping tests that are infeasible, it should be

possible to spend a greater proportion of the testing effort on

meaningful tests that ultimately exercise the behaviour of the

underlying program to a greater extent. To investigate whether

this is indeed true, we pose the following research questions:

RQ1 Does our approach enable longer sequences of GUI

interactions?

RQ2 Does our approach cover the underlying source code to

a greater extent?

RQ3 What is the time overhead incurred by our approach?

A. Subject Systems

To evaluate our approach, we chose five GUI-based Java

applications, shown in Table I. We selected these applications

on the basis that they were used by Gao et al. [8] for their GUI

testing paper. The exact versions (along with accompanying

versions of GUItar) were made available by Gao et al. online2.

Rachota is a time-tracking tool that can produce time-

management reports. Buddi is a financial budget management

tool. JabRef is a bibliography reference manager. JEdit is

an extensible text editor, and DrJava is an educational Java

IDE.

1https://github.com/neilwalkinshaw/mintframework
2http://cse.unl.edu/myra/artifacts/Repeatability/
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Fig. 2. Code branches covered and test sequence lengths and per iteration.



TABLE II
FINAL SEQUENCE LENGTHS, COVERAGE, INPUTS EXECUTED AND TIME TAKEN AFTER 300 ITERATIONS.

System Mean sequence length Mean coverage Mean inputs executed Mean time (minutes)
Inf. Rnd. p Inf. Rnd. p Inf. Rnd. p Inf. Rnd. p

Rachota 3.9 2.37 0.0006 4,736.63 4,703.30 0.0002 1082.67 887.87 <0.0001 211.12 94.9 <0.0001

Buddi 3.17 1.62 <0.0001 3,236.06 3,038.52 0.0399 830.38 507.93 <0.0001 178.52 90.87 <0.0001

JabRef 2.13 1.7 0.0199 4,736.63 4,703.30 0.0002 649.9 543.37 <0.0001 629.77 155.08 <0.0001

JEdit 3.93 2.86 0.1547 19,250.93 18,906.14 0.013 1101.28 890.73 <0.0001 535.09 227.71 <0.0001

DrJava 3.42 2.23 0.027 12,827.73 6,136.92 0.0002 929.08 780.85 <0.0001 304.59 136.07 <0.0001

All 3.062 2.408 8841.57 7741.035 917.72 720.83 373.89 140.81

B. Methodology

For each of the systems in Table I we ran our tool for 300

iterations, producing 5 tests per iteration (i.e. we generated

a total of 1500 tests per run). Since our approach involves

some random sampling (tests are picked at random from the

large pool of tests), we repeat each run 30 times with different

random seeds.

As our baseline, we randomly pick the same number of test

cases from the pool of candidate test cases that collectively

cover the vertices of the EFG (as described in Section III-C).

This amounts to a generic coverage-driven GUI testing tech-

nique.

To answer RQ1, we record for each individual test execution

the number of separate GUI events successfully executed and

the length of each test sequence. To answer RQ2, we record

the code coverage, using the Cobertura extensions of the

GUItar framework. To answer RQ3 we record the number of

milliseconds taken for each iteration.

To measure statistical significance in our comparisons of

length and coverage, we use the Mann-Whitney U-Test to

compare the lengths and coverage respectively at the final

(300th) iteration. This statistical test was chosen because a

Shapiro-Wilks test indicated that the data is not normally

distributed. We report a statistically significant difference if

p < 0.05.

The experiments were run in parallel on the ALICE HPC

facility at the University of Leicester. GUI interactions were

executed with the xvbf virtual frame buffer. To guard against

any side-effects from previous tests affecting subsequent tests,

a core copy of the program was copied on to the test node for

every experiment. The subject systems and test harness were

run using Oracle JDK 8.

C. Results

The mean results after 300 iterations and the p-values for

the statistical significance of the U-Tests are shown in Table II.

The per-iteration means (and standard deviation error-bars) for

sequence-length and coverage are shown in Figure 2. The final

times and total number of interactions executed are shown in

Figure 3.

RQ1: Length of GUI interactions: Figure 2 indicates that,

for each system, the inference-based tests achieve longer GUI

interactions than those that are selected at random. When the

test runs from all the systems are taken together, the average

sequence length achieved from the random selections at the

final iteration is 2.41, versus 3.06 for inference-based testing.

For all systems apart from JEdit the difference in sequence

length is statistically significant. In the case of Buddi the

difference is especially pronounced, with the inference-based

tests leading to a mean sequence length of 3.17 against a mean

of 1.62 for the randomly-selected tests.

RQ2: Code coverage: Table II shows that, after 300

iterations, the mean coverage achieved with the help of in-

ference is (statistically) significantly higher across all subject

systems than that achieved from random test selection. The

extent of this improvement, as in RQ1, differs significantly

between systems. Figure 2 shows that whereas the difference

is substantial for Buddi, Dr Java, and JabRef, it is hard to

distinguish visually for Rachota, and only in the latter 50-70

iterations for JEdit.

RQ3: Time: Table II shows that the inference-based

approach took significantly longer than the random approach

for 300 iterations. The average times have to be interpreted

with caution because they vary significantly for each system.

This is illustrated in Figure 3, which plots the time taken

against the number of events executed.

On average, the time difference between inference-driven

and random test execution is 233.08 minutes. Over 300

iterations (at five test executions each) this amounts to a 42

second difference per iteration. Although the execution time

of longer valid test sequences will be a factor, it is likely that

the majority of this time is spent inferring the state machine.

It should be noted that the 300 iteration cut-off is an

arbitrary limit. Looking at the sequence-length and code-

coverage time-series in Figure 2, significant improvements

over random testing are already evident between 100 and

150 iterations, in which case the time-overhead would be

significantly lower.

Summary

The findings are promising. The inclusion of inference

supported by negative results leads to longer sequences, which

probe aspects of software behaviour that are not reached by

random executions. As a result this leads to higher code-

coverage. There is a time-overhead involved, largely because

of the need to run a Machine Learner at every iteration.

D. Threats to Validity

a) External threats to validity: The baseline used in our

experiments is a test set generated by coverage-guided GUI

Ripping. Although we have convincingly shown that the use of
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Fig. 3. Times taken for 300 iterations, versus total number of inputs executed.

inference (with negative examples) produces better results, this

does not demonstrate that the use of negative examples pro-

duces better results than conventional (non-negative example)-

based inference approachces such as SwiftHand or FSMDroid.

This will require a separate controlled experiment, and is part

of our plans for future work.

The experiments are based on five Java (Swing / AWT)

programs, and cannot be taken to represent, for example,

the performance obtained with respect to mobile devices.

However, as far as desktop GUI applications are concerned,

they are all diverse in terms of their domain and size, and have

all been used in previous studies on GUI testing.

b) Internal threats to validity: We use statement cov-

erage to gauge the extent to which the behaviour of the

underlying source code has been executed. This is notoriously

imprecise at estimating test adequacy; test set can achieve a

high level of statement coverage but still miss out on many

aspects of program behaviour. Since we are more interested

in using code coverage as a relative measure as opposed to an

absolute one, we would nevertheless argue that it is reasonable

to presume that a test set that achieves statement coverage that

is higher than another test set is exercising a greater range of

behaviour.

V. CONCLUSIONS AND FUTURE WORK

In this paper we have introduced a technique whereby state

machine learners can be incorporated into an automated testing

cycle to increase the likelihood of selecting valid, longer

test sequences. We have demonstrated a proof-of-concept

implementation, and have successfully applied it to a selection

of Java Swing / AWT programs.

Our work has specifically considered the ”GUI-ripping”

setting, but can be adapted to other settings. model inference

has been used successfully in ”active” Android testing settings

[3], [4], for example. These also offer sources of negative

information that can be easily used to improve and refine

models, and the test sets that are derived from them as a result.
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APPENDIX A

USING THE EFG FOR STATE MACHINE INFERENCE

It is in our interest that the inferred DFA is as precise as

possible. It should generalise upon the set of traces in S+,

but not over-generalise to the point that it accepts too many

sequences that are infeasible. Existing state machine inference-

based GUI-testing approaches such as SwiftHand [3] take

advantage of the run-time GUI state. When deciding whether a

pair of states can be merged (i.e. as part of the ChoosePair

function in Algorithm 1), they take advantage of the ability

to compare which events are possible at any given point; if

different events are possible, the states are not behaviourally

equivalent and should not be merged. In our setting, we do

not presume access to the run-time state. However, if we have

access to the EFG, it is possible increase the efficiency and

accuracy of this process by in a similar manner to the use of

the live test-information used by tools such as SwiftHand.

Algorithm 3: EFG-supported compatibility function

Input: A DFA D and an EFG E.

Result: A boolean.

1 ChoosePair(E, D) begin

2 merge← false;

3 while (Bi, Bj)← ChoosePair(QD) ∧ ¬merge do

4 Events← in(D,Bi)∪in(D,Bj);
5 DestD ←out(D,Bi)∪out(D,Bj);
6 DestE ← ∅;
7 for e ∈ Events do

8 DestE ← DestE∪ out(E, e);

9 if DestD ⊆ DestE then

10 merge← true;

11 return (Bi, Bj);

Algorithm 3 shows a version of the ChoosePair function

that can be used as a wrapper for the original ChoosePair

function in Algorithm 1. For every pair of states considered

(line 3), it identifies the set of GUI events Events (vertices

in the EFG) that would need to be considered by identifying

the set of incoming events to each candidate state in the DFA

(denoted by function in, line 4). It then predicts the set of

all events that should be possible from the merged state in the

DFA by taking the union of the outgoing transition events from

both candidate states (line 5). It constructs a corresponding

union of events are possible according to the EFG by taking

the union of events possible after every event e ∈ Events
(lines 7-8). If the set of events possible from the merged state

is a subset of the set of events in the EFG (line 9), then the

merge is allowed (line 10), otherwise the process is repeated

for some alternative pair.


