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1. Introduction
Across the world, the prevailing view of science 
appears to be that it is split into three disciplines: 
physics, chemistry and biology, and that these 
disciplines are completely separate. Beyond the 
so-called ‘hard’ sciences and into the social sci-
ences, the perception of separation becomes 
even more apparent. Popular science educators 
appear to be attempting to change this conceptu-
alisation by covering a wide range of overlapping 
scientific topics. Examples include Brian Cox’s

multiple ‘Wonders...’ series, Hannah Fry's books,
podcasts, and recent 2019 Royal Institution 
Christmas Lectures, Neil deGrasse Tyson’s
reboot of ‘Cosmos’ and Helen Czerski’s various
works. Nevertheless, it cannot be overlooked that 
each of these educators are known primarily by 
their single core field of expertise. For Fry this 
field is mathematics and for the others, physics. 
The public perception has been quite accurately 
captured in the XKCD comic ‘Purity’, which can
be found online [1].

At the highest level of study where pioneer-
ing research takes place, the separation between 
all scientific disciplines often becomes signifi-
cantly less well-defined, especially in the more 
applied fields. Indeed, the very definitions of 
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Abstract
Hierarchical structure and mechanics are crucial in biological systems as they 
allow for smaller molecules, such as proteins and sugars, to be used in the 
construction of large scale biological structures exhibiting properties such 
as structural support functionality. By exploring the fundamental principles 
of structure and mechanics at the macroscale, this general theme provides 
a clear insight into how physics can be applied to the complex questions of 
biology. With a focus on biopolymer networks and hydrogels, we present a 
series of interactive activities which cover a range of biophysical concepts 
at an introductory level, such as viscoelasticity, biological networks and 
ultimately, hierarchical biomechanics. These activities enable us to discuss 
multidisciplinary science with a general audience and, given the current trends 
of research science, this conceptualisation of science is vital for the next 
generation of scientists.
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physics, chemistry and biology become exceed-
ingly blurred in the field of applied liquid crys-
tals, for example, where the optical properties of 
liquid crystals make them an interesting candidate 
for contact lenses [2, 3]. It is therefore of vital 
importance that the next generation of scientists 
develop an appreciation of the interdisciplinary 
nature of science.

Our field of study is protein-based hydro-
gels, where the number of traditionally separate 
disciplines required to progress our understand-
ing is astonishing. The remainder of this paper 
will present a series of activities which aim to 
showcase interdisciplinary science by using pro-
tein hydrogels as a focus. We will give a brief 
introduction to the field in section 2 with a gen-
eral description of the wide range of disciplines 
involved, introducing ‘hierarchical biomechan-
ics’ as a core theme. Sections 3 and 4 will then 
present our designed activities, which aim to 
interactively guide participants through the inter-
play of the different fields in a logical manner. 
Finally, in section 5 we share our experiences of 
delivering these activities to two different audi-
ences. One of these was to a group of students 
aiming to study physics at A-level, but likely 
studying the other sciences as well at GCSE 
level. The second was at the University of Leeds 
research open day ‘Be Curious’, an annual event 
which aims to bring current research, across all 
disciplines, to the public.

2.  A brief introduction to protein 
hydrogels
Proteins are a diverse class of nanoscale biologi-
cal machinery which are able to perform the vast 
array of specific mechanical and chemical func-
tions required for biological organisms to survive. 
These functions include signalling, catalysis, 
transport, molecular synthesis and a whole range 
of additional tasks whose regulation directly con-
trols the life and death of an organism [4]. To 
showcase this diversity, we direct the reader to 
an animation created by Harvard University [5], 
and to recent work on the network of interactions 
present in the cell [6].

Protein-based hydrogels on the other hand are 
a class of human-engineered biomaterials which 
aim to exploit this intrinsic protein functionality. 
Protein sub-units are chemically bonded, or ‘cross-
linked’, together to form a three-dimensional 

connected network with useful biomechani-
cal properties, such tunable viscous and elastic 
behaviour (see figure 1). In principle, we are able 
to create materials with an ideal combination of 
‘solid-like’ and ‘liquid-like’ behaviour for a given 
application [7]. However, the general structure of 
these networks is largely unknown and remains 
an active field of research [8–10]. What is known 
is that the specific interactions between proteins 
and the surrounding aqueous environment couples 
with the network structure to induce an increase 
in viscosity to the entire system, thus transform-
ing the protein solution into a gel with a protein 
network supporting it; a protein hydrogel.

As they are made almost entirely of water, 
with the remainder being biological material, 
protein hydrogels are also ideal for medical appli-
cations as they are highly biocompatible. For 
example, because the networks can be relatively 
sparse, they may have use in drug delivery. Or, 
due to their elastic properties, they may have 
use as artificial tissue scaffolds [11], akin to the 
fibrinogen networks which enable blood to clot 
[12]. In a general sense, because the proteins 
forming the structural backbone of the hydrogels 
are functional objects in and of themselves, capa-
ble of natural biological processes, the applica-
tions are far reaching [13].

In order to rationally design these gels we 
must understand how tuning the specific proper-
ties of each protein, using techniques from exper
imental biology, can modify the macroscopic 
properties to obtain the results we wish. This 
type of coupling over length- and time-scales 
is what we mean by the term ‘hierarchcial bio-
mechanics’. In our activities we are concerned 
with exactly this: how the properties of the single 
protein sub-units and their spatial organisation 
translate into the macroscopic properties of the 
protein hydrogels after they have formed. Such 
an understanding is a direct application of phys-
ics to biology. The following sections will present 
our activities, which were designed to guide a a 
participant through this hierarchy of mechanical 
behaviour in biology, and we will describe how 
we communicate these interdisciplinary topics to 
our audiences.

3.  Single proteins and viscoelasticity
When considering how proteins function from a 
physical perspective, it is perhaps best to think not 
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about what the specific function of each protein 
is, but instead how each protein is able to retain 
its mechanical equilibrium and deform about this 
equilibrium ‘folded’ structure at body temper
ature. The chemical bonds within a protein impart 
the system with elasticity (energy storage), yet the 
surrounding water environment and internal fric-
tion give rise to viscosity (energy loss). This pair-
ing of elastic ‘solid-like’ and viscous ‘liquid-like’ 
behaviour is known generally as viscoelasticity, 
and the specific combination of structure, energy 
storage and energy loss capabilities is different in 
each protein. In fact, the core constituent to pro-
tein physical behaviour is their viscoelasticity. 

Some are more solid-like, retaining a highly con-
served equilibrium structure, and some are more 
liquid-like, going so far as to completely loose 
their equilibrium structure under small external 
forces [14]. To describe these different forms of 
viscoelasticity and energy storage/loss to a gen-
eral audience, we can utilise simple household 
materials to make ‘slime’.

3.1.  Communicating the concept

Viscoelastic materials have already gained trac-
tion in recent years in the form of the ‘slime’ 
craze. This is great way of introducing the idea of 

(a) (b)

Polymerisation

Solution

Gelation

(c) (d)

(e) (f)

Figure 1.  A representation of the gelation process of chemically cross-linked protein hydrogels. It is likely that 
the structures shown do not accurately represent the true network structures of protein hydrogels; this diagram is 
meant as a visual aid only. (a) A protein monomer, represented as a blue sphere, can be biologically engineered 
to contain chemical cross-linking sites, represented in red on the surface. (b) These protein monomers can also be 
engineered as polymers connected by chains of amino acids, shown here as grey springs. (c) and (d) Once formed, 
a large batch of these sub-units can be placed in solution. (e) and (f) Chemical cross-linking can be triggered, 
for example, by exposure to light in a specific frequency range. This causes the proteins to connect and form a 
covalently bonded and system-spanning network, with bonds represented here as black bars. When immersed in 
water, the resulting viscoelastic material is known as a protein hydrogel.
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Figure 2.  Slime made from a PVA glue base and borax solution cross-linker, with three examples using different 
ratios of borax to PVA. The closest is pure PVA glue, forming a liquid, and the furthest uses so much borax the 
slime is effectively solid. The middle one is viscoelastic, behaving as a liquid when left alone, but as a solid when 
stretched. (a) 0 s. (b) 15 s. (c) 60 s.

viscoelasticity to people of all ages, as we can use 
a variable slime recipe to observe a smooth trans
ition from an almost purely viscous liquid to an 
elastic solid, making the concept much easier to 
understand. From there, we can demonstrate that 
materials such as toothpaste, shaving foam, and 
even custard may not be as simple as the solid/
liquid dichotomy we are introduced to when we 
are younger.

For our discussion, we refer to a slime made 
of polyvinyl acetate (PVA) glue and borax [15], 
although many other recipes are available. PVA 
is a polymer, meaning that it is formed of a 
series of identical sub-units connected together 
in a continuous chain. In isolation, PVA glue is 
effectively a viscous liquid comprised of a huge 
number of these individual polymers in solution. 
The polymers are able to flow past one another 
and, although they can briefly get stuck and tan-
gled, they are never so entangled that the sub-
stance as a whole cannot flow. The addition of 
borax solution into the system causes chemical 
cross-links to form spontaneously between the 
polymers, which then begin sticking together at 
certain points along the chains. This additional 
connectivity slightly inhibits the flow of the PVA 
glue, thus giving rise to viscoelastic behaviour as 
the polymers form a connected network in a very 
similar manner to protein hydrogels themselves 
(see section 4). If we add this cross-linking agent 
a small amount at a time, we can demonstrate 
an almost continuous transition from liquid-like 
polymeric fluid through a range of different vis-
coelasticities. Once the proportion of cross-links 
within the system is sufficiently high, the poly-
mers within the system can no longer flow past 
one another at all. Here, the material properties 

are dominated by the cross-links themselves, 
resulting in a purely elastic object. An example 
of this recipe is shown in figure  2. When dis-
cussing viscoelasticity with an audience, more 
obvious physical characteristics can be noted. 
For example, we observe that the purely elas-
tic slime made with these materials (an excess 
of borax) is quite brittle, breaking into multiple 
parts when stretched. However, the intermediate 
phase shown in figure 2, whilst softer and easier 
to stretch, will not break if a similar level of force 
is applied. This is because the viscous (liquid-
like) component of the material allows the slime 
to passively dissipate energy. If too much energy 
is dissipated too quickly, though, so much so that 
the material cannot support any solid structure 
at all, then we have a liquid. We may also want 
to emphasise that each different type of mat
erial would be useful in different scenarios, and 
indeed, there are biological examples of proteins 
with each type of behaviour [16].

4.  Polymers, protein networks and 
hydrogels
Some proteins, such as titin in muscle tissue, are 
themselves naturally able to polymerise [16]. 
Although this polymerisation gives them unique 
mechanical properties [17], often by combining 
the capabilities of multiple types of viscoelasticity 
into a single object, they are still only one-dimen-
sional objects. In recent years the development 
of protein hydrogels (see section 2) has seen the 
use of similar methods of cross-linking as in sec-
tion 3 with the aim of making three-dimensional 
viscoelastic materials, whilst also exploiting 
the natural function and mechanical stability of 
individual proteins themselves. Aside from the 
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protein functionality these hydrogels have com-
plex, and potentially even fractal structures [18–
20]; it is this viscoelastic complexity which is of 
interest to us as biophysicists.

To explore with a general audience the type 
of mechanical behaviour we may see in our gels, 
and how that behaviour may emerge from the 
underlying protein structures, we have designed 
a macroscopic two dimensional representation of 
a biological network. An example of the grid sup-
porting a network is shown in figure 3.

4.1.  Communicating the concept

In addition to the intrinsic properties of the pro-
teins themselves, and the chemical cross-links 
that they form, a major determining factor in 
the mechanical behaviour of protein hydrogels 
is their network structure. These two properties 
combine to represent the concept of hierarchical 
biomechanics; the study of how mechanical prop-
erties emerge from the underlying components. 
Our objective here is to show how the connectiv-
ity of the protein sub-units can have an effect on 
the the resulting mechanical strength of the mac-
roscopic hydrogel.

We introduce hierarchical biomechanics 
using a macroscopic two-dimensional grid of our 
own design that is able to support a network of 
rigid metal disks connected by springs, as shown 

in figure 3. With reference to protein hydrogels, 
the metal disks can be thought of as represent-
ing the stable folded proteins, and the springs 
(depending on their stiffness) may represent 
unstructured proteins or cross-linkers. The net-
work itself is supported on a system of horizontal 
wheels, allowing free movement and expansion 
of the network around the grid. Weight can also 
be attached to the grid in a variety of directions to 
apply external forces to the assembled networks. 
Figure  3(a) shows the grid in the absence of a 
bead-spring network, and figure  3(b) shows the 
level of complexity that can be introduced.

Before introducing such complexity into 
the network, simple bead spring systems can 
be constructed to better explain the importance 
of network structure in addition to the intrinsic 
properties of the individual components. Figure 4 
shows two different networks, one made of a 
single spring, and another made of four springs. 
Mathematically, the effective stiffness of the 
entire network is identical in both systems. This 
can be seen in the fact that approximately the 
same amount of extension is seen in figures 4(a) 
and  4(b), where both networks have the same 
amount of weight attached to the left and right 
sides. The difference is in how the energy intro-
duced from the applied weight is spread around 
the network. In figure  4(b), the energy is able 
to distribute equally to each spring and so each 

Figure 3.  Photographs of our two-dimensional grid, designed to support arbitrarily connected bead-spring 
networks. (a) The two-dimensional grid in the absence of a bead-spring network. On each network edge, we can 
see connections to pulleys and weights at the edge of the table. (b) A randomly arranged example network with 
20 kg of mass applied (5 kg on each edge) supported by the two-dimensional grid. We see that while the weight is 
applied equally on all sides, the way in which the strain is distributed throughout the network is highly non-trivial.
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spring extends less individually. However, in fig-
ure 4(a), all of the energy is localised in a single 
spring. This example allows us to discuss how 
we might want to construct different types of 
networks to get different properties. By continu-
ally building in further complexity, adding new 
springs and beads at different angles with mul-
tiple connections, we arrive at something like 
figure 3(b).

5.  Discussion and future outlook
We have described a series of activities for 
communicating complex biophysical ideas to 
a non-expert audience, using current research 
into protein hydrogels as a primary focus. We 
delivered these activities as part of an interactive 
lecture on biophysics to a GCSE student group at 
a widening student engagement event. Following 
our presentation, we noted a common response 
from the students. As implied in section 1, from 
their previous studies, many students appeared 
to have never thought of physics and biology as 
being related at all, with one student saying that 
they did not think physics even applied to biology. 
Whilst we have no direct evidence, we speculate 
that this response was due to the separation of 
topics at GCSE level [21, 22]. Further anecdotal 
evidence suggests that the gradual increase in 
the complexity of our network on the grid, with 
continuous reference back to the underlying 

biological examples, allowed the presence of 
physics in biology to be realised in quite a gen-
eralised manner.

Our second delivery was at the ‘Be Curious’ 
event at the University of Leeds, a free and 
unticketed research open day with an audience of 
approximately 1200 people. At the event a num-
ber of different stalls were set-up, each showcas-
ing areas of research from across the full spectrum 
of disciplines at the University. The hierarchical 
biomechanics stall incorporated a core theme of 
interdisciplinary science in the form of three sub-
activities, two of which were those described in 
sections  3 and 4, and the third was a computer 
simulation of protein network formation pro-
jected onto a large wall behind the stall.

Here we found that the slime making activity 
was extremely popular with young children. While 
the children were making the slime, there was an 
opportunity to talk with them and their parents 
about the principles which were being explored. 
As the children were engaged in the making pro-
cess, the parents had the time and flexibility to 
listen and ask questions. With time, this allowed 
the parents to become the instructors to their chil-
dren, passing on the information they had learned. 
For the two-dimensional grid activity, the more 
complex machinery attracted older children and 
parents who were intrigued to learn what the grid 
was, and how such a clearly mechanical system 
was related to slime or the computer simulations 

Figure 4.  Two different networks with related physical properties. (a) A network formed of a single spring. (b) A 
network formed of four identical springs, two sets of two springs in parallel, where the springs in each individual 
set are in series.
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behind us. After an introduction to the functional-
ity of the grid, the public were invited to suggest 
new networks and to predict what the outcome 
of the new structure would be. This provided an 
opportunity for discussion whilst real live experi-
ments were being performed.

These previous deliveries highlight the scope 
for continuation and expansion of our activi-
ties. On the topic of formal science education, 
Parthasarathy has provided a wonderful frame-
work for how undergraduate level biophysics 
could be taught to non-experts, as an elective or 
minor subject [23]. However, he also notes that 
the general aversion to mathematics [24] may dis-
suade some students who are otherwise genuinely 
interested in interdisciplinary science education. 
The generality of the activities presented in this 
paper enables us to explore hierarchical biome-
chanics from either a conceptual standpoint, as 
was shown here, or with more formalised mathe-
matics. To this end, we have developed the activity 
further to explore biomechancial concepts such as 
spring constants, elastic moduli and Poisson ratio 
for delivery to A-level and undergraduate founda-
tion year physics students. This work will be the 
subject of a separate paper. We also note that the 
network showcased in section  4 could easily be 
adapted to include viscous components such as 
dashpots. This would allow the discussion of spe-
cific viscoelastic models such as the Maxwell and 
Kelvin–Voigt models for continuum systems [25].
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