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Abstract

For the change-point analysis of a high-dimensional time series, we consider a semiparametric
model with dynamic structural break factors. With our model, the observations are described by a
few low-dimensional factors with time-invariant loading functions of the covariates. Regarding the
structural break, the factors are assumed to be nonstationary and follow a vector autoregression
(VAR) process with a change in the parameter values. In addition, to account for the known spatial
discrepancies, we introduce discrete loading functions. We study the theoretical properties of the
estimates of the loading functions and the factors. Moreover, we provide both the consistency and the
asymptotic normality for making an inference on the estimated breakpoint. Importantly, our results
hold for both large and small breaks in the factor dependency structure. The estimation precision is
further illustrated via a simulation study. Finally, we present two empirical applications in modeling
the dynamics of the minimum wage policy in China and analyzing a limit order book dataset.

Keywords: high-dimensional time series, change-point analysis, temporal and cross-sectional dependency,
vector autoregressive process

∗We acknowledge valuable comments from the the Associate Editor and two anonymous referees, but the errors remain
on our own.

1



1 Introduction

Emerging situations of big data call for statistical tools to learn the intrinsic complex structure. Modeling

the structural breaks in a high-dimensional time-series is the object of our study. A very popular approach

is to consider high dimensional time series with factor structure, see for example, Bai and Ng (2008) and

Stock and Watson (2011). In this paper, we consider a characteristic-based factor model, which is used

to describe the common movement of time series with nonparametric functions of covariates as loadings.

The model is known as the dynamic semiparametric factor model (DSFM) and has been studied in Park

et al. (2009) for time-varying covariates. Clearly, Connor et al. (2012) and Fan et al. (2016) also consider

a similar model greatly applied in asset pricing, and the only difference is that the covariates are set to

be time-invariant. In addition, a sizable literature has shown the applicability of such type of models as

they take full advantage of the information provided by large cross-section and time-series dimensions. For

example, the DSFM has been applied by Härdle et al. (2012) in modeling and forecasting the limit order

book dynamics, by Fengler et al. (2007) in describing implied volatility surface dynamics, by van Bömmel

et al. (2014) in discovering the risk patterns and brain activities, by Härdle and Majer (2016) in yield

curving modeling, by Trück et al. (2014) in modeling and forecasting electricity spot prices, etc.

Although the DSFM successfully reduces the dimensionality of the data and disentangles the spatial

and temporal effects, the common factors are prone to exhibit structural changes over a long time span.

Many applications in economics and finance need a methodology on detecting and modeling structure

breaks. For example, to evaluate the heterogeneity of the minimum wage policy in China, a cross-sectional

data set on the minimum wage is collected over many years. One would like to see how the overall policy

changes over time, and how much heterogeneity is there for different regions.

Nevertheless, there is a vast literature on detecting structural breaks in various statistical models other

than a high dimensional semiparametric modeling framework. For example, Andrews (1993) and Bai and

Perron (1998) address complex regression models; Wied et al. (2012) and Preuß et al. (2015) focus on

the second-order characteristics of a time series; Dette and Wied (2016) propose a new formulation of a

change point hypothesis testing. Furthermore, Wu and Zhao (2007) consider inference for trend-stationary
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processes, and Shao and Zhang (2010) propose new tests for change point analysis in time series. Regarding

high dimensional time series change point analysis, Jirak (2015) provides a framework to test the mean

change using cumulative sum (CUSUM) statistics. Notably for factor models, there are also many recent

articles on estimating loading changes, such as Cheng et al. (2016), Ma and Su (2016) that use shrinkage

methods for large breaks. Bai et al. (2018) focus on establishing the asymptotic distribution of the least

square estimator for the coefficients of factor models. Also, there is a recent paper by Manner et al. (2019)

considering the issue of testing structural breaks in factor copula models.

However, there is no literature to our knowledge on conducting change-point analysis in a semiparamet-

ric high-dimensional time series modeling framework. For the latent dynamic factors, instead of estimating

breaks in the loading parameters, we target the fitting of a structural break VAR process. The contribution

lies in applying the existing change-point theory for both large and small breaks (for example, as in Bai

(1997)) under a semiparametric model estimation framework. This requires connecting the literature on

sieve estimation and change-point theory. We show that despite the semiparametric rate of estimates, we

can still establish a similar type of results as in the low-dimension case. Moreover the estimated breakpoint

is not subject to an identification issue although the factors dynamics is identified up to a sign matrix. Our

estimator is in nature a semiparametric one with unknown factors and the nonparametric loading func-

tions. For the break estimation, we establish the asymptotic distribution of our break point by allowing

for general temporal and cross-sectional dependence in the error terms. It allows not only large breaks but

also small breaks with magnitude tending to 0. This is beneficial as sometimes breaks are indeed small,

and according to e.g. Bai et al. (2018), small breaks imply randomness of the estimated breaks in the limit

and characterize the uncertainty of the estimated break points in the limit. For instance, an application is

regarding analyzing limit order book data, where one is interested in understanding the quantities of the

asset traded in the financial market. The loading functions are functions of price levels and may not be

continuous from the ask side to the bid side. Moreover, the underlying driving factors may change in their

dependency structure over time.

Our model is called as a structural break DSFM (SBDSFM), as we assume that factors follow a

structural break vector autoregression model (SBVAR). The SBVAR is applied to change-point analysis
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for the low-dimensional time series. For example, Galvão (2006) uses it for modeling policy change effects

and predicting recessions. Moreover, to incorporate the cross-sectional effect, the discontinuity in the

cross-sectional dimension is modeled as a partition estimator of the loading functions. To be more specific,

the nonparametric loading functions are constructed by partitioning the support of the covariates into

disjoint cells, which do not become smaller with the sample size, and within each cell, the unknown

regression function is approximated by a basis expansion using a fixed-order B-spline basis. Therefore,

using SBDSFM allows us therefore to account for the structural breaks in both time and cross-section

dimensions. We show that the model is helpful for detecting and making an inference on the latent

structural change for a high-dimensional time series.

We contribute to the literature in three aspects. First, we propose a SBDSFM model with an embedded

break structure, and we also study its identification scheme and estimation method. Second, we show the

consistency of the semiparametric estimates. For the latent factors, a consistency and distribution theorem

allows us to make inferences on the breakpoints. Third, we illustrate the good empirical performance of

our SBDSFM model via simulations and empirical examples. Our paper is organized as follows. Section 2

contains the model description and estimation; Section 3 has the relevant theorems and discussions. The

simulations results are shown in Section 4. Section 5 consists of the two applications. The technical details

are delegated to the Appendix in the supplementary materials.

2 Model

In this section, we describe the general setup of the model. First of all, we list the necessary math

notation used throughout the paper. For matrix A, we denote |A|F (resp. |A|2, |A|∞, |A|1) as the matrix

Frobenius norm (resp. spectral norm, ∞-norm, 1-norm). For k > 0 and vector v = (v1, . . . , vd)
⊤ ∈ R

d, let

|v|k = (
∑d

i=1 |vi|k)1/k and |v|∞ = max1≤i≤d |vi|. For two positive sequences of numbers (an) and (bn), we

denote an = O(bn) or an . bn(resp. an ≍ bn) if there exists a positive constant C such that an/bn ≤ C(resp.

1/C ≤ an/bn ≤ C) for all large n, and we denote an = o(bn) or an ≪ bn (resp. an ∼ bn), if an/bn → 0 (resp.

an/bn → 1). For two sequences of random variables (Xn) and (Yn), we write Xn = oP(Yn), if Xn/Yn → 0 in
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probability. We let λi(·) be the ith largest eigenvalue, λmin(·) and λmax(·) be the minimum and maximum

eigenvalues, respectively.

2.1. Dynamic semiparametric factor models (DSFMs) with breaks. We denote εt = (εt,1, εt,2, ..., εt,L)
⊤,

t = 1, 2, ..., T, as a sequence of random vectors, and the model we consider is (N, T → ∞),

Yt,j = m0(Xt,j) +
L
∑

l=1

Zt,lml(Xt,j) + εt,j, j = 1, 2, . . . , N. (2.1)

Here, under the conditions of E(εt,j|Xt,j) = 0,E(Zt,l|Xt,j) = 0, m0(Xt,j) is the conditional expectation of

E(Yt,j|Xt,j). The terms ml(Xt,j), l ≥ 1, are taken to be generalized nonparametric loading functions and

Zt = (Zt,1, Zt,2, · · · , Zt,L)
⊤ can be understood as the latent/unobservable common factors.

To incorporate the temporal break, we consider a time breakpoint τ ⋄. We let ǫt = (ǫt,1, ǫt,2, ..., ǫt,L), t =

1, ..., T, be i.i.d. random vectors. For A = (A1, A2, ..., AM), we denote B(A) = A1B1+A2B2+ ...+AMBM ,

where B is the backward shift operator. We assume that the factors Zt satisfy

Zt = B(E)Zt1t≤τ⋄ + B(Ẽ)Zt1t>τ⋄ + ǫt, t ≥ 1, (2.2)

and Z0, Z−1, ..., Z−M+1 are some arbitrary vectors in R
L, where τ ⋄ is an unknown constant,

E = (E1, E2, ..., EM), and Ẽ = (Ẽ1, Ẽ2, ..., ẼM), (2.3)

are autoregressive coefficient matrices. Here the lags for the two regimes, denoted as M1 and M2, can be

different or unknown by setting M to be large enough and Ei = 0, Ẽj = 0 for i > M1, j > M2. We assume

that M is a fixed constant throughout this paper.

Remark 1. [Comparison with Park et al. (2009)] Our settings in (2.1) are different from Park et al. (2009)

in two major aspects. Firstly, Zts follow a nonstationary SBVAR process, namely the coefficients of VAR

change after an unknown breakpoint, while Park et al. (2009) assumes that Zt follows a stationary and

strong mixing process. Assuming the SBVAR model allows for a change-point analysis, and the assumption

leads to new issues of identification and estimation. Secondly, Park et al. (2009) assumes εt,j to be i.i.d.

and the distribution to be sub-Gaussian, while we have general assumptions allowing for spatial temporal

dependence, and we impose only moment assumptions on the distribution of εt,j. ✷
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The number of factors L is taken to be some fixed constant throughout the paper. Similar models

without breaks are adopted in many papers in the literature (see, Connor et al. (2012); Fengler et al.

(2007); Härdle et al. (2012); Park et al. (2009); Brüggemann et al. (2008); etc.)

The spatial discontinuity can be handled by taking into account the discontinuous basis function-

s for ml(·). We assume that the functions ml(·) can be approximated by
∑J

k=1 al,kφk(·) as J → ∞.

Here φk(·) is taken to be ψi(·)1·∈Rr
, where Rrs forms the support of {Xt,j, 1 ≤ t ≤ T, 1 ≤ j ≤ N}.

ψi(·) is the tensor product B-spline basis, and i, r corresponds to the index k. Then, the spatial dis-

continuity can be presented through regions Rr. For example, Rr can be used to model the presence

of discontinuities of the regional minimum wage policies in China. We define the matrix of coefficients

A
def
= (al,k)l,k (for every factor we have chosen the same number J of basis {φk}). We denote matrix

Φ(Xt) = (φ(Xt,1), φ(Xt,2), ..., φ(Xt,N))
⊤ ∈ R

N×J , where φ(x) = (φ1(x), φ2(x), ..., φJ(x))
⊤. We let the load-

ing functions be m(x) = (m0(x),m1(x), . . . ,mL(x))
⊤.

2.2. Temporal and cross-sectional dependencies in noise sequences. We let ηt,j, t, j ∈ Z be i.i.d. ran-

dom variables with E(ηt,j) = 0 and Var(ηt,j) = 1.We denote ηt = (ηt,1, ηt,2, . . . , ηt,N)
⊤. To incorporate both

temporal and spatial dependencies, we shall consider the commonly used moving average (MA) process

for the noise sequence εt = (εt,1, ..., εt,N)
⊤,

εt =
∑

k≥0

Bkηt−k, (2.4)

where (Bk)k≥0 are matrices in R
N×N such that εt is a proper random vector. If Bk = 0 for all k ≥ 1, then

the noise sequences are temporally independent. If B0 = (I − λW )−1, where λ is parameter governing the

spatial dependency strength and W is a fixed adjacency matrix. Then εt follows a spatial autoregressive

process. If matrices Bk are diagonal, then the sequences are spatially independent. In the latter case,

(εt,j)
T
t=1 becomes a MA sequence which is independently distributed with respect to different j. If in

particular Bk = (λW )k, k ≥ 0, where W is a lagged spatial weight matrix characterizing the lagged

spatial dependency. The process will correspond to a regression model with a lagged spatial autoregressive

structure. The MA(∞) process is very widely used in practice, and it includes many important time-series
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models, such as vector autoregressive moving averages (VARMA),

(I −
p

∑

l=1

ΘlBl)εi = εi −
p

∑

l=1

Θlεi−l =

q
∑

k=1

Ξkηi−k,

where Θl and Ξk are real matrices such that det(I −
∑p

l=1 Θlz
l) is not zero for all |z| ≤ 1.

It should be noted that our theoretical results work with a predetermined number of factors similar to

Bai et al. (2018). In practice, we follow the suggestions in the literature of estimating breaks for factor

models: the computed number of factors should be L̂, where L̂ is achieved by taking the estimated number,

similar in type to the Bayesian information criterion (BIC) by taking the estimated number, similar in

type to the Bayesian information criterion (BIC).

2.1 Estimation

With the model specified by (2.1) on hand, we can estimate A, Zt and τ
⋄ according to the following steps.

Step 1. We arbitrarily select (Â0, Ẑ0
t , 1 ≤ t ≤ T ) which minimizes

h(A, z1, z2, ..., zT ) =
T
∑

t=1

|Yt − Φ(Xt)A(1, z
⊤
t )

⊤|22,

which is

(Â0, Ẑ0
t , 1 ≤ t ≤ T ) ∈ argminA,zt,1≤t≤Th(A, z1, z2, ..., zT ). (2.5)

It is not hard to see that the minimum point of h(A, z1, z2, ..., zT ) is not unique. More specifically,

for any minimizer (Â0, Ẑ0
t , 1 ≤ t ≤ T ), we let Â0

1 and Â0
2 be the first and 2 : (L + 1)th columns

of matrix Â0 respectively. Then for any invertible matrix D ∈ R
L×L, ((Â0

1, Â
0
2D), D−1Ẑ0

t , 1 ≤ t ≤
T ) is also a solution. However for Ẑ0 = (Ẑ0

1 , Ẑ
0
2 , ..., Ẑ

0
T ), the product Â0

2Ẑ
0 is unique. Finding

minh(A, z1, z2, ..., zT ) is non-trivial, since it involves a fourth-order problem. In practice, one may

follow a Newton-Raphson method proposed in Park et al. (2009). For identification purpose, an
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additional normalization step is needed. We consider the condensed singular value decomposition

(SVD) of T−1/2Â0
2Ẑ

0 = Û Λ̂V̂ ⊤, where Λ̂ is a diagonal matrix with diagonal entities λ̂1 ≥ λ̂2 ≥ . . . ≥
λ̂L. (Note this decomposition is not unique. Even when λ̂i 6= λ̂j, for any i and j, the columns in Û

and V̂ may differ up to a sign matrix. We shall select one of the decompositions as Û and V̂ .) We

let

Â1 = Â0
1, Â2 = Û Λ̂, Â = (Â0

1, Â2) and Ẑ = T 1/2V̂ ⊤. (2.6)

Then T−1
∑

t ẐtẐ
⊤
t = IL, and Â

⊤
2 Â2 = Λ̂2 is a diagonal matrix.

Step 2. We denote H = (H1, H2, ..., HM), and F = (F1, F2, ..., FM) as the coefficient matrices, and τ as the

change point. We consider the loss function

Ŝ(τ,H, F ) =
T
∑

t=1

∣

∣Ẑt − B(H)Ẑt1t≤τ − B(F )Ẑt1t>τ

∣

∣

2

2
. (2.7)

We denote V̂τ = minH,F Ŝ(τ,H, F ). We set the estimate of the break location to be τ̂ = argminτ V̂τ ,

and the estimate of E and Ẽ as (Ĥ, F̂ ) = argminH,F Ŝ(τ̂ , H, F ).

Remark 2. The detailed numerical implementation and the selection of the number of factors will be

discussed in Section 4.

3 Theoretical Results

In this section, we provide consistency results for the parameters of interest. In addition the distribu-

tion theory is provided to facilitate making inference of the estimated breakpoint location. We consider

min(N, T ) → ∞ asymptotically. The relative rate of N, T is discussed in Remark 6. First we list a few

assumptions.
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3.1 Assumptions

ASSUMPTION 3.1 (Properties of εt). We assume that the noise vectors in our SBDSFM, εt, 1 ≤ t ≤
T, satisfy the MA(∞) model in (2.4) with the innovation sequence (ηi,j) and coefficient matrices (Bi).

Moment. Let (ηt,j) be i.i.d. random variables with E(ηt,j) = 0 and ‖ηt,j‖q = (E(|ηt,j|q))1/q < ∞ for

some q ≥ 4. Denote µq = ‖ηt,j‖q.

Dependence strength. We assume for some constants cB > 0, βB > 1+1/q, we have |Bk|2 ≤ cB(k∨1)−βB ,

where we recall that | · |2 represents the spectral norm of a matrix, k ≥ 0.

ASSUMPTION 3.2 (Basis function). Assume {Xt, 1 ≤ t ≤ T} are independent of {ǫt} and {εt}. Also,
we assume there are lφ, uφ > 0 such that with probability approaching one as N → ∞, we have

lφ ≤ min
t=1,...,T

λmin

( 1

N
Φ(Xt)

⊤Φ(Xt)
)

≤ max
t=1,...,T

λmax

( 1

N
Φ(Xt)

⊤Φ(Xt)
)

≤ uφ.

It shall be noted that the above assumption would not require the covariates Xt,i to be i.i.d., and instead

would allow weak cross-sectional dependence. Moreover, we do not restrict the temporal dependence of

Xt,i, and it can be perfectly time dependent, which means that Xt,i does not vary with respect to t. In

the special case of Xt,i being cross-sectionally i.i.d., we can prove that Assumption 3.2 easily holds when

c1 ≤ min
t=1,...,T

λmin

(

Eφ(Xt,1)φ(Xt,1)
⊤
)

≤ max
t=1,...,T

λmax

(

Eφ(Xt,1)φ(Xt,1)
⊤
)

≤ c2, (3.1)

with some constants c1, c2 > 0, and some additional conditions on N and T , c.f. Lemma 5 in the supple-

mentary material.

ASSUMPTION 3.3. (Properties of ǫt, innovations of Zt) Assume ǫt, t ∈ Z, are i.i.d. random vectors

in R
L with E(ǫt) = 0 and max1≤i≤L ‖ǫ0,i‖q′ < ∞, for some q′ ≥ 4. Moreover, assume (ǫt) are independent

of (εt). For the covariance matrix Σǫ = E(ǫ0ǫ
⊤
0 ), assume lǫ = λmin(Σǫ) > 0.

Especially when ǫt,i are i.i.d. for different 1 ≤ i ≤ L, with mean zero and variance σ2, then Σǫ = σ2IL

and lǫ = σ2.
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ASSUMPTION 3.4. Assume for some 0 < c < 1/2, both τ ⋄/T and (T − τ ⋄)/T are greater than c.

ASSUMPTION 3.5. (AR coefficients of Zt) Assume there exists some invertible matrix H such that

for coefficients E = (E1, E2, ..., EM), Ẽ = (Ẽ1, Ẽ2, ..., ẼM),

(i)
∑M

i=1 |HEiH
−1|2,

∑M
i=1 |HẼiH

−1|2 ≤ γe, for some constant 0 < γe < 1.

(ii) δe = |E − Ẽ|2 > 0 and δeT
1/2 → ∞.

Under Assumption 3.5 (i), both I − B(E) and I − B(Ẽ) are invertible. We let

Z(l)
t = (I − B(E))−1ǫt, Z(r)

t = (I − B(Ẽ))−1ǫt and Zt = Z(l)
t 1t≤τ⋄ + Z(r)

t 1t>τ⋄ . (3.2)

Thus Z(l)
t (resp. Z(r)

t ) is stationary and satisfies the iteration Z(l)
t = B(E)Z(l)

t +ǫt (resp. Z(r)
t = B(Ẽ)Z(r)

t +

ǫt).

Assumption 3.5 (ii) assures the patterns of the time series before and after the change point are different

and δe represents the magnitude of the difference. It is also an important assumption for the identification

of the breaks. We allow δe to go to 0, however, δeT
1/2 → ∞. Denote the covariance matrices

W1 = EZ(l)
0 Z(l)⊤

0 , W2 = EZ(r)
0 Z(r)⊤

0 and W0 = T−1

T
∑

t=1

EZtZ⊤
t = W1τ

⋄/T +W2(T − τ ⋄)/T. (3.3)

For RLM vectors,

ξ
(l)
t = (Z(l)⊤

t−1 ,Z
(l)⊤
t−2 , ...,Z

(l)⊤
t−M)⊤, ξ

(r)
t = (Z(r)⊤

t−1 ,Z
(r)⊤
t−2 , ...,Z

(r)⊤
t−M)⊤,

we define the R
LM×LM matrices

Σ(l) = Eξ
(l)
0 ξ

(l)⊤
0 and Σ(r) = Eξ

(r)
0 ξ

(r)⊤
0 , (3.4)

which capture the autocovariance of Zt up to the Mth lag, beyond that the covariance is 0.

Remark 3. It is worth noting that under Assumption 3.3 and 3.5 (i), we have the positive definiteness of

W0, Σ
(l) and Σ(r).

(i) For matrix W0 defined in (3.3),

λmin(W0) ≥ lǫ, (3.5)
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(ii) for matrices Σ(l) and Σ(r) defined in (3.4),

λmin(Σ
(l)), λmin(Σ

(r)) > 0.

✷

Proof of Remark 3. Part (i) is due to the fact that both λmin(W1) and λmin(W2) are greater than lǫ. We

note that (I −B(E))−1 = I + f1B
1 + f2B

2 + ..., where fis are matrices depending on Ei. Since ǫt are i.i.d.,

EZ(l)Z(l)⊤ = Σǫ +
∑

i≥1 fiΣǫf
⊤
i and thus λmin(W1) ≥ λmin(Σǫ) ≥ lǫ. The same arguments can be applied

for W2.

For part (ii), let x = (x⊤1 , x
⊤
2 , ..., x

⊤
M)⊤, with xi ∈ R

L and |x|22 = 1. Denote i∗ as the largest i such that

xi 6= 0. Since Z
(l)
i = ǫi +

∑

k≥1Ckǫk−i, for some matrices Ck, we have

x⊤Σ(l)x = E(
M
∑

i=1

x⊤i Z
(l)
i )2 = E(x⊤i∗ǫi∗ +H)2,

where H =
∑i∗−1

i=1 x⊤i Z
(l)
i =

∑i∗−1
i=1

∑

k≥0 x
⊤
i Hkǫi−k, for some matrices Hk, which are independent of ǫi∗ .

Hence x⊤Σ(l)x ≥ lǫ|xi∗ |22 > 0. Same argument can be applied to Σ(r) and we complete the proof.

Hence, M,L are both fixed constants, λmax(Σ
(l)), λmax(Σ

(r)) < C, where C < ∞ is some constant. We

now set assumptions on the number of basis functions J , which should be a positive integer which diverges

to infinity with N and T . We suppress the dependency of J with respect to N and T in the notation.

ASSUMPTION 3.6 (Loadings). We assume J ≤ c1N
αJ , for some 0 < αJ < 1/2. There exists A∗ ∈ R

J×L

and βJ > 0, such that,

(i) δJ = supx∈R |m(x)⊤ −φ(x)⊤A∗|∞ = O(J−βJ ), where R is the support of {Xt,j, 1 ≤ t ≤ T, 1 ≤ j ≤ p}.

(ii) For A∗
2 being the (2 : (L+ 1)) columns of A∗, assume

0 < la ≤ λmin(A
∗⊤
2 A∗

2) ≤ λmax(A
∗⊤
2 A∗

2) ≤ ua,

where la, ua are some finite constants.
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(iii) Assume that A∗
2W0A

∗⊤
2 has L non-zero distinct eigenvalues and gapL(A

∗
2W0A

∗⊤
2 ) ≥ l′a, where l

′
a > 0

is some constant and function gapk(A) := min1≤i≤k(λi(A)− λi+1(A)).

This condition states that the factor loadings can be better approximated by basis functions φ(x) as

the number of basis functions J increases. The value αJ restricts the dimensionality growth rate of J with

respect to N . The value of βJ describes the approximation speed. For example, it can be taken as s/d for

power series and splines, where d is the fixed dimension of m(.) and s is the lower bound of the degree of

smoothness of m(.) within each regime Rr. This rate can be found for example in (Newey (1997), p.150).

Regarding the selection of J , by minimizing the mean square error of the estimation, a cross-validation

method is usually used for selecting J . We also require in (ii) that the decomposition is genuine in the sense

that A∗
2 always has full column rank by restricting the minimum eigenvalue of A∗⊤

2 A∗
2 to be greater than

some positive number. This condition restricts the factors to be strong by assuming that the coefficient

matrix A∗
2 is well conditioned.

ASSUMPTION 3.7 (Identification condition). Without loss of generality, let W0 = IL and A∗⊤
2 A∗

2 be a

diagonal matrix with distinct decreasing diagonal entities.

We shall show that the feasibility of Assumption 3.1-3.7. By assumption 3.6 (iii), there exists an

orthogonal matrix Q such that Q⊤W
1/2
0 A∗⊤

2 A∗
2W

1/2
0 Q is diagonal with distinct decreasing diagonal entities.

By Remark 3, W0 is invertible. We denote D = Q⊤W
−1/2
0 . For Z ′

t = DZt and (m′
1(·),m′

2(·), . . . ,m′
L(·)) =

(m1(·),m2(·), . . . ,mL(·))D−1, A∗′

2 = A∗
2D

−1 and (2.2) becomes

Z ′
t = B(E ′)Z ′

t1t≤τ⋄ + B(Ẽ ′)Z ′
t1t>τ⋄ + ǫ′t, t ≥ 1,

where ǫ′t = Dǫt, E
′
i = DEiD

−1 and Ẽ ′ = DẼiD
−1. Then Assumptions 3.1 and 3.2 are unchanged, As-

sumption 3.3 holds in view of Σ′
ǫ = E(ǫ′tǫ

′⊤
t ) = DΣǫD

−1 and λmin(DΣǫD
−1) > 0. Note for H ′ = HD−1,

∑M
i=1 |H ′E ′

iH
′−1|2 < 1 and thus we have Assumption 3.5. For A∗′

2 = A∗
2D

−1, since λmin(D) > 0, Assumption

3.6 holds. By (3.3),W ′
0 = DW0D

−1 = IL, and we have A∗′⊤
2 A∗′

2 = D−⊤A∗⊤
2 A∗

2D
−1 = Q⊤W

1/2
0 A∗⊤

2 A∗
2W

1/2
0 Q,

which is diagonal, hence Assumption 3.7 holds.
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3.2 Estimation Consistency

Next, we show theorems regarding parameter consistency. Theorem 1 concerns the consistency results of

the estimated parameters of SBDSFM, and Theorem 2 is on the consistency of the breakpoint estimate.

We show that the identifiable part A∗(1, Z⊤
t )

⊤ can be consistently estimated. Moreover both the coefficient

matrix A∗
2 and the factors Zt can be estimated consistently up to an invertible matrix.

Regarding the semiparametric estimation of our loading functions and factors as in (2.5), we adopt the

commonly used chaining technique in the empirical process theory. The proof strategy for the following

theorem is utilizing empirical processes for the time series, in particular, the central task lies in examining

the tail probability of the partial sum of products of the covariates and error terms. However, the object

we study is nonstandard as we incorporate dynamic factors and dependent errors.

Theorem 1 (Consistency of Ẑt). Under Assumptions 3.1-3.7, we denote

ρ2 = (T + J)(TN)−(1−2/q)log(TN) and assume ρ→ 0. Then

(i) T−1
∑T

t=1 |Â(1, Ẑ⊤
t )

⊤ − A∗(1, Z⊤
t )

⊤|22 = OP(ρ
2 + δ2J).

(ii) There exists a matrix DT such that |DT −D∗|F = OP(T
−1/2), where D∗ is some diagonal matrix with

diagonal entities either −1 or 1, and

T−1

T
∑

t=1

|DTZt − Ẑt|22 = OP(ρ
2 + δ2J).

Remark 4. The rate of Theorem 1 is similar to Theorem 2 in Park et al. (2009). It can be seen that

moment (Assumption 3.1) on the innovations ηi,j plays a role in the rate of convergence in Theorem

1. In particular, a larger value of q means a stronger moment assumption and thus a faster rate of

convergence. The introducation of D∗ is unavoidable due to the identification issue. The appearance of

DT is because of the structure on Zt so that we cannot impose the condition that T−1ZZ⊤ = IL but only

|T−1ZZ⊤ − IL|F = OP(T
−1/2). ✷

Remark 5. We do not restrict the temporal dependence of Xt. In the special case that Xt does not change

over time t, then our model (2.1) is the same as the model considered in Fan et al. (2016) and our least

13



square estimator in (2.5) would have a principal component interpretation. However, as we have numerous

different theoretical assumptions (e.g., the moment and dependence assumptions on the noise sequence),

we can only compare the rates of the estimators in some special cases. If we assume the innovations have

sub-exponential tails, then we would have ρ2 = (T +J)(TN)−1log3(TN). Ignoring the sieve approximation

bias δ2J and assuming the dependence assumptions on noises are satisfied in both papers, our convergence

rate of factor would be

T−1

T
∑

t=1

|DTZt − Ẑt|22 = OP((T + J)(TN)−1log3(TN)). (3.6)

The corresponding rate in their paper is 1/N . In comparison, our convergence rate is slightly slower up to

a log3(NT ) factor if T ≥ J. ✷

For the estimation of the breakpoint, we need the following assumption.

ASSUMPTION 3.8. We assume that ρ2 + δ2J = O(T−1).

Remark 6. Let N ≍ T r. Then under Assumption 3.6 (i), Assumption 3.8 holds if

r ≥ max{1/(2αJβJ), (q + 2)/(q − 2), 2/(q − 2− αJq)}.

Recall that J = O(NαJ ) and δJ = N−αJβJ . This condition assumes a larger rate of N than T , as r > 1.

Also the rate of N interplays with q regarding the moment assumption, the number of basis functions and

the bias δJ . ✷

Next we provide a theorem on the consistency of the change-point estimate.

Theorem 2. (Consistency of τ̂) Under Assumptions 3.1-3.8, for T 1/2δe → ∞, we have |τ̂−τ ⋄| = OP(δ
−2
e ).

The rate of consistency is determined by the magnitude of the change δe. This means that in terms of

the fractions of the sample size, the estimated break points converge rapidly to the true fraction. In the

special case with the fixed break size δe, we have

|τ̂ − τ ⋄| = OP(1),
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which means that the difference between the estimated breakpoint and the true one is stochastically

bounded. A similar rate can be found in Bai (1995). Note that the break estimate consistency rate is

determined by the break size δe and as δe is defined to be aggregated from low-dimensional factors, our

rate is in line with the univariate cases. This is consistent with the setting and results in Baltagi et al.

(2016) for breaks estimation in the classical factor model. Different rates of consistentency of τ̂ can be

achieved for breaks in a panel data model where the cross-sectional dimension contributes to the order of

the break sizes, see Bai (2010) and Bai et al. (2018) for breaks in the factor model.

3.3 Asymptotic Distribution

In this subsection, we show the distribution theory of the estimated coefficient matrix within the regime

and the change point estimate. For matrix A ∈ R
m×n, denote vect(A) = (A⊤

1 , A
⊤
2 , ..., A

⊤
m)

⊤, where Ai =

(Ai,1, Ai,2, ..., Ai,n)
⊤ is the ith row of matrix A.

We define the block matrix D̃T = IM ⊗DT where ⊗ is denoted as the Kronecker product between two

matrices. We define the true coefficient matrix scaled by DT and D̃T as

H⋄ = DTED̃
−1
T , F ⋄ = DT ẼD̃

−1
T . (3.7)

We define that Σǫ,i,j is the i, j th entry of Σǫ in Assumption 3.3, and Σ(l) is defined in (3.4). The asymptotic

normality of the estimated coefficient matrices is shown below.

ASSUMPTION 3.9. We assume that ρ2 + δ2J = o(T−1).

Theorem 3 (Central limit theorem for within regime parameters). Under Assumptions 3.1-3.7 and 3.9.

Let Θ(l) = (N
(l)
i,j )1≤i,j≤L where N

(l)
i,j ∈ R

LM×LM with N
(l)
i,j = Σǫ,i,jΣ

(l)−1, and let Θ(r) = (N
(r)
i,j )1≤i,j≤L with

N
(r)
i,j = Σǫ,i,jΣ

(r)−1. Then

τ ⋄1/2vect(D−1
T (Ĥ −H⋄)D̃T ) ⇒ N(0,Θ(l))

and

(T − τ ⋄)1/2vect(D−1
T (F̂ − F ⋄)D̃T ) ⇒ N(0,Θ(r)).
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Remark 7. The rate of convergence depends on the number of observations available within each regime,

and the asymptotic efficiency of the estimation is related to the auto-covariance structure of the process

Zt. ✷

Then we provide a theorem on the asymptotic distribution of the change point estimate τ̂ . We consider

the type of contiguous asymptotics, where δe tends to zero in the limit. We show that the loss function for

estimating the change point can be approximated by a two-sided Brownian motion with a triangular drift.

Theorem 4. (Asymptotic distribution of τ̂) Under Assumptions 3.1-3.7, 3.9 and additionally δe → 0.

Let Q(l) = δ−2
e (E − Ẽ)Σ(l)(E − Ẽ)⊤ and Q(r) = δ−2

e (E − Ẽ)Σ(r)(E − Ẽ)⊤. Then

δ2e(τ̂ − τ ⋄) ⇒ argminsH(s),

where H(s) =











−tr(Q(l))s+ 2tr1/2(Q(l)Σǫ)W1(−s), if s ≤ 0,

tr(Q(r))s+ 2tr1/2(Q(r)Σǫ)W2(s), if s > 0,

where W1(·) and W2(·) are independent standard Wiener processes.

Remark 8. For the change-point detection in a univariate regression model, Bai (1997) provides a similar

type of consistency and asymptotic normality results. In our setup, we consider a VAR model with a

structural break, and Ẑt is with generated error from our semiparametric estimation. ✷

Remark 9. Importantly we see that the change-point estimation is not related to the matrix DT and is

not subject to an identification issue. ✷

Regarding the limit distribution of Theorem 4, we can obtain the analytical form of the cumulative

distribution function (cdf). Then we can obtain the quantile by inverting the cdf for the confidence interval.

Alternatively we can simulate the path of the limit distribution directly. Also one can create confidence

intervals for τ̂ via a multiplier bootstrap method on the estimated residuals which does not require an

asymptotic distribution.
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From the above theorem, with estimates of tr(Q(l)), tr1/2(Q(l)Σǫ), tr(Q(r)) and tr
1/2(Q(r)Σǫ), we can

construct a 100(1− α)% confidence interval for τ̂ :

[τ̂ − ⌊q̂1−α/2⌋ − 1, τ̂ + ⌊q̂α/2⌋+ 1], (3.8)

where q1−α/2 (qα/2) is 1− α/2 (α/2)th quantile of argminH(s), and q̂α/2(q̂1−α/2) is a estimate.

Denote ql = tr(Q(l)), σl = 2tr1/2(Q(l)Σǫ), qr = tr(Q(r)) and σr = 2tr1/2(Q(r)Σǫ). We let θ1 = ql/σl

(qr/σr) for t ≤ 0 (t > 0) and θ2 = qrσl/σ
2
r (qlσr/σ

2
l ) for t ≤ 0 (t > 0). We denote the cdf

F (s, θ1, θ2) = (2π)−1/22θ1s
1/2exp(−θ21s/2)− (2θ21x+ [θ21 + 2θ22 + 2θ1θ2]/[θ2(θ1 + θ2)])Φ(−θ1s1/2)

+(θ1(θ1 + 2θ2))/(θ2(θ1 + θ2))exp{2θ2(θ1 + θ2)s}Φ(−(θ1 + 2θ2)s
1/2).

Then according to Stryhn (1996), the distribution function of argminsH(s) is of the following form,

F (s) = −F (|s|, θ1, θ2), s ≤ 0,

F (s) = 1 + F (|s|, θ1, θ2), s > 0.

4 Simulation

In this section, we run simulations under different settings to evaluate our model performance. First, we

suggest an algorithm for our estimation:

Initial Value for Ẑ0 and Â0. We denote the matrix of the loading functions as Ψt
def
= (ml(Xi,t))1≤i≤N,1≤l≤L+1.

The initial estimation of Z(T × L) and A(J × L) can be obtained as follows.

Step 1 We estimate firstly Γt
def
= A(1, Z⊤

t )
⊤ (Γ = (Γ1,Γ2, · · · ,ΓT )J×T ) and we let Γ̂0 = argminΓS(Γ) =

argminΓ

∑

t |Yt − Φ(Xt)Γ|22 = argminΓ

∑

t |Yt − Φ(Xt)A(1, Z
⊤
t )

⊤|22. It is not hard to see that Γ̂0
t =

{Φ⊤(Xt)Φ(Xt)}−1Φ⊤(Xt)Yt. We can obtain that Γ̂0 = (Γ̂0
1, Γ̂

0
2, · · · , Γ̂0

T )J×T .
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Step 2 We denote the condensed svd of Γ̂0 as Û0Λ̂0V̂ ⊤0, where Λ̂0 = diag(λ̂01, λ̂
0
2, ..., λ̂

0
L) (The first L largest

singular values), λ̂01 ≥ λ̂02 ≥ ... ≥ λ̂0L. We set the initial factors to be Ẑ0 = Λ̂0V̂ 0⊤, and the loadings

to be A0 = Û0.

The initial step based on a SVD of the estimated coefficient matrix Γ̂0. The number of factors is prefixed

by the initial selection stage. We focus on the cases of having the minimum fixed number of factors

i.e. L̂ following the principle of parsimony; (L̂ is taken from the BIC criteria log(NT−1h(L)) + L(N +

T )/(NT )log(NT/(N + T )), where h(L) is the sum of square residuals with respect to different factors).

In our applications senarios, we can always achieve more than 99% precision for 5000 simulation samples

with the factor number selection.

Iteration and Change-Point Next, we show that given Ẑ0 and Â0, we can further obtain an estimate

as follows.

Step 1 Given the estimates Â0 and Ẑ0, one can iterate between the estimation of A and Z
def
= (Z1, Z2, · · · , ZT )

following the loss:

argminA,Z

∑

t

|Yt − Φ(Xt)A(1, Z
⊤
t )

⊤|22. (4.1)

Step 2 We follow a Newton-Raphson method proposed in Park et al. (2009) to obtain Â and Ẑt . Â gives

us estimates of factors loadings m̂l(·), and Ẑts are the estimated factors.

Step 3 Assuming Zts follows a SBVAR process in (2.2), we plug in the least square loss as in (2.7).

Step 4 We apply a binary segmentation algorithm as in Scott and Knott (1974) for estimating the single

break τ over the interval [Td0%, T (1− d0)%] (d0 > 0), namely by minimizing

argminτ,H,FS1:τ (H) + S(τ+1):n(F ). (4.2)

To set up the simulation, the following data generating processes are taken,

Yi,t = m0(Xi,t) +
∑

l

Zl,tml(Xi,t) + σεit, (4.3)
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where N, T have the cases T = 50, 100, 200, 300 and N = 50, 100, 200, 300. Each element of Xit is taken to

be uniformly distributed over [−3, 3]. We let m0(x1, x2) = 0. The ml(·, ·)s are taken to be Model I:

m1(x1, x2) = 1(x1 < a1, x2 < a2){(9.45((x1 − 0.5)2 + (x2 − 0.5)2)− 1.6)/30}

+ 1(x1 ≥ a1, x2 ≥ a2){(2.45((x1 − 0.5)2 + (x2 − 0.5)2)− 1.6)/30},

m2(x1, x2) = 3 sin(0.5πx2)1(x1 < b1, x2 < b2)

+ sin(0.7πx2)1(x1 ≥ b1, x2 ≥ b2),

where a1 = a2, b1 = b2 are selected to be either 0.5 or 0.7.

As a second alternative, we consider a different set of functions with x1, x2 ∈ [−1, 1], which is denoted

as Model II:

m1(x1, x2) = 1(x1 < a1, x2 < a2){(exp(−(x1 − 0.1)2/0.3) + 0.1exp(−(x2 − 0.5)2/2))/2.39}

+ 1(x1 ≥ a1, x2 ≥ a2){sin(0.7πx2)},

m2(x1, x2) = {2 sin(2πx1)− 6|x2 − 0.4|0.3}1(x1 < b1, x2 < b2)

+{2.45((x1 − 0.5)2 + (x2 − 0.5)2 − 1.6)}1(x1 ≥ b1, x2 ≥ b2).

The time series {Zt} is generated from a SBVAR process as in (2.2),

with E = [0.5,−0.2, 0; 0, 0.8, 0.1; 0.1, 0, 0.6], and Ẽ = [0.6, 0.1, 0; 0, 0.3,−0.1; 0.01, 0, 0.2]. Also, ǫtls are

either i.i.d. normal random variables with standard deviation 0.001 before the break and 0.01 after the

break or variables following t location scale distributions with mean zero and the same variances (with

5 degrees of freedom). The true breakpoint τ is [T/2] or [T/4]. In addition, εits are set to be: i) an

independent standard normal distributed N(0, 0.1), and ii) an independent ARMA(1,1) process, εit =

0.3εi(t−1) + ηit + 0.5ηi(t−1), where ηit and ηi(t−1) are normal random variables of N(0, 0.1).

The simulation setup is to account for different types of signal-to-noise ratios for different values of σ,

in particular σ1 = 0.1 or σ2 = 0.2. For instance, σ2 = 0.2 amount to roughly 20% to 40% in terms of the

proportion of the error variance to the variance in the observations. In addition, we allow for the serial

correlations of the error processes εits by case ii). Figure 1 presents the ml(·, ·) function under the case

19



of a1 = 0.5, a2 = 0.5, b1 = 0.5, b2 = 0.5. Figure 2 shows the plots of the simulated two factors and the

estimated confidence intervals; with a change-point at 100, one can observe a switching of the dispersion

of the factors.

For the estimation of basis functions, we consider keeping the tensored quadratic B-splines to be the

same within the regions defined according to a1, a2, b1 and b2. By Theorem 1, the covariance structure of Ẑt

is identified up to a sign matrix DT . Denote the centered Ẑt,c as Ẑt,c = Ẑt−T−1
∑T

t=1 Ẑt, and the estimated

D̂T can be the solution to minimize
∑

t |Ẑt,c − DTZt,c|22, which is D̂T = (
∑

t Zt,cZ
⊤
t,c)

−1(
∑

t Zt,cẐ
⊤
t,c). We

work with the transformed estimate Z̃t = D̂−1
T Ẑt. We define a measure of the scale differences between the

estimated covariance matrix and the true one,

ef = | 1√
T
{

T
∑

t=1

(Z̃t − ¯̃Z)(Z̃t − ¯̃Z)⊤ −
T
∑

t=1

(Zt − Z̄)(Zt − Z̄)⊤}|2. (4.4)

To evaluate the accuracy of the estimation, the 90% confidence intervals of the estimated change point

as in (3.8) is implemented, and Table 1 reports the estimated coverage probabilities over 5000 samples in

different simulation scenarios. Also, Table 2 and 3 presents the explained variances of the fitted model and

ef .

The estimation errors appear to be moderate across different estimation cases. In particular, they are

robust against different error distributions, innovation processes and signal-to-noise ratios. Moreover, we

have also shown good recovery rates of the breakpoint over time. When the sample size increases, one sees

a tendency of an overall better performance.
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Figure 1: Plot of true loading functions with a1 = 0.5, a2 = 0.5, b1 = 0.5, b2 = 0.5.
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Figure 2: Plot of simulated normalized true factors with T = 200, N = 200, breakpoint τ = 100(cyan).

Estimated breakpoint τ̂ = 103(black), and estimated confidence region [99, 107](dotted grey).
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Table 1: The coverage probability is ×102. G denotes normal innovations and T denotes t location scale

distributions (with 5 degrees of freedom) innovations. τ = [T/2] or [T/4]. The average is taken over 5000

samples. α = 0.05. 50, 100 means N = 50, T = 100, and the same for others. I and II indicate Model I

and II.

50, 100 100, 50 200, 200 300, 300

I,i) σ1 G [T/2] 75.3 77.2 85.3 89.6

[T/4] 76.9 77.9 83.3 90.1

T [T/2] 72.7 73.8 82.7 88.8

[T/4] 70.3 72.5 78.4 87.8

σ2 G [T/2] 71.1 73.4 84.2 87.5

[T/4] 72.2 73.2 79.1 87.6

T [T/2] 68.1 72.1 78.9 88.5

[T/4] 70.1 74.1 83.1 89.3

I,ii) σ1 G [T/2] 66.5 71.0 73.3 87.2

[T/4] 65.3 66.8 74.1 87.1

T [T/2] 64.3 66.2 74.1 86.5

[T/4] 62.9 59.2 75.5 86.9

II,ii) σ2 G [T/2] 63.3 66.7 71.2 86.8

[T/4] 64.2 63.6 70.6 85.1

T [T/2] 59.8 62.5 70.2 84.3

[T/4] 59.1 61.7 70.1 85.0
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Table 2: Model I: The averaged percentage of explained variance of the model, ef and their variances (in parentheses).

All numbers are presented in ×102, G denotes normal innovations and T (5) denotes a t location scale distribution

(with 5 degrees of freedom). The results are averaged over 5000 samples. Exp. var. denotes explained variance.

N = 50, T = 100 N = 100, T = 50 N = 200, T = 200 N = 300, T = 300

Exp. var. ef Exp. var. ef Exp. var. ef Exp. var. ef

i) σ1 G [T/2] 75.12 (0.34) 1.59 (0.02) 79.12 (0.24) 1.55 (0.02) 93.32 (0.25) 1.45 (0.02) 94.11 (0.18) 1.44 (0.01)

[T/4] 73.09 (0.39) 1.62 (0.03) 82.56 (0.27) 1.61 (0.03) 86.57 (0.24) 1.55 (0.03) 93.44 (0.17) 1.50 (0.01)

T (5) [T/2] 70.34 (0.44) 1.74 (0.05) 74.35 (0.32) 1.62 (0.06) 78.35 (0.27) 1.54 (0.05) 92.32 (0.20) 1.53 (0.04)

[T/4] 71.89 (0.41) 1.72 (0.06) 75.85 (0.30) 1.67 (0.05) 81.02 (0.26) 1.57 (0.04) 92.76 (0.23) 1.42 (0.03)

σ2 G [T/2] 69.43 (0.40) 1.66 (0.05) 70.34 (0.33) 1.67 (0.03) 72.02 (0.28) 1.63 (0.03) 73.14 (0.25) 1.56 (0.02)

[T/4] 70.04 (0.42) 1.65 (0.06) 71.34 (0.32) 1.64 (0.06) 73.65 (0.29) 1.60 (0.06) 74.44 (0.28) 1.58 (0.04)

T (5) [T/2] 69.28 (0.48) 1.83 (0.07) 72.13 (0.35) 1.74 (0.07) 73.24 (0.31) 1.64 (0.05) 74.12 (0.30) 1.56 (0.05)

[T/4] 64.68 (0.49) 1.86 (0.10) 65.13 (0.37) 1.84 (0.09) 69.51 (0.34) 1.70 (0.08) 74.18 (0.32) 1.57 (0.07)

ii) σ1 G[T/2] 72.23 (0.41) 1.80 (0.11) 74.03 (0.33) 1.76 (0.09) 83.42 (0.32) 1.65 (0.07) 88.12 (0.30) 1.63 (0.06)

[T/4] 72.06 (0.46) 1.99 (0.10) 75.43 (0.34) 1.89 (0.08) 79.01 (0.31) 1.78 (0.08) 86.54 (0.29) 1.65 (0.07)

T (5) [T/2] 71.63 (0.48) 2.01 (0.13) 73.38 (0.43) 1.89 (0.10) 76.56 (0.38) 1.65 (0.09) 87.36 (0.41) 1.59 (0.08)

[T/4] 70.16 (0.54) 2.04 (0.16) 74.16 (0.46) 1.88 (0.11) 77.11 (0.36) 1.69 (0.08) 86.53 (0.36) 1.56 (0.08)

σ2 G [T/2] 65.03 (0.47) 1.98 (0.13) 67.89 (0.42) 1.85 (0.10) 68.01 (0.36) 1.74 (0.10) 71.89 (0.33) 1.70 (0.09)

[T/4] 66.23 (0.45) 2.09 (0.14) 68.67 (0.47) 1.97 (0.11) 68.73 (0.45) 1.89 (0.09) 70.27 (0.43) 1.89 (0.10)

T (5) [T/2] 63.07 (0.55) 2.13 (0.16) 66.89 (0.49) 1.96 (0.15) 67.59 (0.47) 1.87 (0.12) 72.13 (0.42) 1.75 (0.11)

[T/4] 61.89 (0.56) 2.12 (0.17) 65.96 (0.55) 1.98 (0.17) 66.78 (0.49) 1.89 (0.11) 70.08 (0.45) 1.71 (0.12)
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Table 3: Model II: The averaged percentage of explained variance of the model, ef and their variances (in bracket).

All numbers are presented in ×102, G denotes normal innovations and T (5) denotes a t location scale distribution

(with 5 degree of freedom). The results are averaged over 5000 samples. Exp. var. denotes explained variance.

N = 50, T = 100 N = 100, T = 50 N = 200, T = 200 N = 300, T = 300

Exp. var. ef Exp. var. ef Exp. var. ef Exp. var. ef

i) σ1 G [T/2] 74.55 (0.61) 3.47 (0.13) 76.98 (0.59) 3.11 (0.10) 81.40 (0.48) 2.48 (0.08) 85.98 (0.43) 2.35 (0.07)

[T/4] 73.04 (0.69) 3.72 (0.12) 74.59 (0.63) 3.40 (0.08) 80.75 (0.55) 2.98 (0.06) 85.90 (0.48) 2.51 (0.05)

T (5) [T/2] 72.80 (0.68) 3.84 (0.15) 72.31 (0.60) 3.50 (0.12) 77.24 (0.56) 3.01 (0.10) 83.17 (0.45) 2.65 (0.09)

[T/4] 71.67 (0.70) 3.86 (0.16) 73.19 (0.69) 3.60 (0.14) 74.67 (0.61) 3.10 (0.11) 82.98 (0.40) 2.54 (0.08)

σ2 G [T/2] 60.14 (0.85) 3.78 (0.19) 63.25 (0.71) 3.46 (0.15) 68.32 (0.78) 3.25 (0.14) 73.43 (0.61) 2.82 (0.14)

[T/4] 61.56 (0.87) 3.90 (0.18) 66.78 (0.74) 3.79 (0.16) 68.43 (0.70) 3.19 (0.12) 72.19 (0.63) 3.04 (0.13)

T (5) [T/2] 59.19 (0.96) 3.84 (0.21) 63.03 (0.83) 3.63 (0.18) 65.33 (0.79) 3.48 (0.17) 71.11 (0.65) 3.32 (0.15)

[T/4] 56.54 (0.94) 3.76 (0.22) 60.03 (0.89) 3.64 (0.19) 63.48 (0.82) 3.37 (0.18) 70.18 (0.66) 3.17 (0.16)

ii) σ1 G[T/2] 69.17 (0.84) 3.84 (0.20) 74.13 (0.71) 3.58 (0.18) 78.02 (0.67) 3.42 (0.15) 81.78 (0.57) 3.11 (0.14)

[T/4] 72.14 (0.86) 3.86 (0.23) 74.13 (0.73) 3.70 (0.17) 76.02 (0.65) 3.51 (0.18) 83.09 (0.51) 3.07 (0.15)

T (5) [T/2] 77.81 (0.88) 4.09 (0.23) 76.43 (0.76) 4.01 (0.19) 75.01 (0.71) 2.55 (0.16) 80.18 (0.63) 1.67 (0.16)

[T/4] 74.28 (0.87) 4.08 (0.24) 73.78 (0.75) 3.92 (0.18) 73.02 (0.73) 3.51 (0.17) 80.90 (0.65) 3.27 (0.17)

σ2 G [T/2] 62.13 (1.09) 4.35 (0.23) 63.67 (0.93) 4.07 (0.20) 65.02 (0.90) 3.89 (0.19) 68.45 (0.78) 3.49 (0.15)

[T/4] 61.78 (1.11) 4.59 (0.29) 62.89 (1.08) 4.07 (0.23) 65.56 (0.97) 3.78 (0.21) 69.02 (0.79) 3.20 (0.16)

T (5) [T/2] 60.13 (1.15) 4.57 (0.28) 63.45 (1.01) 4.18 (0.24) 66.46 (0.93) 3.99 (0.22) 68.78 (0.80) 3.67 (0.18)

[T/4] 60.56 (1.19) 4.78 (0.30) 63.09 (1.10) 4.19 (0.26) 65.87 (0.98) 3.98 (0.24) 66.11 (0.87) 3.85 (0.19)
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4.1 Multiple Change Points

For the generality of our results, we formulate a numerical extension of our algorithm to test and estimate

multiple change points. Also we propose a multiplier bootstrap procedure for the finite sample performance

of our tests. The theoretical results of the multiple change points are highly involved and therefore out of

the scope of this paper. We look at supreme Wald statistics to test the existence of a breakpoint. First,

it can be shown that the statistics for testing the null hypothesis of the true coefficients in both regime

are the same as H0 : H
⋄ = F ⋄ is

supτ∈[Td0%,T (1−d0)%]{S(τ, Ĥ, F̂ ) − S(Ĥ)}(n − LM)/S(τ, Ĥ, F̂ )(LM) where S(τ,H, F )
def
=

∑τ
t=1 |DTZt −

B(H)DTZt|22+
∑T

t=τ+1 |DTZt−B(F̂ )DTZt|22 and S(Ĥ) =
∑T

t=1 |DTZt−B(Ĥ)DTZt|22 are the estimated loss

with breaks and without breaks respectively. It can be seen that if there is no break then the statistics

should be small.

In the following, we show how to calculate the statistics and conduct a bootstrap procedure for calcu-

lating the critical value. Define for any k1 < k2, let

f(Z, k1, k2) =

















Zk1−1 Zk1 . . . Zk2−1

Zk1−2 Zk1−1 . . . Zk2−2

...
...

. . .
...

Zk1−M Zk1−M+1 . . . Zk2−M

















∈ R
LM×(k2−k1+1)

and h(Z, k1, k2) =
[

Zk1 Zk1+1 . . . Zk2

]

∈ R
L×(k2−k1+1).

Then we define the matrix of regressor in each regime and the whole period as Γ̂1 = f(Z, 1, τ̂) and

Γ̂2 = f(Z, τ̂ , T ), Γ1,2 = f(Z, 1, T ). As the estimated parameters are perturbed by the sign matrix DT

with D−1
T ĤτD̃T = ζ1Γ̂

⊤
1 (Γ̂1Γ̂

⊤
1 )

−1, D−1
T F̂τD̃T = (ζ2Γ̂

⊤
2 )(Γ̂2Γ̂

⊤
2 )

−1 and let the projection matrix be PΓ1,2
=

Γ⊤
1,2(Γ1,2Γ

⊤
1,2)

−1Γ1,2, PΓ1
= Γ̂⊤

1 (Γ̂1Γ̂
⊤
1 )

−1Γ̂1. S(τ, Ĥ, F̂ ) = |DT ζ1(IT −PΓ1
)|2F + |DT ζ2(IT −PΓ2

)|2F and S(Ĥ) =

|DT ζ1,2(I − PΓ1,2
)|2F .

Therefore we can express the difference of the loss in terms of estimator in each regime S(τ, Ĥ, F̂ ) −
S(Ĥ) = trace((Ĥτ − F̂τ )D̃T{(Γ1Γ

⊤
1 )

−1 + (Γ2Γ
⊤
2 )

−1}D̃⊤
T (Ĥτ − F̂τ )

⊤). Define the matrices of the errors as

Ûǫ1 = h(ǫ̂, 1, τ̂) and Ûǫ3 = h(ǫ̂, τ̂ , T ).
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The multiplier bootstrap procedure is set on Ûǫ1 , Ûǫ2 via ζ∗1 = D−1
T Êτ̂D̃T Γ̂1 + U∗

ǫ1
, U∗b

ǫ1
= [Uǫ1,j,te

b
j,t],

where ebj,t, b = 1, · · ·B, j = 1, · · · , N, t = 1, · · · , T (the same for ζ∗2 , ζ
∗
2 = D−1

T Ĥτ̂D̃T Γ̂2 + Û∗
ǫ2
) are i.i.d.

random variables simulated from the standard normal distribution function.

We can then obtain τ ∗b, F̂ ∗b
τ̂∗b

, Ê∗b
τ̂∗b

from the generated bootstrap sample ζ∗1 , ζ
∗
2 . We summarize the de-

tailed implementation as follows, note that we work with Ẑt replacing Step 3 and Step 4 in the algorithm

on Iteration and Change Point in Section 4.

Algorithm on multiple change points

Step 1 Estimating a single break τ for the interval [Td0%, T (1− d0)%] (d0 > 0), namely by minimizing over

the interval,

(τ̂ , Ĥ, F̂ ) = argminτ,H,FS1:τ (H) + S(τ+1):n(F ). (4.5)

Step 2 Use the aforementioned multiplier bootstrap method to obtain (τ̂ ∗b, Ĥ∗b, F̂ ∗b), b = 1, · · · , B, with B
as the number of bootstrap samples.

Step 3 Calculate the bootstrap value of the test statistics for the breakpoint

W ∗
b = supτ∈[Td0%,T (1−d0)%]{S

∗
(Ĥ

∗

)−S∗(τ, Ĥ∗, F̂ ∗)}(n−LM)/S∗(τ, Ĥ∗, F̂ ∗)(LM). Obtain the critical

values q∗W,1−α as the 1− α quantile of the bootstrap sample W ∗
b . Also the α/2 and 1− α/2 quantile

of (τ̂ ∗b − τ̂) are denoted as q∗α/2,τ and q∗1−α/2,τ .

Step 4 Reject the null hypothesis of H = F if Ŵb > q∗W,1−α. This means that we can find a break over the

interval of interest. If we fail to reject, stop the algorithm and claim no change point in [Td0%, T (1−
d0)%].

Step 5 Proceed to the test procedure in Steps 1-4 on the half intervals of Step 4 if the test in Step 4 is

significant, or else we terminate the procedure.

Similar to the above procedure, we obtain the bootstrap confidence interval for the change-point estimate

[τ̂ − ⌊q∗0.05,τ⌋ − 1, τ̂ + ⌊q∗0.95,τ⌋+ 1].
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Table 4: Estimated RMSE and coverage probability (×100) of the three breaks τ̂i/T , where G stands for

the normal distribution and T (3) stands for the t distribution. N = 300, T = 300. Nominal level = 0.9,

averaged over 5000 samples.

G T (3)

RMSE Cov. Prob. RMSE Cov. Prob.

τ̂1/T 0.001 91.2 0.003 92.5

τ̂2/T 0.003 89.3 0.005 88.6

τ̂3/T 0.003 92.6 0.006 89.8

We consider the following data generating process for our multiple change-point algorithm. The Yits

are generated by the same model as in equation (4.3), but instead we consider multiple breaks for Zt. The

time series {Zt} is taken to be a SBVAR process as in (2.2),

with Ẽ(1) = [0.6, 0.1, 0; 0, 0.3,−0.1; 0.01, 0, 0.2], E(2) = [0.6, 0.1, 0; 0, 0.3,−0.1; 0.01, 0, 0.2]−I3∗T−1/3, Ẽ(3) =

[0.5,−0.2, 0; 0, 0.8, 0.1; 0.1, 0, 0.6], and Ẽ(4) = [0.5,−0.2, 0; 0, 0.8, 0.1; 0.1, 0, 0.6] − I3 ∗ T−1/4. The ǫtls are

either i.i.d. normal random variables with standard deviation 0.001 before the break 1 and 0.01 after the

break 1. The true breakpoints τ are taken to be [T/4], [T/2] and [3T/4]. In addition, we take case i) as

in the previous single break case for the distribution of εit and σ1 = 0.1. Table 4 shows the results on the

multiple change-points estimation, the estimation accuracy stays the same as the single break case in the

previous section.
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5 Application

5.1 Minimum Wage Dataset for China

We consider a Chinese minimum wage dataset. It was collected from 1992 to 2012 for N = 346 counties

over China and the corresponding Chinese regional economic statistics. The data have a yearly frequency

with T = 20. The data source is the ministry of Human Resources and Social Security, and the Chinese

Academy of Labor and Social Security. For more detailed descriptions, please refer to Huang et al. (2014).

The minimum wage is set upon by the local government and the levels of the minimum wage may vary

within a province. It is also known that after 2003 some changes have been made in the minimum wage

adjustment policy. The dataset is matched with another one measuring the regional economic situation,

namely the Chinese Statistical Year Book of China National Knowledge Infrastructure.

Why do we study this dataset using factor model? As can be seen, we have panel data situations

with many counties, and the minimum wage policies may vary with respect to regional factors as well

as common policy changes over time. Applying our SBDSFM model can help to disentangle the changes

over the years and the time-invariant policy discrepancies over different regions. The interesting question

is to check the geographic heterogeneity of the minimum wage policy, especially for the economically

developed counties around the Pearl River Delta to the Yangtze River Delta; the minimum wage would be

considerably different from the other regions. Thus, one would also be interested in modeling the location

difference for the regions populated with minorities, such as Xinjiang or Tibet. It is in general a difficult

task to jointly analyze the time-changing policy effect and the geographical discrepancies.

Therefore, we apply our estimation procedure as in Section 4. Ytj is taken to be the minimum wage

over the year. Xtj1 is taken to be the difference of the countywise gross value added which measures the

regional economics indicator, and Xtj2 is taken to be scaled regional postal code. Figure 3 is from Huang

et al. (2014), showing snapshots of the geographical distribution of minimum wage over the years. One

sees that there are time changes and location discrepancies for the minimum wage policy in China. Figure

4 presents the estimated location loading functions in the left panel and the fitted time-varying factors
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Figure 3: Graphical distribution of the minimum wage in China.

with estimated breakpoints and confidence intervals.

We select two factors with an explained variance (estimated proportion of variance of fitted values

divided by estimated variance of the response variables) proportion as 0.5. The estimated structural

changes for the two factors are closed to the year 2003. In particular, the two fitted factors follow a VAR(1)

processes break and after the year of 2005 with the coefficients as [0.5826,−0.6559;−0.0253, 0.4676] and

[0.7975, 0.2349;−0.7256,−0.0922] before and after the break respectively. The break size δe is estimated

as 1.2821. The estimated confidence interval length is 5 years. It indicates that we can document a clear

overall minimum wage policy change at the year 2005. This finding corresponds to the known fact of a

common minimum wage policy change. We can see that our methodology is helpful to detect the common

breakpoint in time for a dataset with a large cross-sectional dimension.
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Figure 4: Plot of estimated ml(·) functions and estimated Zt, Y: minimum wage on X1: first difference of

county-level gross value added and X2: city code. Breakpoint τ̂ = 2005, and its confidence interval (dashed

grey). Regional cutoff to isolate regions populated with ethnic minorities, Tibet, Xinjiang, Qinghai and

Gansu and the economically developed regions.

5.2 Limit Order Book Volume Dataset

In this subsection, we illustrate our methodology using a limit order book dataset. For a specific stock,

the limit order book is about the volume of pending buying or selling orders at certain price levels.

Prices for the asset under consideration reflect a snapshot of the stock’s demand and supply curves. The

data are collected every 60 seconds at the NASDAQ stock market. The data source is from LOBSTER

(lobsterdata.com), see Härdle et al. (2012) and Mihoci (2017) for more details on the data.

We consider a 60-second frequency over one day. Normal trading activities take place continuously on

all stocks between 9:30 AM and 4:00 PM (i.e., 16:00) from Monday to Friday in NASDAQ with a total of

T = 390 observations. For illustration, we take a one-day trading price as an example for four companies,

namely Amazon and Facebook (on Sep 9th, 2016), and AT&T and Tesla (on June 1st, 2016). To show

the data structure, the number of shares for the four stocks at times 10:00 AM and 10:30 AM are plotted

in Figure 5. At each minute, ten (N = 10) price levels are collected from both the bid and the ask sides,

with the first one being the lowest sell price and the last one being the highest sell price. As an example,

at 10:00 AM on June 1, 2016, the trading volume is 1798 for Tesla and 216.78 USD is the second best ask

price.
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Our Ytj is the trading volume at the tth minute and the jth price level, and Xtj is the ordered relative

price level. As we measure the spread in relative terms, on the bid side, the price levels Xtj are divided

by the highest bid price while on the ask side, the price levels Xtj are divided by the lowest price on the

ask side. As we work with relative price levels, we do not consider to model the relative shift of the level

of the curve. The connection point of the bid and ask curve are thus at a fixed point.

In Figure 7 and Figure 8, we show the m̂l(·)s (l = 1, 2) estimated with and without discontinuity.

Note that the relative price level is considered and therefore, the breakpoint for m̂ functions is always set

to 0. m1(·) represents the average level of trading volume in relationship to the relative price level, and

m2(·) corresponds more to the higher order structure of the curves. We also notice that the estimates

with embedded discontinuity in 0 are quite different from the estimations without it. In Figure 6, the

estimated two factors are plotted. We also plot estimated breakpoints and the confidence intervals built

around them. It is worth noting that change-points happen at different time points for different stocks,

and the width of the confidence interval also varies. This is due to stock specific latent trading dynamics.

For AT&T, a change-point is detected at 14 : 40, with an interval of 42 minutes; Tesla have a switch in

its latent trading pattern at 10 : 40 and 14 : 30, with a 5− and 4− minute interval; for Facebook, changes

happen at 12 : 03 and 15 : 35 with a 18− and 10− minute length of confidence interval; change-points

are detected for Amazon at 10 : 50 and 12 : 26 with a 5− and 18−minute interval. The fitted explained

variance are respectively, 0.63, 0.75, 0.73, 0.56.

6 Conclusion and Further Work

In this paper we propose a dynamic semiparametric factor model with structural breaks. This approach

contributes to the literature on change-point analysis in high-dimensional time series. We show good

empirical performance in simulations and applications. We provide results on parameter consistency and we

establish the asymptotic distribution of the estimated change point. Regarding future work, consideration

of the selection of the number of factors using a L − 1 regularization is another interesting direction to

pursue.
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Figure 5: Plot of raw data for different companies at 10:00 AM (solid line), 10:30 AM (dotted line), on

the bid side
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Figure 6: Plot of two factors and their estimated breakpoints(black lines), and their confidence intervals.

33



−0.4 −0.2 0 0.2 0.4
−2

−1

0

A T& T 20160601

−0.4 −0.2 0 0.2 0.4
−5

0

5

A T& T 20160601

−4 −2 0 2 4
−0.5

−0.4

−0.3

Tesla 20160601

−4 −2 0 2 4
−1

0

1

Tesla 20160601

−2 −1 0 1 2
−1

−0.5

0

Facebook 20160909

−2 −1 0 1 2
−2

0

2

Facebook 20160909

−20 −10 0 10 20

0.2

0.25

Amazon 20160909

−20 −10 0 10 20
−0.5

0

0.5

Amazon 20160909

Figure 7: Plot of estimated loading functions m̂1(·) (left) and m̂2(·) (right, no breakpoint)
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Figure 8: Plot of estimated loading functions m̂1(·) (left) and m̂2(·) (with breakpoint)
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