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Abstract

Background

The aim of this study was to noninvasively measure regional contributions of vasculature in

the human body using magnetohydrodynamic voltages (VMHD) obtained from electrocardio-

gram (ECG) recordings performed inside MRI’s static magnetic field (B0). Integrating the

regional VMHD over the Swave-Twave segment of the cardiac cycle (Vsegment) provides a non-

invasive method for measuring regional blood volumes, which can be rapidly obtained dur-

ing MRI without incurring additional cost.

Methods

VMHD was extracted from 12-lead ECG traces acquired during gradual introduction into a 3T

MRI. Regional contributions were computed utilizing weights based on B0’s strength at

specified distances from isocenter. Vsegmentmapping was performed in six subjects and vali-

dated against MR angiograms (MRA).

Results

Fluctuations in Vsegment, which presented as positive trace deflections, were found to be

associated with aortic-arch flow in the thoracic cavity, the main branches of the abdominal

aorta, and the bifurcation of the common iliac artery. The largest fluctuation corresponded to

the location where the aortic arch was approximately orthogonal to B0. The smallest fluctua-

tions corresponded to areas of vasculature that were parallel to B0. Significant correlations

(specifically, Spearman’s ranked correlation coefficients of 0.96 and 0.97 for abdominal and

thoracic cavities, respectively) were found between the MRA and Vsegmentmaps (p < 0.001).

Conclusions

A novel non-invasive method to extract regional blood volumes from ECGs was developed

and shown to be a rapid means to quantify peripheral and abdominal blood volumes.
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Introduction

This study aims to develop a noninvasive, MRI-compatible method for measuring regional

blood volumes. Such a technology could be used to monitor risk factors for and track the pro-

gression of cardiovascular disease [1–6]. In addition, longitudinal usage might enable monitor-

ing of wound healing [7]. This technique could be used during patient insertion into the MRI

bore prior to the start of a newMRI study, providing additional information without any addi-

tional cost. In the future, the technique might also be applied using a static (neodymium) mag-

netic field source and a stand-alone hand-held device containing miniaturized ECG hardware,

which would reduce the cost associated with utilizing an MRI scanner [8].

Our approach is inspired by past studies on utilizing electromagnetics to measure blood

flow [9, 10]. The proposed technology is based on the magnetohydrodynamic (MHD) effect, a

phenomenon in which the flow of charged particles in a direction perpendicular to a magnetic

field creates an electric field in a direction which is mutually perpendicular to both the mag-

netic field and the flow [11]. A magnetic resonance imaging (MRI) scanner has a very strong

static magnetic field (B
0

*

), which at the center of the magnet is uniform and oriented along the

shaft of the MRI bore, while at both ends of the bore it wraps around the exterior of the mag-

net, rapidly changing in strength and orientation. Induced MHD voltages (VMHD) are directly

related to fluid velocity (u*), magnetic flux density (B
0

*

), and measurement electrode spacing

(L) (Eq 1) [12–15].

VMHD ¼

Z L

0

ðu* � B
0

*

Þ � dL
*

ð1Þ

A well-known example of VMHD arises when the human heart is placed at the center of the

MRI scanner, where rapid ejection of blood from the left ventricle into the aortic arch induces

a large VMHD, primarily because a sizeable length (5–10 cm) of the wide (~2 cm diameter) arch

lies perpendicular to the magnetic field and the flow velocity is high (>100 cm/s). This VMHD

appears as a voltage overlaid on top of conventional electrocardiogram (ECG) traces measured

inside the MRI bore, which peaks during cardiac systole [11, 12, 16–18]. Using a flow phantom

placed inside an MRI, as well as a pump which provided pulsatile flow, VMHD was reproduced

in vitro. In addition, the correlation between VMHD observed on conventional ECG traces and

cardiac blood flow was demonstrated [19]. Current modeling approaches have been able to

successfully simulate the induced VMHD as a linear combination of the true ECG signal and a

VMHD term (Eq 1) with an additional scaling factor which was dependent on the measurement

electrode selected [20]. Induced VMHD was shown to increase with cross-sectional area and

vessel diameter [20, 21]. As predicted, induced VMHD increases as the MRI field strength

increases [22, 23].

We hypothesized that monitoring the induced VMHD during the incremental introduction

of the human body into the MRI bore from regions completely outside the magnetic field afford

an opportunity to assess regional vasculature contributions to the MHD effect, and to further

utilize this data in order to assess blood volumes in various portions of the vasculature. A novel

non-invasive method to extract regional blood volumes from ECGs was successfully developed

and shown to be a rapid means to quantify peripheral and abdominal blood volumes.

Methods

The study was conducted using a Signa HDx 3T MRI scanner (General Electric Healthcare,

Waukesha, WI). A 12-lead ECG recording system, modified to be MR Conditional [24], was

used to record the 12-lead ECGs of 6 volunteer subjects at 3T (Table 1).

Human body magnetohydrodynamic voltage distributions
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The human clinical trials in this study were approved by the University of Georgia Office of

Research Institutional Review Board (IRB), and registered with the IRB (registration number:

STUDY00003158) on 4/13/2016. Informed consent to participate in the study was obtained

from all participants (or their parent or legal guardian in the case of children under 16). The

consent forms are held by the authors and are available for review by the Editor-in-Chief.

Written informed consent was obtained from all study volunteers for publication of their indi-

vidual details and accompanying images in this manuscript (as per IRB procedures). The con-

sent forms are held by the authors and are available for review by the Editor-in-Chief.

12-lead ECG patient monitoring was used as it is a clinical standard for cardiac monitoring

that measures high-fidelity multi-channel bioelectric potentials at different physiological land-

mark positions of the thorax. As the study focused on the development of a new methodology

for blood volume monitoring with a limited number of volunteer subjects, normal subjects

without any prior history of cardiovascular diseases were chosen.

Extraction of MHD voltage distributions

Baseline ECG recordings were obtained for each patient with the patient in the supine position

outside the 5-gauss line of the MRI magnetic field. Subjects were placed supine on the MRI

scanner table, in a feet-first orientation, with the table in a locked position and the cradle maxi-

mally extended out of the bore. The cradle was then advanced into the MRI, progressively

bringing more parts of the human body into the MRI scanner’s fringe magnetic field, such that

the induced VMHD was observed to grow to beyond 5% of the ECG QRS complex. Introduc-

tion into the scanner bore was performed in 10-cm increments in five subjects (n = 5), termi-

nating when the heart reached the scanner iso-center (Fig 1a). A higher-spatial-resolution

dataset was recorded for an additional subject (n = 1) at 1-cm increments.

12-lead ECG recordings during 20-second breath holds were obtained at each position,

characterized by its displacement from the MRI bore isocenter (displacement level). As this

study focused on effects of the MRI magnetic field on 12-lead ECG recordings, data was

obtained in the absence of MRI gradient pulses (i.e. without the occurrence of imaging).

Twelve-lead ECG traces were converted into the VCG domain using an inverse Dower trans-

form, providing a 3-component vector signal representation, [VCGX(t) VCGY(t) VCGZ(t)] [25].

VCGX

VCGY

VCGZ

2

4

3

5 ¼
�0:172 �0:074 0:122 0:231 0:239 0:194 0:156 �0:010

0:057 �0:019 �0:106 �0:022 0:041 0:048 �0:227 0:887

�0:229 �0:310 �0:246 �0:063 0:055 0:108 0:022 0:102

2

4

3

5

ECGI

ECGII

ECGV1

ECGV2

ECGV3

ECGV4

ECGV5

ECGV6

2

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

5

ð2Þ

Table 1. Body type and size of each volunteer subject.

Gender Age Height (cm) Weight (kg)

Subject #1 F 38 159 54.5

Subject #2 M 30 168 68.0

Subject #3 M 25 160 75.8

Subject #4 M 23 179 62.6

Subject #5 M 26 182 77.1

Subject #6 M 22 175 65.2

https://doi.org/10.1371/journal.pone.0213235.t001
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The VCG frame of reference provided a direct visualization of the cardiac electrical signal

vectors in 3-dimensional (3D) space, where the magnitude and direction of signals were refer-

enced to a dipole center. The assumption of the dipole center point of reference has been

shown to hold true despite the moving depolarization and repolarization wave-fronts that

occur in the atria and ventricles during a normal cardiac cycle [26, 27]. VMHD in the VCG

representation can visualize the magnitude and direction of VMHD at different locations in the

myocardium at different points in the cardiac cycle in 3D (8–10 cm during ventricular contrac-

tion) and allows direct comparison with MRI data acquired in the MRI coordinate planes. The

VCG frame of reference is used in clinical diagnosis of cardiac arrhythmias originating from

varying sources within the heart (such as the ventricular wall), which superimpose signals onto

the acquired VCG [28, 29]. In the environment of the MRI scanner, induced VMHD signals are

similarly superimposed onto the VCG, and are the basis for translating to this frame of refer-

ence for analysis. In addition, VCG vector format simplifies the subsequent signal processing

from handling the 12 ECG traces to the 3 VCG traces.

VMHD vector extraction was performed through the subtraction of VCGs obtained within

the magnetic field at each displacement level ðECGmeasuredðzÞÞ from a constant reference, VCGs

obtained with the subject completely outside of the MRI magnetic field acquired at the begin-

ning of the procedure (ECGreference

*
) (Eq 3). This serves to isolate the MHD signal contribution

Fig 1. Recording of raw 12-lead ECG data for estimating regional contributions to the net VMHD signal.

https://doi.org/10.1371/journal.pone.0213235.g001
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from the contribution of the true time-integrated ECG [24].

VMHDðzÞ ¼ ECGmeasuredðzÞ � ECGreference

* ð3Þ

Time-integration of VMHD, corresponding to VMHD induced by systolic blood flow, over

the cardiac S-wave to T-wave (S-T) segment was performed at each displacement level, provid-

ing a metric proportional to blood volume through systolic integration of flow. This serves as a

beat-to-beat estimate for the body’s contribution to the net recorded VMHD (Vbody) in the

three component directions [24] (Eq 4), the magnitude of which is then taken at each level.

We defined Vbody as the time integral of the recorded VMHD magnitude over the duration of

the S-T segment at each displacement level.

Vbody ¼

Z T

S

jVMHDðtÞ
*

jdt ð4Þ

The Vbody metric can, therefore, be defined as the weighted summation of neighboring

body segments (Vsegment), totaling the net induced MHD voltage recorded at each displace-

ment level or Vbody (Fig 1b). Since Vbody is influenced by the varying magnetic field strengths

as a function of subject displacement from the isocenter (Fig 1c), normalization or weighting

terms must be included for comparison of the contribution of each Vsegment (Eq 5). W(z) takes

into account the spatial variation of the magnetic field (B0(z)) at various distances frommagnet

isocenter (Fig 1d) [30, 31].

This summation of each weighted Vsegment term is performed over the entire height of the

subject, forming a total of N discrete segments of equal length (t = 10 cm). Increases in N can

result in higher spatial resolution for identifying the magnetohydrodynamic voltage distribu-

tions in the subject body.

W zð Þ ¼
B
0
ðzÞ

3T
ð5Þ

A linear decomposition was applied in order to resolve the weighted Vsegment from the

Vbodymeasured in incremental distances from isocenter (Eqs 6–7). Each Vsegment value was

calculated at different body segments and scaled to be independent of applied magnetic field at

each displacement level usingW(z). Vsegment values were calculated for each body segment of t

cm, and repeatedly for N body regions (Fig 1d).

WðzÞVsegment ¼ Vbody ð6Þ

Wðz ¼ 0Þ Wðz ¼ tÞ Wðz ¼ 2tÞ . . . Wðz ¼ NtÞ

Wðz ¼ tÞ Wðz ¼ 2tÞ Wðz ¼ 3tÞ . . . Wðz ¼ ðN þ 1ÞtÞ

Wðz ¼ 2tÞ Wðz ¼ 3tÞ Wðz ¼ 4tÞ . . . Wðz ¼ ðN þ 2ÞtÞ

.

.

.
.
.
.

.

.

.
.
.

.
.
.
.

Wðz ¼ NtÞ Wðz ¼ ðN þ 1ÞtÞ Wðz ¼ ðN þ 2ÞtÞ . . . Wðz ¼ 2NtÞ

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5
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.

.

.

Vsegment;N
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6
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6

4

3

7

7

7

7

7

7

7

7

7

5

¼

Vbodyðzfeet ¼ 0Þ

Vbodyðzfeet ¼ tÞ

Vbodyðzfeet ¼ 2tÞ

.

.

.

Vbodyðzfeet ¼ NtÞ

2

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

5

ð7Þ

Statistical analysis

For each subject, an MRI angiogram was obtained prior to VMHD processing for validation of

obtained Vsegment traces; MR images were obtained using three-dimensional phase contrast

balanced steady-state free precession (bSSFP) sequences without the injection of Gadolinium

Human body magnetohydrodynamic voltage distributions
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contrast media, TR: 7, TE: 4, Flip Angle: 20 degrees, 8 mm slice thickness. Image reconstruc-

tion and processing was performed using the OsiriX DICOM Viewer (Pixmeo, Bernex,

Switzerland). Maximum intensity projections (MIPs) were performed across the patient angio-

gram at 8 mm intervals, and a thoraco-abdominal trace was obtained from the MRI angio-

gram. The correlation between VMHD and the MRA curves was quantified using Spearman’s

ranked correlation coefficient in both the abdominal and thoracic cavities.

Results

Vsegment was resolved in each subject (Fig 2b) and displayed as a function of the distance (dis-

placement) from the subject’s feet or height.

Fig 2. Derivation of subject-specific VMHD based maps through the gradual introduction of the subject into the
static magnetic field of the MRI.

https://doi.org/10.1371/journal.pone.0213235.g002
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Extraction of MHD voltage distributions

Vsegment varied over the course of the different body segments, with the major blood vessels

providing for greater changes in Vsegment. Minimal Vsegment intensity was found in vasculature

oriented mainly parallel to the magnetic field, where the direction of blood flow aligned with

B0 during the experimental procedure (Fig 2). This occurred for the abdominal aorta and the

carotid artery in all subjects.

VMHD, attributed to rapidly flowing blood in the aortic arch during early systole, was shown

to dominate Vsegment curves in all the subjects. A similar increase in VMHD was observed due

to blood volumes stored in the abdominal solid organs and fed by primary branches of the

major vasculature (e.g. the abdominal aorta). The dataset obtained at the increased spatial res-

olution (1 cm) illustrated a similar trend as observed with the 10 cm resolution, as demon-

strated by varying the spatial resolution of the acquired 1 cm high-resolution dataset to 2 cm, 5

cm, and 10 cm (Fig 3).

Fluctuations in Vsegment (Fig 3a), which were primarily observed as positive trace deflec-

tions, were associated with aortic-arch flow within the thoracic cavity, the main branches of

the abdominal aorta, such as the renal, splenic, and hepatic arteries, as well as the bifurcation

of the common iliac artery. The largest fluctuation was observed at the 150 cmmark, corre-

sponding to the location where the aortic arch was approximately angled orthogonal to B0.

A 50.6% increase in cardiac Vsegment was observed in subject 4 (Fig 2c) when the heart rate

was elevated from a resting heart rate of 82 bpm to 114 bpm during exercise, corresponding to

an increased level of blood flow during exercise.

Statistical analysis

MR angiograms were obtained for each subject and subsequent trace extraction was per-

formed. MRA traces were compared to the extracted VMHD traces, as determined in (1), to

assess method validity and overlaid onto MRAmagnitude images (Fig 4).

A significant correlation, 0.96 and 0.97 for abdominal and thoracic cavities, respectively,

was found between the MRA and VMHD derived traces, with a p-value of<0.001 using Spear-

man’s ranked correlation coefficient, where a coefficient of 1 designates perfect correlation

[32]. Comparison of VMHD- and MRA-based traces yielded parallel positive signal deflections

in the subject’s superior thoracic cavity. These appeared at the level of the aortic arch, a known

primary contributor to the net MHD voltage. Abdominal correlation is attributed to the large

blood volume reserves contained in the abdominal solid organs, and the respective high

Fig 3. Subject specific Vsegment levels obtained for a single subject at 1 cm, 2 cm, 5 cm, and 10 cm resolutions.

https://doi.org/10.1371/journal.pone.0213235.g003
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blood-flow arterial branches out of the abdominal aorta. Renal, splenic, and hepatic branches

of the abdominal aorta maintain large angles (~90 degrees) between the vasculature and the

magnetic field direction, causing large increases in VMHD, which match that seen in the MRA

projections. The MHD voltage was therefore demonstrated to reflect the net effect of blood

flow occurring within individual body regions, as recorded through surface ECGs, in a similar

manner to that obtained through traditional MRA procedures.

Discussion

Subject specific Vsegment levels were extracted and shown to correlate with subject anthropom-

etry. A high-resolution dataset was acquired (1 cm) and shown to correlate well with the stan-

dard 10 cm resolution measurements.

MRA-derived measurements were shown to agree well with VMHD-based experimental

data, excluding specific regions where the VMHD-derived maps displayed lower blood flow,

because the direction of blood flow in these regions was mainly parallel to the magnetic field.

The development of a rapid non-invasive measurement of patient blood-volume levels

would allow physicians to more accurately detect changes in flow and blood volume across a

wider population, including in patients with peripheral arterial disease or congestive heart fail-

ure. It is expected that the VMHDmaps would detect restricted flow cases.

As is true for any MRI procedure, patients with medical implants not labeled as MR condi-

tional in the 3T field, would need to be excluded from this procedure. Additional patient safety

concerns related to RF fields and static/gradient magnetic fields were previously studied and

found to be limited to induced nausea during gross patient movements, which is considered as

non-significant risk to patients at 3T [30, 31]. Moreover, in order for the proposed method to

be accepted for use with patients with pathologies, such as those caused by cardiovascular dis-

eases, it is important to understand the effects of magnetic fields on abnormal vasculature. For

example, blood flow through stenosed arteries [33], irregular multi-stenosed arteries [34], and

aneurysmal geometry [35] has been found to react to magnetic fields differently than blood

flow through healthy vasculature, sometimes with complex responses.

Further studies to increase method accuracy and reduce the required acquisition time must

be performed to integrate this technology into existing MR scanner platforms or to develop a

standalone device for measuring blood volumes.

Fig 4. MRI validation of VMHD based calculations using MR angiograms.

https://doi.org/10.1371/journal.pone.0213235.g004
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Limitations

This study is a feasibility study to explore the use of the MHD effect as a novel vascular metric.

The limited population size in this study necessitates that the method be further validated in a

larger population, including in patients diagnosed with cardiovascular diseases. The present

work presents a proof of concept study for examining regional body contributions to the net

recorded VMHD.

The VMHD maps may, however, also be influenced by other sources, such as large chest

dimensions and increased layers of subcutaneous fat. Further studies must be performed to

fully understand the role of variations in tissue electrical conductivity on the proposed meth-

odology. Furthermore, the VCG frame of reference normally models the recorded VMHD as

originating in a single dipole source within the heart, whereas this study seeks to find contribu-

tions to the net VMHD from several sources located far from the heart. In the case of VMHD

sources located near the SA node, which have comparable displacements of the detecting elec-

trodes from the cardiac dipole source, such as the MHD voltage originating from the aortic

arch, we have shown that this assumption is valid. Larger source displacements from the heart,

such as those studied here, may require modifying the Dower Transform, and generating sub-

ject-specific coefficients. Subject-specific coefficients have been shown to provide increased

accuracy relative to the generic coefficients [36]. We limited this study to the thoraco-abdomi-

nal cavity in order to reduce this variability. However, the merits of generating subject-specific

coefficients should be further explored, since they may increase the accuracy of the blood-vol-

ume maps.

The presented method demonstrated the contributions of vasculature in the human body

to the net MHD voltage, but did not provide a quantitative transfer-function between the

resolved Vsegments and the true blood volume distributions. To completely develop this transfer

function, a quantitative analysis is required to understand the relationship between the MHD

voltages, the size and velocity of the vessels of interest, and the attenuation of electrical signal

as they traverse through different tissue layers along its path from the MHD source to the sur-

face-electrode detectors.

In addition, the current method is limited to VMHD contributions from vasculature lying

primarily perpendicular to the MRI’s magnetic field direction. This is because when the

blood flow is perpendicular to the magnetic field, the magnetic force on the blood is maxi-

mum. In contrast, when the blood flow is parallel to the magnetic field, there is no magnetic

force on the blood, so the movement of the blood is not affected. Hence, VMHD contribu-

tions from vasculature lying primarily parallel to the MRI’s magnetic field direction are

minimal. Therefore, the proposed method of using MHD for flow estimation is most

sensitive to blood flow perpendicular to the magnetic field. In order to add contributions

from vasculature that lie in other orientations, magnetic fields oriented in other directions

could be added, which might be possible to perform by adding bucking coils outside the

MRI bore.

Although the main field of MRI scanner is in the z direction, there are secondary magnetic

fields in the x and y direction near the gantry of the MRI scanner, which can produce small

undesirable MHD voltages and therefore affect the measurement accuracy. However, the

undesirable MHD voltages are far away from the measurement electrodes, so the sensor will

not pick up very much noise. In future studies we will explore a way to consider the x and y

magnetic field in our computation for blood flow measurements.

The current method is based on Dower transform to convert ECG into VCG domain. The

Dower transform is a well-known method for ECG conversion, but it makes assumption about

the size, shape, electrical properties, and signal source of the parcel, which affects the accuracy

Human body magnetohydrodynamic voltage distributions
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of the calculation. Future work will include multi-electrode measurements across the whole

torso in order to produce more accurate MHDmeasurements.

Another limitation is that patients tend to have bad ECGmeasurements while exercising.

Measurements during heavy exercise tend to have severe noise interference and baseline

rendering which can affect measurement accuracy.

Future Work

Further work to advance the utility of the study includes the development of a standalone

device that is based on a portable magnetic field source and miniaturized ECG hardware,

allowing for metric quantification in the absence of the MRI magnetic field. The methods pre-

sented will also be further validated in a larger subject population that contains both healthy

subjects and patients with vascular diseases, such as peripheral arterial disease or congestive

heart failure. Future work must be performed to map higher resolution VMHD-derived features

to MRI scan data, and to relate the MHD spatial decomposition to flow distributions in the

body.

Conclusions

In this study, VMHD signals were shown to correlate well with regional blood volumes, illustrat-

ing trends comparable to those from standard imaging methodologies. Although the scope of

this study was limited, the preliminary results supported the proof of concept. Therefore,

future studies are warranted to rigorously investigate the proposed method. Moreover, future

studies should consider the integration of this method into a portable device to improve clini-

cal workflows.
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