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Adjusting for Treatment Switching in Oncology Trials: A 
Systematic Review and Recommendations for Reporting 

Sullivan TR, Latimer NR, Gray J, Sorich MJ, Salter AB, et al., Value in Health, 2020 

 

ABSTRACT 

 

Background: Treatment switching is a common occurrence in oncology trials. Although methods such as the 

rank preserving structural failure time model (RPSFTM) and inverse probability of censoring weights (IPCW) 

have been developed to address treatment switching, the approaches are not widely accepted within health 

technology assessment. This limited acceptance may partly be a consequence of poor reporting on their 

application. Objectives: To systematically review the quality of reporting on the application of the RPSFTM and 

IPCW approaches in published trials and industry submissions to The National Institute for Health and Care 

Excellence. Methods: Published trials and industry submissions were obtained from searches of PubMed and 

nice.org.uk, respectively. The quality of reporting in these studies was judged against a checklist of reporting 

recommendations, developed by the authors based on detailed considerations of the methods. Results: Thirteen 

published trials and eight submissions to nice.org.uk satisfied inclusion criteria. The quality of reporting around 

the implementation of the RPSFTM and IPCW methods was generally poor. Few studies stated whether the 

adjustment approach was pre-specified, over a third failed to provide any justification for the chosen method, and 

nearly half neglected to perform sensitivity analyses. Further, it was often unclear how the RPSFTM and IPCW 

methods were implemented. Conclusions: Inadequate reporting on the application of the RPSFTM and IPCW 

methods increases uncertainty around results, which may contribute to the limited acceptance of these methods 

by decision makers. The proposed reporting recommendations aim to support the improved interpretation of 

analyses undertaken to adjust for treatment switching. 
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INTRODUCTION 

 

Treatment switching in randomized controlled trials (RCTs) occurs when patients discontinue their randomly 

assigned treatment and commence an alternative treatment. It is especially common in oncology trials, where 

control group patients are often permitted to switch to the experimental treatment following disease progression. 

There are both ethical and practical reasons to allow treatment switching. Ethically, it may be inappropriate to 

deny control group patients the experimental treatment should interim analyses suggest it is superior to control 

(1). From a practical viewpoint, allowing for treatment switching can enhance trial recruitment, as patients may 

be more willing to consent if they know they will receive the experimental treatment at some point during the trial 

(1). 

 

Unfortunately, treatment switching can introduce complexities in estimating treatment effects for longer-term 

outcomes, most notably overall survival (OS). Suppose an experimental treatment extends OS and that control 

group patients benefit from switching to the experimental treatment. In this case, the observed OS difference 

between the experimental and control arms would be smaller in magnitude than what would have been seen had 

switching not occurred. Whether this is problematic depends on the population parameter of interest. In health 

technology assessment (HTA), judgments around the cost-effectiveness of introducing experimental treatments 

into clinical practice typically rely on accurate OS comparisons with current standard care, where switching to the 

experimental treatment would not be possible (2-5). Hence for the purpose of HTA decision-making, it is often 

desirable to adjust OS estimates to reflect what would have been observed had control group patients not switched 

treatments. It is worth noting that treatment switching in the opposite direction, from the experimental to the 

control treatment, does not usually pose the same problem for HTA decision-making. Typically, no adjustment 

for treatment switching would be necessary provided the switches reflect what might occur with the introduction 

of the experimental treatment into clinical practice, for example patients ceasing the experimental treatment and 

commencing existing (control) treatments due to disease progression or toxicity. 

A variety of statistical methods have been proposed to adjust for treatment switching in oncology trials, or 

equivalently, to estimate a switching-adjusted estimand. Simple methods include censoring patients at the time-

point of the switch, excluding switching patients from the analysis altogether, or modelling treatment as a time-

varying covariate. Although commonly used (1), these methods are prone to selection bias, since patients who 

switch treatments tend to have a different OS prognosis than patients who remain on the control treatment or were 
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originally randomized to the experimental arm (1, 6, 7). More rigorous approaches designed to account for this 

selection bias are available, with the rank preserving structural failure time model (RPSFTM) (8), inverse 

probability of censoring weights (IPCW) (9), and two-stage adjustment (10) methods among those currently 

considered most promising. Simulation studies have shown that these methods tend to produce more accurate 

estimates of the switching-adjusted estimand than simple adjustment methods or a standard intention to treat (ITT) 

analysis, but their performance can be compromised when underlying assumptions are violated (10-12).  

 

Analyses using more rigorous adjustment methods are regularly submitted to HTA agencies, in some cases 

providing enough evidence to alter reimbursement decisions. In the case of sunitinib versus best supportive care 

for the treatment of gastrointestinal stromal tumours, for example, the incremental cost effectiveness ratio (ICER) 

per quality adjusted life year (QALY) changed from £90,500 in an ITT analysis to £31,800 with the RSPFTM; 

this led to sunitinib being recommended for reimbursement by The National Institute for Health and Care 

Excellence (NICE)(13). Similarly, in the case of pazopanib for the treatment of advanced renal cell carcinoma, 

NICE recommended pazopanib for reimbursement based on cost-effectiveness estimates derived from a RPSFTM 

(14). Interestingly, cost-effectiveness estimates for pazopanib differed substantially between adjustment methods, 

with the ICER/QALY versus interferon-α estimated to be £38,900 using the RPSFTM and £72,300 using IPCW. 

This illustrates just how important the choice of adjustment method and its appropriate implementation can be to 

reimbursement decisions.  

 

Despite their potential, the RPSFTM, IPCW, and two-stage adjustment methods are not, at present, widely 

accepted by HTA agencies (15). As little guidance exists on what should be reported following a switching-

adjusted analysis, it is possible this limited acceptance is a consequence of poor reporting around model 

implementation details and the plausibility of underlying assumptions. Importantly, there are many decisions 

involved in fitting the RPSFTM, IPCW, and two-stage adjustment methods, each of which could influence final 

treatment effect estimates. For example, there are several structural models and fitting algorithms available for 

the RPSFTM, such that different implementations of the method could conceivably lead to different qualitative 

conclusions. A clear description of how a model was implemented, including whether the chosen approach was 

pre-specified, would alleviate concerns over selective reporting and improve confidence in results. Similarly, if 

the assumptions of a switching-adjusted analysis are well justified, and if treatment effect estimates are shown to 

be similar across a range of sensitivity analyses, decision makers are more likely to accept their results (5, 16).  
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To evaluate the quality of reporting on the application of switching adjustment methods, we undertook a 

systematic review of published RCTs and industry submissions to NICE. We were specifically interested in the 

quality of reporting around the nature of treatment switching in the trial, how the switching adjustment method 

was implemented, and whether model assumptions were justified and interrogated using sensitivity analyses. To 

assist the review process and provide guidance for future use of the methods, we also developed a checklist of 

recommendations for the reporting of switching-adjusted analyses. 

 

METHODS 

 

To give context to the aspects of reporting considered in the systematic review, we first describe the RPSFTM 

and IPCW methods, drawing attention to the model-fitting steps involved in their application. As two-stage 

adjustment has only recently been proposed in the statistical literature (10), we do not consider its use in the 

review. 

 

Rank preserving structural failure time model 

 

The RPSFTM uses a potential outcomes framework to estimate OS times that would have been observed had 

treatment switching not occurred. Suppose for the ith randomized patient that their observed OS time 𝑇𝑖 can be 

partitioned into the time spent on the experimental treatment 𝑇𝐸𝑖 and the time spent on the control treatment 𝑇𝐶𝑖. 
In the simple one-parameter version of the RPSFTM, the potentially counterfactual survival time 𝑈𝑖  that would 

have been observed had the ith patient received only the control treatment is determined according to the structural 

model 

 𝑈𝑖 = 𝑇𝐶𝑖 + 𝑇𝐸𝑖/𝐴𝐹 (1) 

 

where 𝐴𝐹 represents the acceleration factor due to the experimental treatment; the amount by which the 

experimental treatment expands or contracts survival times on the time scale. The model assumes that the AF due 

to the experimental treatment is constant over time for all patients no matter when it was first received, known as 

the “common treatment effect” assumption (1), with the effect applying immediately upon commencement and 
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ceasing immediately upon discontinuation of treatment. To illustrate how this works, suppose a common treatment 

effect holds and that the experimental treatment doubles the length of survival relative to control (i.e. AF = 2). 

Imagine also that a given patient receives the control treatment for one year (𝑇𝐶 = 1) and then switches to the 

experimental treatment and survives a further three years (𝑇𝐸 = 3), thus recording an OS time of four years. 

Counterfactually, had this patient not switched to the experimental treatment, under the structural model in (1) 

they would have instead survived 𝑈 = 1 + 3 2⁄ = 2.5 years. 

 

In a randomized trial 𝑈 should be equivalently distributed between randomized arms, and so the AF can be 

estimated by searching through a range of plausible values and choosing the value that produces the most 

statistically similar untreated survival times between randomized groups, a process known as g-estimation. Once 

estimated, the AF is used to calculate counterfactual survival times in switching patients, which are then included 

in a final outcomes (FO) model to produce a switching-adjusted treatment effect estimate. To account for the 

uncertainty in the estimated AF, confidence limits around the switching-adjusted treatment effect estimate are 

calculated by retaining the p-value from a standard ITT analysis or applying bootstrapping methods (17). 

 

The RPSFTM can be implemented in many different ways. Importantly, several different structural models 

involving different assumptions are possible, for example models that allow for lagged effects of treatment or 

effects that differ in magnitude across randomized groups. In addition to the “as treated” structural model 

described above, the RPSFTM can also be applied on an “ever treated” basis, where patients are considered to 

remain on the experimental treatment irrespective of later treatment discontinuation (i.e. 𝑇𝐸𝑖 in (1) is taken to 

indicate the time following the commencement of the experimental treatment). Such a model might be appropriate 

when the effect of the experimental treatment is expected to persist beyond its discontinuation. The RPSFTM can 

also be modified to allow the AF to differ between treatment switchers and those randomized to the experimental 

arm by some pre-specified amount. This type of model can be used to explore the sensitivity of results to the 

common treatment effect assumption, or as a primary method of analysis when the common treatment effect 

assumption is deemed inappropriate.  

 

There are also a variety of g-estimation options available for the RPSFTM. The test statistic used to demonstrate 

equivalence in 𝑈 across randomized arms could be obtained from a log-rank test, a Wilcoxon test, or a Wald test 

from an accelerated failure time or Cox proportional hazards model, with or without adjustment for covariates. 
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Further, different grid search algorithms are available for estimating the AF, for example searching in fixed steps 

or using interval bisection (18). Following estimation of the AF, counterfactual survival times in treatment 

switchers may be obtained with or without re-censoring applied. Re-censoring refers to the earlier censoring of 

counterfactual survival times in order to avoid bias due to informative censoring (see (19) for further details), 

however this process can also associated with a loss of long term survival information. Recent simulation evidence 

suggests that the RPSFTM should be implemented both with and without re-censoring applied (19). 

 

Like any statistical analysis, the validity of the RPSFTM hinges on estimation performance and the suitability of 

underlying assumptions. G-estimation performance can be assessed by plotting potential values for the AF against 

the observed test statistic; if successful, the procedure should identify a unique solution where the test statistic 

equals zero. The success of g-estimation and the suitability of model assumptions can also be assessed by 

comparing counterfactual survival times between randomized groups using a Kaplan-Meier plot. Assuming 

randomization is successful in balancing prognostic variables, counterfactual survival times should be 

equivalently distributed across randomized groups. Given the untestable nature of the common treatment effect 

assumption, clinical input into its plausibility is also critical. If the beneficial effect of the experimental treatment 

is anticipated to be quite different between patients originally randomized to the experimental arm and patients 

who switch to the experimental treatment partway through the trial, then alternatives to the RPSFTM should be 

considered.  

 

Inverse probability of censoring weights 

 

Unlike the RPSFTM, which attempts to recreate the distribution of survival times had treatment switching not 

occurred, the IPCW method involves adjusting for the effects of switching during estimation of the treatment 

effect. In the context of treatment switching from the control to the experimental treatment, the IPCW method 

involves (a) censoring patients at the time of switching, and (b) addressing potential selection bias by reweighting 

remaining control group patients still at risk of death by the inverse of their probability of not switching. Higher 

weights are assigned to non-switching patients with ‘similar’ characteristics to switching patients, allowing these 

patients to represent both themselves and switching patients in the analysis (10). To satisfy an assumption of “no 

unmeasured confounders” (NUC), the weights should be calculated from a correctly specified model including 

all baseline and time-varying characteristics predictive of both treatment switching and OS; in general, this 
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necessitates extensive data collection. Another important requirement of the IPCW method is that the probability 

of treatment switching must always be less than one for all possible predictor combinations, otherwise weights 

cannot be estimated (20, 21). 

 

Like the RPSFTM, there are numerous ways to implement the IPCW method. The first step in applying the method 

is to calculate time-varying weights for control group patients using a weight determining (WD) model (22). 

Options for this model include specifying time as continuous and fitting a Cox proportional hazards model for 

time to treatment switching, or working with discrete time intervals and using pooled logistic regression to model 

the odds of treatment switching within each interval. For pooled logistic regression, a choice must be made around 

the width of each discrete time interval and how to account for time in order to capture changes in the underlying 

hazard of treatment switching. A popular choice for accounting for time is to use a spline function, albeit this 

brings about additional choices concerning the complexity of the spline function and placement of knots (for 

recommendations on these choices, see (22)). After specifying the type of WD model, decisions must be made 

around which baseline and time-varying covariates to include, what functional form each should take, and how to 

address missing data on covariates. Once finalized, time-varying unstabilized weights are obtained from the WD 

model as the inverse of the probability of not switching. Optionally, these weights can be stabilized by multiplying 

them by the marginal probability of not switching treatments, as derived from a separate WD model containing 

only baseline predictors of switching (20). Following the estimation of weights (and assigning experimental arm 

patients a weight of 1), a FO model is fitted to the weighted data to produce a switching-adjusted treatment effect 

estimate. As with the WD model, either a Cox proportional hazards or pooled logistic regression model can be 

applied, with both approaches requiring adjustment for baseline predictors of treatment switching when stabilized 

weights are used. To account for uncertainty in the estimation of weights, p-values and confidence limits in the 

FO model can be calculated using either robust variance estimation or bootstrapping. 

 

Evaluating estimation performance and the suitability of the NUC assumption is critical in judging the validity of 

the IPCW method. Estimation performance can be assessed by interrogating coefficient estimates and weights 

from the WD model, with implausible coefficient estimates or extreme weights indicative of an underlying 

problem with model specification. Extreme weights are a particular concern, as they suggest that the OS of just a 

few patients may be having an unduly large influence on the switching-adjusted treatment effect estimate. In 

addition to omitting predictors from the WD model or modifying its functional form, extreme weights might be 
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addressed by truncating their values at some upper limit; however, such an approach lacks theoretical justification 

and may introduce bias (23). Residuals from the WD model (e.g. martingale residuals) can also be useful in 

diagnosing issues with model specification. In relation to the suitability of the (untestable) NUC assumption, 

expert clinical opinion is once again key. Importantly, consideration should be given both to the covariates 

included in the WD model and how exactly treatment switching decisions were made in the relevant trial (1). It is 

worth noting that, in practice, satisfying the NUC assumption and maintaining estimation performance tend to be 

competing objectives, since it may not be statistically feasible to include all potential predictors in a WD model 

when there are few non-switchers. For this reason, other adjustment methods may be preferable in trials with high 

switching proportions (1, 10, 12). 

 

Systematic review 

 

To investigate the quality of  reporting on the application of switching adjustment methods in practice, we 

undertook a systematic review of published RCTs and industry submissions to NICE. For the review of published 

RCTs, we included full-length articles where the RPSFTM or IPCW methods were applied to adjust for the effects 

of treatment switching on OS. For the review of NICE submissions, we considered technology appraisals (TAs) 

where the methods were applied to OS results in the ‘Clinical Effectiveness’ section of the initial submission. In 

submissions where switching adjustment methods were applied to multiple trials, data were extracted for the key 

trial, or for the first trial for which clinical effectiveness results were presented if there was no key trial. For both 

published RCTs and NICE submissions, studies were excluded if the relevant trial was not in oncology, if it was 

a pilot or dose-finding study, or where an adjustment method was used to account for switching from the 

experimental arm or to other non-randomized treatments. Specifically for the review of published RCTs, 

methodological papers involving a short example analysis of trial data were also excluded. No studies were 

excluded based on their publication date. 

 

Searches of PubMed and nice.org.uk were conducted on the 22nd May 2018. PubMed search terms were based on 

the Cochrane sensitivity and precision maximising search strategy for randomized trials (24), with additional 

terms for “rank-preserving structural failure time” and “inverse probability of censoring” included; these 

additional terms were used exclusively for the nice.org.uk search. Following an assessment of eligibility, 

information from eligible studies was transcribed by a single reviewer (TRS) to a data extraction form developed 
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specifically for this review. Full texts were examined for the review of published RCTs, while for NICE 

submissions, data were extracted from the ‘Clinical Effectiveness’ section of the initial submission. Details 

reported in appendices (where available) were also included in the review process.  

 

In designing the data extraction form for the systematic review, a checklist of reporting recommendations was 

developed. An initial set of recommendations was proposed by the first author (TRS) following a review of the 

methodological literature on treatment switching and reporting requirements for RCTs. The recommendations 

were discussed and revised on several occasions by the co-author team, with the group representing a mix of 

clinical trial statisticians, epidemiologists and health economists with experience reviewing and advising on the 

interpretation of RCTs with treatment switching to inform funding decisions. In finalizing the reporting 

recommendations, we attempted to address the following key aspects of a switching-adjusted analysis: the nature 

and extent of treatment switching, data available for adjustment, implementation of the chosen adjustment method, 

impact of adjustment, suitability of model assumptions and results of sensitivity analyses. 

 

RESULTS 

 

Reporting recommendations 

 

In Table 1 we offer guidance on what should be reported following a switching-adjusted analysis. The list of 

recommendations includes items that apply to all switching-adjusted analyses and items specific to individual 

methods of adjustment. It is worth noting that several of our suggestions represent best practice for the analysis 

of randomised trials and are not unique to switching-adjusted analyses (25, 26). Explanation and elaboration for 

the reporting items are provided in Appendix A. Appendix B provides an overview of two-stage adjustment and 

offers recommendations for reporting on this method. In Appendix C, we demonstrate the application and utility 

of the reporting recommendations through the analysis of a case study.  

 

<Insert Table 1 here> 

 

Systematic review 
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The electronic search of PubMed identified 56 articles, of which 13 (27-39) were included in the review following 

an assessment of eligibility (Figure 1A). A total of 23 TAs were found in the search of nice.org.uk, with 8 of these 

(14, 40-46) satisfying eligibility criteria (Figure 1B). In total 16 RCTs were represented across the 21 included 

studies, with four trials presented in both a published article and a NICE TA, and one trial presented across two 

published articles.  

 

<Insert Figure 1 here> 

 

Key characteristics of the included trials are presented in Table 1. The median number of randomized participants 

was 416 for published articles and 326 for NICE TAs, with a median of 64% (range 23% to 87%) of control group 

patients switching treatments in both settings. Treatment switching was permitted following disease progression 

in the majority of published articles (69%) and NICE TAs (88%), with termination of the double-blind phase of 

the RCT the next most common reason for allowing treatment switching. Just one published article failed to 

describe the conditions under which control group patients were permitted to switch treatments. Most included 

studies presented treatment effect estimates from a standard ITT analysis for comparison (92% and 100% for 

published articles and NICE TAs, respectively). Conversely, few studies stated that the switching-adjusted 

approach was pre-specified, and in several cases the choice of adjustment approach was not justified at all (some 

justification was provided for 54% and 75% of published articles and NICE TAs, respectively). Finally, 46% of 

published articles and 63% of NICE TAs conveyed the impact of adjustment by visually comparing observed and 

switching-adjusted survival times in a Kaplan-Meier plot. 

 

<Insert Table 2 here> 

 

Among included studies, 9/13 published articles and 6/8 NICE TAs used the RPSFTM. Table 3 summarizes the 

quality of reporting around the implementation of the RPSFTM in these studies. As shown in the table, only 67% 

and 33% of published articles and NICE TAs, respectively, described the structural model assumed in the main 

analysis. Less than half stated the metric used to demonstrate equivalence during g-estimation, just one NICE TA 

(17%) described the grid-search algorithm, and not a single study plotted g-estimation results. Similarly, the 

estimated AF from g-estimation, which for the “as treated” structural model conveys the causal effect of the 

experimental treatment, was infrequently reported. It was unclear whether re-censoring had been applied in 44% 
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and 67% of published articles and NICE TAs, respectively, and only three published articles assessed the 

performance of g-estimation by comparing counterfactual survival times between groups. Retaining the ITT p-

value was the most commonly reported method for calculating confidence intervals in the FO model, but again 

this aspect of the analysis was not always reported. Only two published articles (22%) and one NICE TA (17%) 

stated the baseline variables adjusted for in the FO model. Finally, no studies directly assessed the sensitivity of 

results to the common treatment effect assumption by allowing the AF to differ between switchers and those 

randomized to the experimental arm. 

 

<Insert Table 3 here> 

 

The IPCW method was used less frequently than the RPSFTM, with 6/13 published articles and 4/8 NICE TAs 

employing this approach. The quality of reporting around the implementation of IPCW is summarized in Table 4. 

Excluding four studies where the type of WD model was unclear, pooled logistic regression was a more common 

choice than the Cox proportional hazards model for calculating weights. Of the five studies employing pooled 

logistic regression, only two (one published article and one NICE TA) fully detailed the width of the discrete time 

interval and how time was accounted for in the model (one used a restricted cubic spline, the other linear and 

quadratic terms). Encouragingly, three of the four NICE TAs (75%) listed all the covariates that were considered 

in the development of WD models, described the frequency of measurements for time-varying covariates, and 

indicated that stabilized weights were used. Conversely, these characteristics were generally overlooked in the 

published articles. The distribution of weights and coefficient estimates from the WD model were poorly reported 

on, particularly for published articles. Lastly, scant details were provided on the FO model, with 70% of included 

studies failing to indicate the method for calculating confidence intervals around the estimated treatment effect 

and which baseline variables were adjusted for.  

 

<Insert Table 4 here> 

 

Seven published articles (54%) and five NICE TAs (63%) reported undertaking sensitivity analyses where an 

alternative statistical method was used to estimate the switching-adjusted estimand. Among studies that used the 

IPCW method, sensitivity analyses included modifying the specification of the WD model (one study), fitting the 

RPSFTM (four studies), and modelling treatment as a time-varying covariate (one study). Among studies using 
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the RPSFTM, methods of sensitivity analysis included varying the implementation of the RPSFTM (e.g. structural 

model or use of re-censoring; seven studies), fitting the IPCW method (four studies), two-stage adjustment (three 

studies), censoring patients at the time-point of the switch (three studies), and modelling treatment as a time-

varying covariate (two studies).  

 

DISCUSSION 

 

In this article we reviewed the quality of reporting on the implementation of switching adjustment methods in 

oncology trials, both in the published literature and in industry submissions to NICE. With a median of 64% of 

control group patients switching treatments, inadequate handling of switching could have led to considerably 

biased estimates of the switching-adjusted estimand. This underscores the importance of appropriate adjustment 

for treatment switching in these trials, particularly in the context of HTA decision-making. Despite this, the quality 

of reporting around the implementation of the RPSFTM and IPCW methods was generally poor. Few studies 

stated whether the adjustment approach was pre-specified, over a third failed to justify the chosen method, and 

nearly half neglected to perform sensitivity analyses. Further, it was often unclear how the RPSFTM and IPCW 

methods were implemented, making it difficult to judge the validity of resulting treatment effect estimates. 

Overall, there is considerable scope for improvement. 

 

Among studies applying the RPSFTM, it was especially concerning to find such a large proportion failing to 

describe the structural model assumed. Although conceivably the standard “as treated” structural model may have 

been assumed in all these studies, we believe the structural model should always be explicitly stated given its role 

in defining the assumptions of the analysis. Another major concern was the lack of reporting around model 

diagnostics, particularly in the AF resulting from g-estimation and in comparisons of counterfactual survival times 

between randomized groups. Such diagnostics give important insight into estimation performance and the validity 

of underlying assumptions. In studies applying the IPCW method, an alarming finding was the high proportion 

failing to provide coefficient estimates from the WD model. Since the validity of this method depends almost 

entirely on appropriate specification of the WD model, the magnitude and direction of coefficient estimates from 

this model should be examined for plausibility. A further concern was the lack of reporting on the distribution of 

weights, which, like coefficient estimates, can be helpful in identifying problems with the WD model. 
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Another important shortcoming identified in the review concerned the use of sensitivity analyses. In particular, 

sensitivity analyses were not routinely presented, and when they were, they often involved simple adjustment 

methods known to be susceptible to selection bias (1, 6, 7). We believe that both modifying the implementation 

of the primary adjustment method and considering results from alternative adjustment methods provides a sensible 

means to tackling sensitivity analyses in most settings. For studies using the IPCW method, key modifications 

might include changing the covariates included in the WD model or changing the functional form of covariates.  

Sensitivity analysis methods that explore the potential magnitude of bias due to unmeasured confounding should 

also be considered; see for example (47). For studies employing a RPSFTM, modifications might include 

changing the structural model assumed, or performing the analysis both with and without re-censoring applied 

(19). Importantly, allowing the AF to differ between treatment switchers and experimental arm patients (e.g. AF 

assumed to be 20% smaller in treatment switchers) is an intuitive approach for testing the sensitivity of results to 

the common treatment effect assumption. 

 

One interesting discovery from the systematic review was the difference in the quality of reporting between 

published articles and NICE submissions. In particular, reporting on the RPSFTM tended to be more 

comprehensive in published articles than in NICE submissions, whereas the opposite trend was observed for the 

IPCW method. This pattern of reporting was also evident among the four trials represented in both a published 

article and a NICE TA. Given both the space constraints imposed on published articles and the fact that NICE 

submissions are prepared solely for the purpose of HTA decision-making, the improved reporting on the RPSFTM 

in published articles is somewhat counter-intuitive. Discounting chance differences due to the small number of 

included studies, one possible explanation for this observation is that several of the published articles involving 

the RPSFTM were secondary papers devoted entirely to the analysis of OS from the relevant trial. 

 

In this review article we have focused primarily on reporting deficits rather than deficits in the adjustment methods 

themselves. Although we believe requirements for thorough reporting can only improve use of the methods, 

particularly since it encourages appropriate implementation and consideration of underlying assumptions, clearly 

thorough reporting on its own cannot ensure valid results. Choosing an appropriate class of adjustment method 

given the specifics of a trial is another critical step in producing appropriate conclusions, and to this end we would 

direct readers to the detailed framework provided by NICE on factors to consider when selecting a method of 

adjustment (48). In many trials, particularly those involving high switching proportions, ultimately a reliance on 
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unverifiable assumptions may make it difficult to draw definitive conclusions from a switching-adjusted analysis. 

Consequently, careful consideration should be given to the advantages and disadvantages of allowing for 

treatment switching during trial design.  

 

During the review process we developed a checklist of reporting recommendations for switching-adjusted 

analyses in oncology trials. Designed to promote transparency and facilitate accurate assessments of validity, it is 

hoped these recommendations can be applied in practice to improve the quality and acceptance of future 

switching-adjusted analyses. In the context of HTA, adherence with the reporting recommendations will enable 

more informed decision-making on the cost-effectiveness of new treatments. Ultimately, this should lead to better 

decisions around the allocation of scarce health-care resources. 

 

A limitation of this review is the small number of studies that satisfied inclusion criteria. Although this means that 

summary statistics describing the percentage of studies failing to report on some aspect of the analysis may be 

imprecise, we do not think this detracts from the overall message that reporting is currently inadequate. Another 

limitation of the review is that for feasibility data were only extracted from the ‘Clinical Effectiveness’ section of 

the initial submission to NICE. It is possible that additional details on the switching-adjusted analysis may have 

been provided in other sections of the submission or clarified during later correspondence with NICE. Another 

limitation is that we did not consider all possible methods for adjusting for treatment switching in this paper, for 

example iterative parameter estimation and structural nested models. Finally, our review focused on simple or 

“direct” treatment switching from the control to the experimental treatment, whereas in practice other types of 

switching is possible, for example “indirect” switching to a third treatment.  

 

CONCLUSIONS 

 

Despite the importance of switching-adjusted treatment effect estimates to HTA decision-making, the quality of 

reporting around the implementation of the RPSFTM and IPCW methods in published articles and industry 

submissions to NICE was generally poor. Based on these findings, it seems plausible that the acceptance of these 

methods of adjustment within the HTA context could be enhanced by adhering to the reporting recommendations 

presented in this article.  
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Table 1. Recommendations for the reporting of switching-adjusted analyses 

Item Recommendation 

All adjustment methods 

1 Provide results from an analysis unadjusted for treatment switching for comparison  

2 Describe the treatment switching mechanism - who could switch and when 

3 Detail the number of patients that switched, the number eligible to switch and when switching occurred  

4 Give an overview of the data available for adjustment - what predictors and how frequently measured 

5 State whether the chosen adjustment approach, including all model fitting steps, was pre-specified; if not, explain how the 

final model was selected* 

6 Provide a statement around the plausibility of key assumptions (e.g. no unmeasured confounding for IPCW and common 

treatment effect for the RPSFTM)  

7 Provide a visual comparison of observed and adjusted survival times 

8 Report on sensitivity analyses showing the robustness of treatment effect estimates to violations of key assumptions 

Inverse probability of censoring weights (IPCW) 

I.1 State whether unstabilized or stabilized weights were used 

I.2 Detail the statistical procedure used to calculate weights (e.g. pooled logistic regression**, Cox model) 

I.3 State the portion of data used in the WD model including time-varying predictors (e.g. post-progression data only) 

I.4 Describe the extent of and the method used to address missing data on predictors in the WD model(s) 

I.5 Present parameter estimates and associated measures of precision from the WD model(s)  

I.6 Summarize the distribution of weights and state whether values were truncated 

I.7 Detail the FO model, including estimation method (e.g. robust variance estimation) and baseline variables adjusted for 

Rank preserving structural failure time model (RPSFTM) 

R.1 State and justify the structural model assumed (e.g. as treated, ever treated) 

R.2 State the metric used for g-estimation (e.g. log-rank test), including baseline variables for adjustment where applicable  

R.3 State the grid-search algorithm used 

R.4 Plot g-estimation results to show that the estimation process has worked well 

R.5 Present the estimated acceleration factor and its confidence interval 

R.6 Compare counterfactual survival times between randomized groups in a Kaplan-Meier plot 

R.7 Detail the FO model, including method for calculating a CI around the estimated treatment effect (e.g. retain ITT p-value, 

bootstrapping) and baseline variables adjusted for 

R.8 Present results both with and without re-censoring applied 

Abbreviations: AFT, accelerated failure time; CI, confidence interval; FO, final outcomes; IPCW, inverse probability of censoring 
weights; ITT, intention to treat; RPSFTM, rank preserving structural failure time model; WD, weight determining.  

* Given the complexity of the methods, it may not always be feasible to fully pre-specify without consideration of the actual data 
collected or the performance of the models. 

** Including the width of the discrete time interval and how time was adjusted for. 
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Table 2. Key characteristics of included trials 

Characteristic Published articles (n=13)  NICE TAs (n=8)  

Number of participants: median (range) 416 (108, 5187)  326 (199, 517) 

Percentage of treatment switchers in control arm: median (range) 64 (23, 87)  64 (40, 88) 

Described the conditions under which switching was permitted 12 (92) 8 (100) 

Provided treatment effect estimate* and CI from standard ITT analysis  12 (92) 8 (100) 

Switching adjustment approach pre-specified   

Yes 0 (0) 2 (25) 

No 8 (62) 1 (13) 

Not stated 5 (38) 5 (63) 

Provided justification for chosen adjustment method(s)  7 (54) 6 (75) 

Provided a visual comparison of observed and adjusted survival times 6 (46) 5 (63) 

Used the RPSFTM 9 (69) 6 (75) 

Used IPCW 6 (46) 4 (50) 

Used both the RPSFTM and IPCW 2 (15) 2 (25) 

Values reported are numbers (percentages) unless otherwise indicated. 
Abbreviations: CI, confidence interval; ITT, intention to treat; TA, technology appraisal. 
* For example a hazard ratio or acceleration factor. 
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Table 3. Reporting on the use of the RPSFTM 

Characteristic: n (%) Published articles 

(n=9) 

NICE TAs 

(n=6)  

Described the structural model used 6 (67) 2 (33) 

Stated metric used to demonstrate equivalence during g-estimation 5 (56) 2 (33) 

Described the grid-search algorithm 0 (0) 1 (17) 

Plotted g-estimation results 0 (0) 0 (0) 

Presented estimated acceleration factor and 95% CI from g-estimation 2 (22) 1 (17) 

Re-censoring applied   

Yes 5 (56) 2 (33) 

Not stated 4 (44) 4 (67) 

Compared counterfactual survival times between randomized groups 3 (33) 0 (0) 

Method used for calculating confidence intervals in the final outcomes model   

Retain ITT p-value 5 (56) 1 (17) 

Bootstrapping 1 (11) 1 (17) 

Not stated 2 (22) 4 (67) 

No CI reported 1 (11) 0 (0) 

Stated the variables adjusted for in the final outcomes model 2 (22) 1 (17) 

Assessed the sensitivity of results to the common treatment effect assumption 0 (0) 0 (0) 

Abbreviations: CI, confidence interval; ITT, intention to treat; RPSFTM, rank preserving structural failure time model; TA, 
technology appraisal. 
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Table 4. Reporting on the use of the IPCW method 

Characteristic: n (%) Published articles 

(n=6)  

NICE TAs 

(n=4)  

Type of weight determining model    

Cox proportional hazards model 1 (17) 0 (0) 

Pooled logistic regression 2 (33) 3 (75) 

Not stated 3 (50) 1 (25) 

Listed all covariates considered for the calculation of weights 1 (17) 3 (75) 

Described the frequency of measurements for time-varying covariates 0 (0) 3 (75) 

Reported extent of missing data on covariates and how missing data were handled  0 (0) 2 (50) 

Used stabilized weights   

Yes 1 (17) 3 (75) 

Not stated 5 (83) 1 (25) 

Described the distribution of weights 1 (17) 2 (50) 

Presented coefficient estimates and CIs from models used to calculate weights 0 (0) 2 (50) 

Estimation method for calculating CI in the final outcomes model   

Robust variance estimation 2 (33) 0 (0) 

Bootstrapping 1 (17) 0 (0) 

Not stated 3 (50) 4 (100) 

Stated the variables adjusted for in the final outcomes model 1 (17) 2 (50) 

Abbreviations: CI, confidence interval; IPCW; inverse probability of censoring weights; TA, technology appraisal. 
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APPENDIX A: ELABORATION OF REPORTING RECOMMENDATIONS 

 

All adjustment methods 

 

Item 1: Provide results from an analysis unadjusted for treatment switching for comparison. This 

item is included to highlight the impact of adjustment on treatment effect estimates. Unadjusted results 

might be in the form of a hazard ratio, acceleration factor or log rank test p-value from an intention to 

treat (ITT) analysis. The statistical method and baseline variables adjusted for in producing the ITT 

treatment effect estimate should also be detailed.  

 

Item 2: Describe the treatment switching mechanism - who could switch and when. A clear 

description of which patients were eligible to switch treatments and at what time-point during the trial 

switching was permitted gives an indication of which adjustment methods are potentially applicable 

(1).  

 

Item 3: Detail the number of patients that switched, the number eligible to switch and when switching 

occurred. The extent and timing of treatment switching highlights its potential impact on ITT estimates, 

with higher switching proportions and shorter durations to switching typically associated with greater 

impact. These quantities are also useful in judging the appropriateness of alternative adjustment 

methods. For example, the IPCW method is known to be prone to bias when there are few non-switchers 

among patients eligible to switch (2).  

 

Item 4: Give an overview of the data available for adjustment - what predictors and how frequently 

measured. Like items 1 and 2, this item gives an indication of which adjustment methods are potentially 

applicable. The no unmeasured confounding assumption of the IPCW method, for example, may be 

deemed inappropriate in trials involving few or sparsely collected predictors.  

 



25 

 

Item 5: State whether the chosen adjustment approach, including all model fitting steps, was pre-

specified; if not, explain how the final model was selected. Pre-specification of statistical methods is 

recommended in randomised trials in order to minimise bias, maintain nominated type I error rates and 

avoid concerns over selective reporting (3). Given the complexity of switching adjustment methods, it 

may not always be feasible to follow pre-specified methods without consideration of the actual data 

collected. In this case, rationale should be provided for how the final model and its method of 

implementation (e.g. predictors included, structural model assumed) was chosen. 

 

Item 6: Provide a statement around the plausibility of key assumptions (e.g. no unmeasured 

confounding for IPCW and two-stage approaches, and common treatment effect for the RPSFTM). 

A critical reporting item for all switching-adjusted analyses, the plausibility of key assumptions should 

be justified on both statistical and clinical grounds (1). 

 

Item 7: Provide a visual comparison of observed and adjusted survival times. A Kaplan-Meier plot of 

observed and adjusted survival times in the control group is helpful for visualizing the impact of 

adjustment on estimated survival. 

 

Item 8: Report on sensitivity analyses showing the robustness of treatment effect estimates to 

violations of key assumptions. As all switching adjustment methods rely on unverifiable assumptions, 

sensitivity analyses should be undertaken to assess the robustness of findings to plausible alternative 

assumptions. If treatment effect estimates can be shown to be similar across a range of sensitivity 

analyses, this will increase confidence in results. Sensitivity analyses may involve modifying the 

implementation of the primary adjustment method (e.g. relaxing the common treatment effect 

assumption of the RPSFTM or changing the predictors used in IPCW) or considering results from 

alternative adjustment methods. In the case of the IPCW method, the potential magnitude of bias due 

to unmeasured confounding should also be explored.  

 

Inverse probability of censoring weights 
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Item I.1: State whether unstabilized or stabilized weights were used. Stabilized weights are generally 

recommended for the IPCW method (4), but the procedure may also be applied with unstabilized 

weights. 

 

Item I.2: Detail the statistical procedure used to calculate weights (e.g. pooled logistic regression, 

Cox model). This item is intended to reduce uncertainty around the specification of the weight 

determining (WD) model(s) for the IPCW method. Where pooled logistic regression is employed, the 

width of the discrete time interval and how changes over time in the hazard of treatment switching were 

controlled for should be detailed; if a spline function of time was used, the type of spline and the 

procedure for placing knots should also be described.  

 

Item I.3: State the portion of data used in the WD model including time-varying predictors (e.g. post-

progression data only). To satisfy the requirement of positivity, the WD model including time-varying 

predictors should only be fitted to the portion of data where control group patients are at risk of 

switching. This reporting item can help to verify that the WD model was implemented appropriately. 

 

Item I.4: Describe the extent of and the method used to address missing data on predictors in the WD 

model(s). Missing data on predictors in the WD model(s) could bias probability weights if inadequately 

addressed in the analysis, with the magnitude of bias likely to be greater with greater amounts of missing 

data. Hence both the extent of missing data and the method used to address it in the analysis (e.g. 

multiple imputation) should be stated. If there were no missing data on predictors, a statement to that 

effect should be provided. 

 

Item I.5: Present parameter estimates and associated measures of precision from the WD model(s). 

Examining parameter estimates and associated measures of precision from the WD model(s) is a key 

step in demonstrating their appropriateness. Importantly, implausible parameter estimates or highly 



27 

 

inflated measures of precision (e.g. standard errors, confidence intervals) would cast doubt over the 

specification of the WD model(s) and hence the validity of ICPW treatment effect estimates. 

 

Item I.6: Summarize the distribution of weights and state whether values were truncated. A summary 

of the distribution of weights, including the maximum obtained weight, is also important to consider in 

judging the appropriateness of the WD model(s), with extreme weights indicating potential problems 

with model specification. Where the weights are truncated at some upper limit to avoid extreme values, 

the method of truncation should also be described. 

 

Item I.7: Detail the FO model, including estimation method (e.g. robust variance estimation) and 

baseline variables adjusted for. The final outcomes (FO) model should be fully described, including 

the statistical model used (Cox regression or pooled logistic regression), method of estimation (e.g. 

robust variance estimation) and the baseline variables adjusted for. This reporting item also offers a 

quick check that baseline variables used in the calculation of stabilized weights are controlled for in the 

FO model. 

 

Rank preserving structural failure time model 

 

Item R.1: State and justify the structural model assumed (e.g. as treated, ever treated). This is a critical 

reporting item since the structural model defines the underlying assumptions of the analysis. 

 

Item R.2: State the metric used for g-estimation (e.g. log-rank test), including baseline variables for 

adjustment where applicable. This item entails fully describing the statistical test used to demonstrate 

equivalence between randomized groups in untreated survival times. Although it may be preferable to 

adopt the same model as used in the ITT analysis (5), any model could be chosen for the purpose of g-

estimation. 
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Item R.3: State the grid search algorithm used. Different grid search algorithms are available for the 

estimating the acceleration factor during g-estimation, for example searching in fixed steps or using 

interval bisection. This reporting item, like items R.1 and R.2 above, is necessary for fully describing 

how the RPSFTM was implemented. 

 

Item R.4: Plot g-estimation results to show that the estimation process has worked well. The 

performance of g-estimation should be assessed by plotting potential values for the acceleration factor 

against the chosen test statistic (6). If successful, the g-estimation procedure should identify a unique 

solution where the test statistic equals zero.  

 

Item R.5: Present the estimated acceleration factor and its confidence interval. For the as-treated and 

ever-treated structural models, the estimated acceleration factor from g-estimation conveys the effect 

of the experimental treatment on extending overall survival. The magnitude of this causal effect, along 

with its confidence intervals, should be scrutinised closely when judging the validity of the RPSTM.  

 

Item R.6: Compare counterfactual survival times between randomized groups in a Kaplan-Meier 

plot. Assuming g-estimation is successful, counterfactual survival times should appear equivalently 

distributed across randomized groups. Differences in the distribution could indicate problems with g-

estimation or the assumptions of the chosen structural model. 

 

Item R.7: Detail the FO model, including method for calculating a CI around the estimated treatment 

effect (e.g. retain intention to treat p-value, bootstrapping) and baseline variables adjusted for. As 

well as explaining the process for generating counterfactual survival times, it is critical to detail how 

these times were analyzed in the FO model.  

 

Item R.8: Present results both with and without re-censoring applied. In general, it will be informative 

to consider results from the RSPFTM both with and without re-censoring applied (7). 
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APPENDIX B: RECOMMENDATIONS FOR TWO STAGE ADJUSTMENT 

 

Like the RPSFTM, the two-stage adjustment method (2) uses a potential outcomes framework to 

estimate counterfactual survival times that would have been observed had treatment switching not 

occurred. The first step in applying the method is to estimate the effect of treatment switching on 

extending overall survival (OS) in the control arm beyond some “secondary baseline”, defined as a 

time-point where patients are at a similar stage of disease and in which switching cannot occur prior. 

Since treatment switching in oncology trials is usually only permitted following disease progression, 

the time of progression is a standard choice for the secondary baseline. Once defined, the effect of 

treatment switching beyond the secondary baseline can be estimated using an accelerated failure time 

(AFT) model, with switching treated as a time-dependent variable and with adjustment for predictors 

of switching and subsequent survival measured at the time of the secondary baseline. Once the 

acceleration factor (AF) due to switching has been estimated, the two-stage method proceeds in a similar 

manner to the RPSFTM. Revised survival times beyond the secondary baseline can be calculated using 

the same form of structural model as for the RPSFTM, but with 𝑈𝑖 , 𝑇𝐶𝑖 and 𝑇𝐸𝑖 representing survival 

times beyond the secondary baseline rather than total survival times. Counterfactual survival times are 

then obtained by adding the time prior to the secondary baseline to these revised survival times. As with 

the RPSFTM, re-censoring may be applied at this stage to avoid informative censoring. The 

counterfactual survival times can then be included in a final outcomes (FO) model, with bootstrapping 

applied to the entire estimation procedure to obtain valid confidence intervals for the switching-adjusted 

treatment effect estimate (2). 

 

As well as the existence of a suitable secondary baseline, the validity of the two-stage method relies on 

satisfying the no unmeasured confounding (NUC) assumption (2). To meet this assumption, all 

characteristics defined at the time of the secondary baseline predictive of both treatment switching and 

subsequent survival should be adjusted for in the AFT model. As the two-stage method was not designed 

to incorporate predictors measured after the secondary baseline, a further requirement for satisfying 

NUC is that there is no time-dependent confounding between the secondary baseline and the time of 
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treatment switching. This may not be realistic if switching frequently occurs much later than the 

secondary baseline. As with the IPCW method, clinical justification should be provided regarding the 

plausibility of NUC, with consideration given to both the predictors included in the AFT model and 

how soon treatment switching occurs after the secondary baseline. To produce valid treatment effect 

estimates, the AFT model for OS beyond the secondary baseline must also be correctly specified. This 

entails choosing an appropriate parametric distribution for survival, correctly specifying the functional 

form of predictors in the model, and, if necessary, addressing missing data on predictors under a 

plausible assumption about the reason for missing data. Examining coefficient estimates from the AFT 

model can be helpful in checking the suitability of its specification. 

 

In addition to estimating the switching-adjusted effect of treatment, the two-stage method can be used 

to explore the appropriateness of other adjustment methods. For example, under the CTE assumption 

of the RPSFTM, one would expect the two-stage method to produce a similar treatment effect estimate 

for switching patients to the effect estimated for patients initially randomized to the experimental group. 

If these estimates differ substantially, the RPSFTM may be deemed inappropriate. 

 

Based on the assumptions and model fitting procedure of two-stage adjustment, in Table B1 below we 

offer some suggestions on what should be reported following an analysis with this method. 

 

Table B1. Recommendations for reporting on two-stage adjustment 

Item  Recommendation 

T.1 Summarize the distribution of time between the secondary baseline and treatment switching 

T.2 State and justify the distribution assumed in the AFT model 

T.3 Describe the extent of and the method used to address missing data on predictors in the AFT model 

T.4 Present parameter estimates and associated measures of precision from the AFT model 

T.5 Detail the FO model, including estimation method (e.g. bootstrapping) and baseline variables adjusted for 

T.6 Present results both with and without re-censoring applied 

Abbreviations: AFT, accelerated failure time; FO, final outcomes. 
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Elaboration of reporting recommendations for two-stage adjustment 

 

 

Item T.1: Summarize the distribution of time between the secondary baseline and treatment 

switching. A key assumption of the two-stage method is that there is no time-dependent confounding 

between the secondary baseline and the time of treatment switching. Such an assumption may be 

unrealistic if switching occurs much later than the secondary baseline. 

 

Item T.2: State and justify the distribution assumed in the AFT model. This item involves reporting 

the parametric distribution (e.g. Weibull, log-logistic) assumed in the AFT model for OS beyond the 

secondary baseline. 

 

Item T.3: Describe the extent of and the method used to address missing data on predictors in the 

AFT model. Since missing data on predictors in the AFT model has the potential to bias estimation, 

both the extent of and the method used to address missing data should be detailed. If there were no 

missing data on predictors, a statement to that effect should be provided. 

 

Item T.4: Present parameter estimates and associated measures of precision from the AFT model. 

Parameter estimates should be reported to demonstrate the suitability of the chosen AFT model. 

Particular attention should be given to the point estimate and associated measure of precision for 

treatment switching, as this describes the causal effect of the experimental treatment on extending OS 

and is the key quantity used in calculating counterfactual survival times. 

 

Item T.5: Detail the FO model, including estimation method (e.g. bootstrapping) and baseline 

variables adjusted for. Once again the FO model should be fully detailed, including the statistical model 

used, method of estimation (e.g. bootstrapping entire estimation procedure) and baseline variables 

adjusted for.  
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Item T.6: Present results both with and without re-censoring applied. Consistent with the 

corresponding reporting item for the RPSFTM, it is generally informative to consider results both with 

and without re-censoring applied (7). 

APPENDIX C: APPLICATION OF REPORTING RECOMMENDATIONS TO A CASE 

STUDY 

 

The case study dataset for illustrating the reporting recommendations was generated using data 

simulation. As the aim of simulation was to produce a single realistic dataset for analysis and not to 

evaluate statistical properties over repeated samples, we provide only a very brief overview of the 

design here. Initially, baseline values for age, gender, a tumour biomarker, prognosis score, Eastern 

Cooperative Group Oncology (ECOG) score, and health related quality of life (HRQOL) were 

simulated for 300 patients. The patients were then allocated to an experimental or control group in the 

ratio 2:1 via simple randomisation. Using the same approach as in (8), a joint longitudinal model was 

then used to simulate OS times and time-dependent biomarker values every 21 days, with the hazard 

for death depending on the biomarker value at the corresponding time point, randomised group and 

baseline prognosis score. This model produces a treatment effect for OS that initially increases during 

the period of greatest hazard and then decreases with longer follow-up, as might be expected in real 

settings. Time to disease progression was then generated as a proportion of OS, with survival times 

administratively censored at 18 months. Next, treatment switching was introduced so that 

approximately 40% of control group patients switched within 42 days of disease progression. 

Importantly, the odds of switching increased with greater progression free survival and higher 

biomarker values at disease progression and decreased over the two 21-day periods following 

progression. Among switching patients, OS times were extended by applying the average treatment 

effect received by the experimental group reduced by 20%. Additional variables generated for the case 

study included time-dependent HRQOL and ECOG score at disease progression, the latter of which 

was strongly associated with (but not an independent predictor of) treatment switching. A summary of 

the variables in the case study dataset and their relationship with treatment switching is provided in 

Table C1. 
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Table C1. Variables in case study dataset and their association with treatment switching 

Variable Categories Frequency of time-

varying measurements 

Relation to probability of treatment 

switching 

Baseline only    

Treatment group Experimental 

Control 

- -  

Gender Female 

Male 

- Unrelated 

Prognosis score Good 

Poor 

- Related (through effect on time to 

disease progression) 

Age - - Unrelated 

Disease progression only    

Time to disease progression - - Predictor 

Baseline and time-varying    

ECOG score  1 

2 

3 

4 

Disease progression only Related (ECOG at baseline related 

through association with prognosis 

score; ECOG at disease progression 

strongly related) 

Biomarker - Every 21 days Predictor (value at disease progression) 

HRQOL - Every 21 days Unrelated 

Time-varying only    

Time since disease 

progression  

- - Predictor  

Abbreviations: ECOG, Eastern Cooperative Oncology Group; HRQOL, health-related quality of life 

 

All statistical analyses were performed using Stata 14.0 (StataCorp). In the chosen simulated dataset, 

192 and 108 patients were randomized to the experimental and control arms, respectively. Baseline 

characteristics were generally well balanced between groups, although by chance the experimental arm 

had a higher percentage of patients with a poor prognosis (52.6% vs. 47.2%). As evident in Figure C1, 

OS was noticeably improved with the experimental treatment. According to an unadjusted Cox model, 

the experimental treatment reduced the hazard of death relative to control by 41% (ITT hazard ratio 

(HR) = 0.59; 95% confidence interval (CI) 0.46-0.76). With adjustment for baseline prognosis score, 
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ECOG score, biomarker value and HRQOL, the treatment effect became stronger than in the unadjusted 

analysis (adjusted ITT HR = 0.50; 95% CI 0.38-0.65) [Reporting recommendations: item 1], mostly 

due to the observed imbalance in the baseline prognosis score. Of course, due to treatment switching, 

both these estimates may understate the true benefit of the experimental treatment. 

 

Figure C1. Kaplan Meier plot for overall survival 

 

 

As per the simulation design, control group patients could switch to the experimental treatment within 

42 days of disease progression [item 2]. As illustrated in Figure C2, 49/108 control group patients 

(45.4%) switched treatments, including 39 that switched immediately upon disease progression and 10 

that switched either 21 or 42 days later (median time from randomisation to switching of 126 days). 

Only 5 control group patients were ineligible to switch treatments; two died in the first 21 days of the 

trial and three had not progressed by the time of administrative censoring [item 3]. An overview of the 

0
.0

0
0
.2

5
0
.5

0
0
.7

5
1
.0

0

192 132 55 0 Experimental
108 54 14 0     Control

Number at risk

0 200 400 600
Time (days)

Control Experimental



37 

 

data available for performing switching-adjusted analyses is provided in Table C1 [item 4]. For 

illustration purposes, we assume that the implementation of each switching-adjustment method, as 

described below, was entirely pre-specified [item 5].  

 

Figure C2. Time spent on the experimental treatment by randomized group 

 

 

Inverse probability of censoring weights 

 

Stabilized weights [item I.1] were estimated using pooled logistic regression based on 21-day interval 

data, with a restricted cubic spline containing three internal knots used to control for changes in the 

hazard of switching over time; these knots were spaced equally according to percentiles of observed 

switching times [item I.2]. For the WD model involving time-varying predictors, only data within 42 

days of disease progression, where patients were at risk of switching, were incorporated [item I.3]. The 

odds of not switching was modelled according to prognosis score, biomarker value, ECOG score 

(treated as continuous to avoid convergence issues), HRQOL and time since disease progression. We 

imagine these variables, all fully observed [item I.4], were selected based on expert clinical input and 

that the NUC assumption holds given these variables. Parameter estimates from the WD models are 
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presented in Table C2 [item I.5]. In the model including time-varying predictors, ECOG scores at 

disease progression were found to be highly related to not switching treatments (odds ratio = 24.8); this 

is unsurprising given that 46/49 switching patients had an ECOG score of 1 at disease progression, 

compared to just 3/54 for non-switchers. In contrast, other predictors appeared to have little impact on 

the odds of remaining on the control treatment. Stabilized (untruncated) weights ranged between 0.1 

and 11.1, with a coefficient of variation of 0.54 [item I.6]. Taken together with the extremely wide CIs 

observed for several of the predictors (see Table C2), it seems the IPCW approach was rather unstable, 

with results sensitive to a handful of patients with large weights (specifically the three patients with an 

ECOG value of 1 at disease progression who remained on the control treatment). On statistical grounds 

this raises concerns about the plausibility of the method [item 6]. 

 

Table C2. Results from weight determining models 

Characteristic Odds ratio (95% CI) 

 Baseline predictors only (for 

numerator of stabilized weights) 

Baseline and time-varying predictors (for 

denominator of stabilized weights) 

Baseline prognosis score (poor vs. 

good) 

14.91 (4.61 to 48.2) 3.00 (0.00 to 2306) 

Baseline biomarker value 0.89 (0.63 to 1.24) 1.20 (0.51 to 2.84) 

Baseline ECOG score 0.97 (0.51 to 1.84) 0.66 (0.19 to 2.25) 

Baseline HRQOL 9.76 (0.43 to 222)  0.08 (0.00 to 30.0)  

Time since progression (at this visit vs. 

1 or 2 visits ago)  

 0.88 (0.22 to 3.60) 

Current biomarker value  1.10 (0.59 to 2.02) 

ECOG score at disease progression  24.76 (4.93 to 124) 

Current HRQOL  0.53 (0.00 to 294) 

Abbreviations: ECOG, Eastern Cooperative Oncology Group; HRQOL, health-related quality of life 

 

Pooled logistic regression based on 21-day interval data was also used for the weighted FO model, with 

a restricted cubic spline with three internal knots (spaced equally according to percentiles of observed 

death times) applied to control for changes in the hazard of death over time. In the model, robust 
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variance estimation was used to account for the uncertainty in the stabilized weights, while adjustment 

was made for prognosis score, baseline biomarker value, baseline ECOG score (treated as continuous) 

and baseline HRQOL [item I.7]. The FO model produced a switching-adjusted HR of 0.39 (95% CI 

0.23-0.64), substantially lower than the ITT estimate. For a visual comparison of observed and adjusted 

survival times from the IPCW method, see Figure C3 below [item 7]. 

 

Figure C3. Observed and adjusted survival times from the IPCW base case analysis using unstabilized 

weights* 

 
* Survival curve plotted using unstabilized weights, as any analysis involving stabilized weights needs to control for the baseline 
variables included in the weighting models.  

 

Rank preserving structural failure time model 

 

For the RPSFTM, counterfactual survival times were calculated assuming an ever-treated structural 

model [item R.1], with a long-rank test [item R.2] using interval bisection [item R.3] employed for g-
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estimation. These calculations were performed using the Stata module strbee (9). As shown in Figure 

C4, g-estimation produced a single unique solution for 𝜓 = −log(AF) where the Z-statistic for the log-

rank test equalled zero [𝜓 = −0.54, item R.4]. The corresponding AF for this estimate was 1.72 (95% 

CI 1.38-2.12) [item R.5], indicating that the experimental treatment extended OS by 72% compared to 

control. Figure C5 displays counterfactual survival times assuming both randomized groups received 

only the control treatment [item R.6]. When the CTE and perfect randomization assumptions of the 

RPSFTM are met, one would expect equal counterfactual survival times across randomized groups, 

which was not the case here. Instead, counterfactual survival times were somewhat divergent, with 

poorer survival in the experimental group in the first 100 days. This casts some doubt over the 

plausibility of underlying assumptions [item 6]. 

 

Figure C4. Plot of g-estimation results  

 

 

Figure C5. Comparison of counterfactual survival times between groups (assuming only control 

treatment given) 
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The switching-adjusted HR for OS in the FO model, an unadjusted Cox model, was estimated to be 

0.44 with re-censoring applied (95% CI 0.30-0.65; calculated by retaining the ITT p-value) and 0.46 

without re-censoring (95% CI 0.31-0.66) [items R.7 & R.8]. A comparison of observed and re-censored 

adjusted survival times from the RPSFTM is presented in Figure C6 [item 7]. As expected, the survival 

experience of the control arm was poorer after switching had been adjusted for, while re-censoring was 

associated with a substantial loss of longer-term survival information.  

 

Figure C6. Observed and adjusted survival times from the RPSFTM base case analysis  
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Two-stage adjustment 

 

Of the 49 control group patients that switched treatments, 39 switched immediately upon disease 

progression, while 8 and 2 patients switched 21- and 42-days following progression, respectively [item 

T.1]. In fitting the two-stage model, the AF due to switching was estimated from a Weibull AFT model 

[item T.2], with adjustment for prognosis score and the following fully-observed predictors [item T.3] 

at disease progression: biomarker value, ECOG score (treated as continuous), HRQOL and time to 

disease progression. As with the IPCW method, we imagine these variables were informed by expert 

clinical input and that the NUC assumption holds given these variables. Parameter estimates from the 

AFT model are presented in Table C3 [item T.4]. As shown in the table, the Weibull model estimated 

an AF due to treatment switching of 1.86 (95% CI 1.15-3.01), with time to disease progression the only 

other statistically significant predictor of post-progression survival in the model. It should be noted that 
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the AF of 1.86 was similar to the corresponding estimate from the RPSFTM (1.72), lending some 

credibility to the CTE assumption. Overall the Weibull AFT model produced sensible parameter 

estimates, which, in combination with the choice of predictors and the short duration of time between 

disease progression and switching, suggests that the assumptions of two-stage adjustment were 

reasonable for these data [item 6].  

 

Table C3. Results from accelerated failure time model 

Characteristic Acceleration factor (95% CI) 

Treatment switching 1.86 (1.15 to 3.01) 

Baseline prognosis score (poor vs. good) 0.83 (0.42 to 1.63) 

Biomarker value at disease progression 1.02 (0.96 to 1.08) 

ECOG score at disease progression 1.02 (0.76 to 1.38) 

HRQOL at disease progression 0.47 (0.16 to 1.38) 

Time to disease progression (per 100 days) * 1.05 (1.01 to 1.09) 

Abbreviations: ECOG, Eastern Cooperative Oncology Group; HRQOL, health-related quality of life 

* Parameter estimate describes the effect of a 10-day increase in time to disease progression  

 

Following the re-censoring of counterfactual survival times in the control group, an unadjusted Cox 

model was fitted to the data, producing a switching-adjusted HR for OS of 0.44 (95% CI 0.30-0.62; 

calculated by bootstrapping the entire estimation procedure 1000 times and applying the percentile 

method [item T.5]). The switching-adjusted HR was also 0.44 without re-censoring applied (95% CI 

0.31-0.62) [item T.6]. A visual comparison of observed and re-censored adjusted survival times is 

provided in Figure C7 [item 7].  
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Figure C7. Observed and adjusted survival times from the two-stage adjustment base case analysis 

 

 

Sensitivity analyses 

 

A variety of sensitivity analyses were undertaken to investigate the robustness of treatment effect 

estimates to the assumptions of the adjustment methods [item 8]. For IPCW, changing the specification 

of the WD and FO models produced switching-adjusted HRs that ranged between 0.39 and 0.47 (Table 

C4). Increasing the number of knots in spline functions or adding in variables unrelated to switching 

and OS had little impact on estimates, whereas the switching-adjusted HR noticeably increased when 

linear terms for time were used in the analysis. As (unweighted) pooled logistic regression more 

accurately reproduced the ITT HR from Cox regression when spline rather than linear terms for time 

were used, our preference here is for the models including spline terms. It is also interesting to note the 

worsening in model fit, as indicated by the Akaike information criterion, when ECOG scores were 

excluded from the WD and FO models. Despite this, the exclusion greatly reduced the maximum 

0
.0

0
0
.2

5
0
.5

0
0
.7

5
1
.0

0

0 200 400 600
Time (days)

Control observed Control adjusted

Experimental



45 

 

stabilized weight and improved the precision of the switching-adjusted HR. With knowledge that the 

data generation procedure for treatment switching was not dependent on ECOG scores (i.e. NUC holds 

without ECOG), this may be the preferred implementation of the IPCW method in Table C4. 

 

Table C4. Sensitivity of treatment effect estimates for the IPCW method 

Approach 

Adjusted HR 

(95% CI) 

Maximum 

weight [CV] AIC* 

(1) Base-case 0.39 (0.23 to 0.64) 11.1 [0.54] 105.8 

(2) Same as 1 but using unstabilized weights 0.44 (0.27 to 0.71) 14.0 [0.52] 105.8 

(3) Same as 1 but using 4 internal knots for spline functions of time 0.41 (0.26 to 0.64) 8.0 [0.44] 105.1 

(4) Same as 1 but using linear terms (rather than spline functions) for time 0.47 (0.33 to 0.67) 4.8 [0.43] 106.9 

(5) Same as 1 but including age and gender (both unrelated to switching & OS) 0.38 (0.23 to 0.62) 10.8 [0.52] 109.8 

(6) Same as 1 but excluding ECOG scores at baseline and disease progression 0.44 (0.31 to 0.64) 3.0 [0.38] 125.8 

Abbreviations: AIC, Akaike information criterion; CI, confidence interval; CV, coefficient of variation; ECOG, Eastern Cooperative 
Oncology Group; HR, hazard ratio; OS, overall survival 

* AIC of weight determining model including both baseline and time-dependent covariates 

 

The results of sensitivity analyses for the RPSFTM and two-stage approach are presented in Table C5. 

As shown in the table, switching-adjusted HRs for the RPSFTM ranged between 0.41 and 0.52 

according to the exact method of implementation. The highest HR was obtained when switching 

patients were assumed to receive only 50% of the benefit of the experimental treatment, while the lowest 

HR was produced when an adjusted Cox model was used for g-estimation (mostly due to adjustment 

for prognostic variables in the FO model). As observed in the base-case RPSFTM, counterfactual 

survival times remained unequally distributed across randomized groups throughout the sensitivity 

analyses, including models relaxing the CTE assumption and with correction for baseline imbalances 

in the prognosis score (results not shown). This casts further doubt over the validity of the RPSFTM. 

For the two-stage approach, switching-adjusted HRs ranged from 0.41 to 0.45 across the sensitivity 

analyses, with the choice of parametric survival distribution having little impact on results. Consistent 

with findings for the IPCW method, the switching-adjusted HR following two-stage adjustment became 

more precise when ECOG scores were excluded from the estimation procedure. 
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Table C5. Sensitivity of treatment effect estimates for the RPSFTM and two-stage approaches 

Approach AF (95% CI) Adjusted HR (95% CI) 

Rank preserving structural failure time model   

(R1) Base-case with re-censoring applied 1.72 (1.38 to 2.12) 0.44 (0.30 to 0.65) 

(R2) Base-case without re-censoring applied 1.72 (1.38 to 2.12) 0.46 (0.31 to 0.66) 

(R3) Same as R1 but using an as-treated structural model 2.96 (1.72 to 4.63) 0.45 (0.31 to 0.66) 

(R4) Same as R1 but using a Cox model for g-estimation* 1.73 (1.45 to 2.10) 0.41 (0.29 to 0.58) 

(R5) Same as R1 but using a different grid search method** 1.72 (1.38 to 2.11) 0.45 (0.31 to 0.66) 

(R6) Same as R1 but assuming treatment effect in switchers is 25% smaller 1.65 (1.35 to 2.00) 0.48 (0.34 to 0.68) 

(R7) Same as R1 but assuming treatment effect in switchers is 50% smaller 1.56 (1.29 to 1.89) 0.52 (0.38 to 0.71) 

Two-stage adjustment   

(T1) Base case with re-censoring applied 1.86 (1.15 to 3.01)  0.44 (0.30 to 0.62) 

(T2) Base-case without re-censoring applied 1.86 (1.15 to 3.01) 0.44 (0.31 to 0.62) 

(T3) Same as T1 but using log-logistic model 2.09 (1.30 to 3.37)  0.41 (0.29 to 0.62) 

(T4) Same as T1 but using generalised gamma model 1.86 (1.15 to 3.01)  0.44 (0.30 to 0.62) 

(T5) Same as T1 but including age and gender (both unrelated to switching) 1.85 (1.15 to 3.00) 0.45 (0.30 to 0.63) 

(T6) Same as T1 but excluding ECOG score at disease progression 1.83 (1.22 to 2.73) 0.45 (0.32 to 0.60) 

Abbreviations: AF, acceleration factor; CI, confidence interval; ECOG, Eastern Cooperative Oncology Group; HR, hazard ratio 

* Adjusted for baseline prognosis score, Eastern Cooperative Oncology Group score, health-related quality of life and biomarker 
value 

** Grid search for psi from -2 to 0 in steps of 0.01 

 

Discussion of results 

 

As well as demonstrating the application of the reporting recommendations, the analyses of the case 

study dataset show how the recommendations can improve confidence in switching-adjusted estimates. 

In following the recommendations, we identified performance issues with the IPCW and RPSFTM 

approaches, including questionable fit of the WD model and non-equivalence of counterfactual survival 

times. Conversely, the two-stage method was supported by the short time duration between disease 

progression and treatment switching, and seemed to work well based on parameter estimates and the 

consistency of sensitivity analyses. That two-stage adjustment produced an equivalent switching-
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adjusted HR to the base-case RPSFTM with re-censoring applied and IPCW excluding ECOG scores 

(our preferred specification for IPCW) provides further assurance on its suitability. Another interesting 

finding from the case study analysis was the sensitivity of results to the specification of each switching-

adjustment approach. For example, switching-adjusted HRs varied between 0.39 and 0.47 for IPCW 

based on relatively small changes to its specification; such changes could have large impacts on final 

cost-effectiveness estimates. This reinforces the need to fully describe and justify the chosen modelling 

approach. 

 

Importantly, since the case study dataset was generated using simulation, we did not explore the 

plausibility of model assumptions according to expert clinical opinion, as would be expected in practice 

(1). In justifying the NUC assumption, one should closely examine how treatment switching decisions 

were made in the trial and what information was available to guide these decisions. Of note, a 

characteristic can only confound if available to those responsible for making the switching decisions. 

Additionally, sensitivity analysis methods that explore the potential magnitude of bias due to 

unmeasured confounding should be considered; see for example (10). For the CTE assumption, the 

mechanism by which the experimental treatment works and its likely effectiveness at different stages 

of disease are key considerations.  

 

Statistical code for analyses 

 

The variables included in the base case analyses of the case study dataset are detailed in Table C6. Of 

note, the data were arranged in long format, with each row of the dataset corresponding to the start of a 

21-day period for a given patient. A small snapshot of the data is provided in Table C7 to illustrate this 

setup. 

 

  



48 

 

Table C6. Variables in case study dataset 

Variable Variable name Categorical values  

Study ID id - 

Time (in 21-day intervals) time - 

Treatment group trtrand  0 = control, 1 = experimental treatment 

Time to death - continuous deathtime  - 

Death in 21-day interval deathtdo 0 = no, 1 = yes 

Death indicator deathind  0 = alive, 1 = death 

Time to disease progression progtime - 

Disease progression indicator progind 0 = no progression, 1 = progressed 

Disease progression in previous 42 days progtdc 0 = no, 1 = yes 

Time to treatment switching xotime - 

Switched to experimental treatment indicator xoind 0 = no switch, 1 = switched 

Switched to experimental treatment in 21-day interval xotdoipcw 0 = no, 1 = yes 

Time to discontinuing experimental treatment disconexp - 

Prognosis score PROGNOSISb  

ECOG score*  ECOGb / ECOGtdc  

Biomarker* CEAb / CEAtdc  

HRQOL* HRQLb / HRQLtdc  

Administrative censoring at 546 days admin  

Abbreviations: ECOG, Eastern Cooperative Oncology Group; HRQOL, health-related quality of life 

* The time-varying measurements are denoted with ‘tdc’  

 

Table C7. Illustration of data setup for a single patient 

id time trtrand deathtime deathtdo deathind progtime xotime xotdoipcw disconexp HRQLtdc 

19 0 0 308 0 1 84 84 0 252 .4497 

19 21 0 308 0 1 84 84 0 252 .4326 

19 42 0 308 0 1 84 84 0 252 .5478 

19 63 0 308 0 1 84 84 0 252 .4914 

19 84 0 308 0 1 84 84 1 252 .4543 

19 105 0 308 0 1 84 84 . 252 .3072 

19 126 0 308 0 1 84 84 . 252 .5054 

19 147 0 308 0 1 84 84 . 252 .6007 

19 168 0 308 0 1 84 84 . 252 .6174 

19 189 0 308 0 1 84 84 . 252 .5086 

19 210 0 308 0 1 84 84 . 252 .3146 

19 231 0 308 0 1 84 84 . 252 .4921 

19 252 0 308 0 1 84 84 . 252 .6302 

19 273 0 308 0 1 84 84 . 252 .4474 
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19 294 0 308 1 1 84 84 . 252 .5461 

 

Stata code for the base-case analyses presented in the appendix is provided below. 

************ 
*** IPCW *** 
************ 
 
use "case_study.dta", clear 
 
rcsgen time, df(4) if(xotdoipcw==1) gen(timexosp) //construct spline function of 
time for  
the WD models 
 
logistic xotdoipcw PROGNOSISb CEAb ECOGb HRQLb timexosp* if trtrand==0 //estimate 
probability of switching using baseline predictors only (check model fit) 
 
predict pxo1 if e(sample)  
 
logistic xotdoipcw PROGNOSISb CEAb ECOGb HRQLb PROGTYPEtdc CEAtdc ECOGtdc HRQLtdc 
timexosp* if trtrand==0 & progtdc>0 // estimate probability of switching using 
baseline and time varying predictors (check model fit)  
 
predict pxo2 if e(sample) 
 
replace pxo2 = 0 if trtrand==0 & !e(sample) 
sort id time 
gen num = 1-pxo1 if firstobs 
replace num = num[_n-1] * (1-pxo1) if !firstobs 
gen denom = 1-pxo2 if firstobs 
replace denom = denom[_n-1] * (1-pxo2) if !firstobs 
gen weight = 1 / denom if trtrand==0 
gen sweight = num / denom if trtrand==0 // now explore the distribution of weights 
 
replace weight = 1 if trtrand==1 // set weights to 1 in the treatment arm 
replace sweight = 1 if trtrand==1 
 
rcsgen time, df(4) gen(timesp) //construct spline function of time for the FO model 
 
logistic deathtdo trtrand PROGNOSISb CEAb ECOGb HRQLb timesp* [pw=weight] if 
xotdoipcw==0, cluster(id) // analysis using unstabilized weights 
 
logistic deathtdo trtrand PROGNOSISb CEAb ECOGb HRQLb timesp* [pw=sweight] if 
xotdoipcw==0, cluster(id) // analysis using stabilized weights 
 
 
************** 
*** RPSFTM *** 
************** 
 
use "case_study.dta", clear 
 
keep if time==0 
stset deathtime deathind, id(id) 
replace xotime=deathtime if xoind==0 
 
strbee trtrand, xo0(xotime xoind) endstudy(admin) hr test(logrank) graph gen(t0) 
 
stset t0 dt0, id(id) 
 
sts graph, by(trtrand) // compare counterfactual survival times across randomized 
groups 
 
 
**************************** 
*** Two-stage adjustment *** 
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**************************** 
 
use "case_study.dta", clear 
 
drop if trtrand==1 | progind==0 | time<progtime 
sort id time 
gen tong = 0 
by id: replace tong = 1 if (time>=xotime) //create time-varying covariate 
indicating a switch to the experimental treatment 
 
replace deathtime = (deathtime - progtime) 
replace time = (time - progtime) // changing time variables to indicate time since 
disease progression rather than time since randomisation 
 
by id: gen HRQLprog = HRQLtdc[1] 
by id: gen ECOGprog = ECOGtdc[1] // use values of HRQL and ECOG at disease 
progression 
 
sort id time 
by id: gen finalobs = 0 
by id: replace finalobs = 1 if _n==_N 
expand 2 if finalobs==1 
drop finalobs 
sort id time 
by id: gen finalobs = 0 
by id: replace finalobs = 1 if _n==_N 
by id: replace time = deathtime if finalobs==1 
by id: drop if time[_n+1]==time 
by id: gen deathindtd = 0 
by id: replace deathindtd = 1 if deathind==1 & finalobs==1 
stset time, failure(deathindtd) id(id) 
streg tong PROGNOSISb CEAprog HRQLprog ECOGprog progtime, dist(weibull) time // 
accelerated failure time model to calculate effect of treatment switching on 
survival (check model fit) 
di exp(-_b[tong]) 
scalar accel=exp(-_b[tong]) // save acceleration factor 
 
use "case_study.dta", clear 
sort id time 
collapse (max) trtrand time deathtime xotime deathind disconexp admin progtime 
xoind PROGNOSISb, by(id) 
replace xotime=0 if xotime==. 
gen tpxo=(deathtime-xotime) 
gen txot=xotime  
gen timecf = deathtime 
replace timecf = (xotime + (tpxo*accel)) if trtrand==0 & xotime>0 
gen trecens = timecf //now re-censoring survival times, using ‘admin’ time to 
indicate the end study time for each patient 
replace trecens =(admin*accel) if (trtrand==0) 
replace deathind = 0 if (timecf>trecens & trtrand==0) 
replace timecf = trecens if (timecf>trecens & trtrand==0) 
 
stset timecf, failure(deathind) id(id) 
stcox trtrand 
 
*For calculating a confidence interval around the switching-adjusted treatment 
effect it necessary to bootstrap the entire estimation procedure 
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