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Detecting Elementary Arm Movements by Tracking

Upper Limb Joint Angles with MARG Sensors
Evangelos B. Mazomenos, Member, IEEE, Dwaipayan Biswas, Andy Cranny, Amal Rajan, Koushik

Maharatna, Member, IEEE, Josy Achner, Jasmin Klemke, Michael Jöbges, Steffen Ortmann and Peter

Langendörfer

Abstract—This paper reports an algorithm for the detection of
three elementary upper limb movements i.e. reach and retrieve,
bend the arm at the elbow and rotation of the arm about the
long axis. We employ two MARG sensors, attached at the elbow
and wrist, from which the kinematic properties (joint angles,
position) of the upper arm and forearm are calculated through
data fusion using a quaternion-based gradient-descent method
and a 2-link model of the upper limb. By studying the kinematic
patterns of the three movements on a small dataset, we derive dis-
criminative features that are indicative of each movement; these
are then used to formulate the proposed detection algorithm.
Our novel approach of employing the joint angles and position
to discriminate the three fundamental movements was evaluated
in a series of experiments with 22 volunteers who participated
in the study: 18 healthy subjects and 4 stroke survivors. In a
controlled experiment, each volunteer was instructed to perform
each movement a number of times. This was complimented by
a semi-naturalistic experiment where the volunteers performed
the same movements as subtasks of an activity that emulated the
preparation of a cup of tea. In the stroke survivors group, the
overall detection accuracy for all three movements was 93.75%
and 83.00%, for the controlled and semi-naturalistic experiment
respectively. The performance was higher in the healthy group
where 96.85% of the tasks in the controlled experiment and
89.69% in the semi-naturalistic were detected correctly. Finally,
the detection ratio remains close (±6%) to the average value,
for different task durations further attesting to the algorithms
robustness.

Index Terms—MARG sensors, orientation estimation, upper
limb movement, body-area networks, gradient-descent, quater-
nion

I. INTRODUCTION

The prevalence of cerebrovascular diseases (e.g. stroke) as

a leading cause of death in recent years, is discussed in a

number of published reports [1], [2]. For those individuals who

survive a stroke episode, a long period of neurorehabilitation is

This work was supported by the European Union under the Seventh Frame-
work Programme (EU-FP7), grant agreement #288692, under the project
name “StrokeBack: Telemedicine System Empowering Stroke Patients to Fight
Back”

E.B. Mazomenos, D. Biswas, A. Cranny, A. Rajan and K. Maharatna
are with the School of Electronics and Computer Science, University of
Southampton, Southampton, SO17 1BJ, U.K. (e-mail: {ebm, db9g10, awc,
ar9g12, km3}@ecs.soton.ac.uk), E.B Mazomenos is also with the Centre
for Medical Image Computing, UCL, London, WC1E 6BT, U.K. (email:
e.mazomenos@ucl.ac.uk)
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required in order to regain or recover some of the lost motor

functions that typically accompany a stroke. In general, the

first stage of rehabilitation takes place under expert supervision

at a dedicated rehabilitation center which provides every-

day care and the patient’s condition is constantly evaluated

by medical professionals. After their discharge, patients are

prescribed a customized rehabilitation program and are ad-

vised to continue their rehabilitation at home. However, home

rehabilitation suffers from the fact that it is difficult for

therapists to monitor the progress of the patient remotely [3],

[4]. This is a key point since a major requirement for medical

experts is the ability to know if the patients are capable of

performing specific movements as part of their rehabilitation

exercises during their everyday natural activities.

The EU funded StrokeBack project, of which this work is

a part, proposes to develop a body-worn sensor system that

can precisely detect and recognize specific movements of the

stroke-impaired arm that are of interest to the therapists, in

a home-rehabilitation environment and inform therapists of

the number of occurrences and the associated quality of these

movements [5]. This information allows therapists to remotely

evaluate the patient’s rehabilitation progress in their natural

environment. In this context, this work presents the design

and evaluation of a detection algorithm for three fundamental

movements of the upper limb, a part of the body that most

often has its motor function impaired after a stroke episode.

The three movements we target to detect and recognize are;

reach and retrieve an object, lift an object to mouth (e.g. drink

or eat) and rotation of the forearm (e.g. pouring action or

turning a key). These three types of movements are present

in unison or in combination in the majority of everyday

tasks and were chosen under guidance from physiotherapists

participating in the StrokeBack project. Their suitability as

indicators of rehabilitation progress is further demonstrated by

the fact that these activities are performed in the Wolf Motor

Function test, an established procedure used by therapists to

evaluate the level of motor function impairment in stroke

survivors [6], [7].

From a kinematic perspective, the shoulder and elbow

joints of the upper limb cooperate in order for the three

movements to be executed. Hence, the approach we took in

the formulation of our detection algorithm was to initially

calculate the kinematics of the upper limb in terms of the

joint angles and position of the upper arm and forearm.

Accordingly, we studied the kinematic patterns of the three

movements in order to derive discriminative features that allow
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us to effectively detect them during typical everyday activities.

We chose to employ Magnetic, Angular Rate (gyroscope) and

Gravity (accelerometer) (MARG) sensor modules, positioned

proximal to the elbow and the wrist, to derive and track the

kinematic properties (angles, position) of the upper limb. Due

to their small size and compactness, MARG sensors can be

attached to the upper limb without hindering its movement

and after appropriate data fusion and processing, can provide

a good estimation of the upper limb kinematics without the

need for clear line of sight; which is not the case in the

more accurate, though considerably more expensive, marker-

based optical or camera sensor systems. Our analysis revealed

that discrimination among the three movements is possible

by investigating the pattern of the shoulder and elbow flex-

ion/extension angles and the value of the vertical coordinate

(z-coordinate) of the wrist position.

The use of MARG or inertia sensors for calculating the

orientation and position of the upper limb is well researched,

with a plethora of techniques reported in the literature. How-

ever the work presented here is considered an extension of

previous work, since it is among the first to further utilize

the kinematic information for a specific purpose; in our case,

to detect the three particular, though fundamental upper limb

movements, known to be used as a measure for evaluating

the upper extremity motor ability. Specifically, we employ

MARG sensors for the purpose of tracking the orientation

and position of the arm segments and to use this information

to correctly detect the three arm movements. In addition,

our work differs from traditional human activity recognition

approaches, in that we focus on detecting the occurrence of

specific tasks during natural everyday activities, instead of

attempting to classify gross human activities (e.g. walking,

sitting, standing) [8]–[11]. Finally, the proposed detection

method, based on identifying characteristic kinematic proper-

ties of the three movements, distinguishes itself from the vast

majority of activity recognition works that employ complex

machine learning techniques to achieve classification. Since

this work intends to be integrated in a home-based monitoring

system, where body-worn battery powered sensors are used,

conventional approaches for detection and recognition based

on machine learning and pattern recognition methods may not

be suitable, due to their significant computational complexity

that renders them inappropriate for resource constrained body-

worn devices. By comparison, this work employs a com-

putationally efficient orientation algorithm, that requires 248

scalar arithmetic operations per update for the gradient-descent

optimization [12], and a basic 2-link model to obtain the upper

limb kinematics, complimented with a simple set of rules

derived from the kinematic analysis, to detect and recognize

the three movements of interest.

Although computationally inexpensive pattern recognition

methods are available (e.g. Linear Discriminant Analysis

(LDA)), our preliminary investigation demonstrated that a high

volume of training data is required to capture the variability in

the movement of different individuals in order to effectively

train such classifiers. Particularly for LDA, our investigation

with various features from accelerometer and gyroscope sensor

data, showed that consistent results for all three movements

and various individuals, with impaired and unimpaired motor

abilities, is difficult to achieve [13]. Contrary to classical ma-

chine learning approaches, in this work a rule-based detection

algorithm was designed to discriminate the three movements,

by analyzing the kinematic patterns of the three tasks on

a dataset (analysis dataset) collected from a small number

of participants with unimpaired motor function. Considering

that the derived set of rules is based on functional kinematic

characteristics (patterns of angles, position of joints) of the

upper limb during the execution of these particular tasks, we

hypothesized that similar discriminating patterns, albeit with

some variation, will appear when these tasks are executed by

any individual, even if their motor function is impaired by a

medical condition. Therefore the kinematic analysis and the

formulation of the discriminating rules was performed on data

obtained exclusively from unimpaired participants. The key

novelty of the work presented here is the use of characteristic

kinematic patterns, which are consistent and can be effectively

applied for the detection of the three movements.

To validate our hypothesis we applied the detection algo-

rithm on a different dataset (evaluation dataset) comprising

both healthy volunteers and stroke survivors, performing the

three tasks in two distinct type of experiments (controlled and

semi-naturalistic). Our experimental investigation aims at es-

tablishing the robustness against variations, due to inter-person

variability and motor function impairment, of the derived set

of rules (from the controlled experiment) and revealing the

extent to which the proposed algorithm can be applied for the

detection of the three movements when performed as subtasks

of a typical activity (from the semi-naturalistic experiment).

The remainder of this paper is structured as follows. In

Section II we briefly summarize the relevant literature, while

Section III details the derivation of the upper limb kinematics.

The formulation of the proposed recognition algorithm is

discussed in Section IV, with the experimental evaluation, per-

formance assessment and discussion following in Section V.

Conclusions are drawn in Section VI.

II. BACKGROUND

Estimation of the upper limb orientation and position is

achieved through fusion and processing of heterogeneous

sensor data obtained from MARG or inertia sensor modules

properly attached to the upper limb. With the aid of a kinematic

model, the position of the individual body segments (upper

arm, forearm) can be determined in 3D space. A theoretical

study on the required number of modules that need to be

attached for a full orientation analysis of the upper limb is

provided in [14]. The majority of the proposed solutions in

the literature are based on the established Kalman Filter and

its derivatives as the sensor fusion algorithm for estimating

orientation [15]–[19], though more computationally efficient

alternatives based on complementary filters and gradient-

descent methods have also been reported [12], [20].

In recent years, the recognition and classification of basic

body postures and daily activities using data from wearable

MARG or inertia sensors has been an active research topic.

Some of the application scenarios considered are those of re-

habilitation, chronic care management and elderly population
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monitoring [8]–[10], [21]–[24]. Typically, the data obtained

are used to derive a set of features which are then used as

inputs in various machine learning and/or pattern recognition

systems for classification. For example, decision trees and

neural networks were employed in [25], [26], support vector

machines (SVM) in [27], [28], hidden Markov-models (HMM)

in [29] and template matching in [11]. Although these ap-

proaches demonstrated very good performance, their objective

was to classify gross human activities (e.g. lying, sitting, walk-

ing, running, climbing stairs etc). By comparison, the work

that is reported here has a significantly different objective:

to detect and classify specific arm movements, of which the

longitudinal variation in their number of occurrences could

potentially serve as an indicator of rehabilitation progress.

III. DERIVING THE UPPER LIMB KINEMATICS

Movements of the human upper limb occur in one of the

three cardinal planes of the body (sagittal, frontal and trans-

verse) and around three corresponding axes (mediolateral, an-

teroposterior and longitudinal). The three planes are mutually

orthogonal and the three axes are orthogonal both to each other

and their corresponding planes. To represent the upper-limb we

employ a 2-link limb model, depicted in Fig. 1. The upper arm

and forearm are modeled through link 1-2 and 2-3 respectively.

The shoulder joint is represented by joint 1, which is fixed at

the origin of the global coordinate frame, while the elbow is

modeled by joint 2, which connects the two links. To track the

upper limb during movement, two MARG sensors are placed

proximal to the wrist and elbow near points 2 and 3, as shown

in Fig. 2. By continuously calculating the orientation of the

MARG sensors, we can determine the orientation and position

of the upper limb joints in space during dynamic movements,

with respect to the 2-link model. This allows us to estimate the

5 degrees of freedom (DoF) of the upper limb, 3 DoF at the

shoulder and 2 DoF at the elbow, that correspond to the angles

of shoulder flexion/extension, shoulder adduction/abduction,

upper arm medial/lateral rotation, elbow flexion/extension and

forearm pronation/supination. This information is then fed into

a detection algorithm to discriminate between the three arm

movements. Based on this model, the orientation and position

of the two limb segments can be defined against a static

global coordinate frame, with its origin placed on the shoulder

joint. Additionally, a local coordinate frame (body coordinate

frame), which rotates dynamically following the rotations of

the link, is applied in each link of our model, with its origin

being in the shoulder and the elbow joints for the upper arm

and forearm respectively. These body coordinate frames are

used to obtain the initial orientation of each limb, using the

MARG sensor data, which are provided in terms of their

respective coordinate frames, and then mapped with respect

to the global coordinate frame to enable the calculation of the

joint angles and the links’ position. For simplicity we chose to

consider the local coordinate frame (body frame) of the upper

arm and forearm to align with the coordinate frame of the

sensor. Therefore, the orientation output represents not only

the orientation of the MARG sensor but also the orientation of

the body segment upon which the sensor platform is attached.

Fig. 1. The 2-link limb model we utilize to represent the upper limb and the
definition of the global coordinate system.

Among the different mathematical representations of the 3-D

orientation of a rigid body we elect to use quaternions in our

work to express the orientations of the upper limb body seg-

ments. Quaternions demonstrate significant advantages over

both Euler angles and rotation matrices in representing the

orientation of a rigid body. The singularities issue (that affects

Euler angles and rotation matrices) is not present in quaternion

representation, which is also known to provide more robust

results during orientation calculations.

The initial orientation (expressed in the body coordinate

frame) of the upper arm and forearm is obtained from esti-

mating the 3-D orientation of the MARG sensor attached to

it. This is achieved by fusing the data from the accelerometer,

gyroscope and magnetic field sensors and then employing a

quaternion gradient-descent orientation algorithm, originally

reported in [12], to calculate the MARG sensor 3-D orientation

during the movements of the arm. In this algorithm, the

gyroscope output (ω) can be used to derive the orientation rate

of change (q̇1) of the static reference frame (global) against

a dynamic one (sensor). This is expressed, in quaternion

representation as:

ωq = [0 ωx ωy ωz] (1)

q̇1 =
1

2
q̂1 ⊗ ωq (2)

Here, the operator ⊗ corresponds to quaternion multiplication.

An estimation of the orientation (q̂1) of the global frame

relative to the sensor frame can then be calculated by inte-

grating the quaternion derivative q̇1 over time, given an initial

condition and the sampling frequency being known.

In addition, by assuming that the other two types of sen-

sor (the accelerometer and magnetometer) are continuously

subjected to the constant fields of gravity (g) and magnetic

north (mn) with respect to the sensor coordinate frame, and

given that the orientation of these two fields in the global

coordinate frame is known and constant, the measurement

of these fields in the sensor frame enables the orientation of

that frame against the global frame to be estimated. This is

formulated as an optimization problem that attempts to find

a quaternion (q̂2) solution that corresponds to an orientation
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that aligns the constant field of the global frame (fg) to the

measured one (fs) [12].

min
q̂2

f (q̂2, fg, fs) (3)

f (q̂2, fg, fs) = q̂∗

2
⊗ fg ⊗ q̂2 − fs (4)

Here, q̂∗

2
denotes the conjugate quaternion. The gradient-

descent optimization algorithm is employed to produce a

quaternion solution based again on an initial condition and

of course a step size. Each field individually can not provide

a unique quaternion solution, but a range of orientation solu-

tions. The two fields are thus combined in order to produce

a single quaternion solution q̂2 that describes the sensor

orientation against the global reference frame.

The two independent approximations of the orientation q̂1

and q̂2 suffer from intrinsic limitations related to the sensor

systems. For q̂1, the accumulation of gyroscope errors will

result in a distorted estimation, while q̂2 will suffer from the

addition of linear accelerations and magnetic interference. This

necessitates the fusion of the two estimates in a weighted

manner, so that each one mitigates the limitations of the

other. Ultimately, following a number of simplifications related

to the convergence step of the gradient-descent method, the

final orientation estimation is achieved from the integration of

the rate of change of orientation (measured by gyroscopes),

after the magnitude of the gyroscope error, denoted as β, is

subtracted, alongside a direction specified by the accelerometer

and magnetometer measurements (see Eq. 6). Furthermore, a

mechanism for compensating magnetic distortions (soft iron

errors) is in place, to limit the errors caused from them to only

affect the angle of rotation around the global z-axis (yaw).

qt = q̂t−1 + q̇ ·∆t (5)

q̇ = q̇1 − β
∇f

‖∇f‖
(6)

The derived quaternion orientation for each MARG sensor

is expressed with respect to the sensor’s coordinate frame.

Obviously the orientation obtained can also be expressed

with Euler angles or rotation matrices using the appropriate

transformations.

To locate the position of the upper arm and forearm during

movements, we define two position vectors (vu, vf ) in our

model structure, as illustrated in Fig. 2, which also depicts

the placement of the sensors. The two position vectors are

defined with respect to the body frame of the upper arm and

forearm respectively. The x-axis of these frames is aligned

with the direction of the upper arm and forearm when the

arm is lying prone against the side of the body. Thus, the

position vector of the forearm would be bvf = [−lf 0 0]
while the one for the upper arm would be bvu = [−lu 0 0],
where lf and lu are the lengths of the forearm and upper

arm respectively. The location of the upper arm and forearm

in the global coordinate frame is determined by transforming

the position vectors from the body coordinate frame to the

global one using the orientation quaternions obtained from

each sensor (qw,qe). This is achieved from the following set

of equations where the superscripts g and b denote the global

and body reference frames respectively:

gvu = qw ⊗ bvu ⊗ q∗

w (7)

gvf = qw ⊗ bvf ⊗ q∗

w +gvu (8)

Z

Y

X

Z
Y

X

V
u

V
f

1

2

3

Y

Z
X

Fig. 2. The employed set-up for the kinematic analysis adapted to the two-
link upper limb model of Fig. 1. The two MARG sensors (Shimmer 2r) are
placed near the elbow (point 2) and wrist (point 3) with their corresponding
sensor frame (upper right corner) and the global coordinate system (lower left
corner) shown. The two position vectors vu, vf are also indicated.

The 5 joint angles are calculated using the two position

vectors (gvu, gvf ) as described in the following sections.

A. Shoulder angles

The shoulder flexion/extension (s fe) and

abduction/adduction (s aa) angles are calculated from the

upper arm position vector, while the shoulder medial/lateral

(s ml) rotation angle is calculated from the forearm position

vector as follows.

s fe = 90◦ + atan2(gvu(z),
gvu(x)) (9)

s aa = 90◦ + atan2(gvu(z),
gvu(y)) (10)

s ml =

{

atan2(gvf (y),
gvf (x)), s fe < 90◦ & s aa < 90◦

atan2(gvf (z),
gvf (y)), s fe > 90◦ || s aa > 90◦

(11)

where atan2 is the four quadrant inverse tangent function. The

value of 90◦ is added to bring the s fe and s aa angles to

the standard range of [−90◦,+180◦]. The range of s ml is

[−90◦,+90◦]
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B. Elbow angles

The elbow flexion/extension (e fe) angle is calculated as

the angle between the two position vectors, while the elbow

pronation/supination angle (e ps) is calculated as the roll

angle (φw), the angle of rotation around the global x-axis,

of the MARG sensor located at the wrist. This is calculated

from qw = [qw1 qw2 qw3 qw4]. Thus,

e fe = atan2(‖gvf ×g vu‖,
g vf ·g vu) (12)

e ps = φw = atan2(2qw3 ·qw4+2qw1 ·qw2, 2q
2

w1
+2q2w4

−1)
(13)

The range of e fe is [0◦,+180◦] and that for e ps is

[−90◦,+90◦]. The calculations listed in Eq.10-Eq.13 refer

to the joint angles for the right upper limb. The calculation

of s aa, s ml and e ps requires minor adjustments to be

made, such as change of sign for some of the position vector

coordinates, when the left upper limb is considered.

IV. DATA COLLECTION AND KINEMATIC PATTERN

ANALYSIS

The kinematic information derived from the previous anal-

ysis was utilized in order to identify characteristic patterns

and values that can be used for distinguishing among the

three movements. This investigation was performed on a

set of 28 repetitions for each of the three tasks, performed

by two healthy volunteers in a controlled environment. The

dataset obtained (analysis dataset) was used exclusively for the

extraction of the discriminating features and for the formula-

tion of the identification algorithm and was not included in

the performance evaluation experiments (evaluation dataset),

which took place both with healthy individuals (18) and stroke

survivors (4), as discussed in Section V.

In the analysis dataset, the three tasks were executed se-

quentially in each repetition, with the subject performing them

whilst sitting comfortably on a chair at a table. Initially the

volunteer reached and retrieved a glass of water positioned

in front of them. After the glass was retrieved the subject

performed the task of arm rotation and poured the water into

another, initially empty, glass. The final task performed was

the task of lifting and drinking the water from the second glass

before returning it to the table. The tasks were deliberately

executed at a relatively slow pace in order to clearly capture

their kinematic patterns. This facilitated comparison and the

extraction of the discriminating features.

In our experiments we employed the Shimmer 2r 9DoF

MARG sensor platform, comprised of mutually orthogonal

3-axis accelerometer, gyroscope and magnetometer. The data

streams from the three sensors were used as inputs for deriving

the kinematic information. The Shimmer module is based

on an MSP430 microcontroller operating at 8 MHz and has

an integrated RN-42 class-2 Bluetooth transceiver enabling

wireless communication [30]. The operational range was set

at ±1.5g for the accelerometer and at ±500◦/s for the

gyroscopes. The MARG module was programmed to sample

at 50Hz which was deemed sufficiently fast for sampling

elementary arm movements. The accumulated MARG data

were initially filtered to remove noise, using zero-phase digital

FIR filters. Accelerometer and magnetometer data were filtered

with a low-pass filter with cut-off frequency at 12Hz and

10Hz respectively. Gyroscope data were filtered with a band-

pass filter in the range of 0.5Hz to 25Hz. The sensors were

calibrated before the beginning of the experiments, using

Shimmer’s proprietary software. Other Shimmer software, that

permitted multiple wireless Bluetooth streams to transmit

data concurrently, was used for data acquisition. During the

experiments, the operator of the acquisition software manually

annotated the start (on) and end (off) times of each task by

adding a marker signal to the data, based on a predefined

resting position, effectively segmenting each task.

The two sensors were attached to the upper arm, proximal

to the elbow and proximal to the wrist, using bespoke holders

with elastic straps and orientated such that their coordinate

frames were closely aligned with the local coordinate frame

of the upper arm and forearm. The alignment was visually

inspected by instructing the subject to raise their upper arm

to approximately 90◦ (shoulder height) and fully extend their

elbow (palm facing downward). The conclusions we draw

from the kinematic pattern analysis of each task and the

description of the characteristic features that we base our

identification algorithm upon, are discussed in the following

paragraphs.

A. Reach and retrieve - Task A

The reach and retrieve task relates to the act of reaching in

order to grasp an object and the subsequent retrieval of the

object. During the reaching act, the shoulder joint is flexing

while the elbow is extending concurrently. Throughout this

work and in our experiments a reach and retrieve task is

considered one which requires the elbow to be almost fully

extended in order to reach the object. Therefore, since flexion

of the shoulder results in the s fe angle increasing while

the extension of the elbow translates to the e fe angle being

decreased at the same time, one would expect that at the point

when the object is reached, the s fe value will be at a local

maximum while the e fe will demonstrate a local minimum in

the same temporal frame. This kinematic pattern is illustrated

in Fig. 3, produced from a representative execution of Task A.

B. Lift object to mouth - Task B

The second task we investigate relates to the act of bending

the arm at the elbow. This was realized as lifting an object

(e.g. glass or cup) to the mouth and drinking from it. From

our observations it is revealed that the value of e fe remains at

an almost constant maximum level with minuscule variations

during the act of drinking, which takes place near the midpoint

of the task. Additionally, our investigation further revealed that

the value of gvf on the z-axis (vzf ), the vertical coordinate,

becomes higher than 0m in the midpoint area of the task.

This is based on the fact that the act of lifting and drinking

requires the end of the forearm (wrist) to reach the height

of the mouth thus having its vertical coordinate being higher

(> 0m) than the origin located at the shoulder. Fig.4, taken

from an execution of Task B, illustrates these two characteristic

features of this task.
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Fig. 3. Reach and retrieve s fe and e fe angles demonstrating the temporal
proximity of the two extrema points.
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and drinking. The area of constant e fe is indicated by a circle and the
surpassing of the 0m threshold, indicated by a solid line, is clearly visible.

C. Rotate an object - Task C

The final movement we consider is the act of rotating the

arm. In our experiments, this task is realized by rotating a

glass and pouring its contents to another glass. The same

behavior for e fe discussed in Task B, was also observed

in Task C, where e fe has an almost constant value with very

small perturbations. Finally, through monitoring the value of
gvf during the executions of Task C we observe that the vzf
is always smaller than 0m. These two observations are shown

in Fig.5, which shows a representative execution of Task C.

Time (sec)

A
n

g
le

 (
)

Elbow Flexion/Extension

0 2 4 6 8 10 12 14 16
0

20

40

60

80

100

120

Time (sec)

z
-a

x
is

 p
o

s
it

io
n

 (
m

)

v
f

z
-coordinate

0 2 4 6 8 10 12 14 16

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

on

off

on
off

Fig. 5. The e fe angle and vz
f

coordinate during the act of rotating the arm.
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D. Detection and discrimination method

The aforementioned set of observations was deduced ex-

clusively from the analysis dataset and even though only two

subjects participated in these experiments, we hypothesized

that the kinematic patterns we observed will also be present

during the execution of these tasks by any individual, although

a certain amount of inter-person variability is expected. This

stems from the fact that these kinematic patterns and the

subsequent set of detection rules that we formulated, are

based on the motor function of the upper limb, which is

expected to have similar, more or less, characteristics even

in situations where it is impaired due to a neuro-degenerative

pathology. For example, the pattern associated with the act

of reaching, in which the s fe angle will increase while

almost simultaneously the e fe angle will decrease and the

extrema points will appear during full extension, is due to

the inherent way this task is performed. Subsequently, our

strategy was to employ the analysis dataset for deriving the set

of rules for discriminating the three tasks and then evaluate its

robustness through experimentation, as presented in Section V,

with a diverse population which included both a healthy group

and stroke survivors (evaluation dataset). To summarize our

findings, the kinematic analysis of the three movements has

shown that discriminating among the three tasks is possible by

investigating the value and pattern of three kinematic features,

namely: the values of the s fe and e fe angles and the value

of vzf . The specific characteristics of the kinematic features that

we use to discriminate the three movements are summarized

as:

• Task A: The e fe pattern displays a steep slope and

significant variations at midpoint. In addition the e fe
and s fe angles will have extrema points (min for e fe,

max for s fe) that are nearly coincident in time.
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• Task B: The e fe pattern remains almost constant at the

midpoint. The vzf value will be > 0m at midpoint.

• Task C: The e fe pattern remains almost constant at the

midpoint. The vzf value will be < 0m at midpoint.

Hence, Task A can be distinguished from the other two tasks

by examining the pattern of e fe. Secondly, after eliminating

Task A, a distinction between Task B and Task C is possible by

investigating the value of the vzf at midpoint against a threshold

set at 0m. Based on this set of rules, a two-level detection and

discrimination algorithm is proposed as follows.

We consider the three kinematic properties (e fe, s fe and

vzf ) and the on/off times, provided from the manual annotation,

of each task as the inputs to our algorithm. Initially, the

minimum value (emin) of the e fe and its temporal position

(ep) and the maximum value (smax) and its temporal location

(sp) of the s fe are extracted. The window in which we

search for these values is set as [on+1s, off-1s]. We confine our

search for the two extrema points to this window, to exclude

kinematic data collected at the very beginning and end of the

task, which we have observed can sometimes lead to erroneous

detections of the extrema points. This is due to involuntary

sudden movements of the arm occurring near the beginning

and end times of the task. We then extract the temporal

location (m p) and value (m v) of the midpoint of e fe, and

count the total number of times n that the angle falls below

a pre-determined fraction (α · m v) of the midpoint value,

derived experimentally, within the temporal window [m p-

0.7s, m p+0.7s]. Parameter n allows us to determine whether

or not the e fe values around m p are fairly constant. This

is typical of the plateau-like responses exhibited in the case

of Task B and Task C and which translates to n being smaller

than a experimentally derived threshold n < 5. By comparison

the value of n is expected to be rather high n > 5 for Task A.

Hence, the value of n acts as the discriminating factor between

Task A and Tasks B and C. In the case where n > 5, the

two extrema angles (emin, smax) and their temporal proximity

(abs(ep - sp)) are checked against pre-defined thresholds and if

found to be emin < 40◦, smax > 50◦ and abs(ep - sp)< 0.7s
then the task is labelled as Task A. If n < 5, the algorithm

proceeds to the second level to distinguish the task as either

Task B or Task C. For this, the maximum value (mz) of

the vzf in the [m p-1s, m p+1s] window is extracted. When

compared to the 0m threshold, this parameter allows us to

distinguish Task B from Task C. The proposed detection and

discrimination algorithm is provided as pseudocode in Fig.6.

V. EXPERIMENTAL EVALUATION AND DISCUSSION

A. Experimental Evaluation

In order to evaluate the performance of the proposed algo-

rithm, we conducted a series of experiments with 18 healthy

volunteers at the University of Southampton and with 4 stroke

survivors at Brandenburg Klinik in Bernau, Germany; the

latter under supervision of clinical staff. The healthy cohort

comprised staff and students from the university, age range

25-50, with representatives from both male and female popu-

lations and examples of both left and right arm dominance.

The 4 stroke survivors were men and women, age range

Initialise
Consider on, off points and the timeseries of s fe, e fe, vzf
Calculate the Parameters
- Find min(e fe) and max(e fe) in [on+1s,off-1s]
- Find (m p) as m p = on+((off-on)/2) and (m v) from e fe
- Count n as the number of e fe values in [m p-0.7s, m p+0.7s]
that < α ·m v, α = 0.88
- Find mz as the max(vzf ) value in [m p-1s, m p+1s]
Task discrimination
if abs(ep − sp)< 0.7s & emin < 40

◦ & smax > 50
◦ & n > 5

then
- task = A;

else if n < 5 then
if mz > 0m then

- task = B;
else if mz < 0m then

- task = C;
end if

end if

Fig. 6. The pseudocode of the proposed algorithm.

45-73, at different stages of their post-stroke rehabilitation.

The selection of the two groups reflects our approach in

evaluating the detection algorithm against two populations

with noticeably different qualitative characteristics with regard

to their motor function abilities. Our intention was not to

perform a clinical study and test a medical hypothesis. The

selection criterion for the participants was that of motor

function impairment. The results obtained from the healthy

volunteers provide a baseline of the algorithm’s performance

for normative, unimpaired motion. The experiments involving

stroke survivors are used to reveal the extent to which the

proposed algorithm can be applied for the discrimination of

the three movements in individuals with non-canonical motor

function. In other words, how the detection performance is

affected by physical disability.

In these experiments, the healthy subjects used their domi-

nant arm while the stroke survivors used their stroke-affected

arm. Shimmer 2r MARG sensors were attached to the forearm

(proximal to the wrist) and upper arm (proximal to the elbow)

of the subjects, whilst they performed a number of arm

movement exercises. The correct placement of the sensors was

visually verified as described in Section IV. Physiotherapists

assisted the stroke survivors in placing their arm in the desired

position for placement evaluation. Whenever necessary the

sensor placement was corrected.

Our study comprised two distinct types of experiment. In the

first type, referred to as “controlled”, each subject performed

the three tasks whilst seated at a table, in a similar way as in

the analysis dataset with the subject having to reach, grasp and

retrieve a glass of water for Task A, pour the water into another

glass for Task C and drink the water and return the glass to

the table for Task B. However, in the controlled experiments

the tasks were not executed sequentially, Instead each task

was repeated individually 5 times on a single execution run

(i.e. 5 repetitions of Task A followed by 5 of Task B and

then 5 of Task C). Between task repetitions the arm was

briefly returned to a resting position. This was a simply a

predetermined position in which the participant paused briefly

and facilitated the operator of the data collection software
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to manually annotate the start and end time points of each

task execution. The second type of experiments, referred to

as “semi-naturalistic” involved the execution of 20 tasks in a

sequence that emulated the everyday activity of “preparing a

cup of tea”. Every one of the 20 tasks belongs to one of the

three classes of interest. Out of the 20 tasks, 10 of them were

Task A, 5 Task B and 5 Task C. Our intention in the semi-

naturalistic experiment, was to evaluate the performance of

the proposed method with a series of tasks that when grouped

together constitute a standard everyday activity. Again, the

subjects briefly positioned their arm in the resting position

between actions. Table I lists the sequence of the 20 tasks

performed during the semi-naturalistic experiment and their

respective class assignment. For the stroke survivors the study

TABLE I
THE SEQUENCE OF 20 TASKS IN THE “PREPARING A CUP OF TEA”

ACTIVITY

No Action Class

1 Fetch cup from desk A
2 Place cup on kitchen surface A
3 Fetch kettle A
4 Pour out extra water from kettle C
5 Put kettle onto charging point A
6 Reach out for the power switch on the wall A
7 Drink a glass of water while waiting for kettle to boil B
8 Reach out to switch off the kettle A
9 Pour hot water from the kettle in to cup C
10 Fetch milk from the shelf A
11 Pour milk into cup C
12 Put the bottle of milk back on shelf A
13 Fetch cup from kitchen surface A
14 Have a sip and taste the drink B
15 Have another sip B
16 Unlock drawer C
17 Retrieve biscuits from drawer A
18 Eat a biscuit B
19 Lock drawer C
20 Have a drink B

spanned 3 weeks in order to minimize interference to their

regular rehabilitation program. Each week, 4 execution runs

of the controlled experiment, totaling 20 repetitions per person

for each task, were performed. Over the entire 3-week study,

each stroke survivor completed 60 executions of each task.

The semi-naturalistic experiment was executed twice in the

first week and 4 times in weeks two and three. This resulted

in a total of 10 executions of the experiment for each stroke

survivor, involving 100 instances of Task A and 50 of Task B

and Task C. In the healthy group, each subject performed 4

runs of the controlled experiment, thus 20 repetitions of each

task, and 4 of the 18 volunteers performed 4 repetitions of the

semi-naturalistic experiments (40 Tasks A, 20 Tasks B and 20

Tasks C). The data gathered from these experiments constitute

the evaluation database which was used for evaluating the

performance and robustness of the proposed detection and

discrimination algorithm. It should be noted that none of the

data from these experiments was used to modify the existing

algorithm, which was based exclusively on the analysis dataset

as described in Section IV. The evaluation database was used

explicitly for performance assessment.

Table II lists the achieved performance of the controlled

experiment in the stroke survivors group. High detection

performance (> 95%) was observed for each individual task,

the only exception being a lower value of approximately

88% for Task A in the combined results. Similar level of

performance (> 95%) was attained for all subjects over the

three tasks, apart from Subject 3 where the overall detection

accuracy was 80%. These two lower scores (< 90%) are both

attributed to Task A being detected with a lower degree of

accuracy in the second week of experiments with Subject

3. This is illustrated in Fig. 7, which depicts the week-by-

week performance achieved in the controlled experiment by

the stroke survivors group. From Fig. 7(a) we observe that

Task A was detected with 40% (8/20 successful detections) in

week 2 for Subject 3. We also notice that Task A was detected

at higher levels during the other weeks, 60% (12/20 correct

detections) in week 1 and 80% (16/20 correct detections) in

week 3, and that the detection of Task B for Subject 3 was

also at the lowest level in week 2. These two observations

prompt us to conclude that some erroneous sensor placement

was the reason for this performance during the second week.

Furthermore, the motor functions of Subject 3 were affected by

their stroke episode more than the rest of the group. Table III

TABLE II
DETECTION PERFORMANCE FOR THE STROKE SURVIVORS GROUP IN THE

CONTROLLED EXPERIMENT

Subject Task Accuracy (%) Overall
No A (#/60) B (#/60) C (#/60) (#/180) (%)

Subject 1 60 (100%) 59 (98%) 60 (100%) 179 (99.4%)
Subject 2 57 (95%) 60 (100%) 57 (95%) 174 (96.67%)
Subject 3 36 (60%) 50 (83.3%) 58 (96.67%) 144 (80%)
Subject 4 58 (97%) 60 (100%) 60 (100%) 178 (98.9%)

Totals
211/240 229/240 235/240 675/720
(87.92%) (95.4%) (97.92%) (93.75%)

TABLE III
DETECTION PERFORMANCE FOR THE HEALTHY GROUP IN THE

CONTROLLED EXPERIMENT

Subject Task Accuracy (%) Overall
No A (#/20) B (#/20) C (#/20) (#/60) (%)

Subject 1 19 (95%) 20 (100%) 20 (100%) 59 (98.3%)
Subject 2 20 (100%) 20 (100%) 18 (90%) 58 (96.67%)
Subject 3 17 (85%) 20 (100%) 20 (100%) 57 (95%)
Subject 4 19 (95%) 19 (95%) 17 (85%) 55 (91.67%)
Subject 5 20 (100%) 19 (95%) 17 (85%) 56 (93.33%)
Subject 6 20 (100%) 20 (100%) 20 (100%) 60 (100%)
Subject 7 20 (100%) 20 (100%) 20 (100%) 60 (100%)
Subject 8 20 (100%) 20 (100%) 20 (100%) 60 (100%)
Subject 9 20 (100%) 19 (95%) 17 (85%) 56 (93.33%)
Subject 10 20 (100%) 20 (100%) 20 (100%) 60 (100%)
Subject 11 20 (100%) 19 (95%) 18 (90%) 57 (95%)
Subject 12 20 (100%) 17 (100%) 20 (100%) 57 (95%)
Subject 13 18 (90%) 19 (95%) 20 (100%) 57 (95%)
Subject 14 18 (90%) 20 (100%) 20 (100%) 58 (96.67%)
Subject 15 20 (100%) 20 (100%) 20 (100%) 60 (100%)
Subject 16 20 (100%) 20 (100%) 20 (100%) 60 (100%)
Subject 17 20 (100%) 20 (100%) 16 (80%) 56 (93.33%)
Subject 18 20 (100%) 20 (100%) 20 (100%) 60 (100%)

Totals
351/360 352/360 343/360 1046/1080
(97.5%) (97.79%) (95.28%) (96.85%)

illustrates the detection performance of the healthy population

in the controlled experiment. As anticipated, the level of

performance in the healthy group is higher than that of the

stroke survivors group. This is attributed to the impaired motor
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Fig. 7. The per-week performance of the controlled experiments for (a) Task A (b) Task B and (c) Task C from the stroke survivors group
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Fig. 8. Percentage of correct detections against task durations in the controlled experiment for healthy group and stroke survivors. For all tasks the detection
ratio remains within ±6% of the average value in both groups (shown in the legend).

function capabilities of the stroke survivors. The combined

detection accuracy was higher than 95% for each separate

task, when considering all 18 participants. Likewise, a higher

than 91% accuracy was obtained for each volunteer, over all

tasks. In Table IV the average durations and their respective

variances of the tasks performed in the controlled experiment

are listed for both groups. To demonstrate the robustness

of the detection algorithm against the time a task took to

complete, the percentage of correct task detections in the

controlled experiment is illustrated in Fig. 8 as a function of

task duration for both the stroke survivors and healthy groups.

We observe that in both groups and for every task duration, the

detection ratio lies within ±6% of the total average detection

ratio for this task in the respective group. From this we

conclude that the developed algorithm achieves a similar level

of performance irrespective of the time required for a task to be

completed. Table V and Table VI list the performance results

TABLE IV
AVERAGE TIME DURATIONS OF TASKS IN THE CONTROLLED EXPERIMENT

Task Duration (µ± σ2 sec)
Stroke Survivors Healthy Group

A 4.1±1 5.4±1.3
B 5.9±1.6 6.7±1.7
C 6±2 7.2±1.8

from the semi-naturalistic experiments. The overall detection

accuracy remains at high levels (> 80%), although lower than

the corresponding figures for the controlled experiment in both

groups, as would be expected. Also as expected the accuracy

was higher (both overall and for each task) in the healthy group

(89%) than in the stroke survivors group (83%). Subject 3 from

the stroke survivors group demonstrates the lowest detection

accuracies, which we again attribute to their greater level of

impairment. Finally, the reason Task A returns a lower level

of accuracy, with a close to 80% correct detection ratio, is

attributed to the fact that a number of the pre-determined Task

A actions in the “preparation of a cup of tea” sequence, such

as actions 2,5,12 and 17, are not strictly reach and retrieve

actions and were the actions that were misdetected most of

the time. During the design of this experiment, however, the

expert physiotherapists participating in this study considered

these activities as representative of a reach and retrieve action

and therefore worthy of inclusion in the experiment.

TABLE V
DETECTION PERFORMANCE FOR THE STROKE SURVIVORS GROUP IN THE

SEMI-NATURALISTIC EXPERIMENT

Subject Task Accuracy (%) Overall
No A (#/100) B (#/50) C (#/50) (#/200) (%)

Subject 1 86 (86%) 46 (92%) 44 (88%) 176 (88%)
Subject 2 83 (83%) 45 (90%) 43 (86%) 172 (86%)
Subject 3 61 (61%) 44 (88%) 40 (80%) 145 (72.5%)
Subject 4 88 (88%) 46 (92%) 38 (76%) 172 (86%)

Totals
318/400 181/200 165/200 664/800
(79.5%) (90.5%) (82.5%) (83.00%)

B. Discussion

The experimental investigation achieves two things. Firstly,

the high performance in the controlled experiment (93.75% in

stroke survivors and 96.85% in the healthy group) among a

diverse population, allows us to conclude that the developed
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TABLE VI
DETECTION PERFORMANCE FOR THE HEALTHY GROUP IN THE

SEMI-NATURALISTIC EXPERIMENT

Subject Task Accuracy (%) Overall
No A (#/40) B (#/20) C (#/20) (#/80) (%)

Subject 1 33 (82.5%) 19 (95%) 20 (100%) 72 (90%)
Subject 2 39 (97.5%) 20 (100%) 20 (100%) 79 (98.75%)
Subject 3 30 (75%) 18 (90%) 20 (100%) 68 (85%)
Subject 4 31 (77.5%) 19 (95%) 18 (90%) 68 (85%)

Totals
133/160 76/80 78/80 240/260
(83.13%) (95%) (97.5%) (89.69%)

algorithm is robust against the variability in the kinematic pat-

terns of different individuals. Additional investigations showed

that tasks of different duration are detected with similar high

levels of performance in both groups. These observations

validate our discrimination strategy and verify that the derived

set of rules is capable of discriminating the three movements

even in situations where the motor function is impaired.

Secondly, with the semi-naturalistic experiment we attempt

to evaluate the extent to which the proposed algorithm can

detect the three movements when these take place as subtasks

of a typical activity (i.e. “preparation of a cup of tea”). The

obtained results in this experiment (83% in stroke survivors

and 89.69% in the healthy group) are quite promising and

indicative of our method’s ability to effectively distinguish

between the three movements of interest when these take

place sequentially. Although the 20 tasks in our experiment

were predefined and their sequence was predetermined and not

spontaneous, we believe that the semi-naturalistic experiment

provides an adequate proof-of-concept. It is common for

everyday activities to combine some elements of the three

movements. For example the act of drinking a glass of water

may involve both a “reach and retrieve” and a “lift object

to mouth” action. In such cases, we expect the algorithm to

identify the overall activity based on the movement features

that characterize it the most.

Analysis of the data shows that incorrect sensor placement

can potentially affect the performance of the algorithm. This

is because the body coordinate frame of the upper arm and

forearm is not perfectly aligned with the two sensor’s coor-

dinate frames. When attaching the sensors on the individual’s

arm we aimed to ensure that the two coordinate frames were

closely aligned by visual inspection. More explicit methods

for aligning the sensor frame to the body frame like the

ones in [31] and [18], were deemed too burdensome and

time consuming to be applied to the stroke survivors. In real

world use, perfect alignment between the two frames is a very

challenging task since body segments are not rigid elements.

In addition, in a long-term deployment scenario (like the one

we consider), it is not uncommon for attached sensors to move

slightly from their original position and thus some degree of

misalignment is typically expected to be present. The results

show that good performance can be achieved even without

perfect alignment which further validates the robustness of the

proposed algorithm. In the application scenario we consider,

the MARG sensors are expected to be properly placed and

aligned to the respective body segment at the beginning of the

monitoring session and checked at regular intervals. This can

be done by the patients themselves, or if not possible, by a

caregiver.

Since the focus of this work was to evaluate the ability

of the proposed algorithm to discriminate between the three

elementary movements, we decided to manually annotate the

obtained datasets, using a marker signal during data acqui-

sition, avoiding any ambiguity in the on/off time instances

of the tasks. This annotation strategy, applied both in the

controlled and semi-naturalistic experiments, enabled us to

isolate the performed tasks in the dataset and exclude from

our analysis any other movements performed by the volunteers

during the experiments. Naturally, during everyday activities

the arm moves around freely and it is not a trivial matter

to determine definitively when the start or end of a particular

movement or event occurs. This is not as great a problem when

the sensors are used during prescribed rehabilitation exercises,

since these tend to be directed under supervision. Nevertheless,

an automatic event detection system capable of segmenting

real time data into periods of activity and inactivity would be

necessary for a truly autonomous system (e.g. rehabilitation in

the home environment), and this is an area of research that we

are currently pursuing. For example, when the arm is not in

motion, the modulus of the combined tri-axial accelerometer

signal equates to the value of gravitational acceleration, whilst

the modulus of the combined tri-axial gyroscope signal equates

to zero and similarly the modulus of the combined tri-axial

magnetometer signal equates to the local value of magnetic

field strength, irrespective of sensor orientation. Although the

last of these factors is also dependant on geographical location

and magnetometers can be influenced by the proximity of

ferrous materials [32] which are likely to be present in the

home environment, it is possible by employing a simple

thresholding technique on these sensor signals to distinguish

periods of activity from inactivity; a crude form of event

detection. It is established that density estimation algorithms

(e.g. Kalman Filters, Particle Filters) coupled with more

complex modeling of the arm, based on physical geometrical

constraints, can provide a more accurate estimation of the

upper limb orientation, minimizing the effect of gyroscope

drift [18], [31]. Typically, the natural restriction of the human

elbow in performing abduction/adduction is used to correct

an initial orientation estimation in such a way that the elbow

abduction/adduction angle is minimized. However, the com-

putational load in such approaches is considerably high, thus

we employed the more efficient quaternion gradient descent

method. Here, the gyroscope drift is compensated using the

parameter β, that represents the gyroscope measurement error

as the magnitude of a quaternion derivative [12]. To demon-

strate the ability of the orientation algorithm to mitigate the

gyroscope error, we calculate the elbow abduction/adduction

angle, as the angle between the Z-axis of the forearm and the

Y-axis of the upper arm minus 90 deg, for the three movements

executed by healthy volunteers in the controlled experiment.

From Fig. 9, we observe that the angle remains small (almost

always < 10◦) in all three movements. From this we conclude

that, although less accurate than the Particle Filter approach

in [31], the quaternion gradient descent method provides a
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Fig. 9. The elbow abduction/adduction angle calculated in the three tasks, (a) Task A (b) Task B and (c) Task C.

reasonably accurate estimation of the orientation of the upper

limb.

VI. CONCLUSIONS

This paper describes the development of an algorithmic

solution for efficiently detecting and discriminating three ele-

mentary arm movements. These movements are fundamental

in natural activities and the ability to detect them is of

great importance in evaluating the rehabilitation progress of

stroke survivors or patients suffering from other motor neuron

diseases. In our work, we employ a pair of MARG sensors

attached to the wrist and elbow, from which the orientation

of the arm segments are deduced using a gradient-descent

quaternion based method. With the aid of a 2-link limb model

and position vectors, 3-D tracking of the upper arm and

forearm position is achieved. From the kinematic analysis a

set of rules, involving three kinematic parameters (e fe, s fe
and vzf ), was derived and used to formulate the detection

and discrimination algorithm. The proposed solution was then

evaluated in a series of experiments with two groups, healthy

individuals (18 subjects) and stroke survivors (4 subjects). In

the controlled experiments the proposed algorithm achieved

>88% performance for each task individually and >93%
overall across both groups. This validates the basic rules of

our detection algorithm and establishes its robustness. This is

further solidified by the ability to identify tasks of different

duration with similar accuracy, (±6% of the average value)

in both groups. Similar levels of performance, >80% for

each separate task and >83% overall, were also obtained in

the semi-naturalistic experiments which, although predefined,

comprise a sequence of the three tasks that represent a typical

everyday activity: “preparing a cup of tea”. This level of

accuracy demonstrates the potential of the proposed method

in identifying the three elementary upper limb movements

during natural activities. Combined with the computationally

inexpensive orientation algorithm, the work discussed in this

paper has clear potential of being integrated in a body-

area-network of MARG sensors as a component of a fully

automated task detection and discrimination system for home-

based rehabilitation applications.
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