
This is a repository copy of Probabilistic CTL* : the deductive way.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/156432/

Version: Accepted Version

Proceedings Paper:
Dimitrova, R., Ferrer Fioriti, L.M., Hermanns, H. et al. (1 more author) (2016) Probabilistic 
CTL* : the deductive way. In: Chechik, M. and Raskin, J.-F., (eds.) Tools and Algorithms for
the Construction and Analysis of Systems - 22nd International Conference, TACAS 2016. 
Tools and Algorithms for the Construction and Analysis of Systems, 02-08 Apr 2016, 
Eindhoven, The Netherlands. Lecture Notes in Computer Science (9636). Springer , pp. 
280-296. ISBN 9783662496732 

https://doi.org/10.1007/978-3-662-49674-9_16

This is a post-peer-review, pre-copyedit version of an article published in TACAS 2016. 
The final authenticated version is available online at: 
http://dx.doi.org/10.1007/978-3-662-49674-9_16

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


Probabilistic CTL∗: The Deductive Way

Rayna Dimitrova1, Luis Maŕıa Ferrer Fioriti2,
Holger Hermanns2, and Rupak Majumdar1

1MPI-SWS, Germany 2Saarland University, Germany

Abstract. Complex probabilistic temporal behaviours need to be guar-
anteed in robotics and various other control domains, as well as in the
context of families of randomized protocols. At its core, this entails check-
ing infinite-state probabilistic systems with respect to quantitative prop-
erties specified in probabilistic temporal logics. Model checking methods
are not directly applicable to infinite-state systems, and techniques for
infinite-state probabilistic systems are limited in terms of the specifica-
tions they can handle.
This paper presents a deductive approach to the verification of countable-
state systems against properties specified in probabilistic CTL∗, on mod-
els featuring both nondeterministic and probabilistic choices. The deduc-
tive proof system we propose lifts the classical proof system by Kesten
and Pnueli to the probabilistic setting. However, the soundness argu-
ments are completely distinct and go via the theory of martingales.
Completeness results for the finite-state case and an infinite-state ex-
ample illustrate the effectiveness of our approach.

1 Introduction

Temporal reasoning in the presence of choice and stochastic uncertainty is a
fundamental problem in many domains. In the context of finite-state systems,
such reasoning can be automated and a long line of research in probabilistic
model checking has culminated in efficient tools that implement automatic model
checking algorithms for Markov decision processes with specifications given in
probabilistic temporal logics such as PCTL and PCTL∗ [26, 7, 9, 8, 2, 20]. When
it comes to infinite-state systems, though, reasoning about probabilistic systems,
barring a few special classes of properties such as safety or almost-sure termi-
nation, is mostly ad hoc. This is unfortunate, since many probabilistic systems
are a priori infinite-state. For example, randomized distributed algorithms are
often designed to work no matter how many agents participate in the system.
Discrete time stochastic dynamical systems arising in control assume continuous
and unbounded state spaces. More recently, probabilistic programming languages
augment “normal” programming languages (with unbounded variables) with the
ability to sample from probability distributions and to condition behaviors on
observations. We would like to formally reason about the temporal behavior of
these systems, but the current literature provides little direction.

In this paper, we extend the deductive approach to temporal logic verifi-
cation to systems that combine non-determinism and probabilistic choice with



the (quantitative) probabilistic temporal logic PCTL∗. Our central contribu-
tion is a novel set of proof rules enabling deductive proofs for PCTL and PCTL∗

properties on nondeterministic probabilistic programs with possibly infinite state
space. We consider both qualitative and quantitative properties, and use martin-
gale theory as our main mathematical tool. Conceptually, the rules we present
for PCTL and PCTL∗ can be considered as a probabilistic enhancements of
those developed by Kesten and Pnueli for CTL and CTL∗ [19]. At its core, the
enhancement echoes the apparent analogy between classical termination proofs
and proofs for almost sure termination of probabilistic programs. The latter was
first studied in the pioneering work of Hart, Sharir, and Pnueli [16] as a partic-
ular liveness property. Their 0-1 law is the foundation of several semi-automatic
approaches (e.g. [17, 21, 12]) for proving termination of finite and parametric sys-
tems. Pnueli [22] showed that the almost sure satisfaction of liveness properties
on probabilistic systems can be reduced to the non-probabilistic case adding suit-
able fairness constraints. Pnueli and Zuck [23, 1] later extended this approach
to a sound and complete characterization for finite state spaces. Almost sure
properties do not depend on the actual probability values, but instead on the
underlying graph structure. In contrast to this, the deductive rules developed
in this paper do not rely on the graph structure. They instead reason about
and deduce the “average” behaviour of the program. This makes it possible to
analyse a considerably wider range of probabilistic programs and properties. We
make use of Lyapunov ranking functions, a widely used technique for proving
recurrence in Markov Chains. They were recently adapted to prove almost sure
termination of term rewriting systems [5] and infinite-state (non)deterministic
programs [6, 13]. We extend these techniques to full quantitative PCTL∗.

When stretching the deductive approach of Kesten and Pnueli beyond PCTL,
we must account for path formulas that describe ω-regular languages. In the non-
probabilistic setting, Kesten and Pnueli reduce the reasoning about ω-regular
properties to reasoning about safety or reachability under a justice assumption
(justice is a form of fairness [15]). In the probabilistic setting, however, this
reduction is unsound: a probabilistic program may not have any fair scheduler,
thus the quantification over all fair schedulers is trivially satisfied, regardless
of the original formula being invalid. The root cause of the problem is that a
scheduler in the probabilistic setting generates a set of paths, opposed to just
a single path in the non-probabilistic case. So, if a non-null set of paths is not
fair, then the scheduler is not fair. To overcome this, we instead harvest and
extend the martingale approach to checking qualitative termination [6, 13] with
the power to directly handle general ω-regular conditions. This is achieved by a
proof rule for Streett conditions which is complete in the finite-state case. The
key step to prove soundness uses Levy’s 0-1 law [11] to go to the limit behavior.

For finite-state systems, the proof rules we present are complete, but they
are in general not complete for infinite-state systems. Technically, incomplete-
ness is inherited from the fact that Lyapunov ranking functions are not complete
for proving almost sure termination [13], in contrast to ranking functions wrt.
ordinary termination. If they were complete, we would instantly obtain a com-



pleteness result, just as Kesten and Pnueli. However, even an incomplete set of
proof rules can turn out to be very useful still, provided it can be effectively
applied to interesting cases. For example, we can verify several parameterized
randomized distributed algorithms, such as the choice coordination protocol by
Rabin [24] using our proof system [10].

2 Probabilistic Systems and Logics

2.1 Probabilistic Systems

Preliminaries. A probability space [11] is a triple (Ω,F , µ) where Ω is a sample
space, F ⊆ 2Ω is a σ-algebra, and µ : F → [0, 1] is a probability measure. A ran-
dom variable X : F → R on a probability space (Ω,F , µ) is a Borel-measurable
function; it is discrete if there exists a countable set A such that µ(X−1(A)) = 1.
A random predicate is a discrete random variable with co-domain {0, 1}.

Given a probability space (Ω,F , µ), random predicates P1, . . . , Pn+1, real
numbers q1, . . . , qn, and binary relations ⊲⊳1, . . . , ⊲⊳n∈ {≤, <,≥, >,=}, the pred-
icate P1 ⊗⊲⊳1q1 . . . ⊗⊲⊳nqn Pn+1 is valid iff there exist disjoint measurable sets
A1, . . . An+1 with µ(A1 ∪ . . . ∪ An+1) = 1 such that for all k ∈ {1, . . . , n}, we
have Ak |= Pk and µ(Ak) ⊲⊳k qk, and for n+ 1 we have An+1 |= Pn+1.

In case of a countable sample space Ω, the powerset P(Ω) is a σ-algebra;
Distr(Ω) is the set of probability measures over P(Ω); and for all µ ∈ Distr(Ω)
Supp(µ) denotes the set {ω ∈ Ω | µ(ω) > 0}.

Probabilistic guarded commands. We model probabilistic systems as programs
in a probabilistic guarded-command language. A probabilistic program is a tuple
P = (x, C), where x is a finite set of variables with countable domains and
C is a finite set of guarded commands. A deterministic guarded command is
of the form g(x) 7→ x′ = e(x), and a probabilistic guarded command has the
form g(x) 7→ x′ = e1(x) ⊗=p1 . . . ⊗=pk

x′ = ek+1(x), where pi ∈ [0, 1] for each
1 ≤ i ≤ k. The guard g is a predicate over the variables x, and e and all ei are
expressions over x. Intuitively, a probabilistic guarded command assigns to x
the values of the expressions ei with probability pi, where pk+1 = 1−

∑k
j=1 pj .

Example 1. As a running example, we consider the probabilistic model of a robot
moving on a discrete plane, starting at an arbitrary position. At each step the
robot performs a diagonal jump, and its goal is to visit the origin of the grid (the
point with coordinates (0, 0)) infinitely many times. A random force repels the
robot, making the visits hard. Every time the robot performs a step, there is in
each dimension a certain probability for it to go backwards a certain number of
steps. The probability of going back and the number of steps is a function of the
robot’s position; this probability is higher when the robot is close to the origin.

The program has variables l ∈ {0, 1, 2}, x ∈ Z, y ∈ Z and guarded commands:

cNE : l = 0 7→ x′ = x+ 1 ∧ y′ = y + 1 ∧ l′ = 1
cSE : l = 0 7→ x′ = x+ 1 ∧ y′ = y − 1 ∧ l′ = 1
cNW : l = 0 7→ x′ = x− 1 ∧ y′ = y + 1 ∧ l′ = 1
cSW : l = 0 7→ x′ = x− 1 ∧ y′ = y − 1 ∧ l′ = 1



cx : l = 1 7→ (x′ = x+ 9 · sign(x)⊗= 1
|x|+1

x′ = x) ∧ y′ = y ∧ l′ = 2

cy : l = 2 7→ (y′ = y + 9 · sign(y)⊗= 1
|y|+1

y′ = y) ∧ x′ = x ∧ l′ = 0

The first four commands, enabled in location l = 0, correspond to the differ-
ent jump directions of the robot (which controls the non-deterministic choices)
can select. Locations l = 1 and l = 2 model the effect of the random repelling
forces along the x and y co-ordinates, respectively. We assume that the force in
the x-axis is independent from the one in the y-axis. Despite its simplicity, this
problem cannot be solved using probabilistic model checking (the state space is
infinite), nor using current deductive proof systems based on fairness (the prob-
ability values do matter). The proof system described in this paper, on the other
hand, allows us to provide a simple and modular correctness argument. ⊓⊔

Semantics of probabilistic programs. The semantics of a probabilistic program
P = (x, C) is a Markov decision process (MDP) M = (S, ρ) [14]. The count-
able set of states S consists of the valuations of the variables x and ρ : S →
P(Distr(S)) is the transition relation defined by the guarded commands in C. For
a state s ∈ S we have µ ∈ ρ(s) iff either (1) there exists a deterministic guarded
command c : g 7→ x′ = e in C such that s |= g, and for every s′ ∈ S it holds that
µ(s′) = 1 if s′ = e(s), and µ(s′) = 0 otherwise, where e(s) denotes the value of
the expression e when the variables x are evaluated according to s, or (2) there
exists a probabilistic guarded command c : g 7→ x′ = e1 ⊗=p1

. . .⊗=pk
x′ = ek+1

in C such that s |= g, and for every s′ ∈ S it holds that µ(s′) =
∑

s′=ei(s)
pi.

We assume w. l. o. g. that all programs are deadlock-free, i. e. ρ(s) 6= ∅. Note that
with each state s and each command c ∈ C with s |= gc, where with gc we denote
the guard of c, the transition relation ρ associates a unique distribution µs,c.

A path in M is a finite or infinite sequence s0, s1, . . . of states in S such that
for each i there exists µ ∈ ρ(si), such that µ(si+1) > 0. Given a state s ∈ S, we
denote with Paths(M, s) the set of paths in M originating in the state s.

Schedulers. A scheduler is a function α : S+ → Distr(C) such that α(τ ·s)(c) > 0
implies µs,c ∈ ρ(s). We call α memoryless if α(τ1 ·s) = α(τ2 ·s) for all τ1, τ2 ∈ S∗

and s ∈ S. A scheduler α is deterministic if |Supp(α(τ))| = 1 for all τ ∈ S+.

Given a probabilistic program P = (x, C) with a corresponding MDP M =
(S, ρ), a scheduler α defines a discrete time Markov chain (DTMC) Mα =
(Sα, ρα), where Sα = S∗ × S is the state space and ρα : Sα → Distr(Sα)
is the Markov kernel defined as ρα((τ, s), (τ ′, s′)) =

∑

ρ(s, c, s′) · (α(τ · s)(c)) if
τ ′ = τ ·s and ρα((τ, s), (τ ′, s′)) = 0 otherwise. From any initial state s ∈ S we can
define a unique probability measure Probs,α over the set of infinite measurable
paths that start at s and obey the probability laws of ρα [11].

Example 2. One possible strategy for the robot is to always choose in location
l = 0 to decrease (when not accounting for the repelling force) the distance to the
origin: if x < 0 and y < 0 then choose cNE , if x < 0 and y ≥ 0 then choose cSE , if
x ≥ 0 and y < 0 then choose cNW , and if x ≥ 0 and y ≥ 0 then choose cSW . ⊓⊔



2.2 The Logics PCTL and PCTL∗

We work with a simple variant of probabilistic computation tree logic (PCTL) in
positive normal form [2]. Fix a set AP of assertions from an underlying assertion
language closed under Boolean operations. The set of PCTL formulas over AP
consists of two types of formulas: state formulas and path formulas.

State formulas are generated by the grammar Φ ::= a | ¬a | Φ1∧Φ2 | Φ1∨Φ2 |
P
∀
⊲⊳p(ϕ) | P

∃
⊲⊳p(ϕ), where a ∈ AP , Φ1 and Φ2 are state formulas, ⊲⊳∈ {≤, <,≥, >},

p ∈ R≥0, and ϕ is a path formula. Path formulas are generated by the grammar
ϕ ::= Φ | Φ1 U Φ2 | Φ1 RΦ2, where Φ,Φ1, Φ2 are state formulas. U and R
are the until and release operators of linear temporal logic (LTL), respectively.
Recall that R is the dual of U , that is, ϕRψ is equivalent to ¬(¬ϕU ¬ψ). As
usual, we define the derived operators ϕ = ttU ϕ and ϕ = ¬ ¬ϕ = ffRϕ.

The logic PCTL∗ generalizes PCTL by allowing ω-regular languages over
state formulas as path formulas. Let Φ be a PCTL∗ state formula. We call Φ
a basic state formula if it is of the form or P

Q

⊲⊳p(ϕ) where Q∈ {∃, ∀} and ϕ is
a PCTL∗ path formula which contains no probabilistic quantifiers (i.e. ϕ is an
LTL formula). In the case when Φ is a PCTL formula, ϕ contains exactly one
temporal operator, at the top level. We consider a presentation of PCTL∗ in
which LTL formulas are given as deterministic Streett automata whose alphabet
consists of sets of state formulas.1 Recall that the set of accepting paths of a
Streett automaton is measurable [26, 7].

The qualitative versions of PCTL and PCTL∗ restrict the constants p in
P

Q
⊲⊳p(ϕ) to the set {0, 1}.

Semantics. Let P = (x, C) be a probabilistic program and M = (S, ρ) be the
corresponding MDP. Let AP consist of assertions over the variables x.

PCTL∗ state formulas are interpreted over states of M , while path formulas
are interpreted over paths. The satisfaction relations |= are defined as usual for
assertions, boolean and temporal operators [2]. Formulas containing the opera-
tors P

∀ and P
∃ are interpreted using a probability measure over sets of paths.

More specifically, the satisfaction of P∀
⊲⊳p(ϕ) (resp., P∃

⊲⊳p(ϕ)) in a state s is de-
termined by the probability measures of the sets of paths {τ ∈ Paths(Mα, s) |
Mα, τ |= ϕ} where α ranges over all (resp., some) possible schedulers, each of
which defines a DTMC in which these sets are measurable. Formally,

P, s |= P
∀
⊲⊳p(ϕ) iff Probs,α({τ ∈ Paths(Mα, s) |Mα, τ |= ϕ}) ⊲⊳ p

for every scheduler α inducing a DTMC Mα,
P, s |= P

∃
⊲⊳p(ϕ) iff Probs,α({τ ∈ Paths(Mα, s) |Mα, τ |= ϕ}) ⊲⊳ p

for some scheduler α inducing a DTMC Mα.

For convenience we use P |= Φ as an abbreviation for P, s |= Φ for all s. Finally,
we note that both PCTL and PCTL∗ are effectively closed under negation.

1 Usually, path formulas in PCTL∗ are defined using linear temporal logic (LTL) [2].
Since the analysis of PCTL∗ proceeds by first converting LTL to a deterministic au-
tomaton, we omit the intermediate step of converting LTL to automata and assume
the path formulas are given as deterministic Streett automata.



assertion π
P ⊢ Φ[Ψ/π]
P ⊢ π → Ψ

P ⊢ Φ
basic-state

θ is a valid assertion

P ⊢ θ
gen

P ⊢ π → P
∀
=1(ϕ1)

P ⊢ π → P
∀
=1(ϕ2)

P ⊢ π → P
∀
=1(ϕ1 ∧ ϕ2)

and

P ⊢ π → P
∀
=1(ϕ)

P ⊢ π → P

Q

=1(ϕ→ ψ)

P ⊢ π → P

Q

=1(ψ)
mp

P ⊢ π → P
∃
>0(ϕ1)

P ⊢ π → P
∃
>0(ϕ2)

P ⊢ π → P
∃
>0(ϕ1 ∨ ϕ2)

or

Fig. 1. Preliminary rules for Q∈ {∃, ∀}, state formula Φ and path formulas ϕ1, ϕ2, ϕ, ψ.

3 A Deductive Proof System for PCTL

We now develop a deductive proof system for PCTL. We do this in three steps.
First, we introduce some basic rules. Then, we show how to reason about quali-
tative formulas. Finally, we introduce rules for the full logic. For a probabilistic
program P and a PCTL state formula Φ, we write the judgement P ⊢ Φ to state
that the proof system derives that program P satisfies Φ from every state.

We assume that we can establish validities in the underlying assertion lan-
guage (first order logic, or a fragment of it) plus probabilities.

3.1 Preliminary Rules

Figure 1 shows the preliminary rules of our proof systems for PCTL and PCTL∗.
The rule basic-state allows us to reduce the verification of Φ to the verifi-

cation of formulas of the form π → Ψ , where π is an assertion and Ψ is a basic
state formula. A basic state formula Ψ occurring one or more times in Φ can be
replaced by an assertion π which underapproximates the set of states satisfying
the state formula Ψ . The rule’s soundness is shown by induction. By successively
applying the rule basic-state, in a bottom up manner, a proof obligation P ⊢ Φ
reduces to a set of proof obligations that are of the form P ⊢ π → Ψ , where Ψ is
a basic state formula. We assume this form in subsequent rules.

The other rules lift proof rules of propositional logic to the probabilistic
setting. The rule gen concludes that a valid assertion (a tautology) holds in
every state of a program P . The rules and (resp. or) formalize the distributivity
of conjunction w. r. t. universal almost sure satisfaction (resp. the distributivity
of disjunction w. r. t. existential satisfaction with positive probability).

Remark 1. For the rule mp in the existential case we must ensure that the sched-
uler from the second premise satisfies ϕ with probability 1. With an existential
quantifier in the first premise we cannot guarantee that both schedulers are the
same. This problem is also present in other proof rules. For simplicity of presen-
tation, we impose a stronger condition that requires that ϕ is satisfied regardless
of the resolution of the nondeterminism. Alternately, we could have a monolithic
proof rule that combines the proof rules for the premises. The price would be
more complex proof rules and lack of modularity.



assertion θ
Lyapunov ranking function δ
P ⊢ π ∧ ¬ψ → θ
P ⊢ θ ∧ ¬ψ → ϕ
P ⊢ θ ∧ ¬ψ →

( Qc ∈ C : gc : θ′ ∧ δ ≻ E(δ′ | s))

P ⊢ π → P

Q

=1(ϕU ψ)
until

Q

=1

assertion θ
P ⊢ π → θ
P ⊢ θ → ϕ
P ⊢ θ ∧ ¬ψ → ( Qc ∈ C : gc : θ′)

P ⊢ π → P

Q

=1(ψRϕ)
inv

Q

=1

assertion θ
ranking function δ
P ⊢ π ∧ ¬ψ → θ
P ⊢ θ ∧ ¬ψ → ϕ
P ⊢ θ ∧ ¬ψ →

( Qc ∈ C : gc : (θ′ ∧ δ ≻ δ′)⊗>0 tt)

P ⊢ π → P

Q

>0(ϕU ψ)
until

Q

>0

assertion θ
P ⊢ θ → ϕ
P ⊢ π → P

Q

>0(ϕU θ)
P ⊢ θ → P

Q

=1(ψR θ)

P ⊢ π → P

Q

>0(ψRϕ)
inv

Q

>0

P ⊢ π → ( Qc ∈ C : gc : ϕ′)

P ⊢ π → P

Q

=1( ϕ)
next

Q

=1

P ⊢ π → ( Qc ∈ C : gc : ϕ′ ⊗>0 tt)

P ⊢ π → P

Q

>0( ϕ)
next

Q

>0

Fig. 2. Proof rules for qualitative properties, where Q∈ {∃, ∀}. The quantification
( Qc ∈ C : gc : χ(x) stands for

∧

c∈C
(gc(x)) → χ(x)) if Q= ∀ and for

∨

c∈C
(gc(x) ∧

χ(x)) if Q= ∃. The primed versions of assertions and expressions are obtained by
replacing primed variables by the values assigned by the respective guarded command.

3.2 Proof Rules for Qualitative PCTL

Figure 2 shows rules for the qualitative fragment. Since we consider basic state
formulas, the formulas ϕ and ψ in these rules are assertions. Using the duality
between P

∀ and P
∃, and the closure of PCTL and PCTL∗ under negation, it is

sufficient to restrict attention to the operators P∀
=1, P

∀
>0, P

∃
=1, and P

∃
>0.

The rules use (Lyapunov) ranking functions. For a DTMC (Sα, ρα) and a
well-founded set (A,≻), a function δ : Sα → A is a ranking function if δ de-
creases on each step, i. e., for each path s, s′, we have δ(s) ≻ δ(s′). A function
δ : Sα → R≥0 is a Lyapunov ranking function if δ decreases in expectation on
each step, i. e., δ(s) ≻ E(δ′ | s) =

∑

s′∈Sα δ(s′)ρα(s, s′) for all states s ∈ Sα. We
extend (Lyapunov) ranking functions to MDPs by quantifying over the set of
enabled commands.

The rule until

Q

=1 establishes almost sure liveness properties for states in
some set of initial states described by π. The rule is standard: the premises
require an assertion θ that defines an inductive invariant and a Lyapunov ranking
function that decreases in expectation when taking transitions from θ-states that
do not satisfy the target assertion ψ. The rule inv

Q

=1 establishes almost sure
invariance properties. In the case of universal quantification the rule corresponds
to the respective rule for CTL, while the existence of a scheduler is equivalent
to the existence of a winning strategy in a (non-probabilistic) safety game.



The proof rule until

Q

>0 allows us to establish liveness properties with positive
probability. Here, the rule for the existential case corresponds to the one for CTL,
while in the universal case the verification question is equivalent to the question
about the existence of a strategy in a (non-probabilistic) reachability game. The
proof rule inv

Q

>0 establishes invariance properties. The premises of this rule are
rather strong: they require reaching with positive probability a set of states in
which the temporal property holds almost surely. In Section 5.1 we give a weaker
rule, for the (more general) case of satisfaction with probability at least p.

The rules next

Q

=1 and next

Q

>0 handle the next operator in the obvious way.
Consider a proof obligation P ⊢ π → Ψ , where π is an assertion (which

can be tt) and Ψ is a basic state formula. By applying a rule corresponding to
the temporal operator in Ψ we can reduce the proof obligation to a set of state
validities P ⊢ θ where θ is an assertion. Such proof obligations can be discharged
by applying the rule gen using a solver for the respective logical theory.

The proof system Pqualitative consists of the proof rules gen, basic-state,
until

Q

=1, inv

Q

=1, next

Q

=1, until

Q

>0, inv

Q

>0 and next

Q

>0. The soundness of the
proof system is proven by relatively standard reasoning. We defer the discussion
about (in)completeness to Section 5.2.

Proposition 1. Pqualitative is sound: if P ⊢ ϕ in Pqualitative, then P |= ϕ.

Example 3. Consider the probabilistic system P from Example 1. We want to
prove P |= tt → P

∃
=1( ϕclose), where ϕclose ≡ |x|+ |y| ≤ 100. Take the strategy

which at location l = 0 selects the only command satisfying x′ = x−sign(x)∧y′ =
y− sign(y). Using rule until

∃
=1, we have to find a Lyapunov ranking function δ

that decreases in expectation whenever ϕclose is not satisfied and we execute a
command from the chosen strategy. Take the following function

δ(l, x, y) =











x2 + y2 if l = 0,

x2 + y2 + 120 if l = 1,

x2 + y2 + 60 if l = 2.

We analyse the behaviour of E(δ′ | x, y). At l = 0 we have E(x′2 + y′2 | x, y) =
x2+y2−2·(|x|+|y|)+2 ≤ x2+y2−198. For the unique command at l = 1 we have

E(x′2+y′2 | x, y) = x2+y2+ 18|x|+92

|x|+1 ≤ x2+y2+59. The case l = 2 is similar. ⊓⊔

3.3 Full PCTL

Figure 3 introduces proof rules for quantitative probabilities. The rule inv

Q

⊲⊳p for
quantitative invariance is defined analogously to the respective rule for satisfac-
tion with positive probability. The rule next

Q

⊲⊳p for the next operator can be
defined in the obvious way, thus it is omitted here.

The rule until

Q

≥p establishes quantitative liveness properties. Its premises
require two auxiliary assertions θ and θ≥p such that from each θ≥p-state the set
θ is almost surely reachable, and every time a θ-state is reached a Bernoulli trial



assertions θ≥p, θ, real number ε > 0
P ⊢ π ∧ ¬ψ → θ≥p P ⊢ θ≥p → ¬ψ
P ⊢ θ≥p → P

Q

=1(ϕU θ) P ⊢ θ → ϕ ∧ θ≥p

P ⊢ θ → ( Qc ∈ C : gc :
(∃q : q ≥ ε : ψ′ ⊗≥pq ¬θ

′
≥p ⊗=q tt))

P ⊢ π → P

Q

≥p(ϕU ψ)
until

Q

≥p

P ⊢ π → P

Q

⊲⊳p(ϕU θ)
P ⊢ θ → P

Q

=1(ψRϕ)

P ⊢ π → P

Q

⊲⊳p(ψRϕ)
inv

Q

⊲⊳p

assertion θ, ranking function δ
P ⊢ π ∧ ¬ψ → θ
P ⊢ π ∧ ¬ψ → δ ≤ m
P ⊢ θ ∧ ¬ψ → ϕ
P ⊢ θ ∧ ¬ψ → ( Qc ∈ C : gc :

(δ′ = δ − 1 ∧ θ′)⊗≥p tt)

P ⊢ π → P

Q

≥pm(ϕU ψ)
until

Q

≥pm

assertions θ, θ, r.f. δ
P ⊢ π → θ
P ⊢ π → δ ≥ m

P ⊢ θ → P

Q

=1(¬ϕR¬ψ)

P ⊢ θ ∧ ¬θ ∧ δ > 0 → ϕ ∧ ¬ψ

P ⊢ θ ∧ ¬θ → ( Qc ∈ C : gc :
(θ′ ∧ δ ≤ δ′)∨

((θ′ ∧ δ′ = δ − 1)⊗≤p θ
′
))

P ⊢ π → P

Q

≤pm(ϕU ψ)
until

Q

≤pm

assertion θ

P ⊢ π → P
∀
≤p( θ)

P ⊢ π → P
∀
=1(ϕU(θ ∨ ψ))

P ⊢ π → P∀
≥1−p(ϕU ψ)

until
∀
≥1−p

assertion θ
P ⊢ π → P

Q

≥p1
(ϕU θ)

P ⊢ θ → P

Q

≥p2
(ϕU ψ)

P ⊢ π → P

Q

≥p1·p2
(ϕU ψ)

until

Q

≥p1·p2

Fig. 3. Proof rules for P

Q

⊲⊳p for p > 0 and Q∈ {∃, ∀}.

is executed. By adapting the premises to use bound p +∆ for some ∆ > 0, we
can easily obtain a rule for strict inequalities.

The proof rules until

Q

≥pm and until

Q

≤pm are slightly more complex. They
allow us to prove properties of the form P

Q

⊲⊳q(ϕU ψ) provided the bound q has a
specific form. The rule until

Q

≥pm requires a ranking function which is initially
bounded from above by m and which decreases at each step with probability at
least p, thus guaranteeing that the target set of states is reached with probability
at least pm. The rule until

Q

≤pm establishes that an until formula is satisfied with
probability at most pm, by requiring a ranking function that is initially bounded
from below by m and is such that in order to reach 0 there should be at least m
occurrences of a command that has probability of at least 1− p of going to a set
of states from which the formula cannot be satisfied. Rule until

∀
≥1−p combines

until

Q

≤pm and until

Q

=1. Rule until

Q

≥p1·p2
lets us “chain” reachability proofs.

The proof system Pquantitative consists of the rules in the proof system Pqualitative

together with the rules in Figure 3 and the rule next

Q

⊲⊳p (omitted here).

Proposition 2. Pquantitative is sound: if P ⊢ ϕ in Pquantitative, then P |= ϕ.

Example 4. Consider the probabilistic system from Example 1. Here we show
that P |= ϕclose → P

∃
≥p( (x = 0 ∧ y = 0)), i. e., we want to find a lower bound



on the probability of reaching the origin from any state in ϕclose . Using rule
until

∃
≥pm it is enough to find a ranking function that is bounded in ϕclose and

such that the probability of decreasing by one has a uniform lower bound in
ϕclose . For brevity, we consider a variant where the decision of the robot and the
repelling disturbances occur at once, not sequentially. Then, the ranking function

δ(l, x, y) =

{

max(|x|, |y|) if x ≡ y mod 2

max(|x|, |y|) + 5 if x 6≡ y mod 2.

fullfils the requirements. When both coordinates have the same parity and one of
them is not 0, it is always possible to decrease δ by selecting a proper command
and assuming that the robot is not repelled in any direction. In case that they
have different parity we have to consider the case when the robot is repelled in
the coordinate with the largest absolute value. The lower bound is then p = 1

1012

as we have |x|, |y| ≤ 100 for the states satisfying ϕclose . ⊓⊔

4 Proof System for PCTL∗

The proof rules presented in Section 3 are applicable to the PCTL fragment of
PCTL∗. We now extend the proof system Pquantitative to reason about PCTL∗.

The scope of the rules in Figure 1, and in particular basic-state, is not lim-
ited to PCTL. Thus, the rule basic-state can be applied to a PCTL∗ formula to
arrive at a PCTL∗ formula P

Q
⊲⊳p(ϕ), where the formula ϕ is a Streett automaton

representing an ω-regular language over the alphabet of sets of assertions.

Streett Automata, Product Construction. Let AP be a finite set of assertions over
x. A deterministic Streett automaton is a tuple A = (Q,Σ, ρ, q0, {(Ei, Fi)}

k
i=1),

where Q is a finite set of states, Σ ⊆ 2AP is a finite input alphabet, ρ ⊆ Q×Σ×Q
is a transition relation, such that if (q, σ1, q1) ∈ ρ and (q, σ2, q2) ∈ ρ and q1 6= q2
then ϕσ1 ∧ϕσ2 is unsatisfiable, where ϕσ = (

∧

θ∈σ θ)∧ (
∧

θ∈AP\σ ¬θ) for σ ∈ Σ,
q0 ∈ Q is the initial state, and for all i = 1, . . . , k, Ei ⊆ Q and Fi ⊆ Q.

A run of A on an infinite sequence of states (valuations of the variables x)
τ ∈ Sω is a sequence η ∈ Qω of automaton states such that η[0] = q0 and for
every i ≥ 0 there exists σ ∈ Σ such that (η[i], σ, η[i+1]) ∈ ρ and τ [i] |= ϕσ. A run
η on τ is accepting if for every i = 1, . . . , k it holds that if Inf(η) ∩Ek 6= ∅, then
also Inf(η) ∩ Fk 6= ∅, where Inf(η) ⊆ Q is the set of states that occur infinitely
often in η. A path τ is accepted by A iff there exists an accepting run of A on
τ . We write L(A) for the set of paths accepted by A.

Consider a probabilistic program P = (x, C) and a deterministic Street au-
tomaton A with alphabet Σ which consists of sets of assertions over x.

The product of P and A is the probabilistic program PA = (xA, CA), where
xA = x ∪̇ {xq}, for a fresh variable xq with domain Q, and CA is the set of
guarded commands defined as follows. The set CA contains one guarded com-
mand for each pair of transition (q, σ, q′) ∈ ρ and probabilistic guarded command
c : g 7→ x′ = e1 ⊗=p1

. . . ⊗=pk
x′ = ek+1 in C, where (c, q, σ, q′) is the label of



assertions θ, θ
constant p > 0

P ⊢ π → θ

P ⊢ θ → P
∀
=1( θ)

P ⊢ θ → P
∀
=1 ( θ)

P ⊢ θ ∧ ϕ→ P
∀
≥p ( ψ)

P ⊢ π → P∀
=1 ( ϕ→ ψ)

rec
∀
=1

assertions θ, θ
constant p > 0

P ⊢ π → θ

P ⊢ θ → P
∃
=1 ( θ)

P ⊢ θ → P
∀
=1 ( θ)

for all i = 1, . . . ,m :

P ⊢ θ ∧ ϕi → P
∃
≥p

(

ψi
)

P ⊢ π → P∃
=1

(
∧m

i=1
( ϕi → ψi)

) rec
∃
=1

Fig. 5. Proof rules for almost sure repeated reachability, where Q∈ {∃, ∀}.

the product guarded command, and the assertion ϕσ(x) represents the letter σ:
(c, q, σ, q′) : gc ∧ xq = q ∧ ϕσ(x) 7→ x′q = q′ ∧ (x′ = e1 ⊗=p1

. . .⊗=pk
x′ = ek+1).

Similarly, for deterministic guarded commands. For a given scheduler α and an
initial state s, the set of paths of PA on which A has an accepting run, denoted
Acc(P,A)α,s, is measurable [26, 7].

Basic Path Rule. Given a Streett automaton A, the rule shown in Figure 4
reduces the proof obligation P ⊢ π → P

Q

⊲⊳p(L(A)) to proving a statement of the
form P ⊢ π′ → P

Q

⊲⊳p(Acc(P,A)), where π′ is an assertion.

Proposition 3. If the premises of the proof rule basic-path are satisfied then
it holds that P |= π → P

Q
⊲⊳p(L(A)).

PA ⊢ (π ∧ xq = q0) →
P

Q

⊲⊳p(Acc(P,A))

P ⊢ π → P

Q

⊲⊳p(L(A))

Fig. 4. Rule basic-path

Rules for Repeated Reachability. The Streett
acceptance condition of A can be encoded
as repeated reachability formulas of the form
∧k

i=1

(

ϕi → ψi

)

, where ϕi and ψi are
assertions over xA encoding the sets Ei and
Fi for i = 1, . . . , k. Figure 5 shows the corre-
sponding rules for the almost sure case.

Proposition 4 (Soundness of rec
∀
=1). Rules rec

∀
=1 and rec

∃
=1 are sound.

Proof (Sketch). We prove soundness of rec∀
=1. Fix an arbitrary scheduler α and

considerMα. We can restrict the proof to the infinite paths that start in a θ-state
since any infinite path of P eventually visits only states in θ. Let S0, S1, . . . be
the random process such that Sk is the state visited after executing exactly k
instructions, and Fk be the smallest σ-algebra that makes Sk measurable. Let

≥n ψ denote the event {∃m ≥ n : Sm ∈ ψ} and [E ] denote the indicator
function for the event E . Notice that limn

≥n ψ = ψ.

[ ≥m ψ] = lim
n

P( ≥m ψ | Fn) ≥ lim sup
n

P( ≥n ψ | Fn)

≥ lim inf
n

P( ≥n ψ | Fn) ≥ lim
n

P( ψ | Fn) = [ ψ]



The equalities are a consequence of Levy’s 0-1 law [11, Theorem 5.5.8] and the
fact that ≥m ψ and ψ are measurable in σ(

⋃

n Fn). If we letm go to infinity

both extremes coincide and therefore limn P(
≥n ψ | Fn) = [ ψ].

From the last premise of the rule we have P( ≥n ψ | Fn) ≥ p[Sn ∈ ϕ], i. e.
the probability of reaching a ψ-state from a ϕ-state is at least p. Take ω an
arbitrary point event that satisfies ϕ, then for infinitely many n we have
P( ≥n ψ | Fn)(ω) ≥ p > 0, and therefore [ ψ](ω) = 1. We thus conclude
that P |= π → P

∀
=1( ϕ→ ψ).

The soundness of the existential rule is proved in a similar way; additionally,
one has to show how a witness scheduler can be constructed from the individual
schedulers that guarantee reachability of each ψi for i = 1, . . . ,m. ⊓⊔

In the special case ϕ := tt in rule rec
∀
=1, we obtain a proof rule for uncon-

ditional recurrence as the rule given by Hart and Sharir [16, Lemma 3.3].
The rule for rec

∃
=1 in Figure 5 requires that the assertion θ is invariant

under all possible schedulers instead of under some scheduler. The reason is the
following: the fact that there exist a scheduler that ensures the invariance and
schedulers that ensure reachability does not imply that these schedulers can be
combined in a scheduler that achieves both properties. Instead of referring to the
rule for proving P

∃
≥p

(

ψi
)

we can alternatively include the respective premisses
and incorporate the requirement that the scheduler should guarantee that θ is
invariant. We omit this more complicated rule for simplicity of the presentation.

We can give a proof rule rec

Q

>0 for repeated reachability with positive prob-
ability that is analogous to the rule inv

Q
>0: Its premises require that some set of

states θ is reached with positive probability and in every state in that set the
repeated reachability property is satisfied almost surely. Analogously, we can
obtain a rule rec

∃
≥p for the existential quantitative repeated reachability. The

rule rec∀
≥p for the universal quantitative case is a straightforward adaptation of

rec
∀
=1: It requires that some set of states θ is invariant with probability at least

p and from every state in θ that satisfies ϕ a ψ-state is reached with probability
at least q for some q > 0. Strict inequalities are handled as in the PCTL case.

Example 5. We want to prove that there is a strategy for the robot in Example 1
that visits infinitely often the origin regardless of the initial state. This can be
specified in PCTL∗ as P |= tt → P

∃
=1( (x = 0 ∧ y = 0)). From Example 3

we have P ⊢ tt → P
∃
=1( ϕclose), and from Example 4 we have P ⊢ ϕclose →

P
∃
≥p( (x = 0 ∧ y = 0)). Then, we can conclude that P ⊢ tt → P

∃
≥p( (x =

0 ∧ y = 0)). The desired property follows immediately from the rule rec
∃
=1 as

P ⊢ tt → P
∃
=1( tt) is a tautology. ⊓⊔

Unlike the deductive proof systems for CTL∗ [19] and ATL∗ [25] here we
cannot encode the accepting condition of the automaton A as a fairness require-
ment in the product system. In [19] LTL formulas are translated to temporal
testers with fairness conditions, and their synchronous product with the orig-
inal system yields a fair discrete system. Justice (a specific form of fairness)
is then handled by specialized proof rules. Similarly, in [25] an LTL formula



is transformed to a deterministic automaton, whose synchronous composition
with the system yields an alternating discrete system with fairness conditions
and the resulting proof condition then contains strategy quantifiers ranging over
fair strategies. Subsequently, fair strategy quantifiers are transformed into un-
fair ones and the fairness conditions are made explicit in the resulting temporal
formula, which is of a specific form and is treated by special proof rules.

The example below demonstrates that in the probabilistic case the encod-
ing of the winning condition of the automaton as a fairness constraint is not
equivalent to an explicit encoding in the temporal formula.

Example 6. Consider the probabilistic program P over variables s ∈ {0, 1, 2}
and x, y ∈ B. The transition relation is described by the guarded commands:

c0 : s = 0 7→ (s′ = 1 ∧ x′ = 0 ∧ y′ = 0)⊗= 1
2
(s′ = 2 ∧ x′ = 1 ∧ y′ = 1),

c1 : s = 1 7→ s′ = 1 ∧ x′ = 0 ∧ y′ = 0,
c2 : s = 2 7→ s′ = 2 ∧ x′ = 1 ∧ y′ = 1.

Initially we have ι ≡ s = 0 ∧ x = 0 ∧ y = 0. A scheduler α is fair w.r.t. the
fairness requirement ϕ ≡ (x = 1) if in the resulting DTMC starting from
any ι-state, (x = 1) holds with probability 1. Thus, the set of schedulers that
are fair w.r.t. ϕ is empty and hence if quantifiers are interpreted over the set of
all fair schedulers we have that P |= ι → P

∃
≥1/2( (y = 1)) does not hold and

P |= ι→ P
∀
≥1/2( (y = 1)) holds trivially. On the other hand, when quantifiers

range over all possible schedulers, we have that P |= ι → P
∃
≥1/2( (x = 1) →

(y = 1)) and P |= ι→ P
∀
≥1/2( (x = 1) → (y = 1)) are satisfied. ⊓⊔

The proof system P∗
quantitative consists of the rules in Pquantitative together with

the rules mp, and, or, the rule basic-path and the rules for repeated reacha-
bility rec

∀
=1,rec

∃
=1,rec

Q

>0,rec
∀
⊲⊳p and rec

∃
⊲⊳p.

Proposition 5. P∗
quantitative is sound: if P ⊢ ϕ in P∗

quantitative, then P |= ϕ.

5 Discussion

We have presented the first deductive proof system for PCTL∗. Our initial ex-
perience with the proof system has been positive: for example, we can prove
the termination of Rabin’s choice coordination problem with probability at least
1− 2−

M
2 , for a parameter M denoting the size of the alphabet used in the pro-

tocol, for any number of processes. Like with any deductive proof system, one
has to come up with invariants and Lyapunov ranking functions. While we cur-
rently do this manually, it will be interesting to combine our proof system with
recent automated techniques [18]. We conclude with two technical discussions:
relaxations of our proof rules and completeness.



5.1 Variants of the Deduction Rules

Our choice of deduction rules has been driven by the intention to keep the expo-
sition simple. We now discuss some possible relaxations to our rules, motivated
by the incompleteness of some of the original rules.

Invariant with positive probability. As a first example, consider the rule for inv∀
≥p,

which checks if a set of states that each satisfy the invariant with probability
one can be reached with probability at least p.

Consider the probabilistic program P with a single variable x over N that
describes a biased random walk. The initial state is x = 1 and the state x = 0
is absorbing. At each step x increases by 1 with probability 3/4 and decreases
by 1 with probability 1/4. We have that P |= (x = 1) → P

∀
≥ 2

3

( (x > 0))

holds. However, from every state of P the state x = 0 is reached with positive
probability. Thus, we cannot provide an assertion θ as required by the premisses
of rule inv

∀
≥p, as no subset of the set of states where x > 0 holds is invariant.

The rule inv∀
≥p in Figure 6 is a generalisation of inv∀

≥p. The idea is to provide
assertions, θ1, θ2, . . . such that from each θi-state there is high enough probability
to eventually move to some θj where j > i, meaning that the infinite product of
these probabilities converges to the desired probability p for the invariant.

We can apply the rule inv
∀
≥p in Figure 6 to this random walk example as

follows. Let θk = (x = k) for each k > 0. Then, clearly, P ⊢ (x = 1) →
∨∞

k=1 θk
and for all k > 0 we have P ⊢ θk → ϕ. The probability of reaching θk+1

from a state in θk is pk = 1−3−k

1−3−(k+1) and thus P ⊢ θk → P
∀
≥pk

(
∨∞

j=k+1 θj)

for all k > 0. Finally,
∏∞

k=1 pk = 2/3 which completes the proof. Clearly, the
expressivity comes at a price of more complex premises.

Repeated Reachability. As a second example, consider rule rec
∀
=1 in Figure 6,

which takes a different approach from the one in Figure 5. Instead of ensuring
that after visiting a state satisfying ϕ we reach with probability at least p a state
satisfying ψ, we ensure that it is almost impossible to visit an infinite number of
ϕ-states without visiting a single ψ-state. The latter is a more relaxed condition.
Take any program that satisfies the former and add a self loop in a state satisfying
¬ϕ∧¬ψ that is reachable from a ϕ-state. The modified program does not satisfy
the premise of the original rule, although the property still holds. The modified
rule does not suffer from this.

More specifically, rule rec∀
=1 in Figure 6 requires the existence of a Lyapunov

ranking function that decreases in expectation in states where ϕ holds but ψ does
not hold, and cannot increase in expectation in states that do not satisfy ψ. Thus,
the rule can be successfully applied also in cases where a ϕ state is visited only
finitely many times. Its completeness is discussed in Section 5.2.

5.2 Completeness for Finite State Systems

Our proof rules are in general incomplete for infinite-state probabilistic pro-
grams. For example, the rule until

Q

=1 relies on Lyapunov ranking functions
that are known to be incomplete for almost sure termination [5, 13]. We focus the



assertions θ1, θ2, . . .
constants p1, p2, . . .
∏∞

k=1
pk ≥ p

P ⊢ π →
∨∞

k=1
θk

for all k > 0 :
P ⊢ θk → ϕ

P ⊢ θk → P
∀
≥pk

(
∨∞

j=k+1
θj)

P ⊢ π → P∀
≥p( ϕ)

inv
∀
≥p

assertion θ, Lyapunov r. f. δ
P ⊢ π → θ

P ⊢ θ → P
∀
=1( θ)

P ⊢ θ ∧ ¬ψ ∧ ϕ→
(

∀c ∈ C : gc : θ′ ∧ δ ≻ E(δ′ | s)
)

P ⊢ θ ∧ ¬ψ →
(

∀c ∈ C : gc : θ′ ∧ δ ≥ E(δ′ | s)
)

P ⊢ π → P∀
=1 ( ϕ→ ψ)

rec
∀
=1

Fig. 6. More advanced proof rules.

discussion to programs with finite state spaces, as most of our rules —or slight
variations thereof— are complete for this class. The completeness of the rule
inv

Q

=1 and the rules for positive probability follows from the non-probabilistic
case [19] (even for countable state spaces).

Until. If a program P satisfies almost surely ϕU ψ regardless of the scheduler,
then given an initial state s the expected amount of steps before reaching a
ψ-state is bounded. Moreover, there is an optimal memoryless scheduler that
maximizes this quantity for all states [3]. Then, the mapping that assigns to
each state the expected time of reaching a ψ-state using the optimal scheduler
is a valid Lyapunov ranking function. For the completeness of until∃=1 we have
that there is a memoryless and deterministic scheduler that satisfies ϕU ψ [4].
Then we have to take θ as the set of states visited by the scheduler, and build a
Lyapunov ranking function for this sub-MDP in a similar way as above.

Streett Condition. The rule rec
∃
=1 is not complete as the premise P ⊢ θ →

P
∀
=1( θ) is too strong. The monolithic proof rule (see Remark 1) that guarantees

that θ is invariant w. r. t. the schedulers of the last premise is complete. We have
to choose θ as the states that the scheduler visits infinitely often with non-zero
probability. The set θ is almost surely reached and each of its states belongs to
at least one end component [8]. If a ϕi-state is visited infinitely often, then the
end component that the scheduler reaches must have a ψi-state, otherwise the
property will be violated. Then, the last premise is satisfied.

The rule rec
∀
=1 presented in Section 5.1 is complete. We need to analyze

the maximal end components of the program. Consider the sub-MDP obtained
from an end component E. From every state the maximum expected number of
ϕ-states visited before reaching a ψ-state is finite, since the maximal probability
of returning to a ϕ-state without visiting a ψ state is less than one. This quan-
tity can be used to build a Lyapunov function that decreases every time that
a ϕ ∧ ¬ψ-state is visited. Consider now the quotient MDP that is obtained by
lumping every maximal end component into a single state and removing self-
loops. It has no end component except for deadlock states. Then we can build a
Lyapunov ranking function that ensures that a deadlock state is reached almost
surely. We can combine all these local Lyapunov functions to build a global one
that satisfies the conditions of the rule rec

∀
=1.



Acknowledgements This work is supported by the EU FP7 projects 295261
(MEALS) and 318490 (SENSATION), by the DFG Transregional Collaborative
Research Centre SFB/TR 14 AVACS, and by the CDZ project 1023 (CAP).

References

1. Tamarah Arons, Amir Pnueli, and Lenore D. Zuck. Parameterized verification by
probabilistic abstraction. In FOSSACS, pages 87–102, 2003.

2. Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT Press,
2008.

3. Dimitri P Bertsekas and John N Tsitsiklis. An analysis of stochastic shortest path
problems. Mathematics of Operations Research, 16(3):580–595, 1991.

4. Andrea Bianco and Luca de Alfaro. Model checking of probabalistic and nonde-
terministic systems. In FSTTCS, pages 499–513, 1995.

5. Olivier Bournez and Florent Garnier. Proving positive almost-sure termination.
In RTA, pages 323–337, 2005.

6. Aleksandar Chakarov and Sriram Sankaranarayanan. Probabilistic program anal-
ysis with martingales. In Computer Aided Verification - 25th International Con-
ference, CAV 2013, Saint Petersburg, Russia, July 13-19, 2013. Proceedings, pages
511–526, 2013.

7. Costas Courcoubetis and Mihalis Yannakakis. The complexity of probabilistic
verification. J. ACM, 42(4):857–907, 1995.

8. Luca de Alfaro. Formal verification of probabilistic systems. PhD thesis, Standford,
1997.

9. Luca de Alfaro, Marta Z. Kwiatkowska, Gethin Norman, David Parker, and
Roberto Segala. Symbolic model checking of probabilistic processes using mtb-
dds and the kronecker representation. In TACAS 2000, volume 1785 of Lecture
Notes in Computer Science, pages 395–410. Springer, 2000.

10. Rayna Dimitrova, Luis Maŕıa Ferrer Fioriti, Holger Hermanns, and Rupak Ma-
jumdar. PCTL∗: The deductive way (extended version). Reports of SFB/TR 14
AVACS 114, 2016. Available at http://www.avacs.org.

11. Rick Durrett. Probability: Theory and Examples. Series in Statistical and Proba-
bilistic Mathematics. Cambridge University Press, fourth edition, 2010.

12. Javier Esparza, Andreas Gaiser, and Stefan Kiefer. Proving termination of proba-
bilistic programs using patterns. In P. Madhusudan and Sanjit A. Seshia, editors,
Computer Aided Verification - 24th International Conference, CAV, volume 7358
of LNCS, pages 123–138. Springer, 2012.

13. Luis Maŕıa Ferrer Fioriti and Holger Hermanns. Probabilistic termination: Sound-
ness, completeness, and compositionality. In POPL, pages 489–501, 2015.

14. Jerzy Filar and Koos Vrieze. Competitive Markov decision processes. Springer,
1997.

15. Nissim Francez. Fairness. Texts and Monographs in Computer Science. Springer,
1986.

16. Sergiu Hart, Micha Sharir, and Amir Pnueli. Termination of probabilistic concur-
rent program. ACM Trans. Program. Lang. Syst., 5(3):356–380, 1983.

17. Joe Hurd. Formal verification of probabilistic algorithms. PhD thesis, University
of Cambridge, 2001.



18. Joost-Pieter Katoen, Annabelle McIver, Larissa Meinicke, and Carroll C. Morgan.
Linear-invariant generation for probabilistic programs: - automated support for
proof-based methods. In Static Analysis (SAS 2010), volume 6337 of Lecture Notes
in Computer Science, pages 390–406. Springer, 2010.

19. Yonit Kesten and Amir Pnueli. A compositional approach to CTL* verification.
Theor. Comput. Sci., 331(2-3):397–428, 2005.

20. Marta Z. Kwiatkowska, Gethin Norman, and David Parker. PRISM: probabilistic
model checking for performance and reliability analysis. SIGMETRICS Perfor-
mance Evaluation Review, 36(4):40–45, 2009.

21. Annabelle McIver and Carroll Morgan. Abstraction, Refinement and Proof for
Probabilistic Systems. Monographs in Computer Science. Springer, 2005.

22. Amir Pnueli. On the extremely fair treatment of probabilistic algorithms. In
Proceedings of the 15th Annual ACM Symposium on Theory of Computing, pages
278–290, 1983.

23. Amir Pnueli and Lenore D. Zuck. Probabilistic verification. Inf. Comput., 103(1):1–
29, 1993.

24. Michael O. Rabin. The choice coordination problem. Acta Informatica, 17:121–134,
1982.

25. Matteo Slanina, Henny B. Sipma, and Zohar Manna. Deductive verification of
alternating systems. Form. Asp. Comput., 20(4-5):507–560, 2008.

26. Moshe Y. Vardi. Automatic verification of probabilistic concurrent finite-state
programs. In FOCS, pages 327–338, 1985.


