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Approximate Automata

for Omega-regular Languages⋆

Rayna Dimitrova1, Bernd Finkbeiner2, and Hazem Torfah2

1 University of Leicester
2 Saarland University

Abstract. Automata over infinite words, also known as ω-automata,
play a key role in the verification and synthesis of reactive systems. The
spectrum of ω-automata is defined by two characteristics: the acceptance
condition (e.g. Büchi or parity) and the determinism (e.g., deterministic
or nondeterministic) of an automaton. These characteristics play a cru-
cial role in applications of automata theory. For example, certain accep-
tance conditions can be handled more efficiently than others by dedicated
tools and algorithms. Furthermore, some applications, such as synthesis
and probabilistic model checking, require that properties are represented
as some type of deterministic ω-automata. However, properties cannot
always be represented by automata with the desired acceptance condition
and determinism.
In this paper we study the problem of approximating linear-time proper-
ties by automata in a given class. Our approximation is based on preserv-
ing the language up to a user-defined precision given in terms of the size
of the finite lasso representation of infinite executions that are preserved.
We study the state complexity of different types of approximating au-
tomata, and provide constructions for the approximation within different
automata classes, for example, for approximating a given automaton by
one with a simpler acceptance condition.

1 Introduction

The specification of linear-time properties is a key ingredient of all typical frame-
works for the verification and synthesis of reactive systems. The application of
both automata-theoretic and symbolic algorithms requires that specifications are
translated to some kind of ω-automata. Depending on the considered problem,
or on the applied methods and tools, there are often constraints on the type of
the resulting automaton, that is, on its acceptance condition, and on whether it
is deterministic or not. For example, while for model checking of non-stochastic
systems it suffices to consider nondeterministic Büchi automata, synthesis and
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probabilistic model checking require deterministic automata (e.g., determinis-
tic parity automata). Furthermore, it is often the case that efficient specialized
methods and tools exist for specific classes of automata i.e., specific acceptance
conditions. For instance, efficient synthesis algorithms exist for the class GR(1)
of linear-time temporal logic specifications [2], which defines properties that are
expressible as deterministic parity automata with three colors.

Finding an equivalent automaton with a simpler acceptance condition is not
always possible. The canonical example is the property defined by the linear-
time temporal logic (LTL) formula p, for which no deterministic Büchi
automaton exists. A more interesting example is given by the LTL formula
ϕ = ( p → q) ∧ ( r → s), which requires that if the proposi-
tion p holds infinitely often then the proposition q should hold infinitely often
as well, and the same for the propositions r and s. Requirements of this form
occur often in the synthesis of reactive systems, but the formula ϕ cannot be
represented by a deterministic parity automaton with three colors, and cannot
be transformed to a formula in the efficient class of GR(1) specifications. More-
over, automata with simpler acceptance conditions can often be larger in size
than automata with more general acceptance conditions. For instance, there are
languages for which deterministic Streett automata are exponentially smaller
than nondeterministic Büchi automata [17].

Motivated by this, we study the problem of approximating linear-time prop-
erties (respectively ω-automata) by automata in a given class (respectively au-
tomata from a given subclass). The choice of language approximation is inspired
by applications in bounded model checking [5] and bounded synthesis [9]. These
methods are based on the observation that for finite-state systems, it suffices to
consider lasso-shaped executions of bounded size. Our approximation exploits
the same idea for the construction and transformation of automata. Furthermore,
equivalent ω-regular languages share the same set ultimately-periodic words [4],
and thus lasso-shaped words of bounded size provide an approximation to this
set of words, one that improves when considering larger bounds on the size of
lassos.

Given an ω-language L and a bound n ∈ N, we consider the language Ln of
the ultimately-periodic words in L representable in the form u · vω, and where
|u ·v| ≤ n. That is, the language Ln ⊆ L consists of the words in L representable
as lassos of length n or smaller. We are then interested in approximations of L
that are precise with respect to the language Ln, termed n-lasso-precise approx-
imations.

We study the properties of n-lasso-precise approximations across the three di-
mensions of the complexity of the automata for such languages: size, acceptance
condition, and determinism. More precisely, we establish worst case bounds, in
terms of n, on the size of automata for n-lasso-precise approximations. We also
show that we can approximate a parity automaton with m colors by one with
m′ < m colors, with at most polynomial increase in the size of the automa-
ton. For example, considering the formula ϕ above, if we underapproximate the
language of ϕ with a language that is precise with respect to the set of words
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representable by lassos of length n for a fixed n, we can represent the resulting
language by a safety automaton (a parity automaton with one color). Further-
more, if, for example, n = 2 the resulting automaton has 4 states, while the
minimal deterministic parity automaton for the language of ϕ has 95 states and
10 colors. We also study the approximation of nondeterministic by determinis-
tic automata, and show that the worst-case exponential blow-up in the size is
unavoidable for n-lasso-precise approximations.

As another example, consider the property described by the LTL formula
( p)∧( q), where p and q are some atomic propositions. This is a conjunc-
tion of a stability property and a liveness property, which is also not expressible
in the fragment GR(1). We can approximate this property by an n-lasso-precise
deterministic Büchi automaton, enabling the application of efficient synthesis
tools. Most importantly, unlike existing approaches, our method is not limited
to approximating liveness properties by safety properties, which benefits the
precision of the approximation.

The paper is structured as follows. In Section 2 we start with a short back-
ground on linear-time properties and ω-automata. In Section 3 we introduce
the notion of n-lasso-precise approximation of linear-time temporal properties,
and present all relevant automata constructions for these approximations. Here,
we establish property-independent upper and lower bounds on the size of ω-
automata for n-lasso-precise approximations, and study the overhead in terms
of size incurred when approximating an automaton by one with a simpler ac-
ceptance condition. In Section 4 we show that the problem of computing lasso-
precise automata of bounded size for properties given as LTL formulas is in ΣP

2 .
In Section 5 we conclude our results with a discussion on our approach and its
potential for the development of new verification and synthesis algorithms.

Related Work. Our definition of bounded lasso-precise approximation is mo-
tivated by bounded model checking [5], bounded synthesis [9], synthesis for
bounded environments [6], and synthesis of approximate implementations [15].
We extend these ideas of focusing on small counterexamples, small implementa-
tions, or bounded-state environments, respectively, to the realm of specifications.

The structural complexity of ω–automata has been studied in [3, 14], where
the acceptance conditions of deterministic automata are related to their com-
plexity. Here, on the other hand, we study complexity questions in the context
of language approximations.

There is a rich body of work on the minimization of Büchi automata. Typical
approaches, such as [8, 12, 21] are based on merging states according to simula-
tion and bisimulation relations. In [7] the authors propose a SAT-solver based
minimization method. All these approaches consider language equivalence, while
in this paper we study language approximation.

Reducing the size of automata by language approximation has been studied
in the context of languages over finite words. The approach in [10] fixes a bound
in the number of the states of a deterministic finite automaton for a safety lan-
guage, and computes an automaton within that bound that approximates the



4 Rayna Dimitrova, Bernd Finkbeiner, and Hazem Torfah

original language. In addition to the fact that their method applies to languages
over finite words, the key difference to our work is that while their goal is to
optimize precision within a state budget, we approximate automata with ones
with simpler acceptance conditions that guarantees a desired precision. In de-
scriptive complexity, there is a related notion to our n-lasso precision, which is
the notion of the automaticity [20] of a language which is the size of the minimal
automaton that is precise for that language on words of length up to a given
bound n. As automaticity is defined for finite-word languages, n-lasso precision
can be seen as lifting these ideas to ω-languages.

The approximation of ω-regular properties by ones with simpler acceptance
conditions has not been, to the best of our knowledge, systematically studied so
far. Standard approaches, such as [19, 1], approximate liveness and other tem-
poral properties via safety properties. In contrast, our approximation allows us
to approximate temporal properties with other temporal properties that are not
necessarily safety.

2 Preliminaries

Linear-time Properties and Lassos. A linear-time property ϕ over an alphabet Σ
is a set of infinite words ϕ ⊆ Σω. Elements of ϕ are called models of ϕ. A lasso
of length n over an alphabet Σ is a pair (u, v) of finite words u ∈ Σ∗ and v ∈ Σ+

with |u · v| = n that induces the ultimately-periodic word u · vω. We call u · v
the base of the lasso or ultimately-periodic word, and n the length of the lasso.
The set Bases(ϕ, n) is the set of bases of lassos of length n that induce words
that are models of ϕ.

For a bound n ∈ N, we define the language Ln(ϕ) = {σ ∈ Σω | ∃u · v ∈
Bases(ϕ, n). σ = u · vω} as the language of models of ϕ that can be represented
by lassos of length n. We call the elements of Ln(ϕ) the n-models of ϕ.

If a finite word w ∈ Σ∗ is a prefix of a word σ ∈ Σ∗ ∪Σω, we write w � σ.
For a language L ⊆ Σ∗ ∪Σω, we define Prefix (L) = {w ∈ Σ∗ | ∃σ ∈ L : w � σ}
as the set of all finite words that are prefixes of words in the language L. For a
word w = α1α2 . . . αn ∈ Σ∗ we define w(i) = αi for each i ∈ {1, . . . , n}.

Automata Over Infinite Words. A nondeterministic parity automaton over an
alphabet Σ is a tuple A = (Q,Q0, δ, µ), where Q denotes a finite set of states,
Q0 ⊆ Q denotes a set of initial states, δ : Q × Σ → P(Q) denotes a transition
function that maps a state and an input letter to a set of states, and µ : Q →
C ⊂ N is a coloring function with a finite set of colors C.

A run of A = (Q,Q0, δ, µ) on an infinite word σ = α1α2 · · · ∈ Σω is an
infinite sequence ρ = q0q1q2 . . . ∈ Qω of states such that q0 ∈ Q0, and for every
i ∈ N it holds that qi+1 ∈ δ(qi, αi+1). A run ρ = q0q1q2 . . . is accepting if it
satisfies the parity condition, which requires that the highest number occurring
infinitely often in the sequence µ(q0)µ(q1)µ(q2) · · · ∈ Cω is even. An infinite word
σ is accepted by an automaton A if there exists an accepting run of A on σ. The
set of infinite words accepted by an automaton A is called its language L(A).
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We say that a run ρ has size n ∈ N if ρ is an ultimately-periodic run and n

is the smallest natural number such that ρ = ρ1 · (ρ2)
ω and |ρ1 · ρ2| = n.

An automaton is deterministic if |Q0| = 1, and for all states q and input
letters α, |δ(q, α)| ≤ 1. For a deterministic automaton we will see δ as a partial
function δ : Q×Σ → Q. We use the notation δ(q, α) = ∅ to denote that state q

has no successor for the letter α. We define the size |A| of an automaton A to
be the number of its states, i.e., |A| = |Q|.

A parity automaton is called a Büchi automaton if and only if the image of
µ is contained in {1, 2}, and a safety automaton if the image of µ is {0}. Büchi
automata are denoted by (Q,Q0, δ, F ), where F ⊆ Q denotes the states with
the higher color. Safety automata are denoted by (Q,Q0, δ). A run of a Büchi
automaton is thus accepting, if it contains infinitely many visits to F . For safety
automata, every infinite run is accepting.

We define an automaton type to indicate whether the automaton is deter-
ministic or nondeteministic, and its acceptance condition. We abbreviate deter-
ministic as D and nondeterministic as N. For the acceptance conditions we use
the abbreviations P (parity) and B (Büchi). Thus, for example, DPA stands for
deterministic parity automaton, while NBA stands for Nondeterministic Büchi
automaton.

3 Lasso-precise Approximations of Linear-time Properties

We begin this section with a formal definition of the approximation of linear-time
properties discussed in the introduction. More precisely, we introduce the notion
of lasso-precise under- and overapproximation of a linear-time property ϕ for a
given bound n ∈ N, in which we underapproximate (overapproximate) ϕ with a
linear-time property that has the same n-models as ϕ. That is, the approximation
is precise for n-models.

3.1 Lasso-precise Approximations

Definition 1 (Lasso-precise Underapproximation). For a bound n ∈ N,
we say that a linear-time property ϕ′ is an n-lasso-precise underapproximation
of a linear-time property ϕ, denoted ϕ′ ⊆n ϕ, if ϕ′ ⊆ ϕ and Ln(ϕ

′) = Ln(ϕ).

Definition 2 (Lasso-precise Overapproximation). For a bound n ∈ N, we
say that a linear-time property ϕ′ is an n-lasso-precise overapproximation of a
linear-time property ϕ, denoted ϕ′ ⊇n ϕ, if ϕ′ ⊇ ϕ and Ln(ϕ

′) = Ln(ϕ).

In the rest of the paper we focus on underapproximations. All the results
extend easily to lasso-precise overapproximations. In fact, if we have also the
complement language of ϕ, an n-lasso-precise overapproximation of a property
ϕ can be computed by computing an n-lasso-precise underapproximation of the
complement of ϕ.

In the next sections we show how to construct automata for n-lasso-precise
approximations of linear-time properties. For a property ϕ the automata will
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recognize the language Ln(ϕ). This language includes also all words in ϕ that
are representable by a lasso of size n′ ≤ n, a fact that we establish with the next
lemma.

Lemma 1. For any linear-time property ϕ and bounds n, n′ ∈ N, we have that
Ln(ϕ) ⊆ Ln′(ϕ), if n ≤ n′.

Proof. Every lasso of length n can be unrolled to a lasso of length n′ by unrolling
the loop n′ − n times. ⊓⊔

3.2 The Size of Lasso-precise Automata for Linear-time Properties

Since for any ϕ the language Ln(ϕ) is a safety language, we can always con-
struct a deterministic safety automaton that is n-lasso-precise. In the following
we provide a construction which yields a deterministic safety automaton for a
language Ln(ϕ), and establish a lower bound on the size of an automaton for
Ln(ϕ).

Theorem 1 (Safety automata for n-lasso-precise approximations). For
every linear-time property ϕ over an alphabet Σ and a bound n ∈ N, there is a
deterministic safety automaton A of size O(|Σ|n ·2n logn), such that L(A) ⊆n ϕ.

Idea & Construction. The automaton A accepts a word in two phases. The
states used in the first phase are of the form w ·#m−1 ∈ (Σ ∪ {#})n, where w

is the portion of the prefix of length n of the input word that has been read so
far. In this phase, the automaton reads the prefix of length n and stores it in
the automaton state. Once the whole prefix is read, it checks whether the prefix
of length n is in Bases(ϕ, n). If this is the case, then it transitions to the second
phase, and checks if the word being read is an n-lasso, with this base.

The states in the second phase are of the form (w, (t1, . . . , tn)) ∈ Σn ×
{−, 1, . . . , n}n , where w ∈ Σn is the prefix read in the first phase, and (t1, . . . , tn)
are indices of letters in w, whose role is explained below. To check that the word
is an n-lasso, the automaton has to check if for some ℓ ∈ {1, . . . , n} the input
word is of the form w(1) . . . w(ℓ− 1)(w(ℓ) . . . w(n))ω, that is, there is an ℓ which
is a loop start position. To this end, the automaton tracks the possible loop start
positions, starting with all positions, and for each new letter α it eliminates those
positions that are not compatible with α. More precisely, if the automaton reads
a letter α in state (w, (t1, . . . , tn)), it uses each ti to check whether the loop can
start in position i of w. Intuitively, ti is a position in w that points to the letter
that has to be read next in order for i to still be a possible loop start position. If
the next letter α is not the same as w(ti), then i cannot be a loop start position,
and ti is eliminated by replacing it by −. Otherwise, ti is incremented, or set
back to the loop start i if the end of w is reached. A run of A is accepting if it
never reaches a state (w, (−, . . . ,−)), that is, a state in which each position is
no longer a possible start of a loop.

Formally, the states of the automaton are given by A = (Q, {q0}, δ) where:
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– Q = Q1 ∪Q2, where Q1 = (Σ ∪ {#})n and Q2 = Σn × {−, 1, . . . , n}n

– In the initial state no letter has been read: q0 = #n.
– The transition relation δ is defined as follows.

• In the first phase if we are at a state q = w · #m for some 1 < m ≤ n

and w ∈ Σn−m, then

δ(q, α) = w · α ·#m−1

• In the transition between the first and the second phase, which happens
once the prefix of length n has been read, and when we are at a state
q = w ·# for some w ∈ Σn−1 the transition is given by

δ(q, α) = (w · α, (t1, . . . , tn))

where

ti =

{

i w(1) . . . (w(i) . . . w(n))ω ∈ ϕ

− otherwise

Note that determining the successor state in this case requires checking
if a given word is in ϕ. Initially, only loop start positions i for which
w(1) . . . (w(i) . . . w(n))ω ∈ ϕ are allowed, so the second phase starts with
state (w, (t1, . . . , tn)), in which each pointer ti points to the start of
the corresponding loop if w(1) . . . (w(i) . . . w(n))ω ∈ ϕ, and is set to −
otherwise.

• In the second phase, for a state q = (w, (t1, . . . , tn)) with w ∈ Σn and
where there exists i ≤ n with ti 6= −, the transition for such a state is
given by

δ(q, α) = (w, (t′1, . . . , t
′
n))

where

t′i =







































− ti = −

or w(ti) 6= α

ti + 1 ti < n ∧ w(ti) = α

i ti = n ∧ w(ti) = α

Here we track valid loop start position as follows. If α 6= w(ti), then the
loop start i is eliminated by replacing ti by −. Otherwise, we move the
pointer one step to the right by incrementing ti. In case ti is equal to
n, i.e., at the end of the lasso, ti is reset to the corresponding loop start
position i.

• If only − remain in the tuple (t1, . . . , tn), the automaton rejects

δ((w, (−, . . . ,−)), α) = ∅

for any w ∈ Σn.
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The number of states in Q1 is (|Σ|+1)n, and for Q2 it is |Σ|n · (n+1)n. ⊓⊔

The number of states of the deterministic safety automaton defined above is
exponential in the parameter n on the length of the lassos for which the approxi-
mation should be precise. In the next theorem we exhibit a family of linear-time
properties for which this exponent is unavoidable, that is, the minimal n-lasso-
precise NPA has size exponential in n.

Theorem 2. There is a family of linear-time properties ϕn for n ∈ N over an
alphabet Σ, such that, every parity automaton that is n-lasso-precise for ϕn has
at least |Σ|n states.

Proof. Let Σ be an alphabet. We define ϕn = {σω | σ ∈ Σn} for n ∈ N. We
show that the family ϕn of linear-time properties has the required properties.

Fix n ∈ N, and consider the language ϕn. By definition of ϕn, every lasso-
precise automaton for ϕn for the bound n is in fact an automaton for ϕn. Let
A = (Q,Q0, δ, µ) be a nondeterministic parity automaton for ϕn. For each σω ∈
ϕn there exists at least one accepting run ρ = q0q1q2, . . . of A on σω. We denote
with q(ρ, n) the state qn that appears at the position indexed n of a run ρ. Let
us define the set

Qn = {q(ρ, n) | ∃σω ∈ ϕn : ρ is an accepting run of A on σω}.

That is, Qn consists of the states that appear at position n on some accepting
run on some word from ϕn. We will show that |Qn| ≥ |Σ|n.

Assume that this does not hold, that is, |Qn| < |Σ|n. Since |ϕn| = |Σ|n, this
implies that there exist σ1, σ2 ∈ Σn, such that σ1 6= σ2 and there exists accepting
runs ρ1 and ρ2 of A on σω

1 and σω
2 respectively, such that q(ρ1, n) = q(ρ2, n).

That is, since we assumed that the number of states in Qn is smaller than the
number of words in ϕn, there must be two different words who have accepting
runs visiting the same state at position n. We now construct a run ρ1,2 that
follows ρ1 for the first n steps, ending in state q(ρ1, n), and from there on follows
ρ2. It is easy to see that ρ1,2 is a run on the word σ1 · σ

ω
2 . It is accepting, since

ρ2 is accepting. This is a contradiction, since σ1 · σ
ω
2 6∈ L(A) as σ1 6= σ2.

Thus, we have shown that |Q| ≥ |Qn| ≥ |Σ|n. Since A was an arbitrary NPA
for ϕn, this implies that the minimal NPA for ϕn has at least |Σ|n states. ⊓⊔

In the theorems above we established an upper and a lower bound on the size
of automata for n-lasso-precise approximations. These bounds are independent
of the way the original language is represented. If a language L is given as an ω-
automaton, this automaton is clearly an automaton for the most precise n-lasso-
precise underapproximation of L. In practice, however, we might be interested
in finding a smaller/minimal automaton of the same type for an n-lasso-precise
approximation of L. Note that the minimal n-lasso-precise automaton of the
same type will never be larger than the given automaton.
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3.3 Lasso-precise Approximations with Simpler Acceptance
Conditions

We now turn to establishing the upper bounds for approximating Büchi au-
tomata with safety automata, and, more generally, approximating parity au-
tomata with parity automata with fewer colors. More precisely, we present con-
structions for approximating linear-time properties with automata with certain
acceptance conditions and show that the size of the constructed automaton is
polynomial in the size of an automaton for the original property.

Theorem 3 (Approximating Büchi automata by safety automata). For
every (deterministic or nondeterministic) Büchi automaton A = (Q,Q0, δ, F )
and a bound n ∈ N, there is a (deterministic or nondeterministic, respectively)
safety automaton A′ with n · |Q \ F |2 + |F | states, such that, L(A′) ⊆n L(A).

Idea & Construction. We construct a safety automaton A′ using the following
idea: If an ultimately-periodic word σ = u · vω with |u · v| = n is accepted by a
Büchi automaton A = (Q,Q0, δ, F ), then A has a run for σ, where it takes no
more than n · |Q \F | steps to observe a state in F , and, furthermore F is visited
at least once every n · |Q \ F | steps. In the automaton A′, we keep track of the
number of steps without seeing an accepting state, and reset the counter every
time we visit one. If the counter exceeds n · |Q \ F |, then A′ rejects.

Formally, we define A′ = (Q′, Q′
0, δ

′) as follows:

– Q′ = ((Q \ F )× {1, . . . , n · |Q \ F |}) ∪ (F × {0})
– Q′

0 = (Q0 ∩ F )× {0} ∪ (Q0 \ F )× {1}
– For the transition relation we distinguish two cases. For c < n · |Q \ F |

δ((q, c), α) = {(q′, d) | q′ ∈ δ(q, α), d = 0 if q′ ∈ F, d = c+ 1 if q′ 6∈ F}

otherwise δ((q, c), α) = ∅.

Note that, if the given Büchi automaton is deterministic, then our construc-
tion also produces a deterministic safety automaton. ⊓⊔

Theorems 1 and 3 provide safety automata of different sizes: the safety au-
tomaton obtained by Theorem 1 is exponential in the bound, the safety au-
tomaton obtained by Theorem 3 is linear in the bound. The reason for this
difference is that the size of the automaton constructed according to Theorem 1
is independent of the linear-time property, whereas the size of the automaton
constructed according to Theorem 3 is for a specific linear-time property (given
as a Büchi automaton, whose size enters as a quadratic factor). The following
theorem shows that a further reduction, below the linear number of states in the
bound, is impossible.

Theorem 4. There is a linear-time property ϕ, such that, for every bound n ∈
N, every safety n-lasso-precise automaton for ϕ has at least n states.
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Proof. Let Σ = {0, 1}. We define ϕ as the language over Σ that consists of all
words where the letter 1 occurs infinitely often. Let A = (Q,Q0, δ) be a safety
n-lasso-precise automaton for ϕ. We consider the set Q′ ⊆ Q of states on the first
n positions of an accepting run of the word (0n−11)ω. We show that |Q′| = n

and, therefore, |Q| ≥ n.
Assume that this does not hold, i.e., |Q′| < n; then some state q must appear

on two different positions among the first n positions of the run. By repeating
the part of the run between the two occurrences of q infinitely often, we obtain
an accepting run for the word 0ω, which contradicts our assumption that A is
n-lasso-precise for ϕ. ⊓⊔

With a construction similar to Theorem 3, we can approximate a parity au-
tomaton with m+ 1 colors by a parity automaton with m colors.

Theorem 5 (Approximating parity automata by parity automata with
one color less). For every deterministic parity automaton A = (Q,Q0, δ, µ)
with m+ 1 colors and a bound n ∈ N, there is a deterministic parity automaton
A′ with m colors and n · |Q \ F |2 + |F | states, where F is the set of states with
highest color, such that L(A′) ⊆n L(A).

By iteratively applying Theorem 5, we can approximate any parity automa-
ton with m colors by a corresponding parity automaton with m′ < m colors.
This, however, will incur a blow-up in the size of the automaton that is expo-
nential in the number m of colors. We now provide a direct construction, which
is polynomial both in m and in the size of A.

Theorem 6 (Approximating parity automata by parity automata with
fewer colors). For every deterministic parity automaton A = (Q,Q0, δ, µ) with
m colors, a bound n ∈ N and 0 < m′ < m, there is a deterministic parity
automaton A′ with m′ colors and (n · |Q|+1) · |Q| · (m−m′+2) states such that
L(A′) ⊆n L(A).

Idea & Construction. Our automaton construction is based on the following idea.
An ultimately-periodic word in L(A) representable by a lasso of length n has
an ultimately-periodic run in A of size at most n · |Q|. The ultimately-periodic
run is accepting if the highest color occurring in its period is even. For a given
ultimately-periodic word with lasso of length n, our constructed automaton A′

checks whether this word has an ultimately-periodic accepting run of size n · |Q|
in A. Adapting the same idea as in Theorem 3, we check whether the colors we
wish to eliminate appear within n · |Q| steps. We reject words with runs where
these colors appear with distances larger than n · |Q|. On the other runs we use
the acceptance condition of the remaining colors.

Let A = (Q,Q0, δ, µ) where µ : Q → {0, . . . ,m− 1}. We construct the parity
automaton A′ = (Q′, Q′

0, δ
′, µ′) with µ′ : Q → {0, . . . ,m′ − 1} and where:

Q′ = (Q× {0, . . . , n · |Q|}) ∪ (Q× {0, . . . , n · |Q|} × {−1,m′, . . . ,m− 1})
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and

Q′
0 = {(q, 0) | q ∈ Q0}.

The transition relation and coloring function are given as follows. In contrast to
Theorem 3 we now need to first check which is the highest color that appears in
the period of the run. This check is done respecting the following cases.

Case (1): δ′((q, c), α) = {(q′, c+ 1) | q′ ∈ δ(q, α)} if c < n · |Q| − 1

As we are only interested in the highest color that appears in the period of the
run, case (1) makes sure that we reach this period by skipping the first n · |Q|
steps, i.e., we simply follow the transition relation of A and increase the counter
(denoted by c).

Case (2): δ′((q, c), α) ={(q′, 0, µ(q′)) | q′ ∈ δ(q, α), µ(q′) ≥ m′} ∪

{(q′, 0,−1) | q′ ∈ δ(q, α), µ(q′) < m′} if c = n · |Q| − 1

In Case (2) is the transition to the second phase, once we have skipped the first
n · |Q| states. From here on we save the highest color seen that is larger than
m′ − 1.

Case (3): δ′((q, c, h), α) ={(q′, 0, µ(q′)) | q′ ∈ δ(q, α), µ(q′) > h, µ(q′) ≥ m′} ∪

{(q′, 0, h) | q′ ∈ δ(q, α), µ(q′) = h} ∪

{(q′, c+ 1, h) | q′ ∈ δ(q, α), µ(q′) < h ∨ µ(q′) < m′}

if c ≤ n · |Q| − 1

In case (3) we track the highest color h seen so far. If h is higher than m′− 1 we
save this color and check how long it takes for this color to reappear. In case it
appears in less that n · |Q| steps (µ(q′) = h) we reset the counter for this color. If
a higher color is observed (µ(q′) > h), h is replaced by the color and the counter
is reset.

Case (4): δ′((q, c, h), α) ={(q′, c, h) | q′ ∈ δ(q, α), µ(q′) < m′}

if c = n · |Q| and h = −1

In the case where the counter exceeds n · |Q| for some saved color, the automaton
rejects, but only if colors higher thanm′ were observed along the way. Otherwise,
the automaton A′ accepts as A with the non-eliminated colors. The coloring
function is defined as follows

µ′(q̃) =



















0 q̃ = (q, c)

1 q̃ = (q, c, h), 0 ≤ c < n · |Q|, h is odd

0 q̃ = (q, c, h), 0 ≤ c < n · |Q|, h is even

µ(q) q̃ = (q, c,−1), c = n · |Q|

⊓⊔
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With this, we conclude the study of the approximation of linear-time proper-
ties represented by ω-automata with lasso-precise automata with simpler accep-
tance conditions preserving their determinism. In the next subsection, we turn to
the approximation of nondeterministic automata with lasso-precise deterministic
automata.

3.4 Lasso-precise Deterministic Approximations

We now study lasso-precise approximations from the point of view of the de-
terminism of the automata representing ω-regular languages. The complexity of
determinizing ω-automata, in particular the construction of deterministic parity
automata, has been studied extensively (cf. [18]). The size of the deterministic
automaton that recognizes the same language as the given nondeterministic au-
tomaton is, in the worst case, exponential in the number of states of the given
automaton. By contrast, the size of the deterministic safety automaton provided
by Theorem 1 is independent of the given language and exponential only in the
bound. For small bounds, Theorem 1 thus provides a deterministic lasso-precise
approximation with a small number of states. The following theorem shows that,
for large bounds, it is not, in general, possible to produce small deterministic
lasso-precise approximations. If the bound is as large as the number of states
of the given nondeterministic automaton, then the deterministic lasso-precise
approximation has, in the worst case, an exponential number of states.

Theorem 7. For every k ∈ N there exists a nondeterministic parity automaton
A with O(k) states, such that, for every bound n ≥ |A|, the minimal deterministic
parity automaton A′ with L(A′) ⊆n L(A) has at least 2k states.

Proof. Let Σ = {0, 1, 2}, and consider the language

Ω = {{0, 1}i · 1 · {0, 1}(k−1) · 2 · 1ω | i < k}.

That is, Ω consists of the infinite words over {0, 1, 2} in which the letter 2 appears
exactly once, and the letter exactly k positions prior to that is a 1, preceded by
at most k − 1 letters.

We can construct a nondeterministic parity automaton A = (Q,Q0, δ, µ)
for Ω with 2k + 1 states as follows. We let Q = {0, 1} × {1, . . . , k} ∪ {qa} and
Q0 = {(0, 1)}. The function µ is such that µ(qa) = 0, and µ(q) = 1 for all q 6= qa.
We define the transition relation δ such that δ(qa, 1) = {qa} and δ(qa, α) = ∅ if
α ∈ {0, 2} and

δ((b, i), α) =































{(0, i+ 1)} if b = 0, i < k, α = 0,

{(0, i+ 1), (1, 1)} if b = 0, i < k, α = 1,

{(1, 1)} if b = 0, i = k, α = 1,

{(1, i+ 1)} if b = 1, i < k, α 6= 2

{qa} if b = 1, i = k, α = 2.



Approximate Automata for Omega-regular Languages 13

Let n ∈ N be a bound such that n ≥ 2k + 1, and let A′ be a DPA such that
L(A′) ⊆n L(A). By the definition of Ω and the fact that n ≥ 2k + 1 we have
that L(A′) = Ω. We will show that A′ has at least 2k states.

Suppose that |A′| < 2k. This means that there exist two different words
σ1, σ2 ∈ {0, 1}k such that A′ ends up in the same state when run on σ1 =
α1,1 . . . α1,k and when run on σ2 = α2,1 . . . α2,k. Since σ1 and σ2 are different,
there must exist an i such that α1,i 6= α2,i. W.l.o.g., suppose that α1,i = 1 and
α2,i = 0. Let σ = 1i−1 · 2 · 1ω. Consider the words σ1 · σ and σ2 · σ. In σ1 · σ, the
letter appearing k positions before the letter 2 is 1, and in σ2 · σ this letter is
0. Thus, by the definition of Ω and A′ we have that σ1 · σ must be accepted by
A′, and σ2 · σ must be rejected, which is a contradiction with the fact that A′ is
deterministic and the assumption that σ1 and σ2 lead to the same state.

Since A′ is an arbitrary deterministic parity automaton such that L(A′) ⊆n

L(A), we conclude that the minimal such automaton has at least 2k states. ⊓⊔

4 Automata with Bounded Size

In many cases, one is interested in constructing an automaton of minimal size
for a given language. In this section, we solve the problem of computing n-lasso-
precise automata of bounded size. By iteratively increasing the bound on the size
of the automaton, this approach can be used to construct minimal automata.

Here we consider languages given as LTL formulas [16]. LTL formulas are a
common starting point for many verification and synthesis approaches. Rather
than going through an intermediate precise automaton, here we propose a sym-
bolic approach that directly yields an automaton whose language is n-lasso-
precise approximation for the LTL formula.

Theorem 8. For a linear-time property ϕ given as an LTL formula over AP,
and given bounds n, k and m, deciding whether there exists a deterministic parity
automaton A of size k and number of colors m, such that, L(A) ⊆n ϕ is in ΣP

2 .

Proof. We show that the problem can be encoded by a quantified Boolean for-
mula with one quantifier alternation (2-QBF) of size polynomial in the length
of the LTL formula ϕ, and the bounds k, n and m. Deciding quantified Boolean
formulas in the 2-QBF fragment is in ΣP

2 [13].

Construction.

∃{δs,α,s′ | s, s
′ ∈ Q,α ∈ 2AP}.

∃{µs,c | s ∈ Q, 0 ≤ c < m}

∀{aj | a ∈ AP, 0 ≤ j < max{k, n}}.

∀{lj | 0 ≤ j < max{k, n}}

∀{sj | s ∈ Q, 0 ≤ j < n · k}.

∀{rj | 0 ≤ j < n · k}

φ
k,m
DPA ∧ (φloop → φA⊆ϕ ∧ φ=n

)
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where

– φA⊆ϕ ≡ φk-accrun ∧ φmatch(k) → φ∈Lk(ϕ)

– φ=n
≡ φ∈Ln(ϕ) ∧ φmatch(n·k) → φ∈Ln(A)

The formula encodes the existence of a deterministic parity automaton A =
(Q, q0, δ, µ) with L(A) ⊆n ϕ. The transition relation of the automaton is encoded
in the variables δs,α,s′ that define whether the automaton has a transition from
state s ∈ Q to state s′ ∈ Q with a letter α ∈ 2AP. Additional variables µs,c

define the coloring of the states of the guessed automaton. A variable µs,c is

true if a state s has color c. Using the constraint φk,m
DPA we force a deterministic

transition relation for the automaton and make sure that each state has exactly
one color

The relation ⊆n is encoded in the formula φloop → φA⊆ϕ ∧ φ=n
. To check

whether A ⊆n ϕ we need to check that: (1) A is a strengthening of ϕ, i.e., A ⊆ ϕ,
and (2) A is precise up to ultimately-periodic words of size n, i.e., Ln(A) =
Ln(ϕ). The strengthening is encoded in the constraint φA⊆ϕ ≡ φk-accrun ∧
φmatch(k) → φ∈Lk(ϕ). To check whether A is a strengthening of ϕ we need to
check that all accepting ultimately-periodic runs of size k of A induce ultimately-
periodic words of size k that satisfy ϕ. This is encoded in the formulas φk-accrun,
φmatch(k) and φ∈Lk(ϕ). The formula φmatch(k) encodes an ultimately-periodic run
in A of size k using the variables sj for 0 ≤ j < k which determine which state
of the automaton is at each position in the run and variables rj which determine
the loop of the run. The formula φk-accrun checks whether this run is accepting
by checking the highest color in the period of the run. If both formulas are satis-
fied then it remains to check whether the induced run satisfies ϕ, which is done
using the constraint φ∈Lk(ϕ). The constraint resembles the encoding given in [5]
for solving the bounded model checking problem. It is defined over the variables
aj , where a ∈ AP and 0 ≤ j < k and the variables lj for 0 ≤ j < k. A variable
aj is true if the transition at position j in the run that satisfies φk-accrun and
φmatch(k) represents a letter where a is true and if ϕ allows a to be true at that
position. Variables lj define the position of the loop of the ultimately-periodic
word induced by the run.

If A satisfies the strengthening condition it remains to check whether A
accepts all ultimately-periodic words of size n that satisfy ϕ. This condition
is encoded in the constraint φ=n

≡ φ∈Ln(ϕ) ∧ φmatch(n·k) → φ∈Ln(A). If an
ultimately-periodic word of size n encoded by the variables aj for 0 ≤ j < n and
loop variables lj satisfies ϕ (checked by the formula φ∈Ln(ϕ)), then we match this
ultimately-periodic word to its run in A (using the formula φmatch(n·k)). Notice
that we have to match the word to a run in A of size n · k as words of length n

might induce runs of size n · k. If the latter formulas are satisfied it remains to
check whether the run in the automaton is accepting.

Finally, the formula φloop asserts that only one loop is allowed at a time. All
formulas are of size polynomial in k, n, m and ϕ. ⊓⊔

The construction above can also be used for computing nondeterministic au-
tomata by changing the constraints on the transition relation of the automaton.
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5 Discussion

The key idea behind algorithmic methods like bounded model checking [5] and
bounded synthesis [9] is that, for finite-state systems, it suffices to consider lasso-
shaped executions of bounded size. The notion of n-lasso-precise approximation,
introduced in this paper, exploits the same observation for the construction and
transformation of automata.

The new constructions for n-lasso-precise underapproximations have attrac-
tive properties. Theorem 1 shows that it is possible to approximate a given
language with a deterministic safety automaton whose size is exponential in the
bound, but independent of the given language. For small bounds, any language
can thus be effectively approximated by a deterministic safety automaton. The-
orem 6 shows that reducing the number of colors of a parity automaton incurs
at most a polynomial increase in the number of states of the original automaton.

The results indicate significant potential for new verification and synthesis
algorithms that work with n-lasso-precise approximations instead of precise au-
tomata. A key novelty is that our constructions allow us to approximate a given
temporal property with a property of a simpler type without necessarily reduc-
ing all the way to safety. For example, we can approximate a given temporal
property with a parity automaton with three colors, for which efficient synthesis
algorithms exist [2].

The constructions of the paper allow us to directly construct automata for the
approximations. An interesting topic for future work is to complement these con-
structions with fast techniques that reduce the number of states of an automaton
without necessarily producing a minimal automaton. Similar techniques, which,
however, guarantee full language equivalence rather than n-lasso precision, are
commonly used in the translation of LTL formulas to Büchi automata (cf. [11]).
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