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ABSTRACT Treating malaria in HIV-coinfected individuals should consider potential
drug-drug interactions. Artemether-lumefantrine is the most widely recommended treat-
ment for uncomplicated malaria globally. Lumefantrine is metabolized by CYP3A4, an
enzyme that commonly used antiretrovirals often induce or inhibit. A population phar-
macokinetic meta-analysis was conducted using individual participant data from 10
studies with 6,100 lumefantrine concentrations from 793 nonpregnant adult participants
(41% HIV-malaria-coinfected, 36% malaria-infected, 20% HIV-infected, and 3% healthy
volunteers). Lumefantrine exposure increased 3.4-fold with coadministration of lopinavir-
ritonavir-based antiretroviral therapy (ART), while it decreased by 47% with efavirenz-
based ART and by 59% in the patients with rifampin-based antituberculosis treatment.
Nevirapine- or dolutegravir-based ART and malaria or HIV infection were not associated
with significant effects. Monte Carlo simulations showed that those on concomitant efa-
virenz or rifampin have 49% and 80% probability of day 7 concentrations �200 ng/ml,
respectively, a threshold associated with an increased risk of treatment failure. The risk
of achieving subtherapeutic concentrations increases with larger body weight. An ex-
tended 5-day and 6-day artemether-lumefantrine regimen is predicted to overcome
these drug-drug interactions with efavirenz and rifampin, respectively.
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Malaria is responsible for the heaviest burden of all parasitic infections, with an
estimated 219 million cases and 435,000 deaths reported worldwide in 2017 (1).

The vast majority of malaria deaths (�93%) occurred in the sub-Saharan Africa region.
Due to the substantial geographical overlap between malaria and HIV, many patients
require concomitant treatment with both antimalarial drugs and antiretroviral drugs
(ARVs). This creates a potential for drug-drug interactions, which may affect the
antimalarial treatment outcome. Artemether-lumefantrine (AL) is the most widely used
first-line treatment for uncomplicated falciparum malaria globally. Artemether is rapidly
converted to its active metabolite dihydroartemisinin, which rapidly reduces the par-
asite biomass with a short terminal half-life of 1.5 to 2 h, whereas lumefantrine displays
a longer terminal half-life of 3 to 5 days and is responsible for clearing the remaining
parasites to prevent recrudescence (2). The absorption of lumefantrine is readily
saturable (i.e., dose limited) and markedly affected by food, as coadministration of fat
increases its absorption (2, 3). Lumefantrine is highly protein bound, mostly to high-
density lipoproteins. It is mainly metabolized by CYP3A4 to desbutyl-lumefantrine, a
compound that appears to be more active against malaria than lumefantrine. However,
since systemic lumefantrine exposure is 85- to 300-fold higher than desbutyl-
lumefantrine, lumefantrine is considered responsible for most antimalarial activity
(4–6). Many of the first- and second-line ARVs currently used in developing countries
affect the expression or activity of the CYP3A4 enzyme. Ritonavir is a potent inhibitor
of CYP3A4, while efavirenz and nevirapine are both inducers, the latter with a weaker
induction capacity than the former (7). Various studies have reported that lumefantrine
exposure is significantly decreased when coadministered with efavirenz-based antiret-
roviral therapy (ART) and increased when given with lopinavir-ritonavir-based ART
(8–12). Results are inconsistent in the few studies investigating the effect of nevirapine-
based ART on lumefantrine exposure, showing increased, decreased, or no effect on
lumefantrine exposure (13–18). Dolutegravir-based ART is being rapidly adopted as
first-line HIV treatment; dolutegravir is an HIV-integrase inhibitor reported to have
minimal effects on CYP3A4, and a study has shown that DTG-based ART did not alter
lumefantrine exposure significantly (19, 20). Additionally, no information is available on
whether malaria or HIV disease may affect lumefantrine pharmacokinetics.

The purpose of this meta-analysis was to pool available clinical data to characterize
the effect of ARV drug-drug interactions with artemether-lumefantrine and to identify
any other significant covariates affecting lumefantrine concentrations. This meta-
analysis did not simply collate aggregate results from individual studies but jointly
reanalyzed the individual participant data, using a population pharmacokinetic mod-
eling approach. This technique can identify and quantify the different sources of
variability in the data, thus separating the random unexplained differences between
participants and studies from systematic effects, such as those associated with patient
characteristics (e.g., weight or age), drug-drug interactions, and/or disease effects. With
an increased and diverse study population and larger variability in treatment scenarios
obtained when pooling individual participant data from different studies, it is possible
to quantify the extent of drug-drug interactions and other covariates more robustly
than in the individual primary studies.

RESULTS
Data summary. A total of 16 artemether-lumefantrine pharmacokinetic studies

were identified in a literature review and invited by WorldWide Antimalarial Resistance
Network (WWARN) to contribute to the individual patient data (IPD) meta-analysis.
Studies addressing the pharmacokinetics of lumefantrine in pregnant women and
children were not included, as it was beyond the scope of this meta-analysis. WWARN
received and curated data from 11 artemether-lumefantrine pharmacokinetic studies, 9
from Africa and 2 from the United States, but one U.S. study only contributed summary
values (not individual patient data) and was excluded. Thus, the IPD meta-analysis
consisted of 10 clinical studies with 793 nonpregnant adult participants and 6,100
measured lumefantrine concentrations. Out of these, the concentrations in 341 (5.59%)
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samples were below the lower limit of quantification (LLOQ). All participants were
nonpregnant adults treated with artemether-lumefantrine (Coartem; Novartis Pharma
AG). The distribution of participants and their demographic characteristics across
different studies are presented in Table 1, while an overview of the studies included is
provided in Table 2.

Population pharmacokinetics of lumefantrine. (i) Structural model and effect
of body size. The population pharmacokinetics of lumefantrine was best described
with a three-compartment disposition model (objective function value reduction
[ΔOFV] of 930 points when comparing to a two-compartment model; P � 0.001)
with first-order elimination and transit compartment absorption (ΔOFV, 2,616 com-
pared to a more traditional first-order absorption; P � 0.001). Final pharmacokinetic
parameter estimates are presented in Table 3, and a visual predictive check (VPC)
stratified by study and treatment arm is provided in Fig. 1, showing an adequate model
fit to clinical data. Allometric scaling using total body weight was included in the model
for all disposition parameters to adjust for differences in body size. The use of fat-free
mass or normal fat mass as alternative body size descriptors did not improve the model
fit significantly compared to the use of total body weight (21). In a typical patient
weighing 57 kg, the apparent clearance (CL) was 3.28 liters/h (95% confidence interval
[CI], 3.14 to 3.46) (Table 3).

(ii) Drug-drug interactions. Coadministration of lopinavir-ritonavir-based ART in-
creased lumefantrine exposure substantially; the area under the curve (AUC) was nearly
3.4-fold higher due to 50.1% slower clearance (ΔOFV, 220; P � 0.001) and 67.2%
increased bioavailability (ΔOFV, 40; P � 0.001). Lopinavir-ritonavir-based ART was also
found to slow down the rate of absorption by 47.6% (ΔOFV, 33; P � 0.001). Efavirenz-
based ART significantly increased the clearance of lumefantrine by 89.9% (ΔOFV, 308;
P � 0.001), thus resulting in 47% lower AUC. Rifampin-based antituberculosis treatment
increased lumefantrine clearance by 142% (ΔOFV, 87; P � 0.001), thus reducing AUC by
59%. A small number of patients (n � 4) were administered both rifampin and efa-
virenz, and there was a trend toward an even higher clearance of lumefantrine, but this
was not statistically significant and was not retained in the final model. Dolutegravir-
based ART did not alter lumefantrine exposure. Discordant trends toward slightly
higher or lower exposure in the nevirapine-based ART arms were found in the different
studies, but no significant effect was found in the combined data after adjusting for
other factors (below).

(iii) HIV and malaria disease effects. After adjusting for the substantial drug-drug
interactions above (and other effects explained below), the IPD meta-analysis also
tested for any malaria and HIV disease effects, but none was identified. The HIV-positive
(HIV�) but ART-naive participants from the SEACAT (South East African Combination
Anti-malarial Therapy) study showed a trend toward moderately increased clearance of
lumefantrine, but the same trend was not found with the HIV� ART-naive participants
in the other studies. As the magnitude of this effect was small and not consistent across
studies, it was not retained in the final model. Similarly, no significant consistent
difference in pharmacokinetic parameters was found that could be ascribed to malaria
infection.

(iv) Study and other covariate effects. (a) Diurnal variation. After adjusting for the
effects described above, significant differences in drug concentrations remained be-
tween the studies and, when data were available, between profiles collected after
morning or evening doses. These differences were well captured in the model using
categorical covariate effects on relative bioavailability (i.e., separate values of bioavail-
ability on specific dosing occasions). The highest bioavailability was observed in the
InterACT (Interactions Between Artemether-lumefantrine and Antiretrovirals in HIV-
patients With Uncomplicated Malaria in Tanzania) and the SEACAT studies for the
evening doses (with no significant difference between these two studies), and this was
chosen as the reference value (fixed to 1) to which the bioavailability of other doses was
compared. In the SEACAT studies, the relative bioavailability was 48.6% lower for the
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first (morning) dose (ΔOFV, 63; P � 0.001) and 77.2% lower for the consecutive morning
doses (ΔOFV, 280; P � 0.001). The value of relative bioavailability in the Ugandan
studies was similar and was found to be 26.9% lower than the reference (ΔOFV, 31;
P � 0.001), while the value was 60.1% lower than the reference (ΔOFV, 18; P � 0.001) for
the 6th (morning) AL dose in the Nigeria study 1. Lumefantrine bioavailability in the U.S.
healthy volunteer study was not significantly different from the reference group.

(b) Matrix effect. Lumefantrine concentrations in both arms of Nigeria study 2, which
was the only study measuring concentrations from whole-blood samples (as opposed

TABLE 2 Summary of the study pharmacokinetic protocols

Study name
(reference) Country Treatment (protocol) Sampling schedule (protocol)

Sample collection
type

Sample assay
method (LLOQ
[ng/ml])a

SEACAT 2.4.1 (15) South
Africa

480 mg Coartem twice daily for
3 days (0, 8, and 24 h,
thereafter every 12 h) taken
with 40 ml of soy milk (0.8 g
fat) and, for all doses except
the second, a meal
containing 6 g of fat within 1
h of each dose

0, 0.5, 1, 1.5, 2, 3, 4, 5, 6, 8, 14,
24, 30, 36, 42, 48, 54, 60,
61.5, 62, 63, 64, 65, 66, 68,
70, 72, 96, 120, 144, 168,
336, and 504 h after the 1st
dose

Plasma from
venous blood

LC-MS/MS (20)

SEACAT 2.4.2 (10) South
Africa

Phase 1, 480 mg Coartem,
single dose taken with 40 ml
of soy milk (0.8 g fat) and a
meal containing 6 g of fat
within 1 h of dose
administration

0, 0.5, 1, 1.5, 2, 3, 4, 5, 6, 8, 14,
24, 30, 36, 42, 48, 54, 60, 72,
96, 120, 144, 168, 336, and
504 h after the 1st doseb

Plasma from
venous blood

LC-MS/MS (20)

Phase 2, Coartem 480 mg twice
daily for 3 days (at 0, 8, and
24 h; thereafter every 12 h)
taken with 40 ml of soy milk
(0.8 g fat) and, for all doses
except the second, a meal
containing 6 g of fat within 1
h of each dose

0, 0.5, 1, 1.5, 2, 3, 4, 5, 6, 8, 14,
24, 30, 36, 42, 48, 54, 60,
61.5, 62, 63, 64, 65, 66, 68,
70, 72, 96, 120, 144, 168,
336, and 504 h after the 1st
dose

Plasma from
venous blood

LC-MS/MS (20)

InterACT (53) Tanzania 480 mg Coartem twice daily for
three days, taken with yogurt

Days 3, 7, 14, 28, and 42 after
the 1st dose

Plasma from
venous blood

LC-MS/MS (20)

Uganda study 1 (9) Uganda 480 mg Coartem, single dose
taken with standard
Ugandan breakfast

0, 1, 2, 4, 6, 8, 12, 24, 48, and
72 h after the 1st (single)
dose

Plasma from
venous blood

LC-MS/MS (25)

Uganda study 2 (17) Uganda 480 mg Coartem twice daily for
3 days taken with standard
Ugandan breakfast

0, 1, 2, 4, 8, 12, 24, 48, 72, 96,
and 120 h after the 6th (and
last) dose

Plasma from
venous blood

LC-MS/MS (25)

Nigeria study 1 (14) Nigeria 480 mg Coartem twice daily for
3 days with standard
Nigerian meal 30–60 min
postdose

0, 0.5, 1, 1.5, 2, 3, 4, 6, 8, 10,
12, 24, 48, 72, and 96 h
after the 6th (and last) dose

Plasma from
venous blood

HPLC (50)

Nigeria study 2 (18) Nigeria 480 mg Coartem twice daily for
3 days with advice to eat
before medication

Day 7 after the 1st dose Capillary whole
blood from a
finger prick
spotted on a
dried blood
spot

LC-MS/MS
(1,000)

U.S. healthy volunteer
study (8)

USA 480 mg Coartem twice daily for
3 days with advice to take all
drugs with a meal

0, 0.5, 1, 2, 4, 6, 8, 12, 24, 48,
72, 96, 120, 168, 216, and
264 h after the 6th (and
last) dose

Plasma from
venous blood

LC-MS/MS
(1.43)

Uganda study 3 (29) Uganda 480 mg Coartem twice daily for
3 days taken with standard
Ugandan breakfast

0, 1, 2, 4, 8, 12, 24, 48, 72, 96,
120, 192, 480, and 600 h
after the 6th (and last) dose

Plasma from
venous blood

LC-MS/MS (25)

Uganda study 4 (20) Uganda 480 mg Coartem twice daily for
3 days taken with standard
Ugandan breakfast

0, 1, 2, 4, 8, 12, 24, 48, 72, 96,
168, and 264 h after the 6th
(and last) dose

Plasma from
venous blood

LC-MS/MS (25)

aLC-MS/MS, liquid chromatography-tandem mass spectrometry; HPLC, high-performance liquid chromatography; LLOQ, lower limit of quantification.
bThe samples from 61.5 to 70 h were not drawn for the single-dose phase of SEACAT 2.4.2.
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to venous plasma samples), were much higher than in all other studies. A scaling factor
of 2.28-fold was included to account for this matrix effect (ΔOFV, 122; P � 0.001), which
is consistent with previous reports (22, 23).

(c) Dosing time. The predose (i.e., morning samples before the 6th dose) concentra-
tions in Nigeria study 1 and the U.S. healthy volunteer study were higher and incon-
sistent with the profile collected after the observed 6th dose. The actual dosing time of
the previous (5th) dose was not reported, so it had been imputed to exactly 12 h before
the morning dose. We adjusted for this by estimating a delay in the absorption for this
specific occasion, �4.3 h (ΔOFV, 17; P � 0.001).

(d) Weight-adjusted dose. Finally, a negative trend between bioavailability and
milligrams per kilogram of dose was detected in the ART-naive arms of SEACAT,
InterACT, and for the AL-only arm of Uganda clinical study 1. However, this trend was
not present in the other studies and arms and was not significant in the model when
tested overall.

(v) Simulations on the attainment of therapeutic day 7 concentrations. The
Monte Carlo simulations from the final model (Table 4 and Fig. 2) show how body
weight and different cotreatments for HIV and tuberculosis affect lumefantrine con-
centrations and the probability of achieving the purported therapeutic concentration
threshold of � 200 ng/ml (22). A typical 57-kg participant (median body weight in the
study) is predicted to achieve satisfactory day 7 concentrations when treated with AL
alone or concomitantly with nevirapine or dolutegravir and largely exceed them if on
lopinavir-ritonavir. On the other hand, the same patient has 49% and 80% probability

TABLE 3 Final lumefantrine population pharmacokinetics parameter estimates

Parameter
Typical
value 95% CIa

BSV, BVV, or
BOV (CV%)b 95% CIa

Clearance (CL) (liters/h)c 3.28 3.14 to 3.46 20.8�, 15.4�� 18.1 to 23.1, 13.3 to 17.5
Central vol of distribution (liters)c 60 56.3 to 63.9
Relative oral bioavailability (F) 1 FIXED 30.2�, 56.5��� 25.4 to 35.6, 53.8 to 58.9
Mean absorption transit time (h) 2.86 2.74 to 2.94 31.9��� 28.8 to 35.1
No. of hypothetical transit compartments 7.58 7.06 to 8.10
First-order absorption rate constant (1/h) (Ka) 0.727 0.62 to 0.83 73.8��� 67.5 to 80.8
Intercompartmental clearance between central

and first peripheral compartment (liters/h)c

0.63 0.60 to 0.67 29.1� 26.1 to 32.4

Vol. of distribution of the first peripheral
compartment (liters)c

182 171 to 195

Intercompartmental clearance between central
and second peripheral compartment
(liters/h)c

1.55 1.43 to 1.72

Vol. of distribution of the second peripheral
compartment (liters)c

39.1 37.1 to 41.2

Additive error (ng/ml) 32.9 32.2 to 33.5
Proportional error (%) 14.2 13.9 to 14.4
Efavirenz on CL (%) 89.9 81.1 to 99.7
Lopinavir-ritonavir on CL (%) �50.1 �53.0 to �46.4
Lopinavir-ritonavir on F (%) 67.2 49.1 to 88.9
Lopinavir-ritonavir on Ka (%) �47.6 �56.5 to �37.4
Rifampin-based TB treatment on CL (%) 142 111 to 180
First dose in SECAT on F (%) �48.6 �54.9 to �41.7
Consecutive morning doses in SEACAT on F (%) �77.2 �80.7 to �73.8
Uganda studies on F (%) �26.9 �32.3 to �20.7
Nigeria study 1 on F (%) �60.8 �73.2 to �47.3
Delay for unobserved dose (h)d 4.30 2.84 to 5.73
Scaling factor for DBS concn (fold)e 2.28 2.05 to 2.55
a95% CI of parameter estimates computed with sampling importance resampling (SIR) on the final model.
b�, BSV, between-subject variability; ��, BVV, between-visit variability; ���, BOV, between-occasion variability. All are expressed as approximate coefficient of
variation (CV%).

cThe typical values of all clearances and volumes of distribution were allometrically scaled with body weight, and the typical values reported are for a patient with a
body weight of 57 kg.

dThis delay in absorption/dosing time applies to the unobserved dose prior to the pharmacokinetic sampling visit in the Nigeria study 1 and healthy volunteer study
in the United States.

eScaling factor adjusting for the difference between concentrations from DBS (Nigeria study 2) and plasma (all other studies).
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of not achieving day 7 concentration above the target when cotreated with efavirenz
or rifampin, respectively. Additionally, participants with larger body weights are pre-
dicted to have lower exposures. The effect of body size on target attainment is modest
when AL is used alone or with nevirapine or dolutegravir, but it becomes critical for
participants of larger weight cotreated with efavirenz or rifampin. Our model predicts
that the risk of day 7 concentrations below the target increases to 62% and 87% for an
80-kg patient on efavirenz or rifampin, respectively. The use of a 4-day regimen of AL
is predicted to reduce the risk of subtherapeutic day 7 concentration to 18% and 50%
for a typical 57-kg patient on efavirenz or rifampin, respectively, and these probabilities
drop further to 3% and 16% with a 5-day regimen. Simulations showed that a 6-day
regimen of AL was necessary to reduce the risk of subtherapeutic day 7 concentration
to 2% for a typical 57-kg patient on rifampin. For an 80-kg patient, a longer 5-day and
6-day regimen for efavirenz or rifampin cotreatment, respectively, reduces the risk of
subtherapeutic concentrations to 5% and 3%.

DISCUSSION

In this IPD meta-analysis of lumefantrine pharmacokinetics, we quantified the effect
of commonly prescribed ARTs on lumefantrine exposure. To the best of our knowledge,
this is the largest IPD meta-analysis of drug-drug interactions of lumefantrine with
antiretrovirals to date, combining 6,100 concentrations from 793 adults in 10 studies, 9
from sub-Saharan Africa and 1 from North America. Although most included studies
were from Africa, they were carried out in different regions, and the continent is known
for its genetic diversity (24), so we believe that significant genetic differences are
represented in our pooled analysis. The pooling of individual participant data allowed
us to reevaluate and characterize the various drug-drug interactions and other cova-
riate effects more robustly and reliably than in any single study. This was accomplished
thanks to the larger sample size and to the flexibility of population pharmacokinetic
modeling, which is able to adjust for study-specific differences and the known effects

FIG 1 Visual predictive check of lumefantrine concentrations versus time, stratified by study and treatment arm. CTRL, control arm;
Ph, phase. The observed lumefantrine concentrations (in the log scale) versus time after the first dose are displayed as blue dots. The
solid and dashed lines are the 50th, 5th, and 95th percentiles of the observed plasma concentration, while the shaded areas are the
90% confidence intervals for the same percentiles, as predicted by the model. The three panels correspond to the data collected from
0 to 24 h, 25 to 220 h, and 221 to 1,175 h after the first dose, respectively.
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FIG 1 (Continued)
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such as patient body size, and separately investigate the drug-drug interactions and
disease effects across the different studies. The pooling of data from different studies
allowed us to investigate the effect of malaria and HIV infection on lumefantrine
exposure and, reassuringly, no effect was found.

The primary aim of this pooled analysis was to characterize the effect of lopinavir-
ritonavir-, efavirenz-, dolutegravir-, and nevirapine-based ART on lumefantrine expo-
sure. Lumefantrine exposure is a key determinant of artemether-lumefantrine treat-
ment success, so increased exposure might be associated with a higher cure rate and/or
a longer posttreatment prophylactic period (25, 26), while a decrease in concentrations
increases the risk of treatment failure.

Lopinavir-ritonavir-based ART increased the exposure of lumefantrine by 3.4-fold
and slowed absorption, delaying the time of peak concentration. Lopinavir-ritonavir is
a potent inhibitor of CYP3A4 isoenzyme, which explains the increased exposure of
lumefantrine when it is coadministered, confirming previous findings from individual

FIG 1 (Continued)
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studies (8–10, 16). The safety of this increased lumefantrine exposure with lopinavir-
ritonavir-based ART is reported in detail elsewhere; in short, there were no serious
adverse events and no clinically significant safety concerns raised (10, 26, 27).

Efavirenz-based ART increased the clearance of lumefantrine, thus decreasing ex-
posure by 47%, confirming previous reports and the known effect of efavirenz as a
potent inducer of CYP3A4 (11, 12, 17, 26). The findings from this pooled analysis are
consistent across studies and provide a more robust estimate since they are based on
a larger number of participants and study settings, and they were able to demonstrate
the particular importance of this interaction in larger adults.

Rifampin-based tuberculosis treatment was found to decrease lumefantrine expo-
sure by 59%, which was expected, since rifampin is known to be a potent inducer of
CYP3A4, and previous physiologically based pharmacokinetic modeling had predicted
this in silico (28). Clinically, the interaction has been shown in a small study in
HIV-infected malaria-uninfected adults (29), which, in this analysis, was pooled with
data from patients on rifampin cotreatment from InterACT, thus confirming and making
the result more robust. Of the 13 participants on rifampin included in our analysis, four
were cotreated with efavirenz, while the rest were not on ART. There was a nonstatis-
tically significant trend toward an even stronger effect on clearance when both
efavirenz and rifampin were combined, but the limited sample size limited our ability
to robustly characterize this interaction, and this was not included in the final model.
Further studies are needed to accurately characterize this clinically significant interac-
tion.

Dolutegravir-based ART had no significant effect on lumefantrine exposure, which

FIG 2 Simulated day 7 concentration of lumefantrine with various drug-drug interactions in the analysis. The box represents the 25th to 75th percentiles, and
the whiskers represent the 2.5th to 97.5th percentiles of the simulated day 7 concentration after Monte Carlo simulations (n � 10,000). The dashed line at
200 ng/ml denotes the suggested threshold.
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suggests that standard doses of AL can be coadministered safely. This finding is of
importance considering the rapid adoption of DTG-based ART as a first-line treatment.

Nevirapine-based ART had no significant interaction with lumefantrine in our IPD
meta-analysis overall. Nevirapine is reported to be an inducer of CYP3A4 isoenzyme,
but the extent of induction is generally considered to be smaller than that of efavirenz
(7, 12), with some studies, such as Mouly et al. (30), reporting no induction of nevirapine
on CYP3A4 enzymes. Previous reports show inconsistent results regarding the effect of
nevirapine on lumefantrine exposure, including the studies contributed to this pooled
analysis, but the magnitude of any interaction shown was relatively small. Noncom-
partmental analyses in Uganda study 2 and Nigeria study 1 reported reduced lume-
fantrine exposure with nevirapine. The SEACAT study showed that nevirapine-based
ART causes a moderate increase in lumefantrine bioavailability (36%), with similar
findings in Nigeria study 2. The difference in findings in the IPD meta-analysis with and
between individual previous studies may be explained by their including effects of
between-occasion variability on bioavailability, while our IPD meta-analysis could
identify and characterize the effect of food (fat) coadministration increasing lumefan-
trine exposure. Accounting for these potential differences between the studies on
lumefantrine exposure was necessary for better characterization of the drug-drug
interactions. After adjusting for this biologically plausible effect, no effect of nevirapine-
based ART on lumefantrine exposure was found in the IPD meta-analysis. This also
points to the importance of standardizing food coadministration when lumefantrine
pharmacokinetics is investigated.

Simulations from the model helped us to identify participants who are at the highest
risk of subtherapeutic concentrations. Most participants treated with AL alone or in
combination with nevirapine are predicted to achieve day 7 concentrations above the
therapeutic target of 200 ng/ml. However, larger participants are at a relatively higher
risk of subtherapeutic day 7 concentrations, e.g., an 80-kg patient on the standard
regimen of AL alone or with nevirapine has 2% risk of day 7 concentrations below the
target. This finding is in line with previous studies reporting that participants with body
weight of �65 kg had a better therapeutic outcome compared to those who
weighed �65 kg (31, 32). In this IPD meta-analysis, the effect of body size was success-
fully described using allometric scaling, and no difference in pharmacokinetic param-
eters remained between participants �65 kg and �65 kg. The increase in concentra-
tions due to lopinavir-ritonavir-based ART resulted in day 7 levels well above the target
in all participants. However, a significant proportion of participants cotreated with
efavirenz or rifampin have day 7 concentrations below 200 ng/ml, and this risk is
exacerbated in participants with larger body weight.

As demonstrated in previous studies, the exposure of artemether, the companion
drug of lumefantrine, was lowered by concomitant administration of efavirenz or
rifampin, but not with lopinavir-ritonavir (11, 12, 26). This may further increase the risk
of artemether-lumefantrine treatment failure in those on concomitant efavirenz or
rifampin and may hasten the development of artemisinin and/or lumefantrine resis-
tance. Hyperparasitemia is another important risk factor for artemether-lumefantrine
treatment failure (22). Drug interactions with efavirenz and rifampin, particularly in
participants with other risk factors such as large body weight or hyperparasitemia, are
of particular concern given the high prevalence of molecular markers mdr86N and
crt76K associated with reduced lumefantrine susceptibility (33–35) and that artemisinin
resistance has been confirmed in at least six countries in Southeast Asia (36, 37).

Alternative dosing regimens for AL are needed to balance the effect of these
drug-drug interactions and ensure successful therapeutic outcomes. Unfortunately,
simply increasing the number of tablets administered at each dose is precluded by
lumefantrine absorption being readily saturable and dose limited with the currently
available formulations (16). The use of new formulations as proposed by Jain et al. may
present a valuable alternative to circumvent this decreased exposure of lumefantrine
(38). A recent study by Tun et al. and Onyamboko et al. where the standard 3-day
course of AL was compared to the extended 5-day regimen reported that the extended
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regimen was well tolerated (39, 40). The simulations from this analysis predict that an
extended 5- or 6-day AL regimen overcomes the effect of drug-drug interactions with
efavirenz and rifampin, respectively, reducing the chances of subtherapeutic concen-
trations from �60% to under 5%, even for an 80-kg person. Prospective clinical
drug-drug interaction studies are needed to evaluate whether these extended regi-
mens of AL or a new lumefantrine formulation can compensate adequately for the
effects of interacting drugs such as efavirenz and rifampin.

Limitations. The pooling of data from diverse studies also presented some chal-
lenges in the IPD meta-analysis. We adjusted the differences between the studies and
occasions according to the available information on food intake with the dose, but the
influence of any undocumented confounding factors cannot be excluded, as is always
the case in pooled analyses. Further studies are recommended to accurately quantify
the effect of concomitant food coadministration and diurnal variation on lumefantrine
exposure. The uncertainty in the time of dosing history for the Nigeria study 1 and the
U.S. healthy volunteer study and the different matrix of drug concentration measure-
ment in Nigeria study 2 were the other hurdles faced. However, the inclusion in the
model of the estimation of time of the previous dose and a matrix scaling factor have
mitigated the consequences of this uncertainty and allowed us to include these two
data sets in our analysis.

Conclusion. A model-based IPD meta-analysis was performed to describe the
population pharmacokinetics of lumefantrine using data from multiple studies and
robustly characterize drug-drug interactions between lumefantrine and commonly
used antiretroviral drugs. No significant effect of nevirapine- and dolutegravir-based
ART coadministration, malaria, or HIV disease were found. Lopinavir-ritonavir-based
ART dramatically increased lumefantrine exposure, while efavirenz-based ART and
rifampin-based antituberculosis treatment significantly reduced lumefantrine exposure
significantly, particularly in large adults. This warrants further prospective investigation
to inform dose modifications given that lumefantrine absorption is readily saturable
and dose limited. Various approaches, such as extended 5- or 6-day regimens of AL for
participants on efavirenz-based ART or rifampin-based antituberculosis treatment or
new formulations of lumefantrine, need to be evaluated to ensure optimal artemether-
lumefantrine treatment response. In the interim, full adherence to AL administered with
dietary fat and closer monitoring of treatment response is required in these partici-
pants.

MATERIALS AND METHODS
Data acquisition. A search was conducted in PubMed, EMBASE, clinicaltrials.gov, Google Scholar,

various conference proceedings, and in the Worldwide Antimalarial Resistance Network (WWARN)
pharmacology publication database to identify relevant antimalarial clinical studies published between
1990 and 2016. The search strategy used key terms “lumefantrine pharmacokinetics” or “lumefantrine
concentration,” “clinical study,” and “HIV” or “antiretroviral.” Inclusion criteria permitted data sets of
participants treated with at least one dose of artemether-lumefantrine with or at risk of malaria or
healthy volunteers who were HIV infected or uninfected and/or treated with antiretroviral(s), and
with at least one or more postdose concentrations of lumefantrine (plus desbutyl-lumefantrine)
measured. Under the auspices of the WWARN, corresponding authors of relevant studies were
invited to participate in this IPD meta-analysis (https://www.wwarn.org/working-together/study
-groups/artemether-lumefantrine-arv-pk-study-group). WWARN is a collaborative data-sharing platform
which provides an opportunity to share data and results from studies in the field of antimalarial
treatment. Participating authors agreed to the WWARN terms of submission (41), which ensure that all
data uploaded were anonymized and obtained with informed consent and in accordance with any laws
and ethical approvals applicable in the country of origin. The WWARN semiautomated data manage-
ment, curation, and analysis tools converted submitted data into a set of defined data variables in a
standard format, following the WWARN clinical and pharmacology data management and statistical
analysis plans (42, 43). Individual study protocols were available for all trials included, either from the
publication or as a metafile submitted with the raw data.

Population pharmacokinetic modeling. The population pharmacokinetics of lumefantrine was
described using nonlinear mixed-effects modeling in the software NONMEM (version 7.4.2) and the
algorithm first-order conditional estimation with eta-epsilon interaction (FOCE-I) (44). Various tools such
as Perl Speaks NONMEM (PsN version 4.7.12), Pirana, and Xpose were used to aid the model development
and to generate model diagnostics (45). R software was used to generate plots and to perform
postmodeling analyses (46).
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Various structural models were attempted, from one- to three-compartment disposition with 1st-
order elimination and 1st-order absorption, testing the inclusion of lag time or a chain of transit
compartments to describe the delay in the onset of absorption (47). Both the between-subject variability
and between-occasion variability were assumed to be log-normally distributed. Another level of vari-
ability, i.e., the between-visit variability (BVV), was introduced to capture the difference between phase
1 and phase 2 in SEACAT 2.4.2 study, Uganda studies, and the healthy volunteer study from the United
States. Allometric scaling was used to adjust for the effect of body size on disposition parameters with
allometric exponents fixed to 0.75 for clearance parameters and 1 for volumes of distribution (48).
Besides total body weight, fat-free mass and normal fat mass were tested as alternative descriptors to
characterize the size of drug-clearing organs and blood flows through them and to explore the possibility
that lumefantrine may distribute differentially between muscle or fat tissue (21). A combined additive
and proportional error model was used to describe residual unexplained variability. All samples with
concentrations below the limit of quantification (BLQ) were handled with the M6 method as described
by Beal (49), i.e., BLQ samples were replaced with half of the LLOQ value, except for consecutive values
in a series where the trailing BLQ values were omitted from the model fit but were included in
simulation-based diagnostic plots, such as VPCs. Model development and the inclusion of parameter-
covariate relationships was guided by drops in the NONMEM OFV, assumed to be �2 distributed and thus
using a 3.84-point drop as significant at a P value of � 0.05 for the inclusion of a single parameter in a
nested model, inspection of diagnostic plots, including visual predictive checks (50), and considering at
each step the physiological and scientific plausibility of the proposed change. The robustness of the
parameter estimates of the final model was assessed using the sampling importance resampling (SIR)
method (51).

The strategy used for the inclusion of data from every single study into the joint model was
based on the one proposed by Svensson et al. (52). The data from each study were first briefly
explored separately and included one by one, starting from the SEACAT studies, which were
analyzed first, since they provided richly sampled pharmacokinetic profiles and had an accurate
recording of time and concentration for all doses. Further studies including stepwise and significant
parameter-covariate relationships were explored. If, after testing all the known/observed covariates,
a systematic bias could still be seen in the model prediction of the newly added study, a study effect
was included to adjust for the unexplained difference and prevent it from skewing the estimates of
other covariate effects.

Monte Carlo simulations (n � 10,000) based on the final model were used to predict the lumefantrine
concentrations achieved with the current dosing recommendations in participants of different body
weights and cotreated with different concomitant medications. To evaluate the expected effect of the
pharmacokinetic differences on the therapeutic outcome, we calculated the probability of target
attainment in the various scenarios using the suggested value of lumefantrine day 7 concentrations
above 200 ng/ml, which has previously been associated with better cure rates (22).
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