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Abstract  20 

Quinolones, such as the antimalarial atovaquone, are inhibitors of the malarial 21 

mitochondrial cytochrome bc1 complex, a target critical to the survival of both liver and 22 

blood stage parasites, making these drugs useful as both prophylaxis and treatment. 23 

Recently, several derivatives of endochin have been optimised to produce novel 24 

quinolones that are active in vitro and in animal models. While these quinolones exhibit 25 

potent ex vivo activity against Plasmodium falciparum and P. vivax, their activity against 26 

the zoonotic P. knowlesi is unknown. We screened several of these novel endochin-like 27 

quinolones (ELQs) for their activity against P. knowlesi in vitro, and compared this with 28 

their activity against P. falciparum tested under identical conditions. We demonstrate that 29 

ELQs are potent against P. knowlesi (EC50 values <117 nM), and equally effective against 30 

P. falciparum. We then screened select quinolones and partner drugs using a longer 31 

exposure (2.5 life cycles), and show that proguanil is 10-fold less potent against P. 32 

knowlesi when compared with P. falciparum, while the quinolones demonstrate similar 33 

susceptibility. Finally, we used isobologram analysis to compare combinations of the ELQs 34 

with either proguanil or atovaquone. We show that all quinolone combinations with 35 

proguanil are synergistic against P. falciparum. However, against P. knowlesi, no evidence 36 

of synergy between proguanil and the quinolones was found. Importantly, combining the 37 

novel quinolone ELQ-300 with atovaquone, was synergistic against both species. Our data 38 

identify potentially important species differences in proguanil susceptibility and its 39 

interaction with quinolones, and support the ongoing development of novel quinolones as 40 

potent antimalarials that target multiple species.   41 
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Introduction.  42 

Malaria continues to exert a significant burden on humanity with around 228 million 43 

infections estimated in 2018, an increase from the 217 million infections estimated for 44 

2014 (1). The World Health Organisation currently recommends artemisinin-based 45 

combination therapies (ACT) as the first-line treatment of uncomplicated malaria. These 46 

are composed of a potent, but short-lived artemisinin derivative combined with a long-47 

acting partner drug (2). By using drugs in combination with different targets the intention is 48 

to delay the emergence of resistance to the individual components. However, recent 49 

evidence has emerged in the Greater Mekong subregion of resistance to both artemisinin 50 

(3, 4) and current partner drugs (5, 6). There is, therefore, an urgent need to develop new 51 

drugs and novel combination regimens before reduction in ACT efficacy occurs more 52 

widely.  53 

Quinolones have been investigated as potential antimalarial agents since the Second 54 

World War (7). However, the only successful candidate from this class to emerge from 55 

these studies as an antimalarial has been atovaquone. Atovaquone targets the 56 

mitochondrial cytochrome bc1 complex (8, 9) and is highly potent against Plasmodium 57 

species. Unfortunately, recrudescence after atovaquone monotherapy occurs rapidly. 58 

Atovaquone is therefore used in combination with a synergistic partner drug, proguanil 59 

(10), but even this combination is vulnerable to mutations in pfcytb especially in areas of 60 

cycloguanil resistance (11, 12). Although the target of proguanil is not currently known, 61 

proguanil has recently been shown to increase in potency against Plasmodium falciparum 62 

after a longer in vitro exposure (13). Considering that the mitochondrial targeting 63 

atovaquone-proguanil combination differs in its mechanism of resistance to the 64 

components of current ACT, this combination has been investigated as an alternative 65 

treatment of multidrug resistant malaria infections (14), though it should be noted that the 66 

atovaquone-proguanil combinations tested performed poorly (only 90-92% effective at 42 67 



4 
 

days post-treatment) in that region of Cambodia, and are unlikely to be useful as 68 

treatment. Furthermore, drugs targeting the mitochondria kill both liver- and blood-stage 69 

malaria infections, and so can be used for both prophylaxis and treatment. 70 

New quinolones based on endochin, a compound shown to be active at clearing avian 71 

malaria (15), have recently been synthesised and tested against malaria parasites (16-18). 72 

These endochin-like quinolones (ELQ) are equally effective in ex vivo blood stage screens 73 

against P. falciparum and P. vivax clinical field isolates, and are also effective against 74 

exoerythocytic forms of rodent and monkey (P. cynomolgi) malaria (16). However, the 75 

activity of ELQs against the zoonotic P. knowlesi, an increasingly important cause of 76 

human malaria in Southeast Asia, is unknown. Importantly, recent articles have identified 77 

differences in in vitro (19, 20) and ex vivo (21) susceptibility between P. knowlesi and P. 78 

falciparum to established and experimental antimalarial agents. In particular, in vitro 79 

studies demonstrated that P. knowlesi is up to 8-fold less susceptible than P. falciparum to 80 

inhibitors of dihydroorotate dehydrogenase (e.g., DMS265 (20)), 6-fold less susceptible to 81 

ATP4 inhibitors (e.g., cipargamin, SJ733 (19)), around 3-fold less susceptible to 82 

cladosporin and pentamidine, and 66-fold less susceptible to the oxaborole AN13762 (19). 83 

Conversely, P. knowlesi was shown to be 10-fold more susceptible to dihydrofolate 84 

reductase inhibitors (e.g., pyrimethamine, cycloguanil (20)), around 4.5-fold more 85 

susceptible to ganaplacide (KAF156), and over 3-fold more susceptible to halofantrine 86 

(19). In spite of the reduced susceptibility of P. knowlesi compared with P. falciparum, 87 

many antimalarials remain potent against P. knowlesi in vitro (e.g., 6 nM for cipargamin), 88 

and any clinical significance of these reported species differences is yet to be established. 89 

Here we test the in vitro activity of endochin and an ELQ series for activity against P. 90 

knowlesi, and compare this to the activity of a quinolone-sensitive, reference P. falciparum 91 

line (3D7) under identical experimental conditions, exposed for a single asexual 92 

erythrocytic parasite life cycle (i.e., 27 h for our P. knowlesi A1-H.1 clone (22) and 48 h for 93 
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P. falciparum 3D7 clone). We then assess the impact of longer exposures to proguanil and 94 

select ELQs on the susceptibility of our P. knowlesi and P. falciparum lines. Finally, we use 95 

isobologram analysis in vitro to test for evidence of synergy between proguanil, or 96 

atovaquone, and ELQ compounds against both species.   97 
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Results and Discussion. 98 

Endochin and six endochin-like quinolones (ELQ) were screened under identical in vitro 99 

conditions across one complete asexual erythrocytic life cycle against both the P. knowlesi 100 

A1-H.1 and the P. falciparum 3D7 lines (Table 1). All but one (ELQ-271) of the ELQ 101 

compounds were potent against the P. knowlesi line with EC50 values under 100 nM. The 102 

potency of endochin and the ELQ compounds was similar against both P. knowlesi and P. 103 

falciparum, with a less than two-fold difference observed between species. With the 104 

exception of ELQ-300 all the quinolones screened were more active against P. falciparum 105 

(Table 1), though for endochin and ELQ-331 the differences were not significant (p = 106 

0.6233 and p = 0.5014, respectively; Table 1). ELQ-400 and ELQ-480 are both active at 107 

under 10 nM making them more potent than chloroquine but not as active as 108 

dihydroartemisinin (Table 1). 109 

P. falciparum exhibits significantly enhanced susceptibility to proguanil when incubated for 110 

more than one life cycle (13). Therefore, in preparation for in vitro combination analysis 111 

(isobolograms), we screened ELQ-300 and ELQ-400 as well as proguanil and atovaquone 112 

using a longer incubation time (2.5 life cycles). We had previously found no activity for 113 

proguanil at 10 µM (the highest concentration we tested) after a single life cycle exposure 114 

against either P. knowlesi or P. falciparum (data not shown). However, with a longer 115 

exposure (2.5 cycles), we observed an EC50 value for proguanil of 2461 ± 236 nM for P. 116 

knowlesi, over ten-fold higher than the EC50 value that we observed for P. falciparum 3D7 117 

clone (228 ± 29 nM; Table 2). We expect natural variability within our EC50 values as our 118 

assays are run using asynchronous parasite populations, and because the parasites have 119 

different life cycle lengths, meaning drugs are exposed longer to P. falciparum per life 120 

cycle than for P. knowlesi. Hence, we only consider a greater than three-fold change in 121 

EC50 between species as a potentially important species difference (19).  122 
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Atovaquone, ELQ-300, and ELQ-400 were all more potent after the longer exposure. 123 

Atovaquone potency increased around three-fold from 2.5 nM (20) to 0.7 nM (Table 2), 124 

and was not significantly different between species. ELQ-300 and ELQ-400 were also 125 

more potent after longer in vitro exposures (Tables 1 and 2). Both compounds were now 126 

more active against P. knowlesi than P. falciparum (p < 0.0072), though the fold difference 127 

between species was small (< 3-fold). 128 

Based on these data, combination studies were then designed to explore the in vitro 129 

interactions between the compounds. These experiments were also run over multiple life 130 

cycles to take into account the increased potency of proguanil after longer exposures (13). 131 

As has been shown previously (10, 13, 23), atovaquone is synergistic in combination with 132 

proguanil against P. falciparum (Fig. 1A, Table 3). The investigational quinolones ELQ-300 133 

and ELQ-400 were also synergistic when combined with proguanil against our P. 134 

falciparum line (Fig. 1B, 1C), confirming previous observations for ELQ-300 (16). 135 

Surprisingly, neither atovaquone, nor the ELQ compounds demonstrated a synergistic 136 

interaction in combination with proguanil when tested against P. knowlesi. Instead, all 137 

interactions were additive/indifferent (Fig. 1D-F, Table 3). Without knowing the target of 138 

proguanil or understanding its mechanism of action, it is not possible to speculate on the 139 

reason for this species difference. Clearly, the ten-fold lower proguanil activity against P. 140 

knowlesi (not observed with quinolone activity) coupled with the lack of synergism with 141 

quinolones suggest a species difference in the inhibitory activity of this biguanide.  142 

An alternative drug combination strategy for quinolones is suggested by recent data 143 

indicating that quinolones can inhibit the cytochrome bc1 complex (cyt bc1) at either the 144 

quinol oxidase (Qo) or quinone reductase (Qi) site (24). Atovaquone and ELQ-400 are Qo 145 

site inhibitors (8, 24), while ELQ-300 was shown to target the Qi site (24). Isobolograms 146 

combining a Qo site inhibitor (atovaquone) with a Qi site inhibitor (ELQ-300) have 147 

previously demonstrated a moderately synergistic interaction against P. falciparum strain 148 
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D6 in vitro (25). We confirm this moderately synergistic interaction between atovaquone 149 

and ELQ-300 against our P. falciparum 3D7 line (Fig. 2A) and show also a moderately 150 

synergistic interaction with this combination against our P. knowlesi line (Fig. 2C and Table 151 

3). Combinations of atovaquone with ELQ-400, both inhibitors of the Qo site, were 152 

additive/indifferent against P. falciparum (Fig. 2B) and P. knowlesi (Fig. 2D and Table 3). 153 

Therefore, a more appropriate combination partner for the Qo site inhibitor, atovaquone, 154 

should perhaps be a Qi site inhibitor (such as ELQ-300) which (a) is considerably more 155 

potent than proguanil, and (b) demonstrates moderate synergism in combination with 156 

atovaquone against both P. falciparum and P. knowlesi species in vitro, unlike 157 

combinations with proguanil. 158 

In vivo, proguanil is metabolized to cycloguanil by the liver cytochrome P450 (CYP2C19) 159 

(26, 27). Cycloguanil is an inhibitor of the enzyme dihydrofolate reductase (DHFR), a 160 

component of the folate pathway in malaria parasites. Thus, the drug combination 161 

atovaquone-proguanil actually serves as a triple drug therapy of atovaquone (cytochrome 162 

bc1 inhibitor), proguanil (target unknown), and its metabolite cycloguanil (DHFR inhibitor). 163 

Cycloguanil, like atovaquone, has been shown to be highly potent against P. knowlesi in 164 

vitro (20). Therefore, even though antagonistic interactions between atovaquone and 165 

cycloguanil have been described in vitro (13), the low nanomolar potency of both 166 

cycloguanil and atovaquone (20) should still support this combination for P. knowlesi 167 

infections, despite the reduced activity of proguanil, and its lack of synergy reported here.  168 

In light of the above-mentioned data, the recent strategy proposed to block the cyclization 169 

of proguanil, thereby reducing its metabolism to cycloguanil, ought to be approached with 170 

caution (13). In the absence of cycloguanil, and with the reduced activity of proguanil, 171 

atovaquone may be exposed as a monotherapy against P. knowlesi infections. It will 172 

therefore be critical to screen the cyclization blocked tert-butyl proguanil (13) for its activity 173 

against P. knowlesi, and to test it in combination studies with quinolones in this species.   174 
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To our knowledge this is the first study to demonstrate differences in drug interactions 175 

between two human malaria species. We have reported previously that compounds in 176 

human trials for malaria (e.g., DSM 265, cipargamin) exhibit reduced in vitro susceptibility 177 

to P. knowlesi (19, 20), similar to our observations here for proguanil. Considering all new 178 

malaria treatments will likely comprise of combinations of drugs, it will be critical to ensure 179 

that new combinations involving compounds with reduced susceptibility against P. 180 

knowlesi, interact similarly across species. 181 

Resistance to 10 nM atovaquone (5 × EC50) is induced readily in vitro after exposure to 182 

only 105 parasites of the P. falciparum clone W2, or exposure to 106 parasites of the 3D7 183 

or FCR3 clones (28). Furthermore, exposure of 108 parasites of the P. falciparum Dd2 184 

clone to 10 nM atovaquone (10 × EC50) also selected resistant parasites, but no resistant 185 

parasites emerged to 150 nM ELQ-300 (also 10 × EC50) at the same inoculum (16). This 186 

suggests that the new endochin-like quinolones demonstrate a lower propensity to induce 187 

resistance in that parasite clone (16). Similar tests should now be performed on the P. 188 

knowlesi A1-H.1 line and other newly adapted P. knowlesi lines to explore the propensity 189 

of this species to develop resistance to the various quinolones.  190 

In conclusion, novel endochin-like quinolones exhibit strong antimalarial activity (EC50 191 

values <117 nM) against P. knowlesi in vitro, and are equipotent against P. falciparum. We 192 

demonstrate for the first time that quinolone combinations with proguanil lack synergy 193 

against P. knowlesi in vitro, suggesting distinct mechanisms of action in the malaria 194 

parasites. In contrast, combinations of inhibitors targeting the cytochrome bc1 complex at 195 

the Qo site (e.g., atovaquone) with those targeting the Qi site (e.g., ELQ-300) show 196 

moderate synergism against both species.  197 
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Materials and Methods. 198 

Drugs and experimental compounds. Proguanil hydrochloride (product no. G7048) was 199 

purchased from Sigma-Aldrich UK. Atovaquone was obtained from the Medicines for 200 

Malaria Venture. Endochin-like quinolones were synthesised as described below. 201 

Chemical Synthesis. The chemical synthesis of endochin was performed as originally 202 

described by Andersag and others in 1948 (29), while methods for ELQ-271 and ELQ-300 203 

were described by Nilsen et al. in 2014 (17). Methods for preparing ELQ-316 were 204 

described by Doggett et al. in 2012 (30).  Preparation of ELQ-331 was described 205 

previously by Frueh et al. (31).  Chemical synthesis of ELQ-400 proceeded by the 206 

methods of Stickles and coworkers in 2015 (32).  Synthesis and characterization of ELQ-207 

480 are described below. 208 

5-fluoro-7-methoxy-2-methyl-3-(4-(4-(trifluoromethoxy)phenoxy)phenyl)quinolin-209 

4(1H)-one (ELQ-480): ELQ-480 was synthesized according to the methods described by 210 

Nilsen et al. in 2014 (17). Purity of ELQ-480 was assessed as >95% by proton NMR. 1H-211 

NMR spectra were obtained using a Bruker AMX-400 NMR spectrometer operating at 212 

400.14 MHz in DMSO D6.  The NMR raw data were analyzed using the iNMR Spectrum 213 

Analyst software. Proton chemical shifts were reported in parts per million units (ppm), () 214 

relative to the residual proton at 2.54 ppm in deuterated DMSO D6. J coupling constants 215 

values are in Hertz (Hz). Coupling constants for 19F NMR operating at 376 MHz were also 216 

obtained for compounds containing fluorine elements for additional validation of structure.  217 

NMR spectrum of ELQ-480: 1H-NMR (400 MHz; DMSO-d6):   11.55 (s, 1H), 7.42 (d, J = 218 

8.1 Hz, 2H), 7.25 (d, J = 8.3 Hz, 2H), 7.15 (d, J = 8.7 Hz, 2H), 7.06 (d, J = 8.2 Hz, 2H), 219 

6.76 (s, 1H), 6.63 (d, J = 13.3 Hz, 1H), 3.85 (s, 3H), 2.18 (s, 3H). 220 

Parasite Culture. P. knowlesi parasites (clone A1-H.1) and P. falciparum parasites (clone 221 

3D7) were grown in RPMI 1640 supplemented with 25 mM HEPES, 25 mM Na2HCO3, 10 222 
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mM D-glucose, 2 mM L-glutamine, 50 mg/L hypoxanthine, 25 mg/L gentamicin sulphate, 5 223 

g/L Albumax II and 10% (v/v) donor horse serum (Pan Biotech, P30-0702). All parasites 224 

were grown in human A+ red blood cells (National Health Blood and Transplant, UK). 225 

Parasites were incubated in sealed flasks at 37ºC under a culture gas mixture of 96% N2, 226 

3% CO2 and 1% O2. 227 

Growth inhibition assays and isobologram testing. Drug susceptibility was assessed 228 

precisely as described previously with parasites exposed to the drugs for one complete life 229 

cycle (27 h for P. knowlesi and 48 h for P. falciparum) or 2.5 life cycles (68 h for P. 230 

knowlesi and 120 h for P. falciparum) (19). Drug combination studies were performed as 231 

described previously (19, 23), with the exception that parasites were exposed to drugs for 232 

2.5 cycles instead of one life cycle, and the starting parasitaemia was reduced to 0.5% 233 

while maintaining the haematocrit at 1%. The Fractional Inhibitory Concentrations (FICs) 234 

were calculated as described previously (33). The SYBR green I method was used to 235 

determine parasite viability (19, 34).   236 
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Table 1: Comparison of the in vitro susceptibility of Plasmodium knowlesi (clone A1-H.1) 383 

and Plasmodium falciparum (clone 3D7) exposed to novel endochin-like quinolones for 384 

one complete life cycle. 385 

Compound 

EC50 values (nM) Fold 

Difference 

(Pk/Pf) 

P valueΨ P. knowlesi A1-H.1 

27 h exposure 

P. falciparum 3D7 

48 h exposure 

Endochin 18.9 ± 1.2 18.1 ± 0.5 1.04 0.6233 

ELQ-271 117 ± 12 64.5 ± 3.1 1.81 0.0081 

ELQ-300 15.4 ± 0.9 23.1 ± 1.2 0.67 0.0215 

ELQ-316 47.1 ± 2.6 33.5 ± 2.3 1.41 0.0097 

ELQ-331 49.0 ± 6.2 45.4 ± 1.6 1.08 0.5014 

ELQ-400 6.80 ± 0.26 4.95 ± 0.26 1.37 0.0030 

ELQ-480 7.06 ± 0.32 5.81 ± 0.26 1.22 0.0433 

Chloroquine 33.1 ± 2.0 17.7 ± 1.3 1.87 <0.0001 

Dihydroartemisinin 1.52 ± 0.07 3.64 ± 0.42 0.42 0.0112 

EC50 data are presented as mean ± SEM from at least 4 experiments each performed in 386 

duplicate. Ψ p values are calculated by comparing EC50 values for P. knowlesi versus P. 387 

falciparum using Student’s two-tailed paired t-test. 388 
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Table 2: Comparison of the in vitro susceptibility of Plasmodium knowlesi (clone A1-H.1) 390 

and Plasmodium falciparum (clone 3D7) exposed to proguanil and select quinolones for 391 

two and a half life cycles. 392 

Compound 

EC50 values (nM) Fold 

Difference 

(Pk/Pf) 

P valueΨ P. knowlesi A1-H.1 

68 h exposure 

P. falciparum 3D7 

120 h exposure 

Proguanil 2461 ± 236 228 ± 29 10.79 0.0007 

Atovaquone 0.71 ± 0.02 0.74 ± 0.09 0.99 0.1211 

ELQ-300 5.31 ± 0.3 15.29 ± 1.2 0.35 0.0011 

ELQ-400 1.32 ± 0.2 2.66 ± 0.3 0.50 0.0072 

EC50 data are presented as mean ± SEM from at least 3 experiments each performed in 393 

duplicate. Ψ p values are calculated by comparing EC50 values for P. knowlesi versus P. 394 

falciparum using Student’s two-tailed unpaired t-test. 395 
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Table 3: Mean fractional inhibitory concentrations (FICs) for the drug combinations tested 397 

in this study (Fig. 1 and Fig. 2). 398 

Combination tested 
Mean FICa 

P. knowlesi A1-H.1 P. falciparum 3D7 

Proguanil: Atovaquone 0.986 (0.949-1.024) ADDb 0.545 (0.503-0.586) SYN 

Proguanil: ELQ-300 1.077 (0.970-1.184) ADD 0.660 (0.619-0.700) SYN 

Proguanil: ELQ-400 0.995 (0.858-1.132) ADD 0.631 (0.571-0.690) SYN 

   

Atovaquone: ELQ-300 0.867 (0.814-0.920) M-SYN 0.816 (0.785-0.848) M-SYN 

Atovaquone: ELQ-400 0.980 (0.961-0.998) ADD 1.016 (0.980-1.052) ADD 

a The mean FIC is calculated from all FICs within each experiment, and for all experiments 399 

performed. The mean is reported, with 95% confidence intervals in parentheses. 400 

b SYN = synergistic interaction, M-SYN = moderately synergistic interaction, and ADD = 401 

additive / indifferent interaction.  402 
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Figure 1: Comparison of the in vitro interaction of proguanil with select quinolones against 403 

P. falciparum (clone 3D7; Panels A-C) and P. knowlesi (clone A1-H.1; Panels D-F). 404 

Fractional Inhibitory Concentration (FIC) data are averaged from at least three 405 

independent experiments, each run in triplicate. Error bars show standard error of the 406 

mean (SEM). FIC values < 1.0 are considered synergistic, while FIC values = 1 are 407 

considered additive/indifferent. 408 

 409 

Figure 2: Comparison of the in vitro interaction of atovaquone with two endochin like 410 

quinolones against P. falciparum (clone 3D7; Panels A-B) and P. knowlesi (clone A1-H.1; 411 

Panels C-D). Fractional Inhibitory Concentration (FIC) data are averaged from three 412 

independent experiments, each run in triplicate. Error bars show standard error of the 413 

mean (SEM). FIC values < 1.0 are considered synergistic, while FIC values = 1 are 414 

considered additive/indifferent. 415 
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Figure 1. 417 

 418 
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Figure 2. 420 
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