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Abstract 1 

The reported influence of donor Killer-cell Immunoglobulin-like Receptor (KIR) genes on the 2 

outcomes of haematopoietic cell transplantation (HCT) are contradictory, in part due to diversity of 3 

disease, donor sources, era and conditioning regimens within and between different studies. Here, we 4 

describe the results of a retrospective clinical analysis establishing the effect of donor KIR motifs on 5 

the outcomes of 119 HLA-matched, unrelated donor HCT for adult acute myeloid leukaemia (AML) 6 

using myeloablative conditioning (MAC) in a predominantly T cell deplete (TCD) cohort. We 7 

observed that HCT involving donors with at least one KIR B haplotype were more likely to result in 8 

non-relapse mortality (NRM) than HCT involving donors with two KIR A haplotypes (p=0.019). 9 

Upon separation of KIR haplotypes into their centromeric (Cen) and telomeric (Tel) motif structures, 10 

we demonstrated that the Cen-B motif was largely responsible for this effect (p=0.001). When the 11 

cause of NRM was investigated further, infection was the dominant cause of death (p=0.006). No 12 

evidence correlating donor KIR B haplotype with relapse risk was observed. The results from this 13 

analysis confirm previous findings in the unrelated, TCD, MAC transplant setting and imply a 14 

protective role for donor-encoded Cen-A motifs against infection in allogeneic HCT recipients. 15 
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Introduction 1 

Despite developments in the treatment of patients with haematological malignancies to specifically 2 

target diseased cells, achieving long term remission in adult acute myeloid leukaemia (AML) remains 3 

challenging and haematopoietic cell transplantation (HCT) continues as the mainstay of treatment for 4 

high risk patients1. Selection of volunteer unrelated donors (VUD) for allogeneic HCT is primarily 5 

based on HLA allele matching at the HLA-A, -B, -C, -DRB1 and -DQB1 loci, although many centres 6 

have also recently adopted a permissible matching model including the HLA-DPB1 locus2-5. 7 

However, even in recipients of well-matched grafts, five year overall survival (OS) remains <50%, 8 

with both relapse and death from transplant-related complications remaining significant problems1, 6. 9 

As such, investigation into secondary donor characteristics have been performed and confirmed the 10 

importance of non-HLA factors, particularly donor age and CMV matching, in reducing non-relapse 11 

mortality (NRM)4, 7, 8. 12 

 13 

In addition to these secondary donor characteristics, selection of donors for non-HLA genetic factors 14 

has also been explored as a method to improve HCT outcomes. The Killer-cell Immunoglobulin-like 15 

Receptors (KIR), predominantly expressed on the surface of natural killer (NK) cells, are amongst  16 

the most promising non-HLA candidate gene families. KIR form a family of activating and inhibitory 17 

receptors which, upon binding their cognate HLA ligand, may elicit, or inhibit, an immune response. 18 

The genes encoding these proteins can be grouped into two main haplotypes: KIR A haplotypes are 19 

conserved in gene content and encode only one activating KIR gene (KIR2DS4) in combination with 20 

multiple inhibitory genes (KIR2DL1, KIR2DL3, KIR2DL4, KIR3DL1, KIR3DL2 and KIR3DL3). By 21 

contrast, KIR B haplotypes have a more variable gene content and encode at least one of the 22 

alternative KIR genes9. In addition, KIR haplotypes may be further defined according to their 23 

centromeric (Cen) or telomeric (Tel) gene motifs10. 24 

 25 

The relevance of KIR-mediated immunity in HCT to treat AML was first discovered by investigating 26 

disparity between donor and recipient inhibitory KIR ligands, subsets of HLA class I molecules 27 
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encoding the HLA-C1, -C2 and -Bw4 motifs, in haploidentical T cell-depleted (TCD) 1 

transplantations11. Ruggeri et al. (2002)12, demonstrated protection from disease relapse without 2 

concurrent increase in frequency of graft versus host disease (GVHD) in AML recipients whose grafts 3 

were derived from donors possessing KIR ligands that were not present in the recipient, often referred 4 

to as “missing self”. As such, they proposed that graft versus leukaemia (GVL) alloreactivity could be 5 

mediated by donor NK cells when KIR ligand disparity was present. Importantly, this effect appeared 6 

to be limited to AML recipients as the same effect was not observed in acute lymphoblastic leukaemia 7 

(ALL) patients. Following this, several studies have confirmed this model in haploidentical and other 8 

HLA-mismatched allogeneic transplant settings13, 14.  9 

 10 

In addition to relapse and GVHD, infection remains a major contributor to the high mortality rates 11 

associated with HCT. In addition to de novo infections acquired during the extended periods of 12 

immunosuppression, viral reactivation is also a common cause of morbidity and mortality. In the UK, 13 

frequent use of TCD as GVHD prophylaxis, often utilising alemtuzumab, may exacerbate this issue15. 14 

NK cells are the first lymphocyte subset to reconstitute following HCT and are known to target 15 

virally-infected cells. However, NK cell reactivity resulting from KIR-ligand mismatching has, in 16 

contrast to its findings in relapse, been proposed to increase patients’ susceptibility to 17 

infection-related mortality16, 17. 18 

 19 

Although mismatches between donor and recipient KIR ligands are not possible in HLA-matched 20 

transplants, KIR-mediated alloreactivity may still exist, as donor NK cells may express inhibitory 21 

KIR specific for ligands that are not encoded by either the patient or donor. This represents a “missing 22 

ligand” condition that has been shown to increase the risk of acute GVHD (aGVHD) but decrease the 23 

risk of relapse, ultimately increasing OS and disease-free survival (DFS)18-23. In addition, there are 24 

KIR molecules whose ligands are yet to be defined which may also permit KIR-mediated 25 

alloreactivity.  26 

 27 
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The most recent KIR-mediated alloreactivity model has been proposed based on findings from a large 1 

cohort of T cell replete, myeloablative conditioning (MAC) transplants. Using this model, a scale of 2 

alloreactivity is established based on the activating KIR content of the graft, reflected by the donor’s 3 

KIR haplotypes. This has shown that OS can be increased by selecting donors who encode at least one 4 

copy of the KIR B haplotype (KIR Bx)24. Upon further investigation, it was discovered that Cen-B 5 

motifs were predominantly associated with this outcome, and their presence correlated with a 6 

significant reduction in relapse and improved DFS, particularly in HLA-C mismatched transplants 7 

where the recipient encodes the HLA-C1 ligand10, 25. However, when a similar comparison 8 

investigating Cen motifs was performed in a large cohort of transplants utilising reduced intensity 9 

conditioning (RIC) regimens, no significant difference was observed18, 20. 10 

 11 

The effect of KIR genotype polymorphism on HCT outcomes is therefore controversial and appears 12 

highly dependent on a variety of transplant characteristics. To reduce heterogeneity within the cohort, 13 

this study focusses only on the outcomes of a specific group of HCT recipients: TCD, HLA-matched, 14 

adult, myeloablative transplants to treat AML. Thereafter, we have investigated the influence of donor 15 

KIR genotypes on the outcomes of HCT within this UK cohort.  16 

 17 

Materials and Methods 18 

Study cohort 19 

One hundred and nineteen HCT recipients and their respective VUDs were included in this study. All 20 

transplants took place between December 1996 and June 2011. Transplant inclusion criteria were as 21 

follows: i) UK-based adult transplanted to treat AML, ii) MAC regimen, iii) stem cells provided from 22 

an Anthony Nolan VUD and iv) complete allele-level HLA matching for HLA-A, -B, -C, -DRB1 and 23 

–DQB1, as described previously26. Clinical outcomes data were obtained in collaboration with the 24 

British Society of Blood and Marrow Transplantation. Ethical approval was obtained from the 25 

National Research Ethics Service (www.nres.nhs.uk, application number: MREC 01/8/31). The 26 
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project was approved by Anthony Nolan medical and scientific committees. Informed consent was 1 

obtained from all participants prior to donation of blood or buccal cell samples for genetic analysis. 2 

 3 

DNA extraction 4 

Genomic DNA was extracted from whole blood or buccal swab samples. When extracted from blood, 5 

DNA was obtained either from salting-out27 or paramagnetic bead-based DNA purification (Promega, 6 

Madison, WI, USA). When extracted from buccal swabs, DNA was obtained using Gentra Puregene 7 

Buccal Cell Kit (QIAGEN, Hilden, Germany).  8 

 9 

KIR genotyping 10 

Briefly, presence or absence of 16 individual KIR genes was analysed using a polymerase chain 11 

reaction sequence-specific priming (PCR-SSP) approach described previously28. No distinction was 12 

made between the presence of KIR2DL5A or KIR2DL5B. The presence of at least one KIR B 13 

haplotype-specific locus indicated that the genotype contained at least one B haplotype. Such samples 14 

were depicted as KIR Bx. All samples that lacked the presence of all KIR B loci were assigned the 15 

AA genotype designation (KIR AA). Centromeric (Cen) and telomeric (Tel) gene motifs were 16 

assigned as described previously10. HLA-C1, -C2 and -Bw4 epitope ligands for KIR molecules were 17 

inferred from previous HLA typing. 18 

 19 

Statistical analysis 20 

Survival and DFS probability curves were calculated by the method of Kaplan-Meier29. Groups were 21 

compared using the log-rank test, whilst multivariate analysis was performed by Cox regression30. 22 

Several analyses incurred competing risks. The competing risk in relapse analysis was non-relapse 23 

mortality (NRM), whilst relapse was the competing risk in NRM analysis. When comparing the risk 24 

of infectious mortality between different groups, relapse or death due to any other cause were the 25 

competing risks. For these competing risk analyses, univariate probabilities were calculated using the 26 

cumulative incidence function31. Multivariate competing risk analysis was performed using the 27 

method by Fine and Gray32. A forward stepwise selection of covariates for multivariate analysis was 28 
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performed using p≤0.05 inclusion criteria. Statistical significance was denoted at p≤0.05, whilst 1 

statistical trend was signified by p≤0.1. All univariate and multivariate analyses were performed using 2 

‘R’ software (version 3.4.2).  3 

 4 

Results 5 

Patient and donor characteristics 6 

Donor and recipient demographics and HCT conditions are given in Table 1. Of the 84 donors 7 

encoding at least one KIR B haplotype, 65 encoded at least one Cen-B motif (Cen-Bx). The remaining 8 

54 donors (45%) encoded only Cen-A haplotype motifs (Cen-AA). When comparing the Cen-AA and 9 

Cen-Bx donor groups, the only statistically significant difference was between donor-recipient gender 10 

matching, by which gender-matched transplants were more likely to utilise Cen-Bx donors. As donor 11 

KIR genotyping was not performed prior to donor selection, this criterion was not knowingly selected. 12 

No other significant differences in clinical or prognostic factors were observed between those 13 

transplants using donors encoding Cen-AA or Cen-Bx.  14 

 15 

The overall probabilities of survival (38.6%) and relapse (34.5%) were assessed at the five year 16 

timepoint, whilst NRM (23.0%) was assessed one year post-transplant. When assessing the impact of 17 

the clinical variables on these outcomes of HCT, several factors demonstrated trends and borderline 18 

significance with detrimental outcomes. Older recipients (>40 years) had decreased OS at five years 19 

post-transplant (p=0.049), as did recipients with a history of previous autografts (p=0.028).  20 

 21 

Presence of donor KIR B haplotypes increase incidence of non-relapse mortality 22 

Univariate analysis of the effect of donor KIR haplotypes on the outcomes of HCT associated the 23 

presence of donor-encoded KIR B haplotype with an increase in the incidence of NRM after one year 24 

post-transplant (KIR AA: 9%, 95% confidence interval [CI]=2.9-26.1 vs KIR Bx: 29%, CI=20.6-40.6; 25 

p=0.019; Figure 1A, Table 2). This increase in NRM was associated with statistical trends towards 26 

decreased OS (KIR AA: 49%, CI=34.5-69.4 vs KIR Bx: 34%, CI=25.4-46.6; p=0.06) and DFS (KIR 27 
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AA: 46%, CI=32.2-66.9 vs KIR Bx: 31%, CI=22.5-43.4; p=0.087) at five years post-transplant. 1 

Interestingly, despite most previous analyses implicating KIR-mediated differences in relapse risk, no 2 

statistically significant differences were observed in this dataset (Table 2). 3 

 4 

Following the observation that the presence of donor KIR B haplotypes was associated with increased 5 

NRM probability, donor genotypes were stratified by their Cen and Tel motif patterns. Outcomes in 6 

patients receiving HCT from donors encoding the Tel-Bx motif were not associated with any 7 

difference when compared to Tel-AA donor transplants (Table 2). Presence of the Cen-B motif within 8 

donors, however, was associated with a significant increase in the probability of NRM at one year 9 

post-transplant (Cen-AA: 9%, CI=4.0-21.7 vs Cen-Bx: 34%, CI=24.4-48.4; p=0.001, Figure 1B). This 10 

observation correlated with significantly improved five year OS (Cen-AA: 48%, CI=35.7-63.7 vs 11 

Cen-Bx: 31%, CI=21.6-45.1; p=0.024) and DFS (Cen-AA: 45%, CI=32.9-60.5 vs Cen-Bx: 29%, 12 

CI=19.3-42.6; p=0.045, Table 2). In a multivariate regression analysis, the significant difference 13 

between outcomes of Cen-AA and Cen-Bx donor transplants was preserved (OS: Cen-Bx hazard ratio 14 

[HR]=1.9, CI=1.2-3.1, p=0.01; NRM: Cen-Bx HR=4.2, CI=1.6-11.0, p=0.004, Table 3). 15 

 16 

When compared to the Cen-AA motif structure, the impact of each additional Cen-B motif was also 17 

assessed. This revealed a dose effect, whereby the more copies of donor-encoded Cen-B motif, the 18 

higher the risk of NRM at one year post-transplant (Cen-AA: 9%, CI=4.0-21.7 vs Cen-AB: 33%, 19 

CI=22.0-48.5 vs Cen-BB: 42%, CI=20.5-84.8; p=0.005, Figure 2A). This corresponded with 20 

significant differences in OS (Cen-AA: 48%, CI=35.7-63.7 vs Cen-AB: 37%, CI=25.7-52.7 vs 21 

Cen-BB: 8%, CI=1.3-54.4; p=0.01, Figure 2B) and DFS (Cen-AA: 45%, CI=32.9-60.5 vs Cen-AB: 22 

34%, CI=22.9-49.8 vs Cen-BB: 8%, CI=1.3-54.4; p=0.031, Table 2) at five years post-transplant. 23 

 24 

Cause-of-death analysis implicates donor Cen-B with impaired viral protection 25 

To further investigate how donor-encoded centromeric motif structure affects NRM risk, the 27 26 

transplants resulting in NRM were stratified by cause-of-death. Infection was recorded as a cause-of-27 

death in 19 recipients, whilst GVHD was implicated in only five (cause-of-death in one recipient 28 
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included both GVHD and infection). One transplant resulted in NRM without infection or GVHD, 1 

and data was missing for three further transplants. Accordingly, a competing risk analysis assessing 2 

the risk of death by infection at one year between transplants utilising Cen-AA and Cen-Bx donors 3 

was performed and revealed a strong protective effect of donor-encoded Cen-AA (Cen-AA: 6%, 4 

CI=1.8-17.0 vs Cen-Bx: 25%, CI=15.8-38.4; p=0.006). This withstood multivariate analysis as the 5 

only remaining statistically significant factor (Cen-Bx: HR=5.5, CI=1.5-20.3, p=0.011, Table 3). Of 6 

the 15 instances where data on the type of infection was available, 13 cases (87%) involved viral 7 

infection. 8 

 9 

Discussion 10 

The relevance of matching between donor and recipient HLA types has been well-documented and is 11 

a key determinant of HCT success3, 4. However, the KIR genotype of the donor, encoding receptors 12 

for these hyperpolymorphic HLA, is not routinely considered in VUD selection. Previous studies in T 13 

cell replete MAC cohorts have implicated donor-encoded Cen-B haplotype motif presence with a 14 

beneficial reduction in relapse risk, leading to improved OS and DFS10, 25. By contrast, the results 15 

obtained in this predominantly TCD cohort fail to indicate any beneficial reduction in AML relapse 16 

associated with donor-encoded Cen-B motifs, and instead implicate these motifs with increased NRM 17 

risk, leading to decreased OS and DFS.  18 

 19 

Although our findings contradict these apparently similar studies, the different T cell content between 20 

the grafts may be responsible for the conflicting outcomes. These data may support an orchestrated 21 

role for NK cell interaction with T cells33, interpreted as innate NK cells playing a coordinating role 22 

for early T cell reconstitution after transplant. This NK cell-T cell interaction is likely to be common 23 

to all HCT, but the effects may be more apparent after TCD where T cell function is impaired or 24 

delayed. In addition, our findings concur with the study by Kröger et al. (2006)17, whereby a higher 25 

number of different activating KIRs encoded by the donor corresponded with increased NRM in a 26 

MAC, TCD cohort. Furthermore, another study investigating the effect of TCD on KIR-mediated 27 
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immunity following HCT also observed elevated NRM as a result of increased infection-related 1 

mortality, theorising the observation as a result of increased targeting of antigen-presenting dendritic 2 

cells by activated NK cells16, 34.  3 

 4 

When the cause of death was investigated in the study presented here, infection, particularly viral 5 

infection, was strongly associated with increased mortality in Cen-Bx donor transplants, whereas a 6 

greater level of protection against infection-related mortality was offered by Cen-AA donors. This, 7 

again, contrasts with studies in T cell replete transplants where increasing numbers of activating KIR, 8 

and particularly KIR2DS2 (restricted to the Cen-B motif), were demonstrated to aid control of human 9 

cytomegalovirus (CMV) reactivation35. Viruses, such as CMV, display a range of functions aimed to 10 

modulate NK cell reactivity, including the upregulation of expression of the inhibitory ligand, 11 

HLA-E36, as well as sequestration of activating ligands such as major histocompatibility complex 12 

class I polypeptide-related sequence B (MICB)37. However, viral downregulation of HLA class I 13 

antigen expression, as a means of evading T cell-mediated immunity, can also stimulate NK cell 14 

activation via the recognition of “missing-self”38, 39. Licensed NK cells, which are more functional 15 

owing to expression of at least one inhibitory receptor for a host-encoded HLA class I molecule, 16 

recognize the lack of inhibition and mount an immune response.  17 

 18 

The strong avidity offered by alleles of KIR2DL2/3 commonly located on the Cen-B haplotype motif 19 

has been shown to correspond with functionally stronger licensing than KIR2DL2/3 alleles which 20 

tend to reside on the Cen-A motif40, 41. This increased level of licensing, when tested in cells lines that 21 

fail to express any HLA class I on the cell surface, is capable of stimulating an increased response. 22 

However, complete absence of HLA class I expression is unlikely to be environmentally plausible 23 

during viral infection. As such, presence of high avidity Cen-B KIR2DL2/3 alleles in combination 24 

with downregulated HLA-C may actually offer a greater level of inhibition than the equivalent 25 

interaction between Cen-A KIR2DL2/3 alleles and downregulated HLA-C. The increased inhibition 26 

would require a greater activating signal to supersede it, resulting in decreased NK cell reactivity. In 27 

addition, the delayed reconstitution of KIR2DL1 following HCT may place additional burden on 28 
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KIR2DL2/3 licensed NK cell immunity42. Differential NK cell inhibition via KIR2DL2/3 has also 1 

been proposed as a theory to explain the observation that increasing copies of KIR2DL3-HLA-C1 2 

(typically weak avidity interactions) results in improved resolution of hepatitis C virus infection43, 44. 3 

Additionally, evidence that NK cell education via activating KIRs (such as those which define the 4 

Cen-B motif) renders NK cells hyporesponsive may also indicate improved NK cell reactivity 5 

associated with the Cen-A haplotype motif45. 6 

 7 

Several limitations to the study mean that the results must be approached with some caution. 8 

Although care was taken to maximise cohort homogeneity, the retrospective, multicentre aspect of 9 

this study introduces the caveat of variable transplant protocols and presented difficulties in collecting 10 

complete clinical follow-up data. In addition, the era of transplants ranged considerably, from 1996 to 11 

2011. Amongst other factors, significant evolution of antiviral and antifungal agents has occurred 12 

over this time period. Furthermore, the relatively small sample size and event incidence may be 13 

underpowered to resolve some compound variables. The KIR locus itself introduces a range of 14 

complexities not accounted for in this study. For example, the highly polymorphic nature of each KIR 15 

gene introduces variety in the expression and functionality of each locus. The implementation of high 16 

resolution, allelic-level KIR typing is warranted to resolve these issues in the future46. Finally, the 17 

scope of this analysis has been limited to only investigate the KIR-mediated aspect of immunity, 18 

ignoring other NK cell receptor-ligand signalling pathways and alloreactivity mediated by T and B 19 

cells. Future, well-defined prospective studies using uniform transplant conditions may help to clarify 20 

the effects of the combinations of donor KIR and recipient ligands on HCT outcomes. 21 

 22 

In summary, we have demonstrated that donor-encoded KIR genes can affect the NRM risk following 23 

VUD HCT. Specifically, the presence of donor-encoded Cen-B haplotype motifs conveys a 24 

significant risk of infectious mortality, which in turn equates to a significant reduction in OS. 25 

Multivariate analysis adjusting for other transplant characteristics suggested that donor KIR 26 

centromeric genotype was the only significant determinant for NRM risk. However, these findings 27 

may only be applicable to cases of HLA-matched, unrelated donor, MAC, TCD transplants to treat 28 
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adult AML, as differing HCT scenarios have repeatedly generated contradictory findings, including 1 

observations in our own TCD, RIC cohort (unpublished data). This highlights the important 2 

differences between transplant scenarios and suggests that, when selecting donors based on KIR 3 

genotype information, it is unlikely that a ‘one-size-fits-all’ donor KIR genotype exists. Instead, these 4 

findings support the selection of VUDs based on KIR genotype, but only when considered in parallel 5 

with other transplant factors.  6 
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Table 1 – Recipient and donor demographics  

Variable 
Donor KIR 

Cen-AA 
% 

Donor KIR 
Cen-BX 

% P-value 

Donor age, years      
Median (Range) 34 (20-49)  35 (19-60)  0.88 

≤30 17 31.5 22 33.8 0.94 >30 37 68.5 43 66.2 
Recipient age, years      

Median (Range) 34 (18-64)  37 (18-67)  0.17 
≤40 40 74.1 45 69.2 0.71 >40 14 25.9 20 30.8 

Donor sex      
Female 10 18.5 7 10.8 0.35 Male 44 81.5 58 89.2 

Recipient sex      
Female 22 40.7 24 36.9 0.81 Male 32 59.3 41 63.1 

Recipient-donor sex matching      
Matched 26 48.1 44 67.7 0.049 Mismatched 28 51.9 21 32.3 

Recipient-donor CMV       
Matched 43 79.6 48 73.8 

0.57 Mismatched 10 18.5 16 24.6 
Missing 1 1.9 1 1.5 

Donor positive, Recipient positive 9 16.7 6 9.2 

0.32 
Donor positive, Recipient negative 0 0.0 4 6.2 
Donor negative, Recipient positive 10 18.5 12 18.5 
Donor negative, Recipient negative 34 63.0 42 64.6 

Missing 1 1.9 1 1.5 
Transplant era      

1996-1999 9 16.7 6 9.2 

0.69 2000-2003 19 35.2 25 38.5 
2004-2007 17 31.5 22 33.8 
2008-2011 9 16.7 12 18.5 

T cell deplete  
Yes 43 79.6 54 83.1 

0.41 No 4 7.4 2 3.1 
Missing 7 13.0 9 13.8 

Disease risk – EBMT score      
Good 19 35.2 32 49.2 

0.20 Intermediate/Poor 34 63.0 33 50.8 
Missing 1 1.9 0 0.0 

Stem cell source      
BM 26 48.1 28 43.1 0.71 PBSC 28 51.9 37 56.9 

Previous autografts      
0 50 92.6 62 95.4 0.70 ≥1 4 7.4 3 4.6 

CMV = Cytomegalovirus, BM = bone marrow, PBSC = peripheral blood stem cells. 

Categorical variables were compared by Chi-squared test (or Fisher’s Exact test when n≤5 for any subgroup). 

Continuous variables were compared by Mann-Whitney test. Statistically significant p-values are denoted in 

italics. 



Table 2 – Univariate analyses of recipient and donor factors on OS, relapse, DFS and NRM 

Variable 
Valid 
cases 
(n) 

5 year OS 5 year relapse§ 5 year DFS§ 1 year NRM§ 

%  P-value % P-value % P-value %  P-value 
Donor age, years          

<30 39 42.2 
0.67 

24.2 
0.12 

42.9
0.37 

28.6
0.36 

>30 80 37.2 39.2 32.6 20.2
Recipient age, years          

<40 85 42.6 0.049 34.3 
0.79 

38.4
0.083 

19.2
0.097 

>40 34 28.5 35.3 29.1 32.4
Donor sex          

Female 17 35.9 
0.99 

43.7 
0.66 

26.9
0.53 

29.4
0.49 

Male 102 38.8 33.1 37.3 21.9
Recipient sex          

Female 46 39.0
0.97 

37.9
0.47 

32.5
0.59 

19.8
0.51 

Male 73 38.3 32.3 37.9 25.0
Recipient-donor sex matching    

Matched 70 41.4 
0.41 

35.4 
0.86 

38.0
0.54 

21.7
0.69 

Mismatched 49 34.6 33.3 32.6 24.7
Recipient-donor CMV 
matching 

         

Matched 91 40.8 
0.17 

32.8 
0.33 

38.2
0.14 

21.1
0.52 

Mismatched 26 29.4 43.5 25.4 26.9
Transplant era    

1996-1999 15 60.0 

0.45 

28.6 

0.049 

50.0

0.60 

21.4

0.11 
2000-2003 44 34.1 50.0 31.8 13.6
2004-2007 39 35.6 20.5 33.1 35.9

2008-2011† 21 38.6 31.2 40.7 19.9
T cell deplete          

Yes 97 37.5 
0.28 

34.0 
0.46 

34.9
0.22 

24.1
0.63 

No 6 66.7 16.7 66.7 16.7
Disease risk – EBMT score          

Good 51 36.7 
0.89 

26.7 
0.12 

31.2
0.72 

28.0
0.30 

Intermediate/Poor 67 39.3 40.8 38.1 19.6
Stem cell source          

BM 54 46.0 
0.13 

37.7 
0.59 

39.5
0.49 

18.9
0.41 

PBSC 65 31.88 31.6 32.1 26.4
Previous autografts          

0 112 40.1 0.028 34.0 
0.62 

37.2
0.063 

21.7
0.18 

≥1 7 14.3 42.9 14.3 42.9
Donor KIR genotype          

KIR AA 35 48.9 
0.060 

38.7 
0.60 

46.5
0.087 

8.7 0.019 
KIR BX 84 34.4 32.8 31.3 28.9

Donor Tel motif pattern          
Tel-AA 74 36.2 

0.42 
33.6 

0.77 
34.2

0.47 
27.6

0.13 
Tel-BX 45 42.3 36.1 38.2 15.6

Donor Cen motif pattern          
Cen-AA 54 47.7 0.024 

38.0 
0.45 

44.6 0.045 
9.3 0.001 

Cen-BX 65 31.2 31.5 28.6 34.4
Cen-AA 54 47.7 

0.010 
38.0 

0.75 
44.6

0.031 
9.3 

0.005 Cen-AB 53 36.8 31.2 33.7 32.7
Cen-BB 12 8.3 33.3 8.3 41.7

§ NRM/DFS/Relapse data missing for one transplant. 
† Estimated incidence of OS, relapse and DFS at latest clinical follow-up (4 years) reported. 



Statistically significant results (≤0.05) are italicized. OS = Overall survival, NRM = Non-relapse mortality, 

CMV = Cytomegalovirus, BM = bone marrow, PBSC = peripheral blood stem cells 



Table 3 – Multivariate analysis of OS, NRM and death by infection 

Variable 5 year OS 1 year NRM† 1 year death by infection†‡

HR (95% CI) P-value HR (95% CI) P-value HR (95% CI) P-value
Recipient age, years       

<40 1.00 - 1.00 - 1.00 - 
>40 1.91 (1.15-3.16) 0.012 1.81 (0.82-4.01) 0.15 2.28 (0.91-5.69) 0.078 

Transplant era       
1996-1999     1.00 - 
2000-2003     1.15 (0.15-8.99) 0.89 
2004-2007     5.27 (0.84-32.9) 0.075 
2008-2011     0.74 (0.05-9.93) 0.82 

Previous autografts       
0 1.00 - 1.00 -   
≥1 3.05 (1.30-7.15) 0.010 2.45 (0.55-10.92) 0.24   

Donor Cen motif pattern       
Cen-AA 1.00 - 1.00 - 1.00 - 
Cen-BX 1.90 (1.17-3.10) 0.010 4.16 (1.58-11.00) 0.004 5.50 (1.49-20.32) 0.011 

Statistically significant results (≤0.05) are italicized. OS = Overall survival, NRM = Non-relapse mortality 

† NRM data missing for one transplant. 

‡ Cause-of-death data missing for three transplants. 



Figure legends 

Figure 1: Donor KIR B genotype increases NRM. A) Univariate probability of NRM at one 

year post-transplant for groups based on the presence of at least one donor-encoded KIR B 

haplotype. This demonstrates that a significant increase in NRM is associated with donors 

encoding the KIR BX haplotype structure. B) When the haplotype structure is refined 

according to centromeric motif structure, donor-encoded Cen-B appears culpable for the 

increase in NRM. 

 

Figure 2: Effect of donor Cen-B is dose-dependent. A) Univariate probability of NRM at one 

year post-transplant for groups based on donor-encoded Cen-B motif copy number. With 

each additional Cen-B motif, risk of NRM increases. B) When OS is assessed with the same 

grouping strategy, the detrimental effect of donor Cen-B is also evident. 
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