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ABSTRACT
This thesis is concerned with statistical methodology for 

randomized clinical trials with repeated measurements over time, as 
regards both data analysis and the implications for study design. The 
inherent within-subject dependencies for repeated measurements 
necessitate analyses that take account of their covariance structure. 
There exists a whole battery of methods for analysing repeated 
measures designs, ranging from very simple (e.g. separate t-tests at 
each time-point) to very complicated (e.g. multi-level models with 
arbitrary error structures), but I will focus on "the summary 
statistic approach" which has recently become increasingly popular.

When interest centres around the average response to treatment 
over time, a logical choice of summary statistic is the mean of each 
subject's post-randomisation measurements, with appropriate adjustment 
for pre-treatment measurements. Among the class of "mean summary 
statistics" analysis of covariance (ANCOVA) is shown to be superior to 
its competitors. In particular, variance formulae are derived both 
under a general covariance structure and more specific cases (e.g. 
compound symmetry) , allowing direct comparisons of efficiency among 
different summary statistics and repeated measures designs. The 
importance of precise estimates of the pre-entry levels and the 
consequences for sample size requirements are emphasized.

Some additional topics in relation to mean summary statistics, 
notably; the bias in estimation if pre-treatment means differ, the 
choice between additive or multiplicative models, and the summary 
statistic "area under the curve", are also investigated. For studies 
with restrictions on the range of baseline measurements the negative 
consequences incurred by "regression to the mean" are explored, 
especially regarding the variance for between-group comparisons.

For a more general class of true treatment effects over time, the 
optimal linear summary statistic under any covariance structure is 
derived. Special interest is devoted to the case of linearly diverging 
mean treatment curves, where the optimal alternative to the comparison 
of slopes is defined.
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Asymptotic relative efficiencies are shown to be a useful tool 
when contrasting different designs and different summary statistics, 
both in the planning and reporting of repeated measures clinical 
trials. Finally, comparisons with other approaches are made, and 
recommendations given based on the need to balance theoretical 
considerations with practical matters.
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1 INTRODUCTION : REPEATED MEASURES AND CLINICAL TRIALS

1.1 INTRODUCTION

In the realm of clinical trials it is more of a rule than an 
exception that each subject enrolled is assessed more than once 
with regard to the variable (s) comprising the primary objective of 
the investigation. These multiple recordings may relate either to 
baseline (run-in) visits or to measurements made during the 
treatment period, and there may be several visits performed both 
before as well as after the time of randomisation.

Heuristically, the longitudinal study allows each person to be 
used as his/her own control so that the ever-present heterogeneity 
among persons is reduced. Another advantage of performing a 
repeated measurements experiment is the possibility of considering 
a variety of research hypotheses in the same experiment. Indeed, a 
major difference between longitudinal and cross-sectional data is 
that the former provide information about the correlations between 
responses measured at different times, whereas the latter only 
provide information about the population marginal structure.

Increasing the number of measurements on each subject in a 
clinical trial will obviously increase the available information on 
treatment effects. The optimal way to allocate additional 
measurements over time at the design stage (e.g. before or after 
randomisation) , and the best way to utilize the additional 
measurements at the analysis stage, is, however, not obvious. These 
considerations, pursued with emphasis on practical methodology 
rather than abstract theory, will form the main thread of this 
dissertation.

1.2 OBJECTIVES AND HYPOTHESIS FOR REPEATED MEASURES DESIGNS

Concentrating primarily on randomised clinical trials (RCTs) , 
the possible main hypotheses in a typical repeated measures study 
can broadly be classified into three main categories. These 
consists of the main effect of treatment, the main effect of time, 
and the interaction of the two.

14



For a trial with one post-treatment evaluation, only the first 
of these hypotheses can be tested, and this test of an overall 
treatment effect is in most instances the one underlying the 
decisions concerning the primary objective in a trial. The medical 
question seeking an answer might for instance be; will our new 
treatment lower the average serum cholesterol level for a certain 
population of patients compared to standard treatment.

The main effect of time is usually of less interest. For 
example the finding that average levels of diastolic blood pressure 
across all subjects, ignoring treatment group, varies between 
different time-points will rarely be the answer to a main 
hypothesis. In some instances, however, there might be interest in 
detecting seasonal variations or diurnal variations.

The test for an interaction effect, that is for a treatment 
effect which depends upon the length of time in the trial, will 
often be of interest. There might, for instance, exist theories 
hypothesizing that the treatment effect will increase, attenuate or 
stabilize with time, or that the treatment effect is of a transient 
nature.

1.3 TYPES OF DESIGNS AND TYPES OF RESPONSES

In all that follows emphasis will be on randomised clinical 
trials, although some of the methods may be applicable also to 
laboratory experiments, uncontrolled experimental designs and 
sample survey designs. Within the context of randomised clinical 
trials there are two main types of design, the parallel group and 
the cross-over. My emphasis will be on the former.

There is also a need to decide on what type of responses we 
will concentrate on. Here the choice has been to investigate 
repeated observations of quantitative outcome measures on each 
subject. Thus, we will not be concerned with binary or categorical 
data, count data nor survival type data, though some of the ideas 
may extrapolate to such problems.
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1.4 APPROACHES COMMONLY USED

This introductory section will be confined to a brief résumé of 
the various analyses strategies for repeated quantitative measures 
in clinical trials. More detailed descriptions of what these 
approaches do, and comparison with the summary statistic approach, 
will be saved for chapter 6.

Separate univariate analyses for each post-randomisation visit 
appear frequently in the medical literature and in clinical study 
reports. Matthews et al (1990), and Crowder and Hand (1990), 
provide informative discussions of the weaknesses of such an 
approach.

Repeated measures ANOVA, a modification of split-plot ANOVA, is 
also commonly used. This approach is well described in many 
standard text-books, like Fleiss (1986), and Milliken (1990). 
Relevant articles discussing several aspects of repeated measures 
ANOVA have been written by Rouanet and Lepine (1970), Wallenstein 
(1982), and Yates (1982).

Hotelling's T^, a multivariate analogue of the univariate t- 
test, is sometimes used, even though it is not quite appropriate 
for this task. Descriptions of this approach appear in Chatfield 
and Collins (1980), and Crowder and Hand (1990) .

Multivariate analysis of variance, MANOVA, can be used for many 
different designs, also for repeated measures studies. Descriptions 
with emphasis on repeated measures designs may be found in Crowder 
and Hand (1990), Fleiss (1986), Hand and Taylor (1987), and Rouanet 
and Lepine (1970).

Kenward (1987) has developed a refinement of MANOVA, labelled 
the "ante-dependence" approach, which is more economical in use of 
degrees of freedom to estimate the covariance structure among the 
repeated measurements. This is also discussed by Crowder and Hand 
(1990).
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Useful references in relation to the summary statistic approach 
are; Matthews et al (1990), Dawson and Lagakos (1991), Rowell and 
Walters (1976), and Frison and Pocock (1992). As already hinted 
ANCOVA will often be the recommended summary statistic, good 
references for analysis of covariance being; Cochran (1957), Cox 
and McCullagh (1982), Fleiss (1986), and Senn (1989).

Many more complicated methods have been proposed. Most of them 
fall in the mixed model class (e.g. both fixed and random effects 
appear in the model) as for instance in multi-level models.
Relevant references are; Crowder and Hand (1990), Jones (1993), 
Laird and Ware (1982), and Gumpertz and Pantula (1989).

1.5 THE COVARIANCE STRUCTURE

Interdependence between measurements on the same subject is the 
distinguishing factor between longitudinal and cross-sectional 
designs. For many of the approaches commonly used to analyse 
repeated measurements designs a correct specification of the 
covariance structure is essential for a valid and efficient 
analysis of the data. Hence, a parsimonious parametrization of the 
covariance structure is needed.

For the summary statistics approach, no knowledge about the 
covariance structure is needed for the validity of the analysis. As 
will be seen later on, however, the covariance structure has a 
great impact on the relative efficiencies between various summary 
statistics. It is also useful to be able to assume plausible 
covariance structures at the design stage, to ensure that 
appropriate repeated measurement design strategies and powerful 
summary statistics are chosen.
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1.5.1 Som», mortola for the covariance structure

We now move on to look at some specific classes of covariance 
structures. Assuming that the covariance structure is the same in 
both treatment groups, and that we have t repeated measurements, we 
want to inpose some structure on a covariance matrix of the form

° 2 l • o n '

z = O  2 •

° u . <
In total, an otherwise unstructured matrix has t(t+l)/2 

parameters, t variances and t(t-l)/2 covariances. It is helpful to 
rewrite Z as X = D Ta ■ R  ■ D a , where D * = [<T, <T2 ... CT,] is the

vector of standard deviations and R =

1 P 21

P\2 1
P,.

is the

.Pu • • 1 .
correlation matrix. Having thus removed the variances (but not 
assumed they are equal), we will concentrate on parameterizing the 
correlation structure.

The absolutely simplest structure is independence, when there 
are no random effects and all correlations are zero. This is not 
realistic for repeated measurements designs, since for RCT's there 
will always be within-subject variability present, which 
necessarily implies correlations different from zero.

The simplest generalization is compound symmetry. Which in 
spite of its simplicity is widely adopted as an underlying 
assumption for many of the approaches commonly used, explicitly or 
implicitly. This popular covariance model goes under many other 
names, like; random intercepts model, exchangeability model, and 
split-plot model. The correlation structure is given by = p for 
all i and j (here we are also assuming that for all i) , with
p confined to lie in the interval [-1,1].
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Another popular alternative is the first-order autoregressive

model. with R =

P'

p 2 . p '

1 p 2
• p

p 2 p 1

This structure originates

from an exponentially decreasing trend in the correlation pattern. 
A decreasing trend is plausible, however, in practice, 
exponentially decreasing is to "steep".

A further alternative is the first-order moving average model 
(which is frequently used in time-series analysis), with a

correlation structure determined by or =
1 .i = j
p .|»-j| = 1
0 •|i * j| > 1

A banded or general autoregressive structure has one parameter 
for each diagonal in the matrix, specifically O ii= 6 k, k = |i-j| + l, 
and there are t unknown parameters (including the variance, here 
assumed the same for all time points) .

A flexible family of correlation structures, with only two 
parameters, was introduced by Muftoz et al (199-2), which they called 
a damped exponential correlation structure. The correlation between 
two observations separated by s units of time is modelled as 7 ,
where 7 is the correlation between elements separated by one s- 
unit, and 0 is a damping parameter. Several of the one-parameter 
models are included as special cases in this family. For instance, 
with 0-0 we have compound symmetry, with 0-1 a first-order 
autoregressive model, and with 0— a first-order moving average 
process.
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In addition, for O<0<1 we obtain a family of correlation structures 
with decay rate between those of compound symmetry and first-order 
autoregressive models, this is what is called attenuated 
exponential decay, and should offer plausible models in most 
circumstances. Having 0>1 results in what might be termed 
accelerated exponential decay.

The feasibility of some of these models to explain the 
correlation structure on real data will be explored in section 2.3.

1.5.2 Examples of correlation «tmetnraa from clinical trials

To give some objective evidence on how the correlation 
structures for repeated measurements in clinical trials actually 
turn out, a number of such examples are summarized in table 1.5.1. 
These examples represent the most recent experience of such trials 
that have been encountered in the Medical Statistics Unit at London 
School of Hygiene and Tropical Medicine and all have two randomised 
treatment groups. The aim is to obtain a reasonably representative 
sample of trials covering a variety of diseases and quantitative 
outcome measures.

For each trial table 1.5.1 lists the disease, the number of 
randomised patients, the numbers of pre- and post-treatment 
measurements and the mean time between post-treatment measurements, 
and then for each outcome measure three types of mean correlations. 
The mean of the pair-wise correlations among the pre-entry 
measurements is labelled "pre”, the corresponding mean for the 
correlations among the post-treatment measurements is labelled 
"post", and "mix" refers to the mean of the correlations among all 
pre-entry post-treatment pairs of measurements. The final column in 
the table gives the estimated slope (decrease) in correlation with 
"time" between visits (where "time" denotes the number of visits 
apart). This allows a feeling to be gained for the degree of linear 
decay in correlation with time. The plausibility of a simple linear 
decrease is explored in section 2.3. In nearly all instances the 
post-treatment visits were at equally spaced intervals.
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Table 1.5.1 : Summary of the correlations in repeated measurements from a sample of clinical trials.

Number of visits Mean time
Disease

Number of 
patients

pre
(P)

post
(r)

between post
visits (mths) Outcome measure

Mean
pre

correlation1 
mixed post

Estimated
slope*

Coronary heart 152 3 8 1.5 CPK .65 .62 .67 -.012disease ALAT .69 .64 .67 -.017
ASAT .69 .70 .76 -.006
Alkaline phosphatase .79 .73 .75 .004

Coronary heart 219 2 4 3 HDL .74 .74 .84 -.006disease Triglycerides .68 .56 .56 -.066
Total cholesterol .65 .52 .65 -.011

Hypertension 55 3 12 1 Heart rate .64 .56 .61 -.010
Systolic blood pressure .62 .56 .70 -.006

Hypertension 3450 1 7 2 SBP - .23 .44 -.029
DBP .44 .55 -.024

Intermittent 504 2 2 6 Ankle/arm ratio of SBP .74 .62 .65 _

claudication

Angina 251 1 3 4 Treadmill test distance - .53 .77 CNJOO1

Childhood asthma 138 1 10 3 FEVX _ .70 .81 -.006
1 5 6 PD20 (histamine resp.) .47 .85 -.032

Multiple sclerosis 162 1 3 1 Muscle tone score - .70 .80 -.010
Low back pain 459 2 3 8 Back pain score .85 .29 .75 .000
HIV infection 545 1 6 4 CD4 cell count - .68 .77 -.021

1. pre is the mean of the correlations among the pre-treament visits, post similarly among the post-treatment visits 
mix is the mean of the correlations among pretreatment posttreatment pairs of measurements.

2. Estimated (by least squares) decrease in correlation per visit apart among the posttreatment visits.



Certain general characteristics emerge from these trials. The 
correlations between post-treatment visits mostly average between 
0.6 and 0.8. A similar magnitude of correlation exists between pre
treatment visits, when pS2. The average mixed pre-post correlation 
is mostly of similar magnitude, but with a tendency to be slightly 
lower. Most examples show a slight decline in correlation (amongst 
post-treatment visits) as the time interval between measurements 
increase. The extent and pattern of this decline is illustrated in 
figure 1.5.1, where the 11 first variables from table 1.5.1 are 
included. To reduce the mass of data (in total 531 distinct 
correlation coefficients) without imposing any specific structure 
(apart from smoothness) on the patterns over time, the correlation 
structure for each of the 11 variables has been approximated by a 
smoothed curve (using the function SM50 in SAS, SAS, 1992) through 
its correlation coefficients (in the figure, A-CPK, B-ALAT, and so 
on). There certainly appears to be a slow decrease in correlation 
with time for these variables, whether this decay is more 
complicated than a linear function is impossible to judge with the 
eye.

It is interesting to observe one or two exceptions, in the 
table, from the general pattern outlined above. The hypertension 
trial in elderly patients had somewhat lower correlations for blood 
pressure, and this can be attributed to the fact that treatment 
regimens were adjusted over time in each patient according to 
observed blood pressure; for example, a patient whose blood 
pressure stayed high received additional dosage or supplementary 
drugs. This is perhaps an unusual adaptive feature not commonly 
encountered in studies with repeated measurements. The low back 
pain study had a low mixed correlation, and this reflects the fact 
that a proportion of patients were cured (back pain score-0) and 
such prospect of cure was not closely associated with the original 
severity of disease.
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Figure 1.5.1: Correlation coefficients versus time between m e a s u r e m e n t s  
S m o o t h e d  curves given for the 11 first variables in table 1.5.1

M o n t h s  apart
Figure 1.5.2: Variances over time for the 11 first variables in table 1.5.1 

(For each variable the variances are scaled such that the overall m e a n  equals 1)
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We also need to consider the assumption of homogeneous 
variances over time. It is not possible to make any general 
conclusions for all possible untransformed biological variables, 
since variances often tend to increase with increasing mean values, 
and vice versa . However, to heuristically investigate how plausible 
an equi-variance assumption might be in practice, the variables 
underlying figure 1.5.1 are reused in figure 1.5.2 (using the same 
labelling of the curves) for illustrating how variances typically 
may change with time in clinical trials. For ease of comparison the 
variances have been scaled such that their average for each 
variable equals one. There is little evidence of a consistent 
pattern of change over time from this figure. However, calculating 
some summary statistics, there appears to be a small increase in 
variance with time. For instance, the mean of the pre-entry 
variances is .948, grouping the post-treatment variances into four- 
month periods, the averages are .985 (first 4 months), .996 (middle 
4 months), and 1.069 (last 4 months). Calculating linear regression 
coefficients for the increase (decrease) in variance over time for 
the 11 variables, and testing whether the median of these is zero 
with Wilcoxon's signed-ranks test, results in rejection of the null 
hypothesis, p— 0.02 .

In summary, in most of these examples correlations tend to 
decline slightly over time and mixed correlations are somewhat 
lower. Also, variances might increase slightly with time. But there 
is in many of the examples no major departure from the compound 
symmetry assumption, which will often hold as an adequate 
approximation in practice.
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1.6 THE SUMMARY STATISTIC APPROACH

1-6.1__Introduction

A profile (sequence of repeated measurements over time) usually 
consists of several observations from an underlying continuous 
process, and it is this process about which inferences are 
required. It may well be that the process itself is best 
represented by some summary statistics or derived variates 
calculated from the original measurements. This approach, which is 
termed the summary statistic approach, is particularly valuable 
when a direct comparison of mean profiles is inappropriate.

As described by Matthews et al (1990) this method considers the 
individual subject as the basic unit of analyses and uses the 
responses for each subject to construct a single number which 
summarizes some relevant aspect of that subject's response curve. 
Given the appropriate choice of summary statistics, the subsequent 
analysis is straightforward, since each statistic is treated like a 
conventional response and orthodox techniques can be applied. Very 
few assumptions are required to justify the validity of such an 
analysis. Estimates of error for the summary statistics are based 
solely on the randomisation in the experimental design, not on any 
assumptions about the covariance structure of the repeated 
measurements. If the statistics have a distribution that is far 
from normal then non-parametric methods can be used.

The simplicity and validity of the summary statistic technique 
are thus attractive features for the effective communication of 
clinical trial results. An appropriate choice of summary statistics 
enables the analysis to focus on relevant and clinically 
interpretable aspects of the response. What is not always clear is 
which summary statistic to use in a given situation. There exists 
many possible alternatives, primarily this choice is governed by 
the medical question underlying the trial. From an efficiency point 
of view, the way the outcome variable changes with time, and the 
covariance structure for the repeated measurements, will also have 
important consequences for this choice.
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The summary statistic approach is not a new idea. Apart from 
the often obvious choice to analyse some kind of within-subject 
average value, the analysis of the individual regression 
coefficients resulting from orthogonal polynomial contrasts has 
sometimes been advocated. One of the earliest contributions in this 
respect being the classical paper 'Growth-rate determination in 
nutrition studies with the bacon pig, and their analysis' by 
Hishart (1938). Some other authors who have written on this topic 
are; Bradstreet (1993), Rowell and Walters (1976), and Leech and 
Healy (1959).

The terms "linear contrasts" and "orthogonal polynomials" 
indicate particular types of summary statistics. However, even when 
the underlying curves follow a polynomial, because the repeated 
measurements are intercorrelated, the use of least squares 
estimates is not optimal in any sense, but merely convenient 
(Potthoff and Roy, 1964). This will be elaborated on, and the 
summary statistics actually being optimal will be derived, in 
chapter 5.

It is important to bear in mind that it is the differences 
between the group time trends that determines the efficacy of a 
summary statistic, rather than the shape of the group trends 
themselves.

1.6.2 The General Linear Summary Statistic

The majority of the commonly used summary statistics are 
linearly weighted combinations of the outcomes. As a basis for much 
that follows, we now introduce a definition of a general linear 
summary statistic, and then give its expected value and variance 
under a general covariance structure.

It will be assumed that in a two treatment RCT with a 
continuous outcome variable, y, each subject has p measurements 
made before randomisation and r measurements after randomisation. 
The covariance matrix, consisting of the p+r variances and the 
(p+r)(p+r-1)/2 distinct covariances, is denoted by £. We assume 
that E is the same in both treatment groups.
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Then, the general linear summary statistic, where 1 indexes
treatment group (usually A or B), and j indexes subject within 
treatment group ( j-1, . ., nt), is given by

where Ck denotes the weights for each measurement k (k--(p- 
1),..,0,1,..r). Thus, ; is the summary statistic for subject j in 
treatment group i.

Denoting the true underlying mean vector for treatment group i 
by H t, the first two moments for the general linear summary 
statistic are given by;

Assuming p-1 visit is made before and r-3 visits are made after 
the randomisation, a few straight forward examples of summary 
statistics in this general class are given by;

General formulae for the c'-vectors for the most common linear 
summary statistics will be given in section 5.4.

1.6.3 Categorization of response profile»

The best choice of a summary statistic, as far as efficiency 
and informativeness is concerned, depends on the clinical 
objectives of the study, the covariance structure, and the 
difference between the groups in the time trends (group means over 
time). The first thing to consider is to appropriately address the 
primary objective of the study.

E[s#] = c'/i, and Var[s^] = c '2 c

Post-randomisation mean:

Change, last value-baseline: c ' = [ - l  0 0 1]

Linear regression coefficient: c ' oc [—3 —1 1 3]
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This emphasizes one of the main attractiveness with the summary 
statistics, the possibility for a tailor-made approach to the 
analysis. For instance, is the clinical objective to maintain the 
subjects on a pH>6 during continuous pH measurement, then we might 
use the percentage of time each subject has spent above this 
threshold as a summary statistic. The covariance structure has 
already been considered in the preceding section, here some common 
classes of differences in mean response profiles over time for two 
treatment groups will be given.

Table 1.6.1: Examples of classes of differences in mean response 
profiles over time.

Linear divergence

Attenuated divergence :

Transient effect

Exponential
divergence

Instant effect + 
divergence

Shorttime positive, 
longtime negative
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It is worth emphasizing that the actual shapes of the group 
mean profiles have no direct influence on the analysis, it is the 
difference between the mean profiles that matter. A constant 
difference might originate from an almost instant treatment effect, 
which remains stable over the time period under study. 
Alternatively, any differences in treatment effects over time which 
remain stable after a quick initial response falls in this 
category. This might be exemplified by the CPK-example (from a 
coronary heart disease study) described in section 2.5, and also by 
many studies on systolic and diastolic blood pressure lowering 
drugs.

Linear divergence is meant to mean a steadily increasing 
difference between the mean response profiles as time passes on. 
Examples of RCT's involving this type of divergence are often found 
in studies on pulmonary function data, e.g. PD20 (histamine 
response, see Van Essen-Zandvliet et al, 1992) and FEV1 (see Diem 
and Liukkonen, 1988).

Attenuated divergence is something in between the two earlier 
mentioned categories. The difference between the mean curves 
increases over the whole study period, but the rate of divergence 
gets smaller and smaller. This model is often plausible, for 
instance, for CD4 cell counts in studies on HIV infection (see 
Dawson and Lagakos, 1991) .

A transient effect might, for instance, be the result of a 
single-dose regimen, here, the mean curves diverges during the 
first phase of the study, until a maximum is achieved, after this 
the curves converge, and finally becomes identical again. An 
example of this kind might be found in Matthews et al (1990) in the 
context of aspirin concentration in the blood over time after a 
single dose at time zero.

The final three classes of differences in mean profiles in 
table 1.6.1 may be expected in certain applications. An instant 
effect, followed by some kind of divergence is suggested by the 
example on the concentration of steroisomers of a topical 
ophthalmic medication in the blood (Bradstreet, 1993).
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A degree of divergence that increases with time appears to 
distinguish the groups in a study reported by Diggle (1986) 
concerned with the body-weights of rats. This might be modelled by, 
for example, a quadratic or an exponential divergence. Finally 
there is the possibility that a drug might show a short-time 
positive effect, which in the longer term turns out to be an 
adverse effect. This is sometimes found in cancer trials on tumour 
size data (see Chi, 1990).

1.6.4__Choice of nummary atatiatica

When a constant difference in group time trends is anticipated, 
many plausible summary statistics are available. Often these are 
based on the average of each subjects post-treatment measurements, 
with or without some adjustment for the baseline level; e.g. post
treatment mean (POST), mean change (post-pre) (CHANGE), percentage 
change (from baseline to post mean), and analysis of covariance 
(using post mean as dependent variable, and baseline as covariate) 
(ANCOVA). Some alternative choices are; median value (of each 
subjects post-treatment measurements), and the area under the curve 
(the total area under a subjects response curve, formed by addition 
of the areas under the curve between each pair of consecutive 
observations, usually relying on a linear interpolation between the 
respective measurements) (AUC).

When group trends exhibit a linear divergence over time one 
might choose the linear regression coefficient for each subject 
(with or without baseline covariate adjustment).(SLOPE) or perhaps 
some other measure of rate of change (to be defined in chapter 5) . 
Sometimes one of the summary statistics outlined in relation to a 
constant difference between mean curves might be useful, or a 
modification of one of these, like the mean of the last couple of 
measurements with a baseline covariate adjustment.

Peaked curves, such a plasma concentration curves (of some 
substance) over time, might be analysed using; maximum response 
(concentration) (Cĵ jj), time to reach maximum (tjuj^ , and the area 
under the curve.
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In some studies continuous 24 hour measurements are performed, 
for instance of the pH in the gastric juice in relation to anti
ulcer therapies. Useful summary measures for such studies might be; 
percentage time above some threshold (like pH 6), number of 
episodes below a certain ("at risk”) level, and time to reach a 
predefined controlled level.

1.7 STRUCTURE OF THE REST OF THE THESIS

Chapters 2 and 3 cover the topic of "mean summary statistics". 
That is, summary statistics based on some kind of average of the 
post-treatment measurements for each subject, with or without some 
adjustment for baseline measurement(s) . In section 2.1 a simple 
model is defined for RCT's with repeated measurements, and general 
formulae are given for the estimated difference in treatment 
effects and its variances, for the mean summary statistics; POST, 
CHANGE and ANCOVA. The statistical properties of these three 
commonly used approaches are explored, and the superiority of 
ANCOVA is documented. Sections 2.2 and 2.3 make more precise 
quantitative comparisons between the three approaches for two 
different classes of covariance structures, compound symmetry, and 
decaying correlations with time. While the three methods can be 
formulated as significance tests (two-sample t-tests and a 
covariance adjusted test of difference in mean respectively) 
emphasis is on estimating the magnitude of treatment difference.

There is little previous published information on statistical 
design considerations in repeated measures studies. Hence, section
2.4 is focused on the choice of the number of pre and post
treatment measurements, and the use of power calculations for 
determining the required number of subjects in repeated measures 
designs. Section 2.5 presents analyses of an example, and section 
2.6 discusses the value and limitations of these relatively simple 
approaches.



The extent of bias in estimation if ANCOVA is not used, 
conditional on an observed mean pre-treatment difference, is 
described in section 3.1. Section 3.2 gives some guidance on the 
relative merits of increasing sample size or number of measurements 
for the efficiency of the analysis. Section 3.3 considers the issue 
of additive or multiplicative effects, and instances when the log- 
transformation is particularly useful are pointed out. A further 
summary statistic, the area under the curve, is explored in section 
3.4. The final two sections on mean summary statistics, 3.5 and 
3.6, are aimed at the recommended approach, ANCOVA. They 
investigate the optimal allocation of a fixed number of 
measurements before and after randomisation, and the issue of 
whether to use multiple baselines individually as separate 
covariates or as a single mean summary covariate in the ANCOVA 
model.

Chapter 4 is devoted to "regression to the mean", that is, the 
phenomenon that an individual with an extreme first measurement 
will tend to be closer to the centre of the distribution for a 
later measurement. Emphasis is on the effects of restrictive 
baseline values, as obtained from selection criteria. Sections 4.1 
and 4.2 give some background for within-group comparisons with the 
necessary formulae for the effects of regression to the mean on 
means and variances for measurements taken both pre-entry and post
randomisation. Special interest is in the use of repeated pre-entry 
measurements to decrease the regression to the mean-effect. In 
section 4.3 some results for between-group comparisons are given. 
For studies where selection criteria are used for enrolling 
subjects, the value of allowing for an additional pre-entry visit, 
not underlying the selection, is evaluated, and results for the 
impacts on the variances of the three mean summary statistics are 
given.

Chapter 5 covers "optimal linear summary statistics", where the 
optimality refers to maximization of the between-group difference 
relative to its within-group standard deviation, under specified 
choices of the covariance structure and the mean group differences 
over time.
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To enable comparisons between summary statistics and repeated 
measures designs, the notion of asymptotic relative efficiency 
(Pitman efficiency) for linear summary statistics is introduced in 
section 5.1. Based on Fisher's linear discriminant function, the 
optimal linear summary statistic is defined in section 5.2. In 
section 5.3 emphasis is on analysis of rate of change, and the 
optimal alternative to the slope as a summary statistic is given. 
Section 5.4 gives explicit formulae for the weights of the 
individual measurements to be used for some of the summary 
statistics. Section 5.5 gives optimal choices of, and relative 
efficiencies among, some summary statistics under specific classes 
of assumptions concerning the anticipated alternative hypothesis 
and the covariance matrix. In the last section the chapter's 
general relevance is reviewed.

The final chapter gives an overall perspective of the work done 
and the needs for some further research. In section 6.1 some of the 
approaches commonly used for repeated measures data are described, 
and their advantages and disadvantages relative to the summary 
statistic approach are discussed. Section 6.2 discusses the need 
for further methodology, e.g. allowance for missing values. Section 
6.3 gives final conclusions on how the methods of this thesis 
should have an impact on the design and analysis of repeated 
measures clinical trials in everyday practice.
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2_MEAH SUMMARY STATISTICS: IHS FUNDAMENTAL ISSUES
In many clinical trials one's prime objective is to assess the 

average response to treatment over time, often (but not 
necessarily) in anticipation that treatment response is liable to 
occur quickly and to remain reasonably stable over time.

For a situation of this kind, the logical choice of summary 
statistic is some kind of mean of each subject’s post-randomization 
measurements, possibly after adjusting in some way for pre
treatment measurements. This chapter will be concerned with this 
class of summary statistics, henceforth labeled "mean summary 
statistics".

2.1 GENERAL RESULTS

2.1.1 _x .lr»l g model

In this section a simple model for randomized trials with 
repeated measures will be defined. Now we will restrict ourselves 
to the case of investigations encompassing two treatment groups. 
Most of the results, however, can in quite obvious ways be 
generalized to trials with more groups.

Going back to the model, suppose a randomized clinical trial 
has two treatment groups (i-A or B) with ni patients per group, and 
suppose all patients have p pre-treatment visits k- -(p-1) ... 0,
and r post-treatment visits, k=l ... r. A quantitative measurement 
x is observed at every visit for every patient, and we adopt the 
simple model:

xHk =tiik+em for i-A or B, j-l,..,^ and k-(p-l), ..,0,l,..,r

Mil is the true underlying mean response for treatment i at 
time k. As a result of randomization we can assume = fltk for 
the pre-treatment visits k 5 0. ê k is the j* patient "error" or 
residual variation around the underlying mean , and these errors 
will not be independent within patients.
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Hence, let £ = {<7U } be the covariance matrix for all pairs of 
measurement times k,l. For simplicity we assume this is the same 
for both treatments.

It is helpful to define 3 submatrices:

={<**/} for k,l - 1 ... r ,

2^, = { a u} for k, 1 - -( p-1)  0 , and

Z (-i,={CTJU} for k - -<p-l) ... 0, and 1 - 1

so that we can display

r

Also define a u = p u -<Tk -O, where p u is the within-treatment 
group pairwise correlation between a patient's measurements at 
visits k and 1, and C7k, O, are the standard deviations at visits 
k, 1 within each treatment group. We expect the correlations pu to 
be substantial (typically greater than 0.5 in most trials, see 
table 1.5.1 and the examples given there) since they reflect the 
consistency of patient effects over time, which are otherwise not 
explicitly included in this simple model.

2.1.2__The three approaches

Even for the subclass of clinical trials where interest centers 
around overall levels of response, the choice of summary statistics 
is wide. Possible candidates could for instance be; post-treatment 
mean, mean change relative to baseline, covariance analysis (with 
baseline value as covariate), end-value, end-value - baseline, area 
under the curve, median post-treatment, etc.

In this chapter we will be mainly concerned with the first 
three of these statistics. More precise definitions of the three 
approaches are as follows:
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1) Post-treatment means (POST): a simple analysis using 
the mean of each patient’s post-treatment measurements 
as summary measure.

2) Mean changes (CHANGE): a simple analysis of each 
patient's difference between mean of post-treatment 
measurements and mean of baseline measurements,
the latter often consisting of just a single baseline 
value per patient.

3) Analysis of covariance (ANCOVA) : between-patient 
variations in baseline measurements are taken into 
account, by using the mean baseline measurement
for each patient as covariate in a linear model for 
treatment comparison of post-treatment means.

For brevity, these methods will henceforth be referred to as 
POST, CHANGE and ANCOVA respectively.

2.1.3__Estimates and -variance formulae

Let and be the respective means of the r2,p2 and rp
components of the three submatrices and defined above.
Using this notation we can define the following variance formulae 
for the three analysis approaches under investigation.

1) Post-treatment means (POST):

For each individual the summary statistic is 

Overall post-treatment mean difference *
r  km 1

' V  rp°“__L- ̂  r1"'' — 7 — 7f°"„ „ Zm **> ~ XA~ XB
¡m l  n .  IBi•A l-l i- 1

which has expected value
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For an individual patient, the variance for the summary 
statistic is:

Var
X...+...+XtìB7 ,Ì M xJ +27J ' tm\ ’ g<hir

The last equality is easily seen to hold from a term-by-term 
comparison with the covariance matrix.

2) Mean changes (CHANGE):

For each individual the summary statistic is the mean change.

= * r  - * rp k.

Then the overall treatment difference in these mean changes

- —  È<*r -*r>-— £(*r - * r > = - f r >

which has expected value again equal to P-Z" ~ P t “' since the 
pre-treatment expected values are the same for both treatments.

In the same fashion as for POST it is easily shown that

var[ar -*r>-<*r-*r>]«[— +-]£,- +z„.
vnA "jy
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3) Analysis of c o v a r i a n c e  (ANCOVA) :

The model for ANCOVA based on the individual's post-treatment 
mean 3c£°" , with the pre-treatment mean X as a covariate, is

as follows: X*°*‘ =  H*0*' + P • (xj" — fl''* ) + E^ where E^ are 

independent random errors with assumed constant variance. With 
estimate /J obtained by least squares, we may define

X = X?"' — ji — 5̂ **), where X * ‘ stands for the overall pre

treatment mean averaged over groups.

Then the estimated mean treatment difference

J_ V 1 - o n __L  V  y“«
_ 2ux*j „

- X A Xn
M y-1 r iB 7-1

which again has expected value « l*-/?*' — M *™1 •

From the variance formula for ANCOVA (see Fleiss, 1986)

l . i .  O f r - * r )2Var(x?-*r)= "A + "’ \ [l- corr2{x~,x~)]• var(l*-)n*+n„- 3 1 J nA nB (nA + « ,  -2 ) var(x,r*)

The first term corresponds to the loss of one degree of 
freedom, due to estimation of the slope. The additional correction 
factor in the last term allows for the fact that sampling error of 
the estimated slope leads to a correlation between X%” and X^” .

Using the above notation for components of the pooled 
within-subject covariance matrix.

Var(jr-*r) = —nA+n„-2 ’ 1 , 1 ,

nA +n„-3 "a (nA + nB- 2)l.fn

As the sample size increases the first term approaches unity, 
and in randomized trials the last term becomes negligible. Hence, 
for any reasonable size of trial (say 50 2 subjects per group) we 
can use the simpler approximation:

38



In summary, for a randomized clinical trial all three estimates 
of the mean treatment difference have the same expected value,
n r - n r -

Given the common sample size adjustment

comparison of variance magnitudes may be expressed as:
- +4«/» nt)

the

POST, variance proportional to 

CHANGE, variance proportional to

ANCOVA, variance approximately proportional to

It can be readily shown that ANCOVA always has a smaller 
variance than POST.

ANCOVA also produces a smaller population variance than CHANGE, 

Proof:

_  f} _  _  _
V o r [A N C O V A ] <  V o r [C H A N G E ] c=> - 2 1 . *  <=>

y  prc mix n 2 <I„
J
£ 1
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we c an e x p r e s s  t he left-After m a k i n g  the substitution: X =  —

hand side of the inequality as: f(x) =  x(2 — x) . It is easily shown 
that this function reaches its maximum at x-1 where the value of 
the function is 1, i.e.: X,*, = X^, => Var[ANCOVA] - Var [CHANGE], 
otherwise always: Var[ANCOVA] < Var [CHANGE]

For a design with two measurements, one pre-entry and one post
treatment, this superiority of ANCOVA may be shown in a more direct 
way. A general covariance matrix for this kind of design is given
by:

The corresponding variances for the three approaches are 
related as follows:

Submitting the data to an arbitrary scaling, whereby all the

X =

Var[POST] «er,2 

Var[CHANGE] ~  a 2 + ex2 -  2 p a ,a y 

Var\ ANCOVA ] ~ a 2 (l -  p 2 )

measurements are divided by <7

the following covariance matrix:

pa .
‘ . The variances for the arbitrarily scaled data

are now proportional to:

Var[POST] «  1

Var[CHANGE] «  1 -  p 1 + ( a  . -  p ) 2

V a r[A N C O V A ]~ \ - p 2
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The superiority of ANCOVA relative to POST as well as to CHANGE 
is now evident. It may also be observed that Var[CHANGE] S Var[POST]

Hence, for the mean summary statistic approach we have shown 
that (disregarding the minor correction factors for the variance of 
ANCOVA) , ANCOVA is superior to a) ignoring pre-treatment readings 
and b) simply subtracting pre-treatment readings for each 
individual.

2.2 RESULTS WITH COMPOUND SYMMETRY

When trying to derive new and useful results, there are 
basically two different directions one might take. First one can go 
for general results which are valid in most circumstances. Then few 
assumptions are needed, the results hold globally, but usually 
little can be said about specific examples. The second option is to 
make more assumptions. Then the generalizability gets more 
restricted, but more specific and useful results (in an applied 
sense) will be achieved for these examples in line with the 
assumptions chosen.

In the preceding section, the more general road was followed, 
with variance formulae valid for any variance/covariance matrix. In 
this section more assumptions will be imposed, allowing us to 
produce more specific results.

More specifically, compound symmetry will be assumed. That is, 
we will assume equal variances for all time-points and both 
treatments and also equal correlations between all pairs of time- 
points. Thus,

if if (3^.5 (since

41



Admittingly these are quite restrictive assumptions, 
nevertheless they are used quite frequently, both in the 
literature, and for some standard statistical techniques. For 
example repeated measurements ANOVA (without correcting the degrees 
of freedom for the F-statistic) uses an only slightly more general 
assumption for the covariance matrix, labeled the Huynh-Feldt type 
H-structure (Huynh and Feldt, 1970), whereby all normalized 
contrasts among all repeated measurements have to have the same 
variance.

From the real-world examples of covariance matrices presented 
in table 1.5.1, it was seen that compound symmetry often is a quite 
realistic model for the joint variability in a data set. Also, as 
is shown in section 2.2.3, the results derived below are quite 
insensitive to modest departures from these assumptions.

2.2.1--Comparison of variances with a single baaeline

Often there is just a single pre-treatment measurement and 
several (r) measurements after randomization for each patient and 
we now focus on this simple case.

Under the assumption of compound symmetry, the variances for 
the three approaches currently under investigation can be rewritten 
as :

C H A N G E , variance

A N C O V A , variance

PO S T , variance
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Figure 2.2.1 compares the resulting variances (arbitrarily 
scaled, <72 is factored out), when assuming a correlation of 0.6 
(which is often found in practice, as was observed from the 
examples in table 1.5.1). With this degree of intra-subject 
correlation, and with one pre-entry measurement, the ranking order 
between the three approaches is quite clear, with POST performing 
least favourably and ANCOVA most favourably. Also evident from this 
figure is the increase in precision gained by increasing the number 
of post-treatment visits, which is of an identical magnitude for 
all the three approaches.

Figures 2.2.2 to 2.2.4 makes pairwise comparisons between the 
approaches by plotting ratios of variances for various values of p 
and r. First comparing POST with CHANGE, with a correlation of 0.5 
the variances are identical irrespective of the number of post
treatment visits. With lower correlations POST is more favourable, 
with higher correlations CHANGE is more advantageous. For any given 
correlation, the approach (POST or CHANGE) which is more efficient 
with a single post-treatment measurement, will be increasingly more 
favourable as the number of visits post-randomisation increase.

Comparing POST with ANCOVA (figure 2.2.3), the former becomes 
more inferior the larger the correlation p. This inferiority is 
somewhat more marked if the number of post-treatment visits is 
substantial. If p-0, then the pre-treatment measurements are of no 
value, that is P=0 in ANCOVA in which case the two approaches are 
in principle equivalent. We may plausibly expect p in the range .5 
to .7, in which case the variance for ANCOVA will be around 40% to 
60% less than for POST. This reflects the serious loss of 
statistical efficiency incurred by failing to take account of pre
treatment measurements.

CHANGE becomes less inferior to ANCOVA as the correlation p 
increases (see figure 2.2.4). Again, for any value of p the 
inferiority of CHANGE becomes somewhat more accentuated as the 
number of post-treatment measurements increases. For the plausible 
values of p in the range .5 to .7, the variance for ANCOVA will be 
around 20% to 40% less than for CHANGE.
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Figure 2.2.1 :
V a r i a n c e s  f o r  POST. CHANGE an d  ANCOVA d e p e n d in g  on  r. 

su m in g  e q u i i c o r r e la t i o n  w ith  p  =  0.6 a n d  o n e  p r e t r e a t m e n t  m e a s u r e

Visits pos t—treatm ent
F ig u re  2 .2 .2  :

D e p e n d e n c e  o f  V a r ( C h a n g e ) / V a r ( P o s t )  o n  r a n d  p, a s s u m in g  .
e q u i c o r r e l a t i o n  p  a n d  o n e  p r e t r e a t m e n t  m e a s u r e .

2 .2

2.0

t
i
o  i .o

0.6

0 .4

N o .  o f  p o s t t r e a t m e n t  v i s i t s ,  r
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Dependence o f  V ar(Ancova )/V ar(Post) on r and p .  assum ing . 
eq u ico rre la t io n  p and one pre trea tm en t m easure.

Figure 2.2.3 :

F ig u re  2.2.4 :
D e p e n d e n c e  o f  V a r ( A n c o v a ) / V a r ( C h a n g e )  on  r  a n d  p . a s s u m i n g  . 

e q u i c o r r e l a t i o n  p  a n d  o n e  p r e t r e a t m e n t  m e a s u r e .

o.i

0.0 -1 ________________  _ ___________________ T_______________________,_______________________ ________________________ ,__________________ -_____1 2 3 4 5 6 7
No .  o f  p o s t t r e a t m e n t  v i s i t s ,  r

6
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Note again that for p=0.5 POST and CHANGE have identical 
variances. Our examples (see section 1.5) suggest p will commonly 
be somewhat higher, so that CHANGE will be better than POST. 
However, with just a single pre-treatment measurement it seems 
likely that both analyses will be substantially inferior to ANCOVA 
in most practical circumstances.

2-2-2__Consequences of having more pre-treatment measurementn

It is often possible to have more than one pre-treatment visit 
in a repeated measures design (all pre-treatment visits occurring 
before randomization) , and here we consider the improved efficiency 
for both ANCOVA and CHANGE. Of course the time lapses between pre
treatment measurements may effect the correlation structure, but 
for simplicity we continue to explore the statistical properties 
under compound symmetry.

With r post-treatment measurements and p pre-treatment 
measurements we have

For C H A N G E , variance 

For A N C O V A ,  variance

(p-l)p and l.mix=cT p

r  i Hh n aA' l  +  ( r - l ) p ( p + i ) p - i ]

ns) 1 r p \
r  i . 1 L̂ * l +  ( r - l ) p pp2 1

U a ' r r i + ( p - d p J

First, consider the advantage of extra pre-treatment visits 
while keeping the number of post-treatment visits fixed. Then, 
CHANGE becomes superior to POST provided p>l/(p+l). This means that 
provision of two or more pre-treatment measurements will make 
CHANGE the better option unless correlations are small, which 
appears unlikely in practice.
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More important is the extent to which extra pre-treatment 
measurements make CHANGE closer in statistical efficiency to 
ANCOVA. From the above formulae it is easy to show that if p-0.5 
then ANCOVA with p pre-treatment measurements has the same variance 
as CHANGE with p+1 pre-treatment measurements. For p>0.5, which is 
quite likely in practice, this gap between the two methods is 
narrowed more rapidly.

Table 2.2.1 compares ANCOVA and CHANGE for r-10 post-treatment 
visits and p-l,..,5 pre-treatment visits, all variances being 
expressed as a proportion of the ANCOVA variance for p-1. For 
instance, for p~5 and p-0.7 the variance reduction for ANCOVA 
relative to CHANGE is only 5%. This is because the observed pre
treatment mean more closely estimates the true pre-treatment level 
for each patient. Consequently the "regression to the mean" problem 
(the tendency for variables that are extreme on its first 
measurement to be closer to the center of the distribution for a 
later measurement) in a mean changes analysis is reduced and the 
estimated slope P in ANCOVA becomes closer to unity. It is worth 
pointing out at this stage that CHANGE is not only inferior to 
ANCOVA in terms of variances, for any true P<1 CHANGE (by always 
assuming p-1) will overcorrect for any existing mean pre-treatment 
differences, and thus give (conditionally) biased results.

For ANCOVA, addition of more pre-treatment visits is always 
helpful, but especially so if p is large. For instance, if p-0.7, 
then having a second pre-treatment visit reduces the variance by 
36%. Further somewhat less substantial gains are made by adding a 
third pre-treatment visit, and so on. This proportionate gain for 
ANCOVA, as shown in Table 2.2.1 for r-10, is reduced slightly for a 
smaller number of post-treatment visits.
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Table 2.2.1 : The dependence of the variances for ANCOVA and CHANGE 
on the number of pre-treatment measurements p and the 
equi-correlation p between time-points assuming r-10
post-treatment 
divided by the

visits. 
variance

For each p, 

for ANCOVA
variances 
with p-l.

are

p Analysis Number
1

of pre- 
2

treatment measurements 
3 4

/ p
5

.3 Ancova 1.000 0.827 0.719 0.645 0.591
Change 2.750 1.500 1.083 0.875 0.750

.5 Ancova 1.000 0.722 0.583 0.500 0.444
Change 1.833 1.000 0.722 0.583 0.500

.7 Ancova 1.000 0.640 0.490 0.407 0.355
Change 1.375 0.750 0.542 0.438 0.375

. 9 Ancova 1.000 0.574 0.421 0.343 0.296
Change 1.100 0.600 0.433 0.350 0.300

In some repeated measures designs there may be a fixed total
number of visits p+r-t, and we can therefore only increase the 
number of pre-treatment visits p at the expense of the number of 
post-treatment visits r.

Then, for CHANGE,variance ± + ± y ! i i z i i
nA nB ) pyt-p)

and for ANCOVA, variance 1 ! l i i  f ( l - p )  t ( r - p ) ( l - p )  

"A « «  J p(t-p) r [ l  +  ( p - l ) p ]

For CHANGE, the variance is minimized for p-r, that is equal 
numbers of pre and post readings when t is even and p«(t-l)/2 or 
(t+l)/2 when t is odd.
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However it is more important to consider the choice of p for 
ANCOVA given a fixed total number of visits p+r-t. In general, the 
"minimum variance" choice of p for any given t becomes larger as p 
increases, because the pre-treatment readings are of greater use, 
that is P becomes larger. More specifically, we can show that for 
any choice of integer p' then if p-l/(t-2p'), the variances of 
ANCOVA for p-p' and p-p'+l are the same. If p<l/(t-2p') then p-p' 
produces a smaller variance, and if p>l/(t-2p ’> then p—p'+l 
produces a smaller variance. Thus, the optimal choice is p-p' when 
p lies between 1/[t-2(p'-l)] and l/(t-2p') for p'>0. Also p-0 if 
p<l/t.

For example, if t-10 measurements in total, to achieve minimum 
variance for ANCOVA we would set p'-5 and divide them equally 
between pre- and post-treatment readings if p>l/2 and set p'-4 if 
l/2>p>l/4. Smaller values of p are unlikely to occur in practice. 
Hence, if the aim is to minimize the ANCOVA variance, p should be 
not much smaller than t/2, since precision of the individual's pre
treatment mean level is almost as important as precision of the 
post-treatment mean level. For more considerations of the optimal 
choice of p for a given t, in particular for more general 
covariance structures, see section 3.5.

Of course, reduction in variance is not the only criterion 
affecting the choice of p. We usually wish to concentrate on the 
post-treatment readings to describe the shape of mean change over 
time (for example, is the treatment difference constant, increasing 
or peaked?) and post-treatment measurements may be required at 
certain intervals for patient monitoring. Departure from the equi- 
correlation assumption is also relevant. For instance, if the 
average correlation between pre and post readings was considerably 
lower than the average pairwise correlation between pairs of post
treatment readings then the "minimum variance" p would be further 
from t/2. Nevertheless, the above results appropriately reflect the 
merit of having multiple pre-treatment readings if practicable.

c:bl
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However, it may sometimes be unfeasible or unethical to obtain 
multiple pre-treatment measurements at adequate intervals. For 
instance, if randomization must occur soon after the first visit, 
there may be no opportunity for repeat pre-treatment visits or 
their spacing may have to be so close in time that they do not 
provide sufficiently independent measurements to improve estimation 
of the subject's "true baseline". In most applications, it may be 
difficult to define what is an adequate minimum spacing, though 
having p>l can only do good!

It should be noted that the greatest gain in efficiency is by 
having p—2 rather than p-1. For instance, with t-10 readings in all 
and p-0.7, the reduction in ANCOVA variance for p-2 versus p-1 is 
34% while for p-5 versus p-1 the reduction is 53%. In practice, 
some compromise is needed between precision of overall treatment 
effect estimation (p sufficiently large) and adequate description 
of the time pattern of treatment response (r sufficiently large).

The statistical consequences of increasing the number of post
treatment readings r is the same for all three methods of analysis. 
Under equi-correlation assumption the reduction in each variance by 
having r+1 rather than r post-treatment readings is equal to

The practical consequence of this reduction in variance for 
increasing r might best be viewed in the context of power 
calculation, as described in section 2.4.

2-2.3 SeaaltlYltY inalyala for thw rmrpnM"*
Since many of the comparisons and recommendations in this 

chapter are based on the assumption of compound symmetry, it is 
important to consider the impact that departure from this 
assumption have on the results presented so far.

(
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We suspect non-equal correlations is a more serious problem 
than inequality of variances (see figures 1.5.1 and 1.5.2 and the 
accompanying comments), and will focus on the alterations to the 
variances of the mean summary statistics as a means of illustrating 
the implications of unequal correlations.

Let p/M'Pnu and be the mean pairwise correlations
(excluding the "self-correlations" of 1) in the post-post, pre-post 
and pre-pre covariance submatrices and Z ^  respectively.
Then, based on the general variance formulae for the summary 
statistics given in section 2.1, and by substituting the general 
means for the submatrices of L for the means we get when using the 
mean pairwise correlations given above, it is easily shown that the 
variances of treatment differences are proportional to the 
following :

Therefore, determination of variances and its dependence on r, 
p and the method of analysis can all be documented if one knows the 
values of the three parameters and p^. With these formulae
it is possible to take the time-spacing of pre-entry measurements 
into account. Often pre-randomisation visits are performed with 
shorter time-intervals in between, than are post-randomisation 
visits. If this is considered to produce higher correlations among 
the pre-entry measurements, we can adjust the assumed value for p 
accordingly.

POST:
r

CHANGE : l + ( r - l ) p , „ ,  | 1 + ( P - l ) p „ .

ANCOVA: i+Q-Qp,-. _____ P L
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The practical consequences of such departures from compound 
symmetry are usefully explored in the context of sample size 
calculations. We return to this in subsection 2.4.3.

An alternative method of exploring the consequences of assuming 
equi-correlation, when correlations are not stable over time, is as 
follows. If p-1 baseline measurement, suppose p ^  and p^, differ, 
but the overall mean correlation (which under these circumstances

equals
r + 1

is kept fixed.

Having p  ̂  > p , seems illogical in practice. Hence, we 
anticipate underestimation of the variances for our three mean 
summary statistics under the simplifying assumption of compound 
symmetry. Specifically, the absolute magnitude of the

underestimation is given by;

POST : 2 ( r - 0  (- - )
r ( r  + 1 )  KPp°‘' PmU’

CHANGE: 2 ( r - l )  (n Ô  )p V P post P mix )

ANCOVA: 2 ( r - 1) ^ \ ^ 
r(r +1) 'Ppo“ Pm

1
( r  +  1)2

The underestimation for CHANGE will always be (r+1) times as 
big as for POST, the underestimation for ANCOVA will always lie 
somewhere in between. An example of how the variances for the three 
approaches are affected by different mean correlations in the 
different submatrices of E is given in figure 2.2.5. Here a study 
design encompassing 1 pre and 3 post-treatment visits is assumed, 
and the dependence of the variances on the difference p ^  is
visualized when the overall mean correlation is 0.6 .
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For p>l pre-treatment visits, and for any specific values of 
Pposi’Ppn’Pmix' explicit formulae for the degree of underestimation 
caused by assuming compound symmetry are easily defined, but it 
gets more complex to discern any clear pattern. We simply compare 
the variances for the summary statistics from the formulae given on 
page 51, with the corresponding formulae under compound symmetry 
given in subsection 2 .2 .2 .

As an illustration figure 2.2.6 compares variances for the mean 
summary statistics for a design with 2 pre and 3 post-treatment 
visits. The assumption is imposed that Ppon — Pprt’ and that p ^  
differs from these by such an amount that the overall correlation 
remains 0.6.
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2.3 RESULTS WHEN CORRELATIONS DECAY WITH INCREASING TIME INTERVALS

2.3.1__Modelling correlatioaa for aona rftal itwmglwn

Many of the results presented so far have relied on the 
assumption of compound symmetry for the covariance structure. Even 
if, as was shown in section 1.5, this often is a quite realistic 
approximation of the truth, there exists many biological variables 
where it is known that correlations decay with increasing time 
intervals between visits. To take account of this when comparing 
different methods for the analysis of, and design for, repeated 
measurements studies, we need to find a simple but adequate model 
for the correlation matrix when compound symmetry is known not to 
be flexible enough in approximating the true covariance structure.

As a first step we will investigate some of the examples 
displayed in table 1.5.1. In doing so we will be comparing the 
ability of five different models for the underlying correlation 
structure. These are as follows;

Compound symmetry :
py = p , for all i*j.

First-order autoregressive model :
py = y' , where y is the correlation between adjacent visits 

(separated by one "unit") and s is the time-interval 
between visits i and j in such "units".

Damped exponential model :
Py — 7 , where y and s are as above, and 0 is a parameter

controlling the degree of "damping" of the exponential 
decrease (See Mufloz et al, 1992).

Linearly decreasing correlations with time :
Py —  y — b ■ S, with y and s as above, and b is the estimated linear 

(least squares) regression coefficient of correlations 
on time (ignoring non-independence of pairs) .

Quadratically decreasing correlations with time :
Py = y — • S — bj • S1 , with parameters as above and with addition

of a quadratic term.
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To give some feeling for the flexibility of the damped 
exponential correlation structure, figure 2.3.1 is given. For this 
example it has been assumed that the correlation between adjacent 
visits is 0.8, and different curves are shown for some of the 
possible values of the second parameter, 8, in the model, p = y .

The curve for 8-0 is the special case of compound symmetry, the 
one with 8-1 is the special case of a first-order autoregressive 
curve, those in between have a damped exponential decrease, and the 
bottom two belong to the class having an accelerated exponential 
decreasing correlation structure.

Moving on to real examples, we start with the ALAT data 
referred to in table 1.5.1. In this study 11 visits were performed, 
3 before and 8 after randomisation. The maximal time interval 
between visits was 14 months, with all successive visits being 
separated by either 1 or 1.5 months. There are 55 estimated 
correlation coefficients, ranging from .52 to .79, and with an 
overall mean of .65 . The correlation structure may be seen in 
figure 2.3.2 along with the five curves resulting from least 
squares estimation under the five models outlined above. Clearly 
the auto-regressive model does not fit the data, compound symmetry 
appears slightly to simplistic, while the remaining three models 
give very similar results, and they all seem to represent the data 
quite adequately. However, the linear curve has the advantage of 
relying on one less parameter.

The estimates for the parameters in the five models, along with 
the error sums of squares around the estimated curves, are given in 
table 2.3.1 below.
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Figure 2.3.1 : Examples of exponentially decreasing correlation structures

Table 2.3.1 : Estimated correlation structures for the five models
with sums of squared deviations for the observed 
correlation coefficients around the estimated curves 
(SSerror). ALAT data.

Correlation structure Estimated model for p sserror

Autoregressive .936t .982
Compound symmetry .654 .222
Linear decrease .718-.011t .138
Damped exponential .73*” .136
Quadratic decrease .735-.018t+.00054t2 .135
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CS-Compound symmetry, DE-Damped exponential, LIN-Linear decrease, 
QUAD-Quadratic decrease, AR(1)“Autoregressive.
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The next example concerns CPK in the same study, the figure 
(not shown) is almost identical to what was seen for ALAT. The 
descriptive statistics for the correlation coefficients are 
consequently very similar to the earlier example with a range from 
.51 to .78 and a mean of .65 . From table 2.3.2 we can draw about 
the same conclusions as we did above relating to the 
appropriateness of the respective models.

Table 2.3.2 : Estimated correlation structures for the five models 
with error sums of squares. CPK data.

Correlation structure Estimated model for p SSerror

Autoregressive . 936c 1.154
Compound symmetry .651 .272
Linear decrease .705-.0095t .210
Damped, exponential .72 .217
Quadratic decrease . 709-.011t+.00013t2 .210

The final example is from the smaller (n«55) of the two 
hypertension trials included in table 1.5.1, and the outcome 
measure chosen is systolic blood pressure (SBP) . This design 
encompassed 15 visits, 3 of which were performed before 
randomisation, and all successive time intervals between visits 
were 1 month. For this example, there is as expected, due to the 
smaller N, more variability among the correlation coefficients, 
with a range from .41 to .82, once again the mean is equal to .65 . 
The correlation structure for this example, shown in figure 2.3.3, 
is somewhat different from the two earlier.

There is a decrease in correlation with increasing time 
intervals, but the observed curvature goes in the opposite 
direction, as evidenced by the negative estimate for the quadratic 
term in the quadratic regression in table 2.3.3 below. This slight 
negative curvature may of course be due to chance, but it is only 
the quadratic model (of the five models under consideration) that 
is able to capture such correlation structures.
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Table 2.3.3 : Estimated correlation structures for the five models 
with error sums of squares. SBP data.

Correlation structure Estimated model for p sserror

Autoregressive 
Compound symmetry 
Linear decrease

. 924c 

.646

.722-. 014t

1.928
.785
618

Damped exponential 
Quadratic decrease .593

602

Thus, from these three real examples we conclude that a first- 
order autoregressive model is best forgotten since it generates too 
steep a trend. If a simple one-parameter model is desired compound 
symmetry is not grossly unreasonable. When compound symmetry is too 
restrictive, a model based on a linear regression of correlation 
coefficients on the time intervals between visits appears 
appropriate and there seems little gain in incorporating a 
quadratic term or in using the damped exponential correlation 
structure.

Henceforth this section will be concerned with models for the 
correlation structure based on a linear decrease with time.

2.3.2 Linearly decreasing correlations

Under compound symmetry, comparing variances for the mean 
summary statistics under different designs is very convenient since 
the degree of correlation is assumed not to depend on time between 
measurements. As soon as one moves away from this simple structure 
one has to consider the impact of time intervals on the variances 
for the different mean summary statistics.

What also matters here is the shape of the alternative 
hypothesis, flAl — /Itl = 5, over time. We will assume 8, to be 
constant over time, and return to the issue of a non-constant 8, in 
section 5.5.
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For now, emphasis is on the influence of linearly decreasing 
correlations over time on the variances of our treatment 
comparisons. When investigating the advantage incurred by adding a 
visit to a certain design, one can either keep the time intervals 
between successive visits intact and prolong the total study 
duration, or keep the study duration intact and "squeeze" in the 
visits by shortening the time intervals between the visits. This 
subsection will be divided into two parts looking at these two 
alternative strategies. Furthermore, some results will be given 
reflecting the influence on the variances for the mean summary 
statistics caused by simply changing the time intervals between the 
visits while keeping the number of visits constant.

2.3.2.1 Comparison of variances when time intervals between

In this sub-subsection we are assuming that all time intervals 
between successive visits are equal, and that the addition of 
visits implies an increased study duration. Specifically, we will 
assume that the correlation coefficient between two given time- 
points drop by a constant amount c for each further visit there are 
between them.

For a general design with p pre and r post-randomisation 
visits, a correlation structure of this type may be depicted as

where jf is the correlation between adjacent visits. Using some 
straightforward algebra, the following equalities may be shown to
hold:

1
r
y -c 
y -2c

1
1

follows: L = 1

y-(p + r-2)c . . y-c y 1
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It is the changes in the means of the variances and covariances

will decide how the variances for our mean summary statistics (see 
section 2.1 for the general variance formulae) are affected when we 
increase the number of visits pre and/or post-randomisation.

In particular, the decreases for the means of the entities in 
the three distinct submatrices for an increasing number of visits 
are given by:

Assuming, for simplicity, that we have p-1 visit pre-treatment, 
the variance formulas for our mean summary statistics are as 
follows:

v v vin each of the three submatrices, and po* , that jointly

£</0 _ £(p+n _ 1 - 7  + | ( p 2+ P - 2 )
pr* pre P(P +1)

y(p*r) y(.p*r*l) _  C
■‘•mix ¿-mix ~ ~ Z
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Var[POST]

Var[CHANGE]  =  

Var[ANCOVA] =

Moving on to the resulting change in variance for the preferred 
mean summary statistic, ANCOVA, incurred by adding an extra post
treatment visit when there is p-1 pre-treatment, we arrive at the 
following change in variance:

i - r + f ( r » +  r - 2 )

r(r + 1 )
~ 7  c + — (2 r - l )4

This formula may be compared with the corresponding formula 
derived under a compound symmetry model (which is identical for all 
the three approaches).

Change in variance under compound symmetry: [—  + — -]•—  -—  .
V n>* nsJ r(r + l)

We are now in a position where we can draw some inferences on 
the value of increasing the number of visits under a model of 
linearly decreasing correlations with increasing time intervals.

For a fixed number of measurements pre-treatment, increasing 
the number of measurements post-randomisation will not always 
decrease the ANCOVA variance. Even if the precision increases for 
the dependent variable (the post-treatment mean), this will under 
certain circumstances be offset by the decrease in .
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How 7 and c interrelates to determine when an upturn in 
variance (with increasing r) occurs may be judged analytically by 
the sign of the change in ANCOVA variance for increasing r given in 
the formula above. Table 2.3.4 gives the smallest c for which the 
variance starts increasing as a function of 7 and r.

Table 2.3.4 : The smallest size of the decrease in correlation per 
further visits apart <c), for which the ANCOVA 
variance starts to increase when further post
treatment visits are added, as a function of the 
original number of post visits (r) , and the starting 
correlation (7) . Assuming a linear decrease in 
correlation with time and one pre-entry visit.

Number of post-treatment visits
7 1 2

. 9 .057 .026

.8 . 131 .063

.7 .234 .133

. 6 .400 -

.5 - _

3 5 10

.014 .006 .002
035 .015 .005
077 . 032 .009

- - . 022

* For fixed 7 and r, the relationship of the ANCOVA variance 
depending on c is a quadratic function. When c increases from 
zero the ANCOVA variance also increases, but for each 7 and r 
there is a worst possible c, after which the ANCOVA variance 
starts decreasing again with successively larger c. When this 
occurs it is mostly for impossible combinations of the 
parameters, when 7“.6 and r-10, however, the ANCOVA variance 
starts decreasing again when c is larger than .037 .

The above table indicates for which combinations of the 
parameters 7, c and r, that the ANCOVA variance would actually 
increase when adding a further post visit to the design. To get 
some feeling for the relative changes in the variance for different 
values of r, for fixed plausible choices of 7 (-.7) and c (-.02), 
figure 2.3.4 is given.

64



F i g u r e  2 . 3 . 4  :
Variances for ANCOVA. C H A N G E  and POST, for linearly decreasing correlations 
Depending on n u m b e r  of post visits for 1 pre, assuming a correlation of 0.7 
for adjacent visits and a drop of 0.02 for each visit further apart.
(The assumptions imply that each visit added increases the study duration).

N u m b e r  of p o s t— t r e a t m e n t  v is its
F i g u r e  2 . 3 . 5  :
Variances for ANCOVA, C H A N G E  and POST, for linearly decreasing correlations 
For a fixed n u m b e r  of visits 1 pre and 5 post, but depending on the degree 
of decay in correlation assuming a correlation of 0.7 for adjacent visits.
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We see that when there is only one pre-entry measurement, and 
there is a slight decline in correlation with time, provision of 
more than a handful (in this example 4) post visit will not improve 
the efficiency of our analysis (when based on ANCOVA, for other, in 
these circumstances optimal choices of summary statistics, see 
section 5.5).

When both the number of visits before and after randomisation 
are fixed, we may illustrate the effect of the degree of linear 
decrease in correlations over time on the respective variances for 
POST, CHANGE and ANCOVA. This has been done under some plausible 
assumptions in figure 2.3.5 (the POST and CHANGE variances are 
linearly related to c, for ANCOVA there is a slight curvature) .

We will now consider the consequences of increasing the number 
of pre-treatment measurements. As a first step we will give a 
reworked version of table 2 .2 .1, but instead of assuming compound 
symmetry we have assumed linearly decreasing correlations with time 
with a drop of 0.02 for each further visit separating two time- 
points. From a comparison of the two tables we can conclude that 
the advantage of increasing the number of pre-treatment evaluations 
is much smaller for a model based on linearly decaying correlations 
with time. Obviously the pre-treatment mean will be estimated with 
better precision when the number of baselines increase, but this is 
counteracted by the decrease in with its consequent lower 
dependence between post-treatment and pre-treatment means.

We also need to consider whether it is plausible to assume the 
same values for 7 and c in all the three submatrices and

poit • As observed in table 1.5.1 it is often the case that 

correlations tend to be slightly lower in .
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Table 2.3.5 : The dependence of the variance for ANCOVA and CHANGE 
on the number of pre-treatment measurements p and the 
correlation p for adjacent visits, assuming linearly 
decreasing correlations with a decay of 0.02 for each 
further visit apart. We are further assuming r->10 
post-treatment visits. For each p, variances are
divided by the variance for ANCOVA with p-1.

p Analysis P-1 P-2 P-3 P-4 P-5

0.3 Ancova 1.000 0.937 0.913 0.908 0.913
0.3 Change 3.246 2.058 1.694 1.537 1.461
0.5 Ancova 1.000 0.865 0.816 0.800 0.801
0.5 Change 2.043 1.354 1.151 1.070 1.036
0.7 Ancova 1.000 0.834 0.789 0.782 0.792
0.7 Change 1.491 1.071 0.960 0.926 0.923
0.9 Ancova 1.000 0.915 0.923 0.957 1.001
0.9 Change 1.175 1.030 1.024 1.054 1.093

The value of adding further pre or post-treatment visits to a 
design, under the model for the correlation structure under 
investigation, is strongly dependent on the degree of decline for 
the correlations with increasing time intervals between 
evaluations. As a further illustration of this, figures 2.3.6 and 
2.3.7 are given, where the proportional decrease (increase) in 
variance for ANCOVA is shown for increasing number of pre (or 
post)-treatment visits, under some plausible assumptions.
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F i g u r e  2 . 3 . 6  :
Proportional decrease in variance for ANCOVA w h e n  addins further pretreatmen 
visits, when there are 5 visits posttreatment. Depending on the degree of 
linear decrease for the correlations over time w h e n  assuming a correlation o 
0.7 for adjacent visits. All variances are divided by the variance for p=l.

D rop in  p for e a ch  f u r t h e r  v is it  a p a r t
F i g u r e  2 . 3 . 7  :
Proportional decrease in variance for ANCOVA when adding further posttreatment 
visits, whe n  there are 1 visits pretreatment. Depending on the degree of 
linear decrease for the correlations over time w h e n  assuming a correlation of 
0.7 for adjacent visits. All variances are divided by the variance for r = 1.
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2.3.2.2 Comparison of variances when the total study duration

We will now be concerned with a different strategy, keeping the 
total study period fixed, and letting the between-visits time 
interval change as a function of the number of visits incorporated 
in the design. Under compound symmetry, the variances for our mean 
summary statistics are unaffected by the length of time intervals, 
this is not the case when correlations decay with time. As before, 
the correlation between adjacent visits will be denoted by 7 . The 
total decay in correlation will be denoted by b, this is the 
anticipated difference between 7 and the correlation between the 
very first and the very last visits.

The correlation matrix for this model has the following 
structure:

is fixed

1
r
b

1
1

E  =
p + r — 2 
2b 1p + r—2

(p + r-2)b 
p + r — 2

The means of the variances and covariances in the three 
submatrices; pre, mix and post, are equal to:
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^  poll

p
1
r

1 + (P-D|

l +  ( r - l ) [

r- ( P - 2 )

3(p + r-2)

Y ~ ( r - 2 )  

3(p + r-2)

As is independent of the number of visits, many of the
relationships between the mean summary statistics will be more 
straightforward. The changes for and incurred by
increasing the number of visits is given by:

y ( p )  _  y(?+i) =
to’  P "

1
P(P+ 1)

y  ( r )  _  T*(r+1> _  *

po" r ( r + l )

b{p(3-p-r-pr)+2(r-l)} 
3(p+r-2)(p + r-l)

b{r(3-p-r-pr) + 2(p-l)} 
3(p + r-2)(p + r-l)

- X £ r+,) = 0

For p-1 measurement pre-treatment the reduction for 

simplifies to: g™, - Z ^  = ^  ‘[*~ Y + f • ■*>]

Continuing with the investigation of results when one baseline 
measurement is available, we get:
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Under the current assumptions, the reduction in variance by 
having r+1 rather than r post-treatment readings, for p-1 pre-

, 2 .l-Y+~b
treatment, may be calculated from: ---------— . For the currentr(r +1)

model, with a fixed study duration, the variance for ANCOVA (as 
well as for POST and CHANGE) will always decrease with increasing 
number of post-treatment recordings. Further, because always
remain unchanged, the reduction will be the same for all the three 
approaches (this is for p-1 measurement pre-treatment) .

2.3.2.3 Comparison of variances with increasing study duration 
but with a fixed number of visits

Finally, with respect to linearly decreasing correlations, we 
will consider an alternative way to improve the precision in our 
estimates of treatment effects, other than increasing the number of 
repeated measurements.

When correlations decay with time, it is possible to decrease 
the variance for the pre-treatment and post-treatment means simply 
by prolonging the study duration. The reason for this is that the 
measurements get increasingly less dependent the further apart they 
are, and thus provide more individual information.

However, when extending the study duration one has to consider 
whether the assumption of a constant difference between mean 
response curves over time remains realistic. Also, practicalities 
often dictate the study duration. The results given below relies on 

— Ht, =  5, being constant ( -8 )  over the time intervals under 
consideration.

We will denote the originally intended study duration by T, and 
investigate how the variances change when this duration is 
increased to fT, where f 2 1. Starting with the means in the three 
submatrices of the total within-subject covariance matrix, we find 
that by moving from a duration of T to fT:
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decreases by

Z ^ ,  decreases by

X^,, decreases by

The consequent impacts on the variances for our mean summary 
statistics, when assuming p-1 measurement pre-entry, is:

It is easy to confirm that, for fSl, POST will always gain in 
precision, while CHANGE will always lose precision. For ANCOVA the 
variance may change in either direction depending on the degree of 
the correlations. With high correlations (when ANCOVA gets closer 
to CHANGE) ANCOVA tends to lose precision, with lower correlations 
(when ANCOVA gets closer to POST) ANCOVA tends to gain precision. 
For given y and r, the larger c is, the more likely will it be that 
the ANCOVA variance decreases with increasing study duration.

POST , variance changes by (r-!)(/• — 2)
c ( / - l )  as we move from T to fT

3 r

CHANGE, as we move from T to fT

ANCOVA, variance changes by

( r  — l )> c  • ( /  — ! )
... , ( r - l )  c ( /  +  l )
r + -------:------4 as we move from T to fT.
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2.4 SAMPLE SIZE DETERMINATION

2.4.1__A general covariance atrurtum

As in the conventional approach to power calculation we define 
a and P as the type I and type II errors for the test of our 
hypothesis. It is covenient to assume that sample sizes are large 
enough that the normal approximation to the t-distribution can be 
applied. In that case, for two equal sized treatment groups of

r

size n, for a general summary statistic <S# = = c 'yg ),
* — (* -D

under a general shape for the alternative hypothesis and

„  2 c ' I c  , /  0 nwith a general £, we require that; n = —--- -r-■ J \ a , p ), where
(c ’ S)

/(«. P ) = [‘*>‘‘ (1 - a/2) + O "1 (l -  p  )]2 , ®  being the cumulative 
distribution of a standardized normal deviate.

Correspondingly, given the sample sizes, the approximate power 
may under this general scenario be calculated from;

These formulae for the determination of sample sizes and power 
may be used in conjunction with any linear summary statistic, 
under any assumed vector of mean treatment differences over time, 
and under any plausible covariance structure.

This section will only be concerned with constant treatment 
effects, to make similar comparisons and evaluations under any 
circumstances (for instance, linearly diverging mean treatment 
curves) is straightforward. An immediate observation is that 
conditional on a given treatment effect, the required sample sizes 
are directly proportional to the variance of the summary 
statistic.
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Among the mean summary statistics ANCOVA has been shown to be 
consistently more efficient than its competitors. Returning to the 
notation of section 2.1, we consider the alternative hypothesis 
JI£°" — /I/“" = S . For ANCOVA we than require, for a general E, 
that;

In the following sections some ways to utilize this formula at 
the design stage, under some plausible models for the covariance 
structure, will be indicated. Also, the actual gains expected by 
using ANCOVA instead of the simpler approaches, POST and CHANGE, 
in reducing sample sizes and/or increasing the power, will be 
illustrated.

2.4.2___Compound

Under compound symmetry, for two equal sized groups of size n, 
we require for ANCOVA that;

For the other two methods of analysis, POST and CHANGE, we have 
respectively

The corresponding formulae for calculation of power are obtained 
in a straightforward manner by a direct substitution of the variances 
of the summary statistics.

For illustration, consider the alternative hypothesis 6-0.4-a, and 
let p-0.7, often a realistic value for practical use.
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Figure 2.4.1a shows the required sample size n in each group for a 
variety of study designs and analysis approaches: for r-1,...,8 post
treatment measurements, for p-1 or 3 pre-treatment measurements and 
for POST, CHANGE and ANCOVA.

The simplest possible design has r-1 and p-0. The POST analysis (a 
two-sample t-test) requires around n-100 patients per group.
Increasing the number of post-treatment readings has some effect on 
decreasing n, but with no use of pre-treatment readings n remains at 
around 75 even with r-8.

The CHANGE analysis with p-1 pre-treatment measurements (a two- 
sample t-test comparing mean changes) leads to a required n around 60 
for r-1 post-treatment measurements, which can be reduced to n<40 if r 
is increased to 4 or more post-treatment measurements. The superiority 
of ANCOVA is illustrated by a further fall in sample size. For 
instance, with p-1 and r£4 we can reduce n to below 30 if ANCOVA is 
used.

The advantage of increasing the number of pre-treatment 
measurements in substantial. For instance, with p-3 and r&4 ANCOVA 
requires n<20 patients per group. For p-3, CHANGE is similar to 
ANCOVA.

Figure 2.4.1b is given for comparative purposes, and will be 
explored in the next subsection.

Many simplifying assumptions must by necessity be made at the 
design stage for a study when making sample size determinations. 
The size of the treatment effect one wishes to detect (8), often 
quantified in terms of a proportion of the standard deviation of a 
single measurement, will strongly affect the sample sizes called 
for.

The number of patients needed is inversely proportional to the 
square of 8. This relationship is exemplified in figure 2.4.2 
where a study with 1 pre and 4 post-treatment measurements is 
under planning. Common choices of a (-0.05) and P (-0.20) have 
been made, and compound symmetry with p-0.6 is anticipated.
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F i g u r e  2 .4 . 1
E x a m p l e  o f  P o w e r  c a l c u l a t i o n s  f o r  a r e p e a t e d  m e a s u r e s  

d e s i g n .  A l t e r n a t i v e  h y p o t h e s i s  <5=0.4a, a  =  0 5 ,  /3= .2 
a) a s s u m in g  p = .7 ( p r e - p r e ,  p r e - p o s t  a n d  p ost— post)

number of posttreatment visits, r

b) a s s u m i n g  p =.8 p re-pre a n d  post— post, b u t  p =  .6 pre— post
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Desiring to detect a treatment effect of 0.5-a a total of 90 
patients is called for. Would a 5 as large as 0.6-0 be realistic 
64 patients would be enough, while settling for 8-0.4 a  would 
increase the necessary sample size to 138. By this little example 
we see how quite small alterations in the desired 5 have rather 
large implications on the required sample size. From the figure we 
may also note how much less efficient POST and CHANGE would be, 
and also how much smaller treatment effects ANCOVA would be able 
to detect for any given sample size.

The impact of an increase in sample size on power is far from 
linear. An illustration of how that relationship might look is 
given in figure 2.4.3. We are again looking at an intended design 
with 1 pre and 4 post-treatment visits, it is desired to detect a 8 
of 0.5-0 and compound symmetry with p-0.7 is assumed. Settling on 40 
patients in total, ANCOVA has a power of .82, CHANGE has .73 and 
POST only .43 . Doubling the sample sizes, ANCOVA reaches a power 
of .98, CHANGE has .95 and POST .72. Not even with 100 patients in 
total will POST reach the power ANCOVA obtains with 40 patients. 
Looking at power curves of this type is important, both to reach an 
acceptable power, but also to avoid over-sized clinical trials.

The two preceding examples have both investigated one specific 
type of design. Given that we know that we should use ANCOVA, and 
assuming that, for practical reasons, the sample size is limited to 
60 subjects, what can we do to reach an acceptable power, given 
also that 8-0.50 and compound symmetry with p-0.6 is anticipated? 
With only 1 pre and 1 post evaluation the power is .66 (see figure 
2.4.4), which is felt to low. Adding a second post visit raises the 
power to .82 . If it is required to reach a power of .90 we are 
still not satisfied. Adding, also, a second pre visit increases our 
power to .89, which is further improved to .94 with a total of 2 
pre and 3 post-treatment measurements, which, in this case, would 
be our selected design.

Returning to the issue of the assumptions we have to make at 
the design stage, one of the advantages with ANCOVA is its 
robustness. In relation to the degree of correlation (under 
compound symmetry) this is illustrated in figure 2.4.5.
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N u m b e r  o f  p a tie n ts  needed d e p e n d in g  on th e  ra tio  (s t d / d e l t a )  
Assumptions : a = 0.05, 1 — /S = 0.80, p = 0.6, visits=l+4

Figure 2.4.2 :

F i g u r e  2 .4 .3  :
Power a c h ie v e d  d e p e n d in g  on n u m b e r  of p a t ie n ts  p e r  g ro u p  

Assumptions : (std/6 ) = 2, p = 0 .7, a = 0.05, 1+4 visits
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P o w e r a chieve d  d e p e n d in g  on n u m b e r  of visits  p re + p o s t  
Assumptions : (std/delta) = 2,/o = 0.6, a = 0 05, patients = 30 + 30

Figure 2.4.4 :

F i g u r e  2 .4 .5  :
Power a c h ie ve d  d e p e n d in g  on th e  c o r r e la t io n  

Assumptions : (s td /d e lta ) = 2, a = 0.05 patients =30 + 30, 1+4 visits
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We are making the same assumptions as in the preceding example, 
except that a design of 1 pre and 4 post-treatment measurements is 
desired, and that we are very uncertain on the level of p (perhaps 
due to difficulties in assessing the degree of measurement error to 
be anticipated). However, as long as the other assumptions are met, 
the degree of equicorrelation present matters not very much for 
this example, the power will never drop below .86 . This particular 
feature of robustness is evidently not shared by POST or CHANGE.

2.4.3__Sensitivity of the compound ««nwhrv ..MimnHnn

Utilizing the notation and results of subsection 2.2.3 we may 
now investigate the impact that unequal correlations have on sample 
size determinations under a compound symmetry assumption.

As indicated in subsection 2.2.3, determination of trial size and 
its dependence on r, p and the method of analysis can all be 
documented if one knows the values of the three parameters 
Ppoti > Pmix and Ppre- Given the theoretically infinite variety of 
correlation structures that could exist, one cannot reach completely 
generalizable quantitative conclusions on these design issues.
However, we will attempt to elucidate some practical suggestions based 
on certain realistic departures from compound symmetry.

First, consider p-1 pre-treatment reading and the consequence 
of having p ^  different from p^, (p Fr, is non-existent if p-1) .
Suppose non-equality of correlations can be represented by a 
decline in p of magnitude b per visit apart, all visits being 
equally spaced. Judged by the examples displayed in figure 1.5.1 
this simple structure is likely to be an adequate approximation of 
the true covariance structure in many situations. If data exist 
from a previous trial, this slope b can be estimated from the full 
correlation matrix. Then it can be shown that p^, - p ^  ” b(r+l)/6.
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If power calculations take account of p ^  being less than p , 
, as in figure 2.4.1b where it has been assumed that p ^  - 0.6 
while Pp,. (when it exists) and p^, m 0 .8, the relationships 
between the summary statistics change. Again, the five curves are 
parallel, but the sample size reductions for CHANGE and ANCOVA 
compared with POST become less marked. The difference between the 
elevation of the ANCOVA and POST curves is now 35.5 compared to
48.4 in figure 2.4.1a. The advantage of CHANGE over POST has 
decreased even more, from 39.5 to 19.8.

Let us next consider the decline in sample size with increasing 
r and how this could be affected by unequal correlations. Initially 
we assume p-1. Suppose correlations get weaker the further apart 
visits are, as often is the case. For a fixed total follow-up time 
T it can be shown that for r equally spaced visits the mean of all 
pairwise distances is (r+l)T/3r. This declines with r (by a maximum 
of one-third for r-~ compared with r-2) so that p^, increases with 
r.

Concentrating on ANCOVA, we note that increasing r is liable to 
increase slightly p^, .while under the current model for the 
decline in correlations, p ^  will remain unchanged (see subsection 
2.3.2.2 for more details) so that the resulting effects on the 
trends in sample size with r will tend to level off slightly more 
quickly than under a compound symmetry assumption.

When considering the merit of p>l baseline readings, the extent 
to which p^, and P ^  differ from p^, has some bearing on the power 
calculations. If the repeat baselines are close together p^, might
be increased, whereas having baselines further back in time might 
reduce p„a •either of these possibilities leading to an increase in 
the required sample size for ANCOVA. For instance, for p-3 
baselines in figure 4.2.1b ANCOVA has the required n decreased by 
5.5 (for any value of r) relative to ANCOVA with p-1 baseline. The 
corresponding drop in required sample size in figure 2.4.1a was
12.1 (for any value of r).
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Overall, substantial improvement in statistical efficiency with 
repeat baselines are possible provided p ^  is not radically reduced 
and pp,, is not too large. The magnitude of benefit is dependent on 
p ^  and p , but like other parameters in power calculation their 
values may not be known in advance. Thus, while the recommendation to 
have more than one baseline if possible is of general relevance to 
repeated measures trials, the precise extent of statistical 
improvement cannot be reliably predetermined unless one has some prior 
knowledge (for example from a previous trial) regarding the 
correlation structure.

2-4-4__Linearly decreasing correlation»

When the compound symmetry assumption is felt to restrictive, 
and if it is known that correlations will decline with time, the 
model with linearly decreasing correlations put forward in section
2.3 is a simple but often realistic and robust alternative.

As already noted, the required sample sizes are directly 
proportional to the variances of the respective summary statistics, 
and there is no need to repeat the formulae here. Instead, emphasis 
will be on illustrating the dependence of the power for ANCOVA, and 
also of the number of patients needed, on the covariance structure 
as decided by y and b (using the notation from section 2.3).

Figure 2.4.6 gives contours for four levels of power (A-.95, 
B-.90, C-.80 and D-.70) as a function of y and b, assuming:
(std/8)-4, a-0.05, 200 patients in total, and 1+4 visits pre 
respectively post-treatment. For each given point on any of the 
contours we may read off what b at most can be to give the specified 
power for a certain y, or correspondingly, what y at least has to be 
to achieve a certain power for a given b. The contour for b-.3 needs 
some extra clarification. As long as the total decline in 
correlation (b, the difference between the p for adjacent visits, 
and the p between the very first and the very last visit) over the 
study period is less than .18, the power will exceed .70 for all y.
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F i g u r e  2 . 4 . 6  :
7  n e c e s s a r y  b e t w e e n  a d j a c e n t  v i s i t s  t o  a c h i e v e  a  c e r t a i n  
p o w e r f o r  A N C O V A  d e p e n d i n g  o n  t o t a l  d e c l in e ,  b, in  c o r r e l a t i o n  
A s s u m p t io n s  : (<5/std) =  .25 , oc =  0 .0 5 . 1 0 0 + 1 0 0  p a t ie n t s ,  1 + 4  v is i t s

7 0.7

0 .25 0.31

T o t a l  d e c l i n e  in  c o r r e l a t i o n ,  b

F i g u r e  2 . 4 . 7  :
N um ber  o f  p a t i e n t s  n e e d e d  ( p e r  g r o u p )  w h en  u s in g  ANCOVA, d e p e n d in g  
on c o r r e l a t i o n  b e t w e e n  a d j a c e n t  v is i t s  an d  its  l i n e a r  d e c l in e  w i th  t im e

A s s u m p t i o n s  : (< 5 / s td )  =  .2 5 ,  o< =  0 .0 5 ,  1 -/ 3 =  8 0 .  1 + 4  v i s i t s

0.95 0.90 0 .8 5  0.80 0 .75  0 .70  0 .65 0 .60  0.55 0 .50  0 .45 0 .40  0.35 0.30

C o r r e l a t i o n  b e t w e e n  a d j a c e n t  v i s i t s
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With larger b, y has either to be above the upper arm or below the 
lower arm, of the contour, to satisfy the specified power 
requirement. Generally, we see that when the decline in correlation 
is substantial, the loss in power has to be taken into 
consideration.

The required sample sizes will not necessarily decrease as y 
increase, this is exemplified with figure 2.4.7. This example 
illustrates the sample sizes needed for a design with 1 pre and 4 
post-treatment visits, where it is desired to detect a 5 of 0.25-a. 
The four curves are labeled with the level of b anticipated (0-.0, 
l-.l, etc.), and y is given on the x-axis. With y in the most likely 
range, say .5 to .8, we see that declining correlations affect the 
required sample sizes substantially. When b is large, say .2, the 
required number of subjects may actually increase when y increases. 
Generally, when correlations increase we lose precision in y and 
y*0“ , this is because the effective sample size is getting smaller, 
each individual measurement is giving us less new information. 
However, the dependency between y ,r‘ and y r°“ also increases, and as 
is obvious from the usual ANCOVA variance, this effect is very 
important for increasing the overall efficiency. Normally, 
increasing correlations imply less ANCOVA variance, but when 
correlations decrease with time, and p ^  is constrained to be 
smaller than p pott, this balance may shift, as was noted in figure 
2.4.7.

2.4.5--Use of a specific predefined covariance matrix:

When a certain drug has reached phase III, the research 
personnel at the pharmaceutical company concerned with its 
development usually have quite good knowledge of the effects of 
their treatment on the outcome measures of primary interest. 
Normally, they are also well aware of at which time points and for 
which time intervals they are interested in detecting treatment 
effects.
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Specifically, from all the trials performed earlier on this 
drug, and from the literature concerned with the same type of 
treatments and diseases, fairly accurate knowledge usually exists 
(or could exist, if investigated properly) relating to the type of 
treatment effects anticipated over time, and for the type of 
covariance structure to be expected.

In this subsection an illustrative example will be given on 
how such prior information might be used at the design stage of a 
clinical trial to increase the power to detect an effect of a new 
treatment regimen. To begin with, a purely hypothetical scenario 
will be outlined. We will anticipate that we are dealing with a 
disease for which there is a well defined primary outcome measure, 
which is continuous and fairly normally distributed. The treatment 
duration typically lasts for four weeks, and provision of more 
than one baseline visit is not considered feasible. A rather quick 
response to treatment which remains reasonably stable over time is 
expected. Hence, use of one of the mean summary statistics seems 
appropriate.

Assessments of efficacy in this disease are typically performed 
weekly, and from the joint information available from earlier 
investigations it is known that the covariance structure for one 
pre-entry and four post-treatment evaluations, for this kind of 
design, will be well approximated by (for notation, see page 18) :

L = Dl R D„, withZ>;=[ViO V7 V7 V 7  V7], and

'  1
.6 1
.5 .8 1
.4 .7 .8 1
.4 .6 .7 .8
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A few remarks regarding this structure are in order here. The 
decreasing variances after randomisation reflect the dependence of 
the variability on the overall mean response, which drops quite 
substantially after the initiation of treatment (implying that we 
have to be wary about the risk of unequal covariance matrices 
between groups). The effects of this treatment effect explains 
also the relatively lower correlations between pre and post
treatment evaluations as compared to the post-post correlations.
In addition to this difference there is also a decrease in 
correlation with increasing time-intervals between evaluations. In 
summary, a constant treatment effect after randomisation is 
anticipated, with a covariance structure as specified above.

Assessing the efficiencies of our mean summary statistics the 
following results emerge after having substituted the appropriate 
values of the means for the three submatrices of £ into the 
respective variance formulae of the three analysis approaches:

Var[POST] « 5 .60 
Var[CHANGE] « 7 .65 
Var[ANCOVA] «4.02

Appreciating that the investigators for practical reasons are 
unable to include more than 150 patients in total in this study, 
and calculating the resulting power, when having decided on a type 
I error of .05 and having been told by the investigators that they 
want to be able to detect a difference in mean treatment effect of 
one unit (5-o/V7) , we end up with the following;

Power for; ANCOVA - 0.86 
POST - 0.73 
CHANGE - 0.60

The superiority of ANCOVA is obvious. The relative 
inefficiency of CHANGE, under these circumstances with relatively 
high correlations, is perhaps unexpected, but it is explained by 
the low resulting regression coefficient for the post-treatment 
mean on the pre-treatment reading for this kind of covariance 
structure, which has (J-0.397 .
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It may also be noted that, had it been possible to include 
multiple baselines, great gains in efficiency might have been 
possible. Provision of additional post-treatment measurements 
offer a limited advantage.

The recommendation that should have been done at the design 
stage for this hypothetical example is straightforward, use an 
analysis of covariance with each subjects mean post-treatment as 
dependent variable.
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2.5 ANALYSIS OF AN EXAMPLE

We now illustrate the value of some of the issues discussed 
above with a practical example involving real data. A randomized 
trial of 152 patients with coronary heart disease compared an 
active drug with a placebo during a 12 month follow-up period. The 
liver enzyme CPK in serum was measured to study a possible adverse 
drug effect on the liver. Each patient had three pre-treatment 
measurements, taken 2 months before, 1 month before and at 
randomization, and eight post-treatment measurements, taken at 
every 1.5 months after randomization.

Figure 2.5.1 shows the results as commonly displayed in a 
medical journal, with means by treatment group for every time 
point. While there is a consistent pattern of higher post-treatment 
means on the active drug, the standard errors are substantial. The 
common but misguided practice of separate significance testing for 
each post-treatment time point reveals a varied collection of t- 
statistics, whether we use means, mean changes or ANCOVA. The t- 
values range from 0.35 (ANCOVA for visit 12 with visit 0 as 
covariate) to 3.34 (ANCOVA for visit 4.5 with means of visit -2, -1 
and 0 as covariate) with around half the time-point-specific 
significance tests having P<0.05 whichever method of analysis is 
used.

However, this plethora of significance tests is based on the 
false premise that each time point is of separate interest in its 
own right. In reality, the primary hypothesis is more global 
(across all post-treatment measurements, is there a tendency for an 
elevation in CPK on the active drug?).

In exploring the correlation structure in these data, each 
pairwise correlation Pu has been estimated by Pu , the observed 
correlations obtained from a weighted average of the two treatment 
groups’ covariance matrices, weights being proportional to sample 
size. Figure 2.5.2 plots Pu by the time between visit k and 1; 
pre-pre, pre-post and post-post pairs are denoted by different 
symbols. There is a general consistency in the correlations, all 
being in the range 0.5 to 0.8. Also, the three types of pairs show 
similar magnitude.
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M e a n  leve l o f  CPK o v e r  t im e  f o r  d r u g  A  (n  =  7 6 ) a n d  d ru g  B (n  =  7 6 )
( s t a n d a r d  e r r o r  o f  m e a n  sh ow n  o n ly  f o r  3 m o n t h  v is it ,  o th e r s  a r e  o f  s im i la r  m a g n it u d e ) .

F i gure 2.5.1 :

F ig u r e  2 .5 .2  :
C P K , n = 1 5 2 . c o r r e la t io n  c o e f f i c e n t s  v e r s u s  t im e  b e tw e e n  v is it s ,,  

♦ = p r e ,p r e ,  ★ = p r e ,p o s t ,  O = p o s t ,p o s t .
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There is a slight decline in correlation amongst more distant 
pairs of time points, the estimated slope being -0.009 per month
apart. This indicates only slight departure from the assumption

_ 2that Pu is constant for any k*l. Also, the variance varied 
little between visits.

From the discussion in earlier sections, the most appropriate 
method of analysis for the data in figure 2.5.1 is ANCOVA based on 
each patient's mean of the eight post-treatment measurements as 
dependent variable with the mean of the three pre-treatment 
measurements as covariate. Table 2.5.1 shows CHANGE and POST for 
comparison, and also includes for illustration ANCOVA and CHANGE as 
if only a single pre-treatment measurement (visit 0) had been 
available.

Table 2.5.1 : ANCOVA, CHANGE and POST analyses for the CPK data, 
n=7 6 patients in each treatment group, r-8 post
treatment measurements, p=l or 3 pre-treatment 
measurements; ¡3 is estimated regression coefficient.

Number of Estimated
pre-treatment mean diff. Standard t- P-
measurements in CPK (IU/1) error statistic value

ANCOVA < 4 =0.83) 3 -.066 .021 3.24 .001
ANCOVA ( 4 =0.63) 1 -.043 .025 1.72 .09
CHANGE 3 -.062 . 022 2.89 .004
CHANGE 1 - .023 . 030 0.77 .44
POST - . 085 . 037 2.31 .02

ANCOVA is seen to produce a smaller standard error and hence 
stronger evidence of a treatment difference, especially if the mean 
of all three baseline readings is used as covariate. Since P is 
close to 1 in this case the CHANGE analysis is only marginally 
inferior. POST suffers from two problems: the standard error is 
much larger, and also failure to take account of the slightly 
higher average pre-treatment mean level on active drug leaves an 
upward bias in the estimated treatment effect.
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With just a single pre-treatment reading (visit 0) rather than 
the mean of three, the standard errors for ANCOVA and CHANGE are 
substantially increased. Given the more pronounced pre-treatment 
imbalance at visit 0, the CHANGE analysis is prone to a downward 
bias, this being related to the smaller /3 for ANCOVA when p-1.

2.6 SUMMARY AND DISCUSSION

The emphasis of this chapter has been on studies where the main 
interest is in an overall (mean) response during treatment, the aim 
has been to explore the statistical properties of some simple 
approaches to repeated measures using summary statistics. While 
there are many possible summary statistics, we have focused on the 
mean post-treatment response of each subject as being a logical 
choice in many such trials. Consequently, ANCOVA using the mean 
pre-treatment level as a covariate is the preferred method of 
analysis. In practice, we suspect ANCOVA is not used nearly enough, 
so that too many trial reports of quantitative outcome variables, 
with or without repeated measurements, rely on inferior analyses 
using just post-treatment values or post-pre differences.

Further, we feel that little attention has been given to the 
statistical design of clinical trials with repeated measurements. 
The methods presented for determining sample size and the number of 
pre- and post-treatment measurements should be of practical use in 
the planning of such trials. Specifically, the importance of 
obtaining precise estimates of the subjects pre-treatment levels 
should be acknowledged, and more than one pre-treatment measure be 
obtained whenever feasible. For the statistical efficiency of the 
treatment comparison, this is almost as important as obtaining 
precise estimates of the post-treatment levels. We feel that the 
examples presented support the use of the compound symmetry 
assumption as a realistic guide to the quantitative planning of 
clinical trials with repeated measurements. However, it should 
again be emphasized that no such assumption is made when it comes 
to data analysis.
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As an alternative to compound symmetry, the assumption of a 
slight linear decrease in correlations with time could be made, 
using methods given in this chapter. This latter approach should 
provide a safeguard against the sometimes slightly optimistic 
results (in terms of statistical power) which are suggested under 
compound symmetry assumption.

In conclusion, this chapter has presented methods and results 
for the choice of approach to analysis, and for appropriate 
statistical designs, which when used sensibly in conjunction with 
repeated measures clinical trials may greatly improve the 
efficiency of the statistical analysis.



3 MEAN SUMMARY STATISTICS: SOME ADDITIONAL TOPICS

3.1 BIAS IN ESTIMATION IF PRE-TRZAMENT MEANS DIFFER

As described earlier we will adopt the simple model:
X^k = Hik+e# where i is the index for treatment (A or B) , j indexes 
subject and k visit (ranging from - (p-1), . ., 0,1, . ., r) . For a 
randomised clinical trial, n r  = n r ' so the expected value of 
x r - x r  is zero. Accordingly, at the design stage (before X and 
X r  are observed), all three methods of analysis produce (on 

average) unbiased estimates of nU T  ~ nS T  • However, conditional on 
any particular observed pre-treatment difference in means 
x r - x r  = d rrt * 0  there exists scope for bias.

One rationale behind ANCOVA is that the covariance adjustment 
removes that component of the observed difference in post-treatment 
means that is predicted on purely statistical grounds from the 
observed difference in pre-treatment means. For non-randomised 
designs (i.e. observational or non-equivalent groups studies) this 
removal of bias due to inequality of pre-treatment means is only 
true if there is no measurement error in the pre-treatment readings 
(see Snedecor and Cochran, 1989). For alternative approaches to 
analysis in these situations, see also Caroll (1989) and Huitema 
(1980) .

Moving back to the randomised clinical trial, the presence of 
measurement errors in the pre-treatment recordings will, as 
observed earlier, result in an attenuation of the slope [3 in 
ANCOVA, compared with regression on the true underlying (but 
unknown) pre-treatment means for each subject.

If we define a variance a] for measurement error, and suppose

that this is a sub-component of the overall variance <T2, and that
2 2both <7 and CT, are the same for all time-points.
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Then, for p=l p r e - t r e a t m e n t  reading, the e x p e c t e d  value of the

observed slope

For p>l pre-treatment measurements the attenuation in slope becomes

less marked, and specifically P  obs ~~ Po

One might now argue that conditional on a certain difference in 
pre-treatment means, the use of an attenuated slope, with a certain 
consequent less degree of adjustment, would imply that also ANCOVA 
is affected by some bias. This is, however, not the case (see Senn, 
1990). The adjustment used by ANCOVA is P - d pr‘. We have already 
seen that the effect of the measurement error on the slope is to

decrease P from or in the case of one

pre-treatment reading from p At the same time

the expected value of d pr' is affected. If we label our observed 
difference in pre-treatment means allowing for measurement error 
d£ , then given a particular value for this entity, d £  is a 
biased estimator of d £  (the average over all randomisations, of
course, in both cases is equal to zero) .

In a randomised clinical trial we have the relationship

E[dZ\dZl] = ydz; where y is the regression of true values on

observed values and satisfies the relationship
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Hence, we can w r i t e  do w n  our covariate a d j u s t m e n t  when work i n g

on the observed values as; A

I.e. our expected degree of adjustment is the same whether pre
entry measurements are affected by measurement errors or not, and 
ANCOVA is unbiased. The impact of the measurement errors is only a 
loss in precision.

This conclusion reinforces the general message that ANCOVA is 
the best of the three methods considered and the only one which 
produces unbiased estimators in the presence of chance observed 
imbalance, irrespective of whether baseline recordings are subject 
to measurement error.

Of course no technique can hope to adjust for unobserved 
imbalance, but where we have randomised we are justified in 
regarding the variances of our estimators as appropriately 
expressing our uncertainty.

The bias for POST and CHANGE conditional on an observed 
difference in pre-treatment means, , are as follows;

It is worth noting that the POST bias is in favour of the group 
being (by chance) better of at baseline, while CHANGE overcorrects 
for any chance baseline imbalance and has a bias in favour of the 
group being worse off.

POST, bias is
Z

CHANGE, bias is -(l - f i ^  d
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Having more than one pre-treatment measurement will reduce this 
bias. If we adopt the compound symmetry assumption, then,

For p-1 this means that the POST bias - p-d£’’ and the CHANGE 
bias - — (1 — p ) ' d £ . For p>0.5 (which is usually the case), POST 
contains more bias than CHANGE, Furthermore, for p>l pre-treatment 
measurements, this aspect of inferiority for POST becomes more 
marked. For instance, if p-3 and p—0.7 (say), then the POST bias - 
.875-d£ while the CHANGE bias -= .125-d£. However, with more pre
treatment readings we can expect d £  to become smaller.

Overall, if there exists a pre-treatment difference, then POST 
may be seriously biased. CHANGE may also contain a certain degree 
of bias, especially if the correlations between pre and post 
measurements are relatively small, but this bias will be reduced 
considerably if the number of pre-treatment measurements is 
increased. For some Monte Carlo-simulations on the bias introduced 
by chance baseline differences, confirming the results given here, 
especially the unbiasedness of ANCOVA, see Overall and Magee 
(1992).

Strongly related to the question of biased estimates in the 
presence of baseline imbalance, is the question of type I error 
rates for different approaches to analysis conditional on baseline 
imbalance. Senn (1989) gives analytical results proving that only 
ANCOVA maintains the proper type I error rate for RCT's, POST and 
CHANGE may often be far off conditional on a given mean pre
treatment difference.

for POST, the bias -

for CHANGE, the bias -
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3.1.1__ Effects on variances when pre-treatment mean« differ

The variances for the estimated treatment effect when using 
POST or CHANGE are not directly affected by chance observed 
imbalance between groups. It is different for ANCOVA, as is 
obvious from its variance formula;

Var(ANCOVA)
f

+ (dsY _  >
+ nB- 2 ) - ! . ^

£L_i ( nA + n t -  2 Ì

which depends on the difference in pre-treatment means. This 
slight increase in the ANCOVA variance is a price we have to 
pay for non-orthogonality between treatment groups and pre
entry measurements. Thus, when using ANCOVA for RCT's, baseline 
balance has nothing to do with validity, only with efficiency.

In the following table it can be seen how this variance 
increases with the difference in pre-treatment means.

Table 3.1.1 : Proportional increase in variance for ANCOVA 
caused by chance observed mean pre-treatment 
differences. (This increase is independent of the 
correlation and the number of post-treatment 
measurements). SEM stands for standard error of 
the mean.

d Z / S E M 10+10 pat. 50+50 pat. 250+250 pat

0 1.000 1.000 1.000
0.5 1.014 1.003 1.001
1 1.056 1.010 1.002
1.5 1.125 1.023 1.005
2 1.222 1.041 1.008

For large trials (say, hundreds of subjects) there is nothing 
to worry about. For medium-sized trials (say, 50 to 100 subjects 
per group) we might lose some precision if we are unlucky with the 
randomisation (typically an increase in variance of a few per 
cent) .
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With small sample sizes baseline Imbalance might be of a real 
concern, and should perhaps be accounted for in the power 
calculations. For instance with only 10+10 patients and a 
standardized mean pre-treatment difference of 2, the ANCOVA 
variance would increase with 22 per cent.

One further table is given, showing the relationship between 
the variances for CHANGE and ANCOVA depending on mean pre-treatment 
differences, number of subjects, and the degree of correlation.
Here we are assuming compound symmetry for the derivation of the 
results.

Table 3.1.2 : Proportional increase in Var(CHANGE) compared to 
Var(ANCOVA) depending on standardized baseline 
imbalance, sample size and correlation. Assuming 
compound symmetry and 1+4 visits.

Number of subjects per group :
'/SEM P 10+10 25+25 50+50 100+100 250+250

0 . 4 1.816 1.883 1.903 1.913 1.919
1 .4 1.721 1.845 1.884 1.904 1.915
2 .4 1.486 1.738 1.829 1.875 1.904
0 .6 1.389 1.440 1.456 1.463 1.468
1 .6 1.316 1.411 1.441 1.456 1.465
2 .6 1.136 1.329 1.399 1.434 1.456
0 .8 1.124 1.166 1.178 1.184 1.188
1 .8 1.065 1.142 1.166 1.179 1.186
2 .8 0.920 1.076 1.132 1.161 1.179

We see from this table that the superiority of ANCOVA relative 
to CHANGE decreases when pre-treatment means differ and sample 
sizes are small. In extreme cases the CHANGE variance may actually 
be smaller. However, when this happens, for large standardized 
baseline differences, CHANGE is likely to give biased results 
(unless P is close to 1), taking validity into consideration, 
ANCOVA should always be chosen before CHANGE.
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3.2 INCREASING SAMPLE SIZE OR NUMBER OF VISITS

Consider the design of a repeated measures clinical trial, and 
suppose the calculated power for the intended sample size is too 
low to be acceptable. We may assume that plausible values have been 
chosen for the difference in treatment effect (assumed constant 
after randomisation) and for the covariance structure. What can be 
done under these circumstances to raise the power to a desired 
level? We assume further that an efficient approach to analysis has 
been specified, i.e. ANCOVA. Then two options to improve the 
situation remains. Either one has to increase the sample size, or 
one has to increase the number of repeated measurements taken on 
each subject. (A third alternative, when compound symmetry do not 
apply, might be to change the timing of the measurements, see 
subsection 2.2.3).

In comparing the relative merits of these two options we will 
not directly consider the issue of cost, and the natural extension 
of evaluating cost-effectiveness. The comparisons will be made 
solely in terms of precision. However, it would not be difficult to 
have a costings model, involving costs both per patient and per 
visit. To keep the exposition simple compound symmetry will be 
assumed for the covariance structure, though extensions to other 
structures are relatively straightforward.

We will make these comparisons with emphasis on ANCOVA, and 
assess the usefulness of increasing either the number of pre
treatment visits or the number of post-treatment visits, relative 
to increasing the total number of subjects, for a two-group RCT 
with equal sample sizes. The way we go about doing this is by 
equating the variance formula for ANCOVA when there are p pre- and 
r post-treatment visits and n+x subjects per group, to the 
corresponding variance formula with an additional measurement (pre- 
or post-treatment) but with n subjects per group.
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Assessing the value of a further post-treatment visit for 
ANCOVA when there are p measurements pre-treatment, we solve the 
following equation (based on the variance formula for ANCOVA given 
on page 4 6) ;

2d2 |il + (r-l)p p p 2 I-2* ’ 1fl + rp p p 2 \
n + x \l r l + (p-l)pj1 „ 1[ r + 1 l + (p-l)p J

resulting in x = n ( p p -  p + 1) 
r (pp+rp  + 1)‘

This is the additional number of subjects needed per group to 
raise the power by the same amount as the addition of a further 
visit would do. In the simplified case with p-1 we get;

_______n_____
r ( l+  p + rp) '

The corresponding general formulae for POST and CHANGE are;

”(1 - P) ^UJ1^ r __ n pPOST : r =
r(l + r p ) ’

CHANGE : x =
r(\ + p + r)

Similarly, contrasting an increase in the number of pre
treatment readings, for a fixed number post-randomisation, relative 
to an increase in sample size, we arrive at the following equality

n r  ■ p 2for ANCOVA; X =  ---------- ,---- -— r (for CHANGE we get,(l + rp+pp)(l+0>-l)p)

_ n r  
p(p  + r + l)

To give some feeling for the relative increases in sample size 
that are needed to compensate for not providing for a further visit 
in the study design, a few examples will be summarized in the two 
tables given below. These examples may usefully be compared with 
the sample size figure 2.4.1 on page 76.
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Table 3.2.1 : Percentage of increase in sample size needed to
increase the power by the same amount as provision of 
an additional post-treatment visit would. Assuming 
p—1, analysis will be based on ANCOVA, compound 
symmetry, and a constant treatment effect.

Number of post-treatment visits (before addition)
p 1 2 3 5

. 4 55.6 22.7 12.8 5.9

. 6 45.5 17.9 9.8 4.3

. 8 38.5 14.7 7.9 3.4

From the above table we see that when there is only one
treatment measurement to start with, provision of an additional 
visit after randomisation is likely to increase the power by the 
same amount as an increase in sample size in the order 40 to 50 per 
cent (for p in the plausible range around .6). When the originally 
intended design has more post-treatment measurements, increasing 
the number of subjects might be a better option (for instance, 
increasing the sample size by 10% is likely to be more efficient 
than increasing the number of post-treatment visits from 3 to 4) . 
This is because we already have quite precise estimates of the 
subjects post-randomisation levels, increasing the number of pre
entry evaluations might be a better option in this case.

Table 3.2.2 : Percentage of increase in sample size needed to
increase the power by the same amount as provision of 
an additional pre-treatment visit would. Assuming 
r=4, analysis will be based on ANCOVA, compound 
symmetry, and a constant treatment effect.

P
Number of pre 

1
-treatment visits 

2
(before addition)

3

. 4 21.3 13.4 9.4

.6 36.0 19.6 12.6

. 8 51.2 24.5 14.9
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From table 3.2.2 we see that provision of 2 pre-entry 
measurements rather than 1 is likely to be as efficient as 
increasing the sample size with somewhere between 30 to 50 per 
cent, when there are 4 measurements after randomisation. With fewer 
post-treatment measurements the value of adding a second pre-entry 
measurement would be somewhat less impressive relative to 
increasing the number of subjects.

These tables should not be taken to suggest that it might be 
more efficient to add further post measurements rather than pre, 
because it is usually not. Such comparisons should be based on the 
variance formulae given in the preceding chapter, rather than on 
indirect comparisons from different designs here.

General practical conclusions relating to the usefulness of 
adding further measurements, relative to having more subjects, is 
difficult to give. This will depend on costs as well as other 
practical matters, like availability of subjects and time. However 
provision of two measurements, rather than one, both pre and post
randomisation is likely to decrease the required number of subjects 
substantially in most applications.
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3.3 ADDITIVE OR MULTIPLICATIVE EFFECTS

One of the most frequent assumptions made when searching for an 
appropriate statistical model is that of additive effects. However, 
many variables measured in clinical experiments have at least one, 
often several, of the following characteristics:

1. The treatment effect depends on the initial value for a given 
subject, that is (substituting "covariate" for the pre-entry 
measurement) we have a t r e a t m e n t -b y -c a v a r ia t e  in t e r a c t io n .

2. The standard deviation of the dependent variable increases when 
the mean level of the variable increases (a covariate-by- 
residual interaction).

3. The residual variance around the fitted (separately for the 
groups) regression lines (of dependent variable on covariate) 
are different, a treatment-bv-residual interaction.

4. The responses have a log-normal distribution.

These four characteristics are in many ways related (actually 
number 4 implies the first three), and for variables with one or 
more of these properties the log-transformation will often succeed 
both in reducing the heteroscedasticity, the treatment-by-covariate 
interaction, and in producing distributions that are more nearly 
normal.

Several other types of transformations could be considered 
under these circumstances, for instance, the class of power 
transformations (Draper and Smith, 1981), but we will restrict 
ourselves to evaluation of the logarithmic transformation.

An alternative to a transformation when the treatment effect is 
assumed to be multiplicatively related to the pre-entry value is to 
analyse either the ratio, Y/X (henceforth labelled RATIO), or the 
percentage change, 100*(Y-X)/X (henceforth labelled »CHANGE). These 
two summary statistics are mathematically equivalent, i.e.;

»CHANGE - 100*(Y-X)/X - 100*(Y/X) - 100 - 100*RATIO - 100 .
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Sometimes %CHANGE may be more clinically meaningful, even if there 
is no difference in the fit of the models.

RATIO will be considered further, and it will be shown that by 
using this summary statistic, a specific model, consisting of both 
additive and multiplicative effects, is implicitly assumed. Under 
certain special circumstances RATIO will be shown to be the optimal 
summary statistic.

The rest of this section will evaluate different underlying 
data-generating models, and show what kind of observed response by 
covariate relationship they are likely to produce. Hence, some 
guidance will be given in choosing which model is correct, and 
thereby in deciding on whether a transformation might be needed. 
More formal goodness-of-fit comparisons goes outside the scope of 
this thesis. For comparisons between non-nested models see Royston 
and Thompson (to appear in Biometrics) and the references therein. 
Further, based on analytical results, the transformations needed to 
achieve complete additivity, under some different models, will be 
given. Finally, some of the proposed methods will be illustrated in 
an example selected from table 1.5.1, where multiplicative effects 
appears to be present.

3.3.1— Some simple data-generating models

In comparing models with additive and/or multiplicative 
effects, for simplicity we consider a simple design with one pre
entry measurement (X), and one post-randomisatidn measurement (Y). 
Main interest is in the comparison of the following two models;

1. Y¥ = a ,  + f i - X ¥ + e ¥

2. log(y;)= y,+ 5  •log(Xÿ) + r7ÿ (i.e. = er‘ X* ■e1'" )

In both models the response is allowed to depend on three 
effects; treatment, covariate, and residual. The coefficients have 
of course different interpretations in the two models.
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The residuals, £  ̂ and T will in be assumed to follow normal 
distributions.

As a starting point for our comparisons we will look at the 
kinds of data structures that are likely to be observed under the 
different data-generating models.

Under model 1 all effects are additive, we have parallel 
regression lines, homoscedasticity between groups, and within-group 
variances which are independent of the covariate level. For each 
group the X and Y variables Jointly have a bivariate normal 
distribution, the only between group difference is the additive 
treatment effect.

Under the second model all effects are multiplicatively 
interrelated. The treatment-by-covarlate Interaction gives rise to 
non-parallel regression lines. The covariate-bv-residual interaction 
will make the variances increase with increasing covariate values. 
The treatment-by-residual interaction causes the residual variance 
to differ around the two (separately fitted) regression lines. After 
a log-transform for both X and Y variables everything becomes 
additive, and the transformed variables will follow a bivariate 
normal distribution.

Motivated by our interest in when RATIO is a sensible summary 
statistic to use, a third model, consisting of a mixture of 
additive and multiplicative effects, will be given some 
consideration. This is similar to model 2, the difference being 
that the residual variance now is equal around the two (separately 
fitted) regression lines (i.e. there is no treatment-by-residual 
interaction). However, there is still a treatment-by-covariate 
interaction, and a covariate-by-residual interaction. For non- 
transformed data the model is; Yg = X* •(//, +  T# ). Here represents 
the overall treatment mean in group i, 0 is the regression 
coefficient for Y on X, and is the residual.
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3-3.2 Transformations necessary to achieve additivity

We shall now look for transformations of our two variables that 
will change multiplicative relationships to additive, specifically, 
we want to have a completely additive statistical model and to 
correct the dependent variable for differences in the covariate 
level by an amount that is predicted on purely statistical grounds 
(e.g. analysis of covariance adjustment).

Model 1 has Y  ̂=  a i + fi ■X^ + £^ , by a simple subtraction we 
accomplish are goal; — f) ■ = a i+ E ji . If this is the underlying
data-generating model the recommended approach is to analyse the 
summary statistic Y^-fi-X^ for each subject, this is, of course, 
ANCOVA.

Our main contender as the true underlying model is number 2, 
the completely multiplicative model. Here, Ŷ  = er‘ ■ X * •c’1* , taking

logarithms this changes to, ) = r, +  s • iog(x#)+ tj# . This may

be rewritten as, iog(r#)-s iog(x#) = Yt'i'Vii r or alternatively as.

"*
ratio as for the preceding model , but without a log- 
transformation. We may also note that when the regression 
coefficient for a regression of Y on X is one, the optimal summary 
statistic is Y/X. This fact has also been noted by Cochran (1957, 
p.263), who observed that analysing the percentage change is 
optimal when Y/X is independent of X and has constant variance.

All we need to do if this is the correct model

is to log-transform both Y and X and then use ANCOVA, or

equivalently analyse the summary statistic log — y-
\ X ' >

( Y \V

Model 3 has; Y- = X* , and we can readily see that

y achieves the desired aims. We thus analyse the same
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The appropriate transformations to use under these three models 
are summarized in table 3.3.1.

Table 3.3.1: Recommended summary statistics under three different
models for making an appropriate covariate adjustment, 
and for converting multiplicative relationships to 
additive.

Model Optimal
summary statistic

Special case:
P-0 P-1

^  =<*, + /? X# +ev Y , - p x ¥ n Y.-X,

Yt = e r‘ X‘  V *
(Y  Ì

108 x iog(n ) l08( rV v / V v y

Y<=X° (/i. + tJ 2L
x 9Aii

n

3.3.3 The triglycerides example

From the second coronary heart disease study referred to in 
table 1.5.1 the outcome measure triglycerides has been chosen to 
illustrate the methods of this subsection. The third of the four 
post-treatment measurements, the 6 months visit, was chosen as 
dependent variable, with the first of the two pre-entry 
measurements as covariate. The descriptive statistics for the two 
treatment groups were as follows:

N Pre-■entry At 6 months
Mean Std Mean Std

Drug A 109 1.815 ( .97) 1.610 ( .92)
Drug B 110 1.829 (1.02) 1.843 (1 .10)
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Observed c o v a r i a n c e  structures, within-groups resp e c t i v e l y  pooled:

t A

r.945 Tl.039 ] T.992
[.551 .839j Z*~[.750 1.231J zpool'd ~ [ >651 ! 036

P a =-619, 0A =.583 P t =.663, j}B =.722 P pool.* =-642, Ppooi.d =-656

Figure 3.3.1, together with these descriptive statistics, give 
us clear indications that we may not have additive effects. The 
regression coefficients from the two groups are quite different, 
.583 (standard error .072) in group A, versus .722 (standard error 
.078) in group B. Even though this suggests a treatment-by- 
covariate interaction, the test for such an interaction (which has 
low power) is non-significant (F-1.69, p-.19).

The variance for the dependent variable is also seen to 
increase with increasing baseline values, indicating a covariate- 
by-residual interaction. Grouping the pre-entry measurements into 
quartiles (<1.14, 1.14-1.63, 1.64-2.18, >2.18), the variance of the 
residuals (with residuals calculated from separately fitted linear 
regression lines) equals, respectively, .18, .55, .67, and 1.03.
Thus confirming the visual impression.

Whether there also appears to be a treatment-by-residual 
interaction, i.e. different overall variances around the two 
separately fitted regression lines, is more difficult to judge by 
the eye. This residual variance equals .52 for group A, and .69 for 
group B, with the test for equality of variances giving 
F (109,108)-1.33, and p-.14 . Certainly, however, a log- 
transformation seems well motivated.

A second set of descriptive statistics, now on a 1oo-sca1e are 
given below:

N Pre-entry At 6 months
Mean Std Mean Std

Drug A 109 .472 (.498) .343 (.506)
Drug B 110 .488 (.472) .484 (.492)
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Obs e r v e d  covariance structures, wit h i n - g r o u p s respectively pooled:

.248 I . [.223

.165 . 256j Z '-L .148 .242

P„=- 654, ¿,=.665 p B =.638, p t =.665 p  ̂  =.646, 4 ^ -  = 665

Figure 3.3.2 looks very different from figure 3.3.1, here the 
within-group regression lines are parallel, and the data-scatter 
looks much more reminiscent of a bivariate normal distribution. Let 
us now see what impact a log-transformation has on the ANCOVA 
analysis.

.235

.156 .2491

Table 3.3.2 : Analysis using ANCOVA of the triglycerides data on
original and log-scale. For comparative purposes the 
remaining summary statistics from table 3.3.1 are 
also included.

Summary
statistic

Estimated 
treatment effect

Standard
error t-statistic p-value

r , - p - x ¥ .225 .106 2.126 .035

log { y j x ‘ ) .131 .052 2.544 .012

.152 .068 2.236 .026

h - x . .220 .115 1.910 .057

log(n/X,) .126 .056 2.249 .026

Y j X , .125 .063 1.972 .050

n .234 .138 1.700 .091

login ) .142 .067 2.102 .037

Note: the estimated treatment effects and their standard errors are 
not directly comparable since different scales are being used.
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For this data set a logarithmic transformation appears well 
justified. Analysis of covariance on the log-transformed data gave 
the strongest evidence of a treatment difference, and is also, 
based on the covariate adjustment and the observed distributions, 
the most reliable approach in terms of validity.

The completely additive and the completely multiplicative 
models are just two possibilities among a vast number of choices. 
Even for the very simple model consisting of only treatment effect 
and residual, depending on the relationship between these effects, 
there are an infinite number of possible true underlying models. 
The purpose of this section was to give some advice in choosing 
between models, and also to emphasize the importance of checking 
the plausibility of the chosen model in explaining the variability 
in the data and in fulfilling the assumptions made for the 
analysis.
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3.4 THE AREA UNDER THE CURVE

One of the more popular summary statistics which has not been 
discussed so far is "the area under the (response) curve", AUC.
This summary statistic is calculated by adding the areas under the 
curve between each pair of consecutive observations for a given 
subject. In that way we obtain the total area between that subjects 
response curve and the x-axis for the full study period. This total 
area then constitute the summary statistic. Examples of 
hypothetical AUC's for two subjects are given in the figure below.

Figure 3.4.1 : AUC's for two hypothetical subjects when response 
was recorded continuously over time.

Several alternative ways for the calculation of AUC's are in 
use. Two decisions have to be made in choosing between them; that 
of the potential use of baseline(s), and that of interpolation. 
These two issues will be discussed in the following.

Regarding baselines, two different strategies are available 
when calculating the AUC for a given subject, subtracting or not 
subtracting that recording from all the measurements made under 
treatment. To distinguish between the two, the former will be 
referred to as AUCchange, and the latter as AUCp o s t. As will be 
shown there is a strong relationship between AUCp o st and POST, and 
between AUCchang e and CHANGE.

Suppose one wishes to use AUC's for describing and making 
inferences of the responses to treatment . Then the best option, in 
terms of both validity and efficiency, is clearly to do this with 
an analysis of covariance adjustment for the pre-entry level.
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Also, in the same way as we get equivalent results when 
analysing POST or CHANGE with a covariate adjustment for the pre
entry level, we will get equivalent results whether we choose 
AUCpost or AUCchange as dependent variable in an ANCOVA model.

In the remaining parts of this section we will not explicitly 
mention covariate adjustments. Instead emphasis will be on 
evaluation of the usefulness of AUCp0St relative to POST, and of 
AUCchange relative to CHANGE as dependent variables.

Apart from the choice of subtracting or not subtracting an 
existing baseline from all the measurements for a given subject, we 
also have to decide on the choice of interpolation. By definition, 
the true individual's area under the curve calls for a continuous 
recording of the variable of interest, otherwise we do not have 
access to a proper response curve, we only have information on the 
position of the curve at certain time points. An exception to this 
rule is studies involving continuous ambulatory 24-hour 
measurements (e.g. of blood pressures). Normally, though, we have 
to use some kind of interpolation between the successive 
measurements. We will base our results on the most widely used 
method, the trapezoidal rule, which is based on linear 
interpolation between the repeated measurements. More sophisticated 
techniques are available, see Crowder and Hand (1990).

Having decided to use the trapezoidal rule, the general formula 
without baseline subtraction, but with one measurement before and r 
measurements after randomisation, and with the r+1 recordings taken 
at the time points; , is (see Matthews et al, 1990):

with a pre-entry evaluation, and using the baseline subtraction, we 
get:

1 tì

Without access to a pre-entry measurement the formula is:

A U C o~.t. = 4  s  fo+i - )[(>; - y 0) + (>.♦! - >0 )] ^ ¿«0
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When t h e r e  are m o r e  than one r e c ording p r e - r a n d o m i s a t i o n ,  one

the preceding formula.

To be able to make direct comparisons of the variances between 
AUCpoSt and POST, and between AUCcjjange and CHANGE, we need to 
change the units of measurement for AUCpOSt and AUCChange to give 
them the same expected value as POST and CHANGE have. This will not 
affect the efficiency of any of the analyses, only the units of the 
measurements. This feature of scale-invariance for linear summary 
statistics is discussed in more detail in section 5.2.

For simplicity, we will begin to make our comparisons under the 
assumption of equal distances between any two adjacent time points. 
Making the expected values for the summary statistics equal is 
accomplished, under a model of constant treatment effects, by 
dividing the resulting AUC's with the total time period for the 
study. After this scaling, the total study period is equal to one. 
AUCpost may now calculated, in the absence of baselines, from:

These weights are seen to be very similar to what we use with 
POST, where each measurement receives the weight 1/r. The 
difference being that AUCpOSt gives only half the weight to the 
first and the last recordings relative to what it gives to the

1 0simply substitutes the average of these, y''“ = —  , for y0 in
P i—(p-i)

_ 2

l
, i =  1 and r

AUCpo» = ¿C.y, , Where C, = • ^
1*1 -----

(r-1)

intermediate ones. r

to the intermediate measurements relative to what POST does.
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Under the current assumptions of equal time intervals between 
successive measurements, and further, under compound symmetry, the 
variance for AUCpOSt with our transformed time-scale is:

Var[AUC^ ] =  g_* 2 {(2r -  3)[2 +  (2r -  3) p ] +  p  }

This may be compared with the variance for POST:
^  2

Var[POST] = - [ \  + (r-\)p] . The difference between the two being:

V a r ^ U C ^  ] -  Var[POST] =
cx2 ( l - p ) ( r - 2 ) which is strictly non-

2 r ( r - l ) 2
negative, implying that we are bound to lose precision by using the 
AUC approach as opposed to POST. To illustrate the magnitude of 
this inferiority table 3.4.1 is given.

Table 3.4.1 : Dependence of Var[POST]/Var[AUCpOSt] on the number of 
post-treatment measurements r and the correlation p, 
Assuming compound symmetry, equidistance between 
consecutive visits, and no pre-entry evaluations.

Number of post-treatment Correlation, p
measurements, r .3 .5 .7 . 9

3 . 948 .970 .985 . 996
4 . 961 .978 .989 . 997
6 .978 .989 .995 .999

10 .991 . 996 .998 .999

For many repeated measures designs it will not be the case that 
all time intervals between successive visits are equal, e.g. visits 
may be more frequent early on. If treatment effects are constant, 
and under compound symmetry, it is easy to show that the more 
irregular the time intervals are the more inferior will AUCpost be 
relative to POST. The reason for this is the successively more 
unequal weights used by AUCpost.

We will now compare variances when we have access to one or 
more pre-entry evaluations (for simplicity assuming equal time 
intervals between visits). Firstly, without subtracting the 
baseline (s), AUCpOSt may be calculated from:
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r
AUC,.,, = ' £ c iyi , with c, =

1=0

This corresponds to the formula for the AUC as given by 
Matthews et al <1990), for the case when all time intervals between 
successive measurements are equal, and when the total time period 
has been scaled such that the expected value for the AUC is the 
same as the expected values we have for POST and CHANGE.

One peculiarity with this particular summary statistic should 
be noted. While POST ignores existing mean pre-treatment 
differences between groups, and CHANGE usually overcorrects for 
them (see subsection 3.1), AUCpost actually inflates this imbalance 
(when it exists) by having a positive weight for the baseline 
measurement.

Investigating the efficiency of AUCchang e instead, and 
contrasting this with CHANGE, we will start off by giving the 
formula for its calculation:

2(r-l/2)
1

(r-V 2)

,i = 0 and r

,i = 1

A U C clmf, = ¿c.y, , With c; =

-1

___1
(r — l/2)

1
2(r-V2)

,i = 0 

,i =

,i = r

When multiple baselines are available y rr‘ should be substituted 
for y0. The variances for AUCchange are, as may be seen in table 
3.4.2, quite similar to the corresponding variances for CHANGE, 
there is, however, a small degree of loss in efficiency incurred by 
not having equal weights for all the post-treatment measurements. It 
may further be observed that the relative efficiency between 
Aucchange and CHANGE is independent of the degree of correlation, p.
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Table 3 . 4 .2 : Dependence of Var[CHANGE]/Var[AUCchang e ] on the number 
of post-treatment measurements r and the correlation p. 
Assuming compound symmetry, equidistance between 
consecutive visits, and one pre-entry evaluation.

Number of pre and post
treatment measurements, p+r .3

Correlation, p 
.5 .7 . 9

1+2 .964 . 964 . 964 .964
1+3 .980 .980 . 980 .980
1+5 .992 . 992 . 992 . 992
1+10 .998 .998 . 998 .998

The AUC, as a summary measure, is often analysed as an 
understandable feature in relation to an individual response curve, 
usually without having any direct physical interpretation. One 
exception may be noted, however, as discussed by Crowder and Hand 
(1990). In so called first-order kinetics the instantaneous rate of 
exchange between compartments of a substance is in direct 
proportion to the difference in concentrations at the interface.
For such solutions, and for compartments in series, it can be shown 
that the total area under the curve is inversely proportional to 
the elimination rate constant of the substance. Thus when primary 
interest centres on the elimination rate, the AUC should be 
analysed.

In conclusion, in relation to the area under the curve 
approach, AUCpOSt behaves very similar compared to POST, and the 
same holds for the comparison between AUCchange and CHANGE. The 
respective pairs of summary statistics are highly correlated. There 
is, however, under the assumptions of a constant treatment effect 
and under compound symmetry, a slight loss in efficiency incurred 
by choosing an AUC-approach. Also, one should beware of giving 
positive weights for pre-randomisation visits, and of giving less 
weight to final visits.
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3.5 OPTIMAL ALLOCATION OF VISITS FOR ANCOVA

Having decided to use ANCOVA at the design stage for a repeated 
measures study, there might be a wish to go one step further and to 
consider the allocation of measurements before and after the 
randomisation to optimise the precision for a given total number of 
visits.

This topic was touched upon in subsection 2.2.2 in the context 
of a constant treatment effect after randomisation and under the 
assumption of compound symmetry. Under these circumstances it was 
shown that, conditional on the total number of measurements, t, and 
the equicorrelation, p, the optimal choice for the number of pre
entry evaluations was given by;

However, here p is treated as continuous, the optimal choice 
will be either the "smallest larger" or the "largest smaller" 
integer. In most instances a simple rounding off procedure will 
give the optimal choice.

As an illustration, figure 3.5.1 gives the optimal number of 
pre-entry visits for three different choices of t; 10, 7 and 4, and 
depending on the degree of correlation. One general result is that 
with t even, as soon as p^.5, the optimal choice has equal number 
of visits before and after randomisation. We may also note that 
only when correlations are really small will the optimal choice 
call for substantially more measurements post than pre
randomisation, this situation is unlikely to occur for a repeated 
measures design.

p-p' when p lies between
0 and -  , for p ' =  0

A more direct way of deriving the optimal p is given by the

for

for
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F igure  3.5.1 : O p t im a l n u m b e r  o f  p r e  — en t ry  v is i t s  fo r  ANCOVA, a s s u m in g  
com pound  sym m etry  and a f i x e d  total num ber  o f  visits; 10, 7 o r  4

3 ■

0.4 0 .5  0.6

C o r r e l a t i o n

F i g u r e  3 .5 .2  : V a r ia n c e s  f o r  A N C O V A  a s s u m i n g  a t o t a l  of  8 v i s i t s ,  
b u t  d i f f e r e n t  n u m b e r s  p r e  a n d  pos t ,  by  d e g r e e  o f  c o r r e l a t i o n

variance

c o r r e l a t i o n
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To illustrate not only the optimal choice of p and r, given t 
and p, but also the relative differences in precision expected to 
occur depending on the choice of p and r, figure 3.5.2 is given. 
Here, a repeated measures design encompassing a total of 8 
measurements is evaluated, and the resulting variances for five 
alternative ANCOVA's are shown as a function of p, under the 
assumption of compound symmetry and a constant treatment effect.

The five ANCOVA's are based on 4,3,2,1 and 0 (the degenerate 
case of POST) pre-entry measurements, with correspondingly 4,5,6,7 
and 8 measurements post-treatment. We see that, for p in the 
plausible range .5 to .8, having p equal to 3 or 4 are about 
equally effective, using p-2 is slightly less efficient, allowing 
for only one baseline would imply a quite substantial loss in 
efficiency, while the choice p-0 is literally speaking out of the 
picture.

We will now look beyond the simplifying assumption of compound 
symmetry, but we will stick to a constant treatment effect. The 
reason is that we otherwise move outside the direct scope of 
ANCOVA. With non-constant treatment effects over time, using equal 
weights for all post-randomisation measurements will not be 
optimal, and other summary statistics might be called for. 
Considerations of this kind will be pursued in chapter 5.

Obtaining general results for the choice of the number of pre 
and post-treatment measurements under a completely general 
covariance structure is not algebraically tractable. We want to 
minimize the ANCOVA variance, , depending on the
choice of p, given t. To be able to do this we have to condition on 
the covariance structure. One plausible alternative for repeated 
measures designs (as was found in section 2.3) is to assume a 
linear decrease in correlation with increasing time intervals 
between assessments.
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Using the notation of section 2.3, the averages for the three 
submatrices of X are given by;

Given t,y (the correlation between adjacent visits) and b (the 
total decay in correlation over the study period) , we can now 
readily compute the variance for ANCOVA for any design choice of p. 
Since Z ^  is independent of p we only have to consider the impact 

of the choice of the number of pre-entry evaluations on Z ^  and 

We want both Z^, and Z^, to be small in order to minimize

The relationships with changing p's, however, goes in opposite 
directions. As p increases Z^, decreases and Z ^ ,  increases, and
vice versa when p decreases. The end result on the ANCOVA variance 
will depend on both y and b as well as on t, and again, general 
results are intractable. However, conditional on y, b and t, 
computation of ANCOVA variances for any p are straightforward, and 
this has been done in producing table 3.5.1.
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T a b l e  3.5.1: Optimal n u m b e r  of pr e - e n t r y  v i s i t s  (p) for m i n i m i z i n g
the ANCOVA variance depending on the correlation 
between adjacent visits <7), and the total decline 
(assumed linear) in correlation over the study 
duration (b). We are assuming a design consisting of 
t-8 visits in total, a constant treatment effect, as 
well as equal variances for all time-points.

7 b-. 0 b-. 1 b-. 2 b-.3 b-.4

.9 4 4 3 2 2

.7 4 4 3 3 2

.5 3-4 3 3 2 1

For a given starting correlation, 7, the optimal p decreases 
with increasing b. This is expected since an increasing b will 
decrease and thereby the regression coefficient of y po" on y *",
which implies that the value of a covariate adjustment diminishes.

The function curve determining the optimal p given t, 7 and b, 
is quite flat around its minimum. This may be exemplified by the 
resulting ANCOVA variances (arbitrarily scaled) for the case when 
t-8, 7-.7 and b-.2, which are as follows :

p r Var[ANCOVA]

0 8 243.3
1 7 120.1
2 6 103.7
3 5 100.0
4 4 101.6
5 3 108.1
6 2 123.6
7 1 172.7

As a general rule, for repeated measures designs with an 
anticipated stable treatment effect after randomisation, and with a 
total number of visits not exceeding 10, choosing p between 2 and 
t/2 will in most circumstances result in an analysis close to the 
optimal efficiency. When t>10 having p>2 might well be worth wile.
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3.6 SEPARATE BASELINES OR THEIR KEAN

The simplest form of ANCOVA uses multiple pre-entry evaluations 
as a single mean, and for each subject the summary statistic is

— /} • [x?" — xf” ). Even if, as shown in chapter 5, this is

optimal when the covariance structure adheres to compound symmetry, 
it may be far from optimal for other covariance structures. Thus, 
an evaluation of the possible advantages of including all pre-entry 
measurements separately in the ANCOVA model, and using the summary
statistic x£°"- y x \x?['-if*)-... —  y r (x£*-x£*) is motivated. The

choice between these two summary statistics is the main objective 
of this section.

3 .6 .1__id d iit— at fog multiple a a m l i t u

Apart from having to decide whether multiple baselines should 
be used separately or as a single mean, there will often be a 
desire to include other prognostic factors in the statistical model 
to further increase efficiency, and to enhance understanding of the 
underlying model. In most clinical trials a whole battery of 
prognostic variables are recorded on all patients before treatment 
commences. Surely the investigators would not have wasted their 
time and money on collecting all this data if they thought it would 
be of no relevance to the primary outcome measures. In a recent 
paper Tukey (1993) expresses the view that "we have a scientific 
method obligation to do what we can to milk our covariates as 
thoroughly as is reasonable". On the other hand, with selective use 
of significant covariates from a large choice of covariates, this 
can lead to "overprediction".

In his section on "adjustment for many covariates", Tukey 
motivates the use of compound covariates (i.e. linear combinations) 
as opposed to multivariate analyses. He suggests that it is often 
desirable to first construct one or two compound covariates and 
then work with them.
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What determines an individual covariate's value in contributing 
to a given model is not its univariate correlation with the 
outcome, but rather its influence on the multiple correlation 
coefficient R between the compound covariate and the dependent 
variable.

The formula for the multiple correlation (see Flury, 1989) 
corresponds very nicely to the formula for a univariate 
correlation. This may be seen from the following equalities, where 
y is the dependent variable and x the (vector of) covariate(s):

possible without incorporating too many covariates, see Rencher 
(1993). We will concentrate on the special case of when to use pre
entry measurements separately or averaged for ANCOVA.

3.6.2__Pre—entry Tn̂ »«,ii-«n»nt« neparatelv or averaged for ANCOVA

We are now interested in a scenario where we have one dependent 
variable y, which may or may not be the average of r post-treatment 
measurements, and p pre-entry measurements, xlf..,Xp (or more 
generally prognostic variables).

The following two models will be contrasted:

The question is; are we better off using X# as covariate or 
using xlr..,Xp individually in a multiple analysis of covariance?

For a given dependent variable, when multiple covariates are 
available, one will typically want to increase R^ as much as

y* = /*. + /!(•**! -*_i)+...+/, U *  n*
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The a n swer to this will d e p e n d  on the c o v a r i a n c e  structure, as
well as on the sample sizes. With small samples the advice will 
usually be to use a single mean, since the regression coefficients 
for the separate covariates would be to unreliably estimated. With 
larger samples, and when the covariance structure differs from 
compound symmetry, we may gain precision by using separate 
covariates. In this latter situation, the decision will depend on a 
balancing between the possible gain in efficiency relative to the 
increase in complexity of the model.

We will begin by having a look at the simplest situation, when 
we have two pre-entry measurements.

3.6.2.1 Two pre-entry measurements (covariates)

With two covariates and one dependent variable, the covariance 
structure is given by;

Assuming known covariance matrices the ANCOVA variances are 
given by;

£  =  o'¡2 o\
0 ly 0 2y O y

We will be contrasting the following two summary statistics:

ANCOVÄ! - yy - ß (jc# - X )

a n c o v a2 - yv - y, U vl - F, ) - Y 2 U V2 -  * 2  )

Var [ANCOVAx] oc a) ~'L2mixf t pr, = o y - ß

var [a n c o v a2] ~
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To facilitate the interpretations of the relationships we 
normalize all three variables (divide them by their respective 
standard deviations) . For ANCOVA2 this has no effect at all on the 
efficiency of the analysis. However, for ANCOVAj it will affect the 
relative weights the two pre-entry measurements get (if the two 
pre-entry variances differ) . The pre-entry measurement with the 
higher variance will contribute slightly less to the pre-entry mean 
in the normalized case (since it has been divided by a larger 
standard deviation) . Normally this will make very little difference 
for the choice between the two ANCOVA approaches.

For normalized variables the covariance matrix simplifies to;

1

P 12 1

Ply Pi.

and correspondingly the variance formulae

changes to;

Var[ANCOVA1 ] (Pi, + P i,)*

2(1 + P „ )

Var[ANCOVA2] Ply + Ply 2 p l2 p ly ply

1- P .2

Thus, Var(ANCOVA!) exceeds Var(ANCOVA2) by ( Ply — Ply )2
2(1 - P „ )

Hence, what primarily matters is whether the two repeat 
baselines are equally correlated with the dependent variable or 
not. If they are we should use ANCOVA!, otherwise, it might be 
worth-while to use ANCOVA2. We also see that, for any given 
difference in correlation between the two baselines and the 
outcome, the relative importance of this difference will be 
magnified when the correlation between the baselines is 
substantial, and hence the motivation to opt for ANCOVA2 will be 
larger.
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So much for the covariance structure, we will now look at the 
impact of sample sizes, and the price we have to pay for estimating 
two regression coefficients instead of one (since we are hardly 
expected to know the true underlying covariance structure).

The variances (for non-normalized variables) are now given by;

Var[ANCOVA^] i i _
— + — +c, J ’  nA+ n B

-2
- 3

Var[ANCOVA2] f* y ^ , - y 2a J n. + «,
n. +n.

-2
- 4

whe re ; c.=
(*a. T

{nA+ n B- 2 ) ï . pr,
and

<¡2
g 2 •*».! ) **'g’i (-*a.2 ^g i2 (̂ a.i -*<.i)(-*a.2 xt.i)

( « a + « i - 2)(<T,2ai-<yà)

For some background to these formulae, see Snedecor and 
Cochran, (1989, pp 386 and 441).

Comparing the correction factors for the estimated variances we 
see, firstly, that we lose one additional degree of freedom due to 
the estimation of a second regression coefficient. What is less 
clear is the relation between the £’s, the correction factors 
making allowance for non-orthogonality between covariates and 
treatment groups.

A formal comparison based on the sampling distributions of the 
two C's will not be performed here, but it may be noted that Cl is
distributed as 1 plus {.FXjt_2 )/(rt — 2), see Laird and Wang (1990, 
p.410) for details.
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Taking a simpler route and assuming knowledge of the underlying 
covariance structure, the expected values of the Ç's are given by;

*[£,]  = nt (nA+nB- 2 )

E\Ç 1 2(nA+nt) g ,2g 2 2

«*'*»('**+«*-2) (ct2<t 2- ct,2 ) (<t,2<t * -g,22)

I.e. Ç2 is at least twice as large as Çi . Compared to --H---

both these correction factors are usually very small.

A hypothetical example might help in clarifying the relevance 
of the differences in performance between ANCOVA^ and ANCOVA2 
depending on covariance structure and sample sizes.

Assuming an underlying covariance structure of 1
.7 1

the variances, calculated using the formulae given above for 
standardized variables, will be proportional to;

Va r[ANCOVA!] « .55 
Va r[ANCOVA2] “ .50

Having to estimate the regression coefficients, and using the 
expected values for the correction factors based on knowledge of 
the covariance structure, we can compare the expected variances 
for the two ANCOVA's depending also on sample size. Using the 
covariance structure from the example above, along with the last 
variance formulae given for the two ANCOVA's, it may be found that 
having 16 subjects or less per group will give a lower expected 
variance for ANCOVA1# while providing for 17 or more subjects per 
group would give a better expected precision using ANCOVA2 .
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These results are highly dependent on the difference P\y ~ P 2yi 
assuming these correlations to be .58 and .62, instead of .5 and 
.7, the number of patients needed per group for making the expected 
variance of ANCOVA2 the lower would increase to 430.

To further illustrate the differences between ANCOVA^ and 
ANCOVA2, two figures are gives. Figure 3.6.1 displays the variances 
based on knowledge of the covariance structure. We see to which 
extent the use of ANCOVA2 gets more advantageous as the difference 
\ply- p 2y\ increases. This relationship is given for some different 
values of p 12 .

Figure 3.6.2 gives the variance ratio between ANCOVA2 and 
ANCOVA^ for the normal case where we have to estimate the 
regression coefficients (with sizes of the correction factors as 
expected based on the specified covariance structure). This 
variance ratio is given depending on sample sizes, with different 
curves displaying the relationships for some possible choices of

\ply~p2,\-

In conclusion, in a repeated measures setting, when the two 
covariates are measuring the same variable as the outcome measure, 
there are no reasons to expect substantial differences between p iy
and Ply r unless the correlations are strongly time dependent. The 
use of ANCOVA^ would normally be recommended.

3.6.2.2 Three or more pre-entry measurements (covariates)

Disregarding the sample size correction and the other 
correction factors, an ANCOVA with p separate covariates (here pre
entry measurements) has the following variance;

var [ANCOVAp) = O* - r. - ...-r , ap, = a) -  U L )2 •

The vector of regression coefficients may be calculated from;
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For the special case with p-3 pre-entry measurements, and for 
normalized variables, we have the following covariance matrix;

1
Pn 1
Pn P 23

Pi, P2,

Our ANCOVA variance is; Var[ANCOVA3] « 1 — y,pXy — Y2Piy ~ Piy 

where the three regression coefficients may be found from ("det" 
stands for determinant) ;

7, =

72 =

73 =

( 1 -  P* ) Pi, - ( P.2 - P.3 Pz3 ) Pi, - ( Pl3 - P.2 P a  ) Piy

d e t [ ^ . ]

( 1 -  P|3 ) Ply -  ( Pn -  Px3 P23 ) Pi, -  ( Pa -  P 12 P.3 ) P 3,

dCt[ X ^ ]

( 1 ~  P.2 ) Pi, ~ ( P.3 ~ P.2 PZ3 ) P., ~ ( P23 ~ P.2 Pl3 ) P2,
dCt[Z^.]

For a given (assumed known) covariance structure it is now 
possible to derive the amount of decrease in ANCOVA variance 
attainable by using separate covariates instead of their mean.

A small example of this follows, assume the covariance

structure is given by;
1
.8
.7

1
.8 1

Then Var [ANCOVA!]-.42, while Var[ANCOVA3]-.35 . Thus, when 
compound symmetry does not apply it is possible to gain some 
efficiency by taking account of the different dependencies between 
the pre-entry measurements and the dependent variable.

131



It may be of interest to see how the two different ANCOVA models 
turn out for this example.

ANCOVA! : y¥ = ^  +.829 • (x¥ -  x ) + e¥

ANCOVA3 : = fit+.00-(x¥l - x . ,)+. 167 -(oc#2 - x 2)+.667-(xv3 - f , ) + r;v

We see that, in the presence of the two latter pre-entry 
measurements, the first is of no value for decreasing the ANCOVA3 
variance. With a steeper decrease in correlation with time, the 
first regression coefficient would be negative.

The issue of the expected sizes of the necessary correction 
factors for the variance formulae, when we have to estimate the 
regression coefficients from the data, for the case with more than 
two covariates, has not been investigated. As before, however, the 
general recommendation is to use a single mean of the pre-entry 
measurements for most repeated measures studies, unless sample 
sizes are large and correlations clearly unequal.
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4 REGRESSION TQ THE MEAN

4.1 INTRODUCTION

This concept was introduced by Galton in an 1877 paper. In a later 
paper (1885) he exemplified the term in the following illuminating way: 
"Each peculiarity in a man is shared by his kinsmen, but on the average 
to a less degree".

In the current statistical literature regression to the mean is used 
to identify the following phenomenon: a variable that is extreme on its 
first measurement will tend to be closer to the centre of the 
distribution for a later measurement.

The topic of regression to the mean is well covered in the 
literature, general overviews have been give by Davis (1976), Cutter 
(1976), Ederer (1972), and Johnson and George (1991). Many articles have 
dealt with the problem of relating change to initial value, like 
Blomqvist (1977), Oldham (1962), MacGregor et al (1985), and Hayes 
(1988). The implications that regression to the mean has for screening 
(e.g. of cholesterol levels) have been addressed by Thompson and Pocock 
(1990), Roeback et al (1993), and Chen and Cox (1992). Almost all results 
are given under a normal-theory framework, some exceptions are Das and 
Mulder (1983), Davis (1986), and Senn (1990). Finally, papers dealing 
with the consequences for between-group comparisons are scarce, one 
recent reference is Chambless and Roeback (1993).

Regression to the mean has several implications for comparative 
clinical trials. Most evident are the effects for wlthin-group 
comparisons, especially in the presence of selection criteria (e.g. when 
only subjects with a diastolic BP 2 95 are randomised). Then, any mean 
change during treatment for a given group will be partly due to 
regression to the mean (RTM)-effects. This has led to many misleading 
conclusions in the literature regarding treatment effects, effects on 
sub-groups, and dependencies between pre-entry levels and change during 
treatment.

133



The best way to get unbiased results is to have access to a control 
group, and to make between-group comparisons. This is where our main 
interest is, however, regression to the mean is still of concern. For 
instance, when we have a mean pre-randomisation difference between 
groups, in the absence of treatment effects, this mean difference is 
expected to decrease at a subsequent measurement. This effect of 
regression to the mean was noted in section 3.1, where it was shown that 
this implies biased estimates of treatment effects for POST and CHANGE, 
while ANCOVA remains valid.

Further, when studies involve selection criteria, the variances of 
our summary statistics will be affected. This will be explored below, and 
it will be shown that the variances for CHANGE and ANCOVA may increase 
quite substantially. However, there are remedies in terms of additional 
pre-entry evaluations not underlying the selection.

The underlying reason causing regression to the mean is within- 
subject variability, and this is present in any clinical trial. This 
class of variation may potentially consist of many different types of 
variance components. To facilitate the exposition to follow, the term 
within-subject variability will be divided into two distinct sub
components, called extraneous respectively intrinsic within-subject 
variability, to be explained below.

Let us assume that a quantitative observation over time in each 
subject has a true underlying mean level (assumed constant over the time- 
period of interest, apart from a possible treatment effect) , and that the 
true (momentarily) level in the subject varies over time around this mean 
depending on sources of variation, labelled intrinsic within-subject 
variability, like; time of the day, time of the year, food intake, mood, 
concurrent diseases, amount of sleep, and so on.
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In principle one could subdivide this further into systematic and 
non-systematic intrinsic within-subject variability depending on whether 
the variation related to a specific source is caused by a deliberate 
change of its level (like time of the day, morning versus afternoon) or 
whether it is due to an unintended change. However, we will not pursue 
this subdivision.

So far we have conceptualized a subject’s true measurement at the 
time of recording. Additional variability in measurement, however, will 
almost always be present, caused by, for instance; imprecise measuring 
devices, errors when reading off, typing errors, inter-rater variability, 
and laboratory technique. These sources of variation will henceforth be 
labelled extraneous within-subject variability, or measurement error 
(though measurement error sometimes is given a wider definition).

Evidently, it is desirable to decrease both these sources of 
variation as much as possible, by for instance; more standardized 
recording devices, double entry of values into a computer, having several 
evaluators for each patient, taking multiple recordings, and so on.

4.2 EFFECTS ON WITH IN-GROUP COMPARISONS

1.2.1__Comparisons for normal distributions

One way to investigate the effects of regression to the mean for 
within-group comparisons is to consider a sample of subjects with values 
exceeding a pre-set cut-off point. Then, consider the distribution of a 
second measurement in the absence of treatment interventions.

Let us assume a bivariate normal distribution for the two 
measurements (at screening and post-randomisation) , as for example in 
Gardner and Heady (1973), and Hayes (1988). Initially we will assume that 
the variances for the two measurements are equal, and when further 
repeated measurements are considered, that compound symmetry applies.

For a more general treatment allowing for correlated within-subject 
variation (by decomposing the RTM-effects into parts attributable to 
correlated within-subject variability respectively measurement error) see 
Johnson and George (1991).
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The mean and variance for our variable of interest, x, in the absence 
of treatment effects, and before selection criteria are used, are denoted

term true value of a subject (assumed constant over the time-periods of 
interest) is denoted by X. Let xg be the first measurement, and xj a 
second measurement, taken on the subjects with xg S a cut-off point k at 
the first measurement occasion.

Further, if no constraints on xg and x^:

= <7 2 /(O2 is the intra-class correlation coefficient.
p Xl = <7/(O is the correlation between the long-term true value

Under the assumption of a bivariate normal distribution for the two 
repeated measurements, xg and x^, the following equalities can be shown 
to hold (James, 1973):

This last formula reveals that, for a given cut-point, the regression 
to the mean depends on the size of the within-subject variance relative 
to the between-subject variance.

by )i and cô , respectively. The variance consists of two main components 
the between-subject part, , and the within-subject part, 5^. The long

and the observed value obtained.

r where k is the cut-off point for inclusion.
(D

0—------- , where <f>(z) is the pdf of the normal distribution,

and <Mz) is the corresponding cdf. Finally,
A  = e(o-z).

and

Hence, the expected RTM-effect is

E[*o-*i|*o SAr] = ( l - p i>-Xi) <u e .
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Correspondingly, for the variances we get :

Var[x0\x0 ä * ]  =  ct>2 ( l -  A )

Var[Xl \x0 Z *] =  (02 (l -  p 2 • A ) .

and

Hence the expected increase in variance

for relative to xg would be 0)2x(l -pl+). Also

Cov[x0, jc,|a:0 S * ]  =  cx2( l - A ) .

To illustrate the use of these formulae, consider screening a blood 
pressure lowering study with a cut-point chosen of 95 mmHg for inclusion 
(i.e. k-95 mmHg) . Suppose the distribution of the screened population is 
N(90,36+16), where the total variance is given as a sum of the between 
and within components of variance, 36 and 16, respectively.

Then, the conditional expected value for a patient included in a 
study following a screening visit will be

In the absence of treatment effects, the conditional expected value

90+ P HJlt -9.27 = 96.42mmHg. Thus, the expected regression to the mean is in

The conditional expected variance for a subject fulfilling the entry 
criteria is 52(1-.7611)-12.42 mmHg, whereas we would expect a variance of
33.03 when re-measuring our sample.

Apart from the direct regression to the mean, resulting in 
exaggerated treatment effects, other phenomena result. The correlation 
coefficient between xg and x^ (and the regression coefficient, for a 
regression of x^ on xg) will be attenuated. To see this, suppose two pre
entry measurements have been performed, one for classification purposes 
(x01), and an additional baseline not underlying the selection (xg2> . 
Introducing the notation p ^  for the correlation between x01 and xlf and 
P*, for the corresponding correlation, between x 02 and Xj, then the 
following two equalities can be shown to hold;

at a second measurement occasion will

this case £ [l0-X,|l0 ^ 95] -  2.85mmHg.
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p ~  = P
I 1 -  À

V - p L - i ’
p,
" " V i - A d ' - P i )

p,

Using these formulae it may be seen to which extent the correlation 
between x01 and xĵ is expected to be decreased due to regression to the 
mean, and hence how much less useful a covariate adjustment is likely to 
be. For instance, for the example above, we would expect a correlation of 
36/52-0.69 between x02 and x^, and a correlation of 0.42 between x01 and

The approach with double baselines, with different purposes (one for 
classification, and one to be used in the analysis), was proposed by 
Ederer (1972) . This will be helpful, but it may not totally guarantee 
avoidance of regression to the mean. In fact, assuming homoscedasticity.

symmetry this expression will equal zero, but when correlations decline 
with time it is likely to be positive, and then there will still be some 
regression to the mean around (but usually very small).

However, for practical reasons it will often not be possible to 
include such an additional baseline in the design. Also, when it is 
possible, it may be difficult to justify the inclusion of subjects where 
the measurement for this second baseline disagrees to much with the 
selection criteria.

A further drawback, caused by selection criteria, is that in spite of 
the underlying normal distribution for the population, a typical sample 
arrived at through an inclusion criterion will not be normal (for x ^ . It 
will typically follow some skewed distribution, thus, invalidating the 
use of procedures based on the normal distribution, for small samples.

r see Davis (1976). Under compound

138



A further understanding of the reasons underlying the regression to 
the mean effect, and the role of the within-subject variation, can be 
achieved as follows. Assume that the true value (long-term true), and the 
observed value obtained (as influenced by intrinsic variation and 
measurement error) at a screening visit, jointly have a bivariate normal 
distribution (before making use of a selection criterion).

For instance, using the numerical values of the example above,
n [ h x  , , a l  , a l , P x tt) = N ( 90,90,36,52,0.832).

This can be illustrated as in figure 4.2.1, which displays data for 
500 hypothetical subjects simulated from the above bivariate normal 
distribution. The marginal distribution on the horizontal axis follows a 
N(90,36)-distribution, and all variation is due to between-subject 
variation. The corresponding marginal distribution for the vertical axis 
is N(90,36+16). Without the extra within-subject variation, all subjects 
would fall on the diagonal line, the correlation would be one, and all 
patients would be correctly included/excluded.

The horizontal and vertical reference lines, positioned at 95 mmHg, 
divide the subjects into four sub collections. Those falling to the right 
of the vertical reference line are the subjects we in principle are 
aiming to randomise, the one's having true dbp's of 95 or above.

The subjects above the horizontal reference line are the one's 
actually included, since they scored 95 or above at the screening visit. 
The subjects in the lower-left corner have both true and measured dbp's 
below 95, and are correctly excluded. These in the lower-right quadrant 
are unnecessarily excluded, they have true underlying values exceeding 
95, but owing to measurement error and/or intrinsic within-sub ject 
variability, they scored below 95 on this specific occasion. In the 
upper-right position we find the correctly included subjects, and finally 
in the upper-left quadrant the undesiredly included patients. This last 
mentioned group is the one primarily causing the RTM-effect, at a 
subsequent visit these subjects are expected to have, on the average, 
lower values.
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A further understanding of the reasons underlying the regression to 
the mean effect, and the role of the within-subject variation, can be 
achieved as follows. Assume that the true value (long-term true), and the 
observed value obtained (as influenced by intrinsic variation and 
measurement error) at a screening visit, jointly have a bivariate normal 
distribution (before making use of a selection criterion).

For instance, using the numerical values of the example above,

N {^ x ,n*t , o \ .P*.„ ) = A/(90,90,36,52,0.832).

This can be illustrated as in figure 4.2.1, which displays data for 
500 hypothetical subjects simulated from the above bivariate normal 
distribution. The marginal distribution on the horizontal axis follows a 
N (90, 36)-distribution, and all variation is due to between-subject 
variation. The corresponding marginal distribution for the vertical axis 
is N(90, 36+16). Without the extra within-subject variation, all subjects 
would fall on the diagonal line, the correlation would be one, and all 
patients would be correctly included/excluded.

The horizontal and vertical reference lines, positioned at 95 mmHg, 
divide the subjects into four sub collections. Those falling to the right 
of the vertical reference line are the subjects we in principle are 
aiming to randomise, the one's having true dbp's of 95 or above.

The subjects above the horizontal reference line are the one's 
actually included, since they scored 95 or above at the screening visit. 
The subjects in the lower-left corner have both true and measured dbp's 
below 95, and are correctly excluded. These in the lower-right quadrant 
are unnecessarily excluded, they have true underlying values exceeding 
95, but owing to measurement error and/or intrinsic within-subJect 
variability, they scored below 95 on this specific occasion. In the 
upper-right position we find the correctly included subjects, and finally 
in the upper-left quadrant the undesiredly included patients. This last 
mentioned group is the one primarily causing the RTM-effect, at a 
subsequent visit these subjects are expected to have, on the average, 
lower values.
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Table 4.2.1: Exact probabilities, from the bivariate normal distribution,
for the outcome of selected subjects at a screening visit and 
a subsequent repeated measurement occasion (without treatment 
effects). Assuming screening from a N (90,6*+41)-distribution, 
with an entry criteria of 95mmHg.

1 i Re -m easure ,  u n t r e a t e d 1 1
1
1

1 ■ 
1 070 -1 075-1 080-1 085-1 090-1 095-1 100-1 105-1 110-1 115-1 |

1 i 075 1 080 | 085 | 090 | 095 | 100 | 105 | 110 | 115 | 120 |T o t a l i
1-------------
I At s c r e e n in g 1 1 i 1 1 1 1 1 1 1 1 

| |
1095-100 i 0.01 I 0.151 1.801 9 .4 8 1 2 1 .67|21.62| 9.431 1.791 0.151 0.01166.101
|-------------
1100-105 i . 1 0.011 0.151 1.36| 5.44| 9.431 7.131 2.351 0.34 1 0.02126.231
|-------------
1105-110 i ■ 1 . 1 0.01 | 0 .08  1 0.59| 1.791 2.351 1.351 0.341 0.041 6.551
|-------------
1110-115 i ■ 1 . 1 . 1 . 1 0.031 0.151 0.341 0.34 1 0.151 0.03| 1.031
|-------------
1115-120 i ■ 1 . 1 ■ 1 . 1 . 1 0.01 | 0 .02  1 0.04 1 0.031 0.011 0.101
|-------------
1 T o ta l i 0 .01 | 0.161 1 .9 6 1 1 0 .9 2 | 27 .73133.00119.271 5.87| 1.011 0.111100.01

140



Table 4.2.1 is based on the same underlying distribution as 
figure 4.2.1, but now the results are analytical, based on the 
bivariate normal distribution. The table contains only the part of 
this distribution over the horizontal reference line (i.e. with xg£ 
95) . Further, it gives the exact probabilities (in per cent, adding 
to 100 for the table) of falling into a grid of squares formed by 
categorizing the vertical and horizontal axes of figure 4.2.1 into 
5 mmHg intervals. For instance, we see from the first row of the 
table, that we expect 66% of the selected subjects to have observed 
values ( x q ) in the range 95 to 100, of these half are expected to 
have observed values below 95 when re-measured (x^), in the absence 
of treatment effects. From this table we get a feeling for how the 
distribution of measurements are expected to change from screening 
to re-measure (for this example) simply because of regression to 
the mean.

For any given example it is possible to calculate the expected 
proportions of subjects falling into the four categories. To 
achieve this, we have to refer to the formula for the bivariate 
normal. To get the proportion (from the total bivariate normal 
distribution) of undesiredly included patients above, we have to 
calculate the following integral;

//'-2noxoM'Jl-
if 1 ) U-Mx)1 . (X - Mx )(*0 - . (*•->**. )lI H 1 * I i X ° i " 2 Pxj* <Tx<T ' <T* dXdx,

The probabilities for the remaining three categories are 
obtained by obvious changes in the ranges of integration above.
This can be accomplished using the formulae given in the Handbook 
of Mathematical Functions (1970). More easily, though, the function 
PROBBNRM in SAS (1992, available from versions 6.07 and onwards) 
can be used.

Continuing with our example, the expected proportions are as follows;

Correctly included 
Correctly excluded 
Unnecessarily excluded 
Undesiredly included

15.2%
70.6%
5.0%
9.2%
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I.e. over a t h i r d  of our s e lected sample a r e  from outs i d e  the
target population, and about a fourth of the screened patients 
actually in our target group were unnecessarily excluded.

There are some general rules governing the regression to the 
mean phenomenon, which can be deduced from the formula for the RTM-

* The larger the within-subject variability is compared to 
the between-subject variability, i.e. the smaller the 
correlation, Px,*,* the worse the RTM-effect.

* The more extreme the cut-point, the larger the 0 (which goes 
from 0 when k— to °° when k-~) , the worse the RTM-effect.

Also, There is a strong dependence between the RTM-effect, and 
the proportion of undesiredly included patients.

What can be done to decrease these undesired effects ? 
Primarily, we should try to decrease the within-subject variance. 
This may be done by a more precise measuring technique and/or by 
taking repeated pre-entry measurements.

We now investigate the gains that can be made by using repeated 
measurements at the screening visit. Following Gardner and Heady 
(1973), we assume independent random variation around the true 
underlying value for each subject (i.e. equicorrelation) . For a 
more general treatment, see Johnson and George (1991). Then, with p 
pre-entry measurements, using the mean of these when classifying 
the subjects, the summary statistic used will follow a

¿vf p,a2 H--- I-distribution. Returning once more to our
V P )

hypothetical example, the joint bivariate normal distribution of X 
(the true underlying mean) and Xi” (the observed pre-entry mean)

They can be categorized as

follows;

f
w ill be N  90,90,36,36h---- ,------

P
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For instance, having 3 recordings pre-entry, instead of one, 
this would decrease our expected RTM-effect from 2.85 to 1.12.

Also, relative to basing the selection on one pre-entry 
evaluation, the ratio (correctly included)/ (correctly included + 
undesiredly included) increases from .62 to .72, and the ratio 
(correctly included) / (correctly included + unnecessarily excluded) 
increases from .75 to .87. Further, the misclassified subjects will 
be nearer, on average, to the cut-off point if we use multiple pre
treatment recordings.

A further way to decrease the RTM-effect, is to indirectly 
change the position of the cut-point relative to the underlying 
distribution. This might be achieved by a more careful definition 
of the population one is screening from. Thus, avoid investigating 
subjects not ill enough to merit their inclusion in the study.

Figures 4.2.2 and 4.2.3 illustrate, respectively, the 
dependencies of RTM-effects on the position of the cut-off point 
relative to the underlying distribution, and the remedies possible 
by the use of multiple pre-entry measurements.
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F igu re  4 .2 .2  : E x p e c t e d  % o f  c o r r e c t l y  in c lu d e d ,  u n d e s i r e d l y  in c lu d e d ,  
u n n e c e s s a r i l y  e x c lu d e d ,  a n d  c o r r e c t l y  e x c lu d e d  s u b j e c t s .  
D e p e n d in g  o n  t h e  p o s i t i o n  o f  t h e  c u t —p o i n t  ( k )  r e l a t i v e  
t o  th e  u n d e r l y i n g  d i s t r i b u t i o n ,  h e r e  a s s u m e d  N (90 ,36 -* -1 6 )

F igure  4 .2 .3  : RTM —e f f e c t  ( in  m m H g )  as a fu n c t io n  o f  th e  p o s i t io n  o f  the 
c u t —p o in t  r e l a t i v e  t o  t h e  u n d e r l y in g  d i s t r i b u t i o n ,  a s s u m e d  
N (90,36+16).  D i f fe r en t  cu rv e s  depend ing  on  th e  n u m b er  o f  p r e -  
entry m easurem en ts  (1,2,3,5 o r  9). Assuming com pound sym m etry
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4.2.2 Renre««Ion or riirrresairm

In the preceding subsection all results given were based on the 
assumption of equal variances at the screening and post-treatment 
visits (and on assuming sampling from a bivariate normal 
distribution). Under these circumstances we found that the RTM- 
effect was expected to be CO-©(l — p x> ). All the three factors

involved in this expression are strictly non-negative, and apart 
from degenerate null-cases (e.g. k--«»), regression to the mean will 
indeed take place. However, this is not necessarily the case when 
the variances for xq and x^ are allowed to differ.

Relaxing the assumption of homoscedasticity, and using the same 
notation as earlier in this section, the main results for the 
effects caused by the use of a selection criterion, generalize to:

£ [ x 0|x0 > * ] =  n+coH e
a

where B. , =  p x ,“ X0-*1 ' X0 •*! <7*0
£T[jc0 — jc,|jc0 £*] = <u„ e  

Var[x0\x0 >* ] = <u* ( l - A )  

Var[ xi |*0 £ k) =  o>* ( l  -  p * ^  • A)

Also, when conditioning on a specific value:

£[*,|*o =*]=/* + (*~ P)

£ [ * 0 ~x1\x0=k]= ß^ik- n) 
Var[xx\x0 =  * ]  =  < ( l - p ’ . J
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It may be seen that, whether using a selection criterion or 
conditioning on a specific value, the RTM-effect is no longer 
restricted to be non-negative. Specifically:

• CO*1 < a t H
Regression to the mean

- CO*1 Digres s i o n  from the m e a n

The interesting implication is that regression to the mean will 
not necessarily take place. A dual phenomena, henceforth termed 
"digression from the mean" might actually take place. The specific 
factor deciding whether regression or digression will be expected 
is whether the regression coefficient,/},^, is smaller or larger 
than one.

In most but not all applications the regression coefficient (of 
xj on x0) will be smaller than one. In Egger et al (1985), the 
estimated regression coefficients on seven variables in four 
different arthritis studies from a total of ten different treatment 
arms were reported. Out of the seventy regression coefficients two 
exceeded unity, being 1.21 (based on 61 subjects) and 1.09 (based 
on 68 subjects), both reported from the variable "grip strength".

In summary, when (Ô  > 0>H , regression to the mean will not 
necessarily take place, if •<W > 0)H we will actually
experience digression from the mean. When p, . -i0. = 0). the RTM-
effect will be zero. In practice, digression from the mean is 
unlikely to occur, but it is worth being aware of the possibility.
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4.2.3 Snr«» r..ulta for general distributions

Most published research relating to regression to the mean 
assume normal distributions for the derivation of results. There 
are a few exceptions, however. For instance, Das and Mulder (1983) , 
suggested a change in terminology, from 'regression to the mean' to 
'regression to the mode'.

This suggestion was based on a general formula for the 
regression effect for a given measurement x0 when a subsequent 
measurement xj is observed. They used the following assumptions; 
the ’true' values are arbitrarily distributed, but the measurement 
errors are normally distributed with constant variance, written to 
simplify the below formulae as (l — )<Î  • The regression effect

conditional on a given value, XQ”k, is defined as = *].

and Das and Mulder showed that their model yields the formula;

£[xo-x,|jc0 =*] = -(l-Px.^)ffi -¿-ln[*(x0)],

where g(x0) is the density function of the true measurements, <J^ 
is their variance, and p is the correlation between x0 and xĵ  .

As they pointed out, it is obvious from this formula, that for 
unimodal distributions, the regression is to the mode and not to the

mean (since ---InfJC0 )1 is zero at the mode of the distribution) .
dx0 1 J

However, these results are based on conditioning on x0-k, not 
on x02k, which is the usual situation when selecting for inclusion.

In this case the regression effect may be defined as 
— JC,|jc0 ^ /:], and Das and Mulder found that;

I ^,1 O-Px.-. )•<•*(*)fc[*o-*.|*o 2*J = ----- -— —— — ----- , where G()c) is the distribution
1 yj\x)

function corresponding to g(k).
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As pointed out by Senn (1990), this expression is always 
positive and thus justifies the term 'regression to the mean'. Senn 
also showed that, if the measurement errors have some other type of 
distribution than the normal, even when one is conditioning on a 
specific value, the regression might be to the mean and not to the 
mode.

Moving now to the variance, it has been shown earlier that, for 
the normal distribution, the variance decreases for all types of
truncation. That is, Var [x0]  £: Var[x0\x0 S  *] . To explore whether this 
finding carries over to some other common distributions, a 
simulation study has been performed. The results of this study are 
summarized in table 4.2.2 below.

For each distribution investigated, table 4.2.2 lists the 
choice of parameters, the cut-point (k) for selection, the number 
of subjects screened (10000 in each instance), the mean and 
variance before selection, the number of selected subjects, and the 
mean and variance after selection. These simulations indicate that 
variances decrease after truncation for most reasonably symmetric 
unimodal distributions. Only for one of the reported distributions, 
the chi-squared with one degree of freedom, did there appear to be 
an increased variance for the truncated case. For the exponential 
distribution it is well known that the variance is unaffected when 
it is truncated (the memory-less property).

It should be emphasized that these results are of a preliminary 
nature. If feasible, more general analytical results would be more 
valuable.
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Table 4.2.2 : Observed means and variances for all subjects screened 
and for all patients included, for some distributions 
with varying degrees of truncation.

Distribution Cut-
point
OO

Subjects
screened

Subjects
selected

Mean
(untrun
cated)

Mean
(trun
cated)

Variance
(untrun
cated)

Variance
(trun
cated)

Normal(0,1) 0 10000 5021 .004 .798 .993 .358
0.5 10000 3099 .002 1.140 .998 .266
1.645 10000 491 .017 2.094 .995 .162

Exp(1) 1 10000 3715 1.01 2.00 1.02 1.02
2 10000 1378 1.01 3 .00 1.02 1.06

Gamma(3,3) 1 10000 4170 0.99 1.53 0.33 0.22
(8,2) 15 10000 4358 15.8 25.6 123 96

Poisson(25) 25 10000 4384 24.9 29.4 24.7 9.8
30 10000 1388 25.1 33.3 24.6 5.7

weibull(10,.1) 10 10000 3707 9.5 10.6 1.30 0.21
(2,1/75) 50 10000 6431 66.2 85.3 1178 724

Chi-squaredi 0 .5 10000 4807 1.00 1.92 2.02 2.56
1 10000 3105 0.99 2.53 1.99 2.79
2 10000 1521 0.99 3.62 1.95 3.09

Chi-squaredj 2 10000 3695 2.01 4.03 4.09 4.04
3 3 10000 3907 2.99 5.-38 5.98 4.91
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4.3 EFFECTS ON BETWEEN-GROUP COMPARISONS

4 3 1 Effects on variano».1 g a m e d  bv inclusion criteria

The effect that the regression to the mean has on the precision 
for the estimated difference in treatment effects, when basing the 
analysis on either; ANCOVA, CHANGE or POST, will be investigated in 
this subsection. For simplicity, assuming one post-treatment 
measurement only.

In particular, the variance achieved for the three different 
methods of analysis when using the screening visit as baseline will 
be compared with what we achieve if we use the measurements from 
another pre-entry visit for the subjects included in the study.

Utilizing the notation and assumptions introduced earlier in 
this chapter, and assuming p =  the covariance matrix for
one pre-entry and one post-treatment measurement, when using the 
screening visit as baseline (i.e. based on x0i), is;

û)2 ( l - A)
<r2 ( l - A )  û)2 ( l - p 2A)

With new baseline measurements (X02) fot selected subjects, we 
obtain;

û>2 (l — p 2A)
cr2 ( l - p 2A) <u2 ( l - p 2A)

In most instances there will not be a second pre-entry 
measurement, so is more relevant. However, we now show that
if one can incorporate an additional pre-entry visit in the design, 
much is gained as regards precision.
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As observed earlier, the expected regression to the mean is 
<W • 0  • (1 —  p  ) for both treatment groups, and the decrease in the
variance for the measurement at the screening visit is
CO2 • A - ( l -  p 2 ) as compared to the variance resulting from a new
measurement occasion.

Moving on to the three different methods of analysis, and 
substituting the relevant components of the covariance matrices 
given above into the general variance formulae for ANCOVA, CHANGE 
and POST, the following equalities result.

Variances when using the screening visit as baseline:

Variances when using measurements from a new pre-entry visit as 
baseline:

VarH [PO ST] ~<o2 ( l - p 2A)

V a r^\C H A N G E ]~  a>2{ \ -  p 2A . ) - { l o 2 -a>2)(l-A)
_  4

VarH< [ANCOVA] «  w 2 (l -  p 2A ) ( l  -  A)

V a r^[P O S T] °cco2{ \ - p 2X)

Var^  [CH AN G E] ~ <o2 ( l  -  p 2 A)  • 2 • i  1
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Differences in the above variances; using the screening visit minus 
using a new pre-entry visit.

Hence, for ANCOVA the variance will always be smaller if one is 
using a new pre-entry visit as baseline instead of the screening
visit.

will be larger if we use the screening visit as baseline.

Now, the question is, in general, is the variance reduction for 
ANCOVA sufficient to justify the effort of an extra baseline 
measure? Would we gain just as much by an extra post-treatment 
measure? Using the parameterization of the covariance matrix above, 
and assuming compound symmetry, the ANCOVA variance with two post 
measures and one pre (the screening visit) , is proportional to

exceed the variance we get with an extra baseline, as seen in the 
example below.

VarHi [POST] - Varx<a [POST] «  0

Var^ [CHANGE] -  Var^ [CHANGE] ~  A . (l  _  p 2 ) .  (2<x 2 -  o>2 )
_  4

VarHt [A N C O V A ]- Vor^  [ANCOVA] «  A • (l -  p 2 )  ~

À, (A = 0(0- z )  , where 0 = -—
l - 4 > ( z )

and z = ---  ), is always
O)

positive, going from zero when lc -ii--— = — « to one when
a a

For CHANGE, this depends on the sign of (2cr2 — ft)2 ) = (<T2 — S 2 ), 

i.e. when p t — 0 2/ct)2 2.5 (for untruncated variables) the variance

This variance will almost always
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F.xamplp :

Again assume data is from a N (90,36+16) distribution, and that 
we have 95 as our lower limit for including subjects into our 
study, we will, thus, have the following numerical values for the 
parameters of interest;

Variances when using the screening visit as baseline:

Var[P0ST] «33.0 
Var [CHANGE] »c28.2 
Var[ANCOVA]«27.1

Variances when using a new pre-entry visit as baseline:

Var[POST] «33.0 
Var[CHANGE]«20.3 
Var[ANCOVA]«17.2

The drop in ANCOVA variance when an extra baseline is provided 
for represents a major benefit. Adding instead an extra post 
measure gives Var[ANCOVA]«22.0 . Thus, when feasible, provision of 
an extra baseline, giving unrestricted knowledge of the subjects 
pre-entry level, may be well worth-while.
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4.4 SUMMARY AND DISCUSSION

Regression to the mean (RTM) causes undesired effects in many 
clinical trials. The negative consequences for within-group 
comparisons include biased estimates of treatment effects, 
exaggerated claims of effects on sub-groups (e.g. the subjects 
being worst off at baseline), and spurious correlations between 
initial values and changes. These effects are well known in theory, 
though, not always recognized in practice.

The effects of regression to the mean on between-group 
comparisons are less well appreciated. When pre-entry means differ 
between groups, and inferior approaches to analysis are used (i.e. 
not ANCOVA) , biased estimates of treatment effects result. Also, 
when selection criteria are used, the ANCOVA variance may increase 
substantially, since the baseline will be of reduced value for the 
purpose of covariate adjustment.

In this chapter we have reviewed the existing results for 
within-group comparisons, and practical suggestions have been given 
for reducing the RTM-effects in terms of repeated baselines. Most 
published research have been based on normal distribution theory.
We have included some more general results regarding the effects of 
RTM, both on means for within-group changes and their variances.

Also, some results on between-group comparisons were given, 
especially relating to the consequences of selection criteria on 
the variances of our mean summary statistics. One helpful solution 
is to add an extra unrestricted baseline (i.e. not under the 
selection criteria). Major benefits in variance reduction may be 
gained with such an additional baseline. However practicalities may 
often prevent this possibility.

So far it has been assumed that the selection criterion is 
based only on the level of the intended dependent variable at one 
or, as an average, at several pre-entry visits. In practice, the 
selection can be more complicated involving a combination of 
several prognostic factors, which are correlated with each other, 
and with the dependent variable.
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An example in hypertension trials is to have selection criteria 
related to both diastolic and systolic blood pressure. Another 
example might be that the dependent variable, for instance time 
until end of an exercise test (e.g. on a treadmill), is not allowed 
to vary more than something like 15% between two repeated pre-entry 
measurements for a given subject.

The practical consequences of any selection criteria involving 
the variable of main interest for the subsequent analysis is to limit 
the value of the pre-entry measurement as a covariate in a 
statistical model. When feasible, it is recommended to provide for a 
second baseline, or to base the selection on other grounds than the 
pre-entry level of the intended dependent variable. However, the 
latter option is heavily dependent on clinical/practical 
circumstances .
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5 OPTIMAL LINEAR SUMMARY STATISTICS

So far attention has been confined to well known mean summary 
statistics, such as ANCOVA, CHANGE and POST. Depending on the 
expected response profiles (mean treatment curves) over time, and 
the hypothesis of interest (e.g. is the objective to assess 
differences in rate of change, overall effects over specific time 
intervals, etc.), there may often be some other logical choice of 
summary statistic for each subject. I.e. for steadily diverging 
mean response curves we might choose to analyse the data using each 
patient's regression coefficient (SLOPE) as the summary statistic 
in anticipation that this will increase statistical power compared 
with mean summary statistics. However, is this necessarily the case 
? For instance, the mean curves for two treatment groups might 
separate quite quickly in the beginning of the study, and continue 
to separate, but more slowly during the later phases. Such 
considerations raise a number of important issues:

* Will ANCOVA perform better than SLOPE ?

* Is there an optimal summary statistic, and in that case what 
will it look like ?

* How much more efficient is one summary statistic compared to 
another in a given setting ?

These are the questions that will be tackled in this section, 
and hopefully resolved, through the derivation of "the optimal 
linear summary statistic", and through the use of the concept of 
asymptotic relative efficiency (Pitman efficiency).

5.1 ASYMPTOTIC RELATIVE EFFICIENCY FOR LINEAR SUMMARY STATISTICS

A linear summary statistic is any linear combination of a 
subject's measurements, i.e. S-c'Y, where c is a vector of weights, 
and Y is the vector of responses (see Dawson and Lagakos, 1991). 
This class of summary statistics incorporates almost all of the 
one's considered in this dissertation, for instance, SLOPE, POST, 
CHANGE, AUC and ANCOVA (when assuming a known covariance matrix) .
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Examples of summary statistics outside this subclass includes 
tmax <the time to reach maximum) and c ^ x  (the maximal 
concentration/leve1) .

If denotes the true mean vector of Y in group i, and E is 
the covariance matrix of Y, assumed common to both treatment 
groups, then the asymptotic relative efficiency (ARE) of a test 
based on S^-o^'Y versus one based on S2”C2 'Y is equal to the ratio 
of their squared non-centrality parameters (Cox and Hinkley, 1974), 
and can be written as;

The appropriateness of this equality follows from the 
asymptotic normality of linear summary statistics, and is an 
immediate generalization of a result concerning large-sample power 
functions for maximum likelihood-ratio tests given on page 337 of 
Cox and Hinkley (1974), see also Lehmann (1993). To evaluate this 
expression numerically, we must specify Ci and C2, and assume 
knowledge of and E.

The ARE is a number that reflects the relative power of one 
statistical test to another. For example, if the ARE of S2 to in 
a particular setting is 0.75, this means that using would be
more efficient than S2, in that, asymptotically, only about 75% as 
many subjects would be needed for it to have the same power. Thus, 
ARE's that are close to one imply that the two summary statistics 
have similar power against the treatment effect being considered, 
while values far from one imply the opposite.

There is another way of utilizing the ARE formula. Having 
decided on which summary statistic to use, we may contrast two 
different designs, we interpret the ARE as the relative design 
efficiency under the given test. For example, having decided to use 
ANCOVA, and having specified E and [Mi-Mz] (not necessarily 
constant over time), we may compare ARE's between designs 
consisting of different number of pre and post-treatment 
measurements.
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The v a r i a n c e  formulae given e a r l i e r  are only (strictly) v a l i d  to

Although the concept of ARE is derived from asymptotic theory, 
it is also closely related to variance ratios between the summary 
statistics being compared. Thus, the ARE's indicates the relative 
precision of the summary statistics in estimating model parameters

For example, the ARE of SLOPE to POST is simply the ratio of 
the variance of POST to SLOPE, after the former has been 
standardized to have the same expected value as the latter (i.e. 
the measurements have been scaled such that

In ensuing sections the ARE's between various summary 
statistics have been computed, under different assumptions 
regarding the differences between the mean treatment vectors and 
the underlying covariance structure. However, first we derive "the 
optimal linear summary statistic".

5.2 THE OPTIMAL LINEAR SUMMARY STATISTIC

For any choice of; repeated measures design, vector of assumed 
mean treatment differences over time, and assumed underlying 
covariance structure, it is possible, extending the results of 
O'Brien (1984) and of Pocock, Geller and Tsiatis (1987), to derive 
an "optimal linear summary statistic".

The "optimal linear summary statistic", defined below, will 
maximize the power to detect a treatment effect under the 
assumptions chosen. I.e., no other linearly weighted combination of 
the outcomes for each subject will give a more powerful test 
statistic.

use for this purpose when is constant over time.

see Dawson and Lagakos (1991).
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Theorem:
Letting 8' (- ' * b® the known vector of true mean

treatment differences, and £ be the covariance matrix (assumed 
known, and identical between treatments), the optimal weights, c', 
for a linear summary statistic are obtained from 8'£-1, as c' 
proportional to 8'£-1-

This result follows from the extended Cauchy-Schwarz 
inequality, which states: Let P and 8 be any two p+r (where p and r 
are the number of pre and post-treatment measurements, 
respectively, see chapter 2) vectors and let £ be a positive 
definite (p+r)(p+r) matrix. Then (P' 8 ) <p1£p) (8'£-1S) with 
equality if and only if P-k£_18 (or 8-k£P) for some constant k. A 
proof is given on page 64 in Johnson and Wichern (1988) .

Then, for an arbitrary non zero p+r vector c,

max---- —  = 5 ’ Z *<5 with the maximum attained when c'-kS'£-1 for«0 c' 2c
any constant k#0.

This optimality theorem may be viewed either as an extension of 
O'Brien's generalized least squares procedure, or as an application 
of results from discriminant analysis, and the use of Fisher's 
linear discriminant function (see, for example, Chatfield and 
Collins, 1980), adapted to repeated measures designs.

Indeed, these coefficients were derived by Fisher (1936) when 
searching for a linear combination of a set of variables which had 
maximum between-group difference relative to its within-group 
standard deviation.

The weights, c'-8'£-*, are scale-invariant but not shift- 
invariant, i.e., multiplying any vector of weights, c^, by a 
constant will not affect the ARE derivations, but adding a constant 
to all the weights will change the performance of the summary 
statistic (unless the summary statistic has equal weights, i.e.
POST in the absence of baselines).
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To exemplify the scale-invariance, consider a design with 1 pre 
and 3 post-treatment visits. In this situation the weights for

r , 1 1 nCHANGE would normally be written as c'- — 1 — —  —  . Pre-
L 3 3 3j

multiplying this vector with, for example, 3, would change the 
vector to c'-[—3 1 1 1 ], but it would not change the outcome of
our analysis, only the units for our estimate of the difference in 
t reatment e f fect.

That CHANGE is not shift-invariant is obvious from the

r i i n
appearance of the vector c ’- 2 3— 3—  3—  , resulting from the

L 3 3 3j
addition of 3 to all the weights in the vector. We would then be 
estimating something very different from a mean change.

To allow for this arbitrary scaling, it is convenient to scale 
all the summary statistics in a consistent fashion: we henceforth 
set the sum of the weights for the post-treatment visits equal to 
one. For example, with p«l and r-5 visits pre and post
randomisation, and using ANCOVA, we will use the weights

i  I  i  i  i l
5 5 5 5 5_| '

An alternative approach for a consistent scaling would be to 
present the vector c' in its orthonormalized form, i.e. scaled such 
that c'c-l.

For any given set of data, if we substitute d' (»[XA - X, ] ') 
for 8' and S-1 for X-1, and use c '- d'S-1 as the weights for the 
summary statistic. Than, this will form the basis for a test that 
maximizes the discrimination between two treatment groups in that 
no larger t-statistic can be achieved using any other linear 
summary statistic.

Letting the observed data decide the weights is not a valid 
technique if we want to make a confirmatory analysis, this method 
would produce much inflated type I error rates.
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It is valid, though, to let data from one study indicate what kind 
of summary statistics will be likely to be most powerful in a 
forthcoming study. Further, if a prior hypothesis is hopelessly 
wrong, to be realistic, one may have to alter the approach to 
analysis. For instance changing from CHANGE to SLOPE if an 
hypothesized stable treatment difference over time turned out to be 
a linear divergence between the treatment curves over the course of 
the study. If so, however, one should be cautious with the 
conclusions, and a further confirmatory study would usually be 
recommended.

Furthermore, it is interesting to see what kind of summary 
statistics will be most powerful under various specific types of 
mean treatment difference profiles, and under some plausible 
choices of covariance structures.

Also of interest is the versatility of some common linear 
summary statistics to be powerful under various models, and the 
differences in ARE's between the summary statistics under plausible 
assumptions for a study at the design stage.

5.3 ANALYSIS OF RATS OF CHANGE

Mean summary statistics aside, summary statistics dealing with 
the analysis of rate of change are probably the most common. In 
particular analysis using each individual subjects linear 
regression coefficient (SLOPE) as a summary statistic entertains a 
wide usage, dating back, at least, to Hishart (1938).

The use of SLOPE when mean treatment curves diverge 
approximately linearly with time has several appealing features. 
These include ease of calculation, and ease of interpretation and 
communication. One might also think it has comparatively high 
power. However, since observations on a given subject are 
intercorrelated, least squares is not optimal, but merely 
convenient (Potthoff and Roy, 1964). The degree of sub-optimality 
that the within-subject dependencies inpose on SLOPE is clarified 
below.
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In this section we will review some of the more relevant 
results, firstly, relating to the precision of SLOPE depending on 
the frequency and timing of measurements, and, secondly, relating 
to some alternatives to SLOPE, one of them indeed achieving 
optimality in terms of statistical power for a linearly diverging 
alternative hypothesis.

5-3.1_Analyaia uaiag SLOPE

Based on the model for repeated measurements given in section 

2.1, and assuming that the true responses from each subject increases 

(decreases) linearly with time, we will adopt the simple model:

- O  + e* /

where i indexes treatment group (i-A or B), j indexes subject 
within group (j-l,..,n^), and k indexes the repeated measurements 
(k-0, ..,r). The overall baseline mean is denoted by |l, /3, is the 
(assumed common) slope for treatment group i, and £̂ t is the 
residual variation around the slope, which is interdependent within 
subject.

However, for between-group comparisons we need not restrict 
ourselves to situations where we have linearity within groups. All 
that matters for the power of the subsequent statistical test is 
that we have linear divergence between the two mean treatment-group 
curves. Thus, we might substitute M-k Cor J1 in the model given 
above, where ^  represents the underlying true mean response at 
time k disregarding treatment effects. That is, this section is 
concerned both with trials with linearity within groups, as 
represented by the left-hand figure below, and more generally in 
trials where we have linearity only for the difference between the 
two curves, as for the right-hand figure below.
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or

If, for the latter type of trial, we were to have knowledge of 
the true M-jc's, and substituted these from the observed 
measurements, we would be back to linearity also within groups. 
Hence, the treatment effect gives rise to a continual linear 
increase (decrease) in mean response over time relative to the true 
underlying M-k's •

Based on the above model (with or without fixed lb , for a 
repeated measures design where one baseline and r post-treatment 
visits are performed at the time-points; t0 ,f, , the summary
statistic for subject j in group i, SLOPE^j, may be calculated as;

Then, using this summary statistic as dependent variable for 
each subject, standard two-sample t-tests may be performed between 
the two groups based on the overall treatment difference in mean 
s l o p e ’ s , SLOPE A -  SLOPE B .

With access to more than one pre-entry measurement one should 
preferably take the average of these and use this as Yq, rather 
than including them as separate measurements. Needless to say, 
SLOPEj_j estimates the mean rate of change in the dependent variable 
per time unit for subject j in group i.

r

SLOPEij - r
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An explicit variance formula for SLOPE, for a general 
covariance structure, and a general choice of time-intervals 
between measurements, will be complicated. However, given the

A common approach is to adopt a model where both intercept and 
SLOPE are treated as between-subject random effects, and assuming 
equal variances around the lines at all time-points. Then the 
variance for SLOPE is given by (see Roe and Korn, 1993) :

the within-subject variance around the regression line. This 
approach will not be pursued here.

In the remaining parts of this subsection, we will for 
simplicity assume compound symmetry (whereby we implicitly assume 
intercepts to be random and slopes to be fixed within groups). More 
general results, and comparisons with other approaches, will appear 
later in this chapter.

Given that we believe in linear relationships with time, and 
that we intend to use SLOPE for the analysis, three options for 
increasing the precision of the individual SLOPE'S will be 
described:

weights used in the derivation of each SLOPE^j, e.g. “ck

for measurement k, and denoting the vector of weights 
[Cq ,Ci, . ., cr]-c', the general variance formula for summary 
statistics given in section 1.6 may be used, i.e.

Var [ SLOPE A — SLOPE, ) - c ' Zc

(

Var[SLOPEA -  SLOPE, + T1
2 t where T)2 is

V *=o

the between-subject variance in true underlying SLOPE'S, and T2 is
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A) Increasing r when time-intervals between measurements are 
fixed.

B) Increasing the study duration for a fixed r.

C) Changing the distribution over time for a given number of 
measurements over a fixed time period.

Assuming compound symmetry and a variance of l2 around each 
separate regression line (this is the within-subject part of the 
total variance a2), and further, equally spaced time-intervals of 
unit length, the variance formula for an individual SLOPE^j 

estimate, with r measurements in total, simplifies to (see 
Schlesselman, 1973):

Var[sLdPE, ] - ^ J _

Then, considering the merits of option A, the ratio in variance 
having r+1 measurements divided by having r, becomes:

VarlsLOPE^] r _ 1 3
----j------ — =- = ---- , with the variance reduction being 100---- %
Var\SLOPÊ \ r + 2 r + 2

More generally, moving from r to r+s measurements (sSl):

Var[SLdPElr+‘] ] _ r
-----F--- ;;--- . . ,J =  ------—7---------- , with the var i a n c e  reduction being
Var^LOPE?] (r + s)3- ( r  + s)

100 -
(r + s)3 — r3 — i 
(r +  j)3 -r-s %

We now look at option B. Having, as before, r measurements made 
at equi-distant time-points, the study duration, d, equals r-1. 
Under compound Symmetry we may rewrite our SLOPE~ variance to (see

Schlesselman, 1973); Va/-[SLO/>£v] = 1 2 r 2 (r —  1) 
d1 r(r +1)
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We immediately see that the variance is inversely proportional 
to the square of the study duration. Doubling the study duration 
while keeping the number of visits fixed will decrease the variance 
by 75%.

Hence, substantial gains in precision for the estimates of the 
individual SLOPE'S may be gained either by increasing r for a fixed 
d, or by increasing d for a fixed r. However, we have to be careful 
not to overstate the relevance of these results, since strong 
assumptions have been made: that the variance for the dependent 
variable stay constant over time, while the actual values are 
increasing linearly with time. This will often not be the case. 
Also, the compound symmetry assumptions is likely to be violated 
when time-intervals between visits are changed.

Before moving to option C, a combination of options A and B 
will be considered. Given that, at the design stage, a certain 
precision is desired for the estimates of the individual SLOPE'S. 
Then different combinations of study duration and number of 
measurements, achieving this variance, may be evaluated.

An illustration of such an approach is given in table 5.3.1. 
This example, based on compound symmetry and equi-distant time- 
intervals between visits, evaluates a range of measurements from 
r-2 to 6, and study durations of 1, 1.5 and 2 (arbitrary) units. 
Choosing the design with r-6 and d-2 as baseline, the relative 
increases in variance for the SLOPE^'s  under various other designs 
are given in the body of the table (these relationships are 
independent of the degree of equicorrelation). Note, however, that 
d often is determined by practicalities.
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Table 5.3.1: Relative increases in variance for the SLOPE^'s under 
various designs relative to what is obtained with 6 
measurements and a study duration of 2 units.

Number of 
measurements

Total
1

study duration (arbitrary 
1.5

units)
2

2 5.60 2.49 1.40
3 5.60 2.49 1.40
4 5.05 2.24 1.26
5 4.48 1.99 1.12
6 4.00 1.78 1.00

The equality of the entries in the first and second rows were 
to be expected, since, for three equidistant measurements, SLOPE 
gives the weight zero to the middle one. However, while being of no 
use for decreasing the variance, the third measurement may be 
needed to confirm (or refute) linearity.

Let us now consider the third design option, C. That is, having 
decided on the number of measurements to be taken and on the study 
duration, we still have to decide on the distribution of our 
measurements during the study period. The fact that the 
equidistance strategy is sub-optimal should be clear simply by 
consideration of the weights for the SLOPE'S when there are three 
measurements. These will be proportional to; [-1, 0, 1], i.e. the 
second visit was, as far as estimation of each SLOPE^j was 
concerned, wasted. In the sense of precision, substituting the 
middle measurement for a second pre-entry measurement (or a second 
final measurement), would be a better alternative.'

When all measurements are independent, we know from linear 
regression (see Draper and Smith, 1981) that the optimal 
distribution of the measurements (in the sense of SLOPE precision) 
is to have half at the very first time-point and half at the very 
last. This result may be shown to carry over unchanged to the 
compound symmetry situation. Using this strategy, of course, calls 
for a complete faith in the underlying linear relationship with 
time, and hence is usually unrealistic.
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However, it is also likely that compound symmetry will then not 
hold. We can not expect measurements taken at, or very close to, 
the same point in time to be as equally correlated as measurements 
taken far apart. This would only happen if all within-subject 
variability was due to measurement error, and none to true 
intrinsic within-subject variability.

Thus, to give any explicit advice on the optimal distribution 
of measurements we would have to separate the within-subject 
variability into two components; measurement error and intrinsic 
within-sub ject variability (see Johnson and George, 1991) , and go 
ahead with the modelling of the covariance structure from there.

This will not be explored further here. As a guiding principle, 
though, under a model with linearly diverging mean curves, having 
relatively more measurements later on in the study will be more 
powerful than using an equally-spaced distribution for the 
measurements.

5 -3-2__Th. r.r.Hmj.1 » I t .m .H w  l-n fiT̂ tPg.

Given the non-optimality of SLOPE for correlated within-subject 
measurements (see Potthoff and Roy, 1964), a search for better 
alternatives is suggested. As a help in deriving the optimal linear 
summary statistic under compound symmetry, when mean treatment 
curves diverge in a linear fashion, it is convenient to, firstly, 
derive another summary statistic, "Regression through the origin" 
(RTO) , before arriving at the optimal one, SLANC (a "SLOPE-based 
ANCOVA").

In the process, it will be shown that under a model of linear 
divergence, the three summary statistics; RTO, SLOPE and SLANC, are 
analogous to POST, CHANGE and ANCOVA, under a model with a constant 
treatment effect.

As outlined in the preceding section linear summary statistics 
are scale-invariant. Returning to the consistent rules for scaling 
introduced there (i.e. such that the weights for the post-treatment 
measurements add to one), SLOPE^j may be redefined as;
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only the scaling in the denominator has
¿(**” 0 -y*

±(h-l)
I

changed.

Whatever scaling is used it is a fact that SLOPE will give 
negative weights to the earlier post-treatment visits, where we 
actually are anticipating positive treatment differences. Some 
investigators feel uneasy about this, as a consequence the summary 
statistic RTO (regression through the origin) has been put forward 
as an alternative to SLOPE (Senn, 1993) . Starting with a zero 
weight for the baseline, this summary statistic gives weights to 
the measurements that are increasing linearly with a linear 
increase in time.

For a design with four visits, RTO^j will be proportional to;

We see that RTO makes no baseline adjustment (we could, 
however, use RTO as dependent variable in an analysis of 
covariance, and incorporate the baseline as a covariate, as 
suggested by Senn (1993)), while SLOPE assign as much weight to the 
baseline as to the post-treatment measurements. One might 
anticipate that the optimum would be somewhere in between, and, as 
will be shown, it usually is.

r

RTOj may be calculated as;

0 > 0 +l->i + 2 > 2 +3> , ,
correspondingly, SLOPE^j will be proportional to;

- 3 y 0- l y , + l y 2+ 3 > 3.
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For our m e a n  summary statistics we have t h e  relationship;

ANCOVA -  (1 — P ) -POST + P-CHANGE.

Under linear divergence we have a corresponding relationship; 

SLANC - (l-P) RTO + P-SLOPE.

Under the assumptions of compound symmetry and linear 
divergence between mean response curves (but with no assumption 
needed about linearity within groups), this last equality defines 
the optimal linear summary statistic. A proof of this, for the 
special case of equi-distant time-intervals between measurements, 
will be given below. For the validity of the equality above to 
hold, we have to scale RTO and SLOPE in a consistent manner, as we 
are doing by constraining the weights for the post-treatment 
measurements to sum to unity (i.e. using the formulae given earlier 
for this purpose).

Generally, SLANC^j may be calculated from;

A standard two-sample t-test may then be performed between the 
two groups based on the overall treatment difference in mean
Slanc ■ s, SLANCa — SLANCB .

Under compound symmetry, the optimal linear summary statistic 
for linear divergence between mean treatment curves, and, for 
comparative purposes, the same under a model with a constant 
treatment effect, may be summarized as in table 5.3.2.

r r

(i-0 )-X(r*- t0) y* P
SLANC± j - r r
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Table 5.3.2: Optimal linear summary statistics, assuming compound
symmetry, under linear divergence, respectively, under 
a constant difference, between mean treatment curves.

Treatment effect P-o General p P-1

Constant POST ANCOVA CHANGE

Linear divergence RTO SLANC SLOPE

With equidistant unit time-intervals between measurements the 
three linear divergence summary statistics may be expressed as 
follows:

SLOPEij
r

I*«0
(2* - r ) y ^

r

RT0ij
2 ■ k. ■ y ̂

h, r(r + 1)

s“NCl’ '

Direct comparisons of variances are not meaningful, since the 
expected mean treatment differences varies between RTO, SLOPE and 
SLANC. Instead, comparisons based on the asymptotic relative 
efficiencies among these summary statistics will be given in 
section 5.5.

We will now give a proof of the optimality of .SLANC under 
linear divergence and compound symmetry, for the special case of 
equi-distant unit time-intervals between measurements and one pre
entry evaluation.

From the optimal linear summary statistic theorem we know that, 
in general, the optimal choice is 8 ’E-1. Firstly, we rewrite this 
optimal choice in the form of the general linear summary statistic,

r

as given in subsection 1.6.2, then, OPTI-^Cjy,- .
i.O
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Utilizing results from Rao (1973), dealing with Fisher's linear 
discriminant function, the weights, the c^'s, may be written as;

, where the {J*1 are the elements of the inverse 
i-o

E"1. Dividing all measurements by <X2 (arbitrary scaling), the 
covariance matrix E has elements 1 on the main diagonal and p off 
the main diagonal. The inverse matrix E-1 has elements

l + ( r - l ) p  ÿ — p
a  — ---;----;------=- on the main diagonal, and C  — ---;---- r------r-l + ( r - l ) p - r p 2 l + ( r - l ) p - r p 2

off the main diagonal.

Then, the optimal summary statistic has weights (proportional

to )  c, =  [ l  +  ( r  - 1 ) p  -  r p 2 ] £ ( p *  -  )  <X* .
i-o

With equi-distant unit time-intervals this simplifies to

Ci = [ l + ( r - \ ) p - r p :i\2J j < j i‘ =

- P
l + ( r - l ) p - r p 2

After multiplication by r(r + l) (to conform to our' consistent

2< ri iscaling) this may be rewritten as; C.-= ---- — + p — p, which forr + lLr J
one pre-entry measure and under compound symmetry (so that p-|3) is 
identical to the summary statistic labelled SLANC above.

Before concluding this section, some previous alternative 
approaches for improving upon SLOPE will be mentioned.
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An obvious improvement would be to use an analysis of 
covariance with SLOPE as dependent variable and with the (mean of 
the) pre-treatment measurement (s) as covariate, or with the 
estimated intercept for each subject as covariate. Even if the 
first approach makes a proper covariate adjustment, the relative 
differences between the weights for the post-treatment measurements 
will remain fixed, only the weight for the baseline will change. 
Thus, the increments in the weights (the c^'s) will not be the same 
between cq and c^ as it is between the remaining c^'s. As a 
consequence, a covariance adjusted SLOPE will differ from SLANC.
The latter approach was suggested by Laird and Wang (1990) . Both of 
these approaches improve on SLOPE, but neither reaches quite as far 
as SLANC.

It has also been suggested to use the fitted higher order 
polynomials of response against time for each subject, i.e. 
quadratic, cubic, quartic etc., as covariates, when having SLOPE as 
dependent variable (see Leech and Healy, 1959, and Kenward, 1985) . 
To increase the power Leech and Healy further considered forming a 
linear combination of two summary statistics (scaled to) having the 
same expected value (in particular of SLOPE and POST) , by forming 
the minimum-variance combination of the two based on the covariance 
matrix for the two summary statistics. They considered this type of 
combined summary statistics for both linear and quadratic 
divergence.

When quadratic divergence is thought plausible, analysis of 
quadratic regression coefficients might, if interest resides in the 
rate of rate of change, be recommended. For a useful reference, see 
Snedecor and Cochran (1989).

Acknowledging the fact that the variations around the 
regression lines for different subjects often are far from equal 
(e.g. when different subjects have different number of 
measurements), Matthews (1993) contrasted different schemes for 
arriving at weighted analyses of rates of change, as measured by 
linear regression coefficients.
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That is, using SLOPE as a summary statistic for each subject, but 
weighting the subjects, in some way, according to the relative 
precision of their estimated regression coefficient. An extension 
to this approach would be to use a "weighted SLANC".

As a final reference, an approach suggested by C.R. Rao (1959) 
will be mentioned. Emphasizing the examination of whether 
differences exists between groups in mean rate of change during 
treatment, and realizing that the rate is rarely constant, but 
rather a complicated function of time, he suggested a method for 
transforming the time scale making the rate of change linear in a 
new time metameter. The linear regression coefficients in this new 
time scale would then be used as the summary statistics. This 
approach has a certain appeal, but we suspect that one will usually 
lack enough data to make reliable transformations of the time 
dimension. A natural extension to Rao's approach would be to use 
his transformation of the time scale, but then to use SLANC at the 
analysis stage.
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5.4 WEIGHTINGS FOR LINEAR SUMMARY STATISTICS

In this section, the weightings used for various possible 
linear summary statistics will be explained. This will form a basis 
for more specific comparisons among these summary statistics, under 
different assumptions regarding treatment effects and covariance 
structures, in the remainder of this chapter. In table 5.4.1, 
outlined below, the weightings used for some of the summary 
statistics, when there are p pre and r post-treatment visits, are 
given. There are no constraints on the covariance matrix, other 
than it has to be identical between treatment groups. Further, as 
has been discussed above, all the c'-vectors have been scaled so 
that the weights sum to one for the post-treatment visits.

One new summary statistic is introduced in this table, OPTI_CS, 
which is the optimal linear summary statistic under compound 
symmetry. The optimality holds if the true 5'-vector is as 
specified in the derivation of the weights, and under compound 
symmetry with knowledge of the true p .  The weights for OPTI, the 
optimal linear summary statistic under a general covariance 
structure, are given by c '— 8 'Z-1.

Three of the summary statistics in the table; POST, CHANGE and 
SLOPE, are unconditional, they are not based on any information 
from the covariance matrix. The remaining summary statistics are 
conditional, either on P or on information from 8 .

ANCOVA, SLANC and OPTI_CS are all based on the principle of 
analysis of covariance. The three approaches use different 
dependent variables (weighted combinations of the post-treatment 
measurements) in the analysis, as described below, but they are all 
using the same covariate adjustment, -p times the pre-treatment 
value (or the mean of several pre-treatment values) . Hence, they 
are all based on analysis of covariance.
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Table 5.4.1 : Weightings for some linear summary statistics.
Design; p visits pre-treatment, r post-treatment.
For OPTI_CS di is the assumed mean treatment
difference for the i'th measurement. P  = X ^ / Z ^  , 
under compound symmetry and when p-1, P=p.

Summary
statistic Weightings 1 pre + 3 post 

--- (P—2/3) —

POST
C, = 0  

1
C| —  r

, i = - ( p - l ) .... 0
, i = l,...,r N - H ]

CHANGE

_ _J_
P

1
c, = -  r

, i = -(p-1).... 0

, i = 1.... r [ - ■ 4 H ]

ANCOVA
P

c, = -r

, i = - (p- l ) .... 0

, i = 1.... r
IM : 1 i H
L 3" 3'3’3]

SLOPE

1
c, = ---P

-r + 2-i c. = -------

, i = -(p-1).... 0

,i = l,...,r [ - ‘• 4 - i - 1]

SLANC

fi

: i = ± L ( i + A \ A
r + 1vr p ) P

, i =-(p-l),...,0  

,i = l,...,r
r_l :—L 2 11 
L 6 " 6 * 6 * 6 J

OPTI CS
c . - A , i =-(p-1),...,01 » ' r - f i --r 2 "j

1 r / -  \ 1 »c 2*cj

.....r

* These are the weights for SLOPE and SLANC when all time-intervals 
between adjacent visits are equal, for the general case see below.
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ANCOVA uses the mean of the post-treatment recordings as 
dependent variable. SLANC assumes a linear divergence between the 
mean response curves, reflected in linearly increasing weights for 
linearly increasing time-intervals since randomisation. OPTI_CS 
puts weights proportional to the assumed differences in mean 
response profiles for each visit, when composing the dependent 
variable. These weights are shifted downwards such that the pre
treatment visit (or mean of pre-treatment visits) receives the

has been scaled to unity. That is, each of the three approaches 
assumes the shape but not the magnitude of HA is known in advance.

Continuing with the table above, for SLOPE and SLANC for the 
weights given, it is assumed, for illustration, that visits are 
performed with equidistant time-intervals. Relaxing this 
equidistance assumption, and assuming that the measurements for one 
baseline and r post-treatment visits are performed at the time- 
points f0,f, , the weights for SLOPE are given by;

‘.-to

Having more than one baseline, one simply takes Cq (i.e. -1) 
times the average of these respective pre-entry measurements.

The weights to be used for RTO (regression through the origin) 
are not given in the table. With equidistant time-intervals scaled 
to unity the weights are found from;

weight -P ( ) when the sum of the post-treatment weights
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Likewise, for SLANC, when the measurements are taken at the
time-points t0,ti,...,tr

SLANC; C, = (r + l)(F-r0) (l-t0)

As a numerical illustration, say, for p-1 and r—4 measurements 
pre and post-randomisation, and under compound symmetry with p-.7, 
SLANC obtains the weights [-.70, -.32, .06, .44, .82].

In figure 5.4.1 below a categorization according to the degree 
of generalizability of some of the more useful linear summary 
statistics is given. The bottom layer consists of simple univariate 
(time-point specific) statistics. In the next layer (in principle) 
all measurements are utilized, but the summary statistics are 
unconditional, thus, optimal use of baselines is not accomplished. 
The third layer consists of analyses of covariance where a "simple" 
(i.e. constant mean treatment difference over time, or linear 
divergence) alternative hypothesis is assumed. In the second 
highest layer, a general alternative hypothesis is allowed for, but 
compound symmetry is needed for strict optimality. At the very top 
we find the optimal choice under any covariance structure and any 
alternative hypothesis over time.

Figure 5.4.1: Linear summary statistics, hierarchical structure.

General

Simple
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Finally, the weightings arrived at when deriving the optimal 
linear summary statistic under compound symmetry when no pre-entry 
measurements are available, will be given.

OPTI for compound symmetry with no baselines;

This is different from SLOPE (because of the non-optimality of 
least squares for inter-correlated measurements), and might be 
referred to as SLANC for the case where there is no baseline.

5.5 CHOICES OF SUMMARY STATISTICS UNDER SPECIFIC CLASSES OF 
ASSUMPTIONS

As described in section 5.2, given a clear idea of what the 
shape of the vector of mean treatment differences will look like, 
and what the covariance structure is likely to be, one can derive 
the optimal linear summary statistic in the sense of maximization 
of the expected t-statistic. More specifically, the optimal linear 
summary statistic maximizes the estimated treatment difference, 
c ’d, relative to its standard error.

He will now look at some realistic classes of assumptions for 
repeated measures designs, and investigate how these assumptions 
affects the asymptotic relative efficiencies among various linear 
summary statistics, and also how the weightings for the optimal 
linear summary statistic changes with changes in these assumptions.

, ..., r

For the special case with linearly diverging mean response

curves the weights may be found from; 2
----------—  - r

1 - p
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5 5 1 A constant difference In mean reaoonae profiles

This category of differences in treatment effects cover studies 
for which the mean curves might look like, for instance,

The only assumption is that the difference between the mean 
curves remain constant after an initial treatment effect, i.e. the 
lines are parallel.

5.5.1.1 Constant difference under compound symmetry

Under compound symmetry, and without baselines, one can do no 
better than POST. With any number of baselines and any number of 
post-treatment evaluations, ANCOVA is asymptotically the optimal 
choice (but ANCOVA has c estimated from the data, i.e. p  not P ) .

Table 5.5.1: Optimal linear summary statistics for constant treatment 
effects (8 is proportional, not necessarily equal, to 
unity) and under compound symmetry. Asymptotic relative 
efficiencies compared to other summary statistics.

Q.CO OPTI POST CHANGE ANCOVA SLANC SLOPE

0,1,1,1 .1 ANCOVA .98 .32 1 . 82 .20
.3 ANCOVA .83 .48 1 .76 .28
.5 ANCOVA .62 .62 1 .71 .38.7 ANCOVA .39 .78 1 .66 .46
.9 ANCOVA .13 . 92 1 .62 .56

0,1,1,1 .7 ANCOVA .39 .78 1 .66 .460,0,1,1,1 .7 ANCOVA .28 .89 1 .73 .430,0,0,1,1,1 .7 ANCOVA .23 . 94 1 .76 .40
0, 1 .7 ANCOVA .51 .85 1 1 .850,1,1 .7 ANCOVA .42 .80 1 .79 .600,1,1,1 .7 ANCOVA .39 .78 1 . 66 .460,1,1,1,1,1 .7 ANCOVA .36 .75 1 .50 .320,1,1,1,1,1, 1,1,1,1,1 ANCOVA .33 .73 1 .31 .18
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As already stated, for a constant difference between mean 
treatment curves, and under compound symmetry, ANCOVA (assuming a 
known covariance matrix) is always the optimal choice among all 
linear summary statistics. Under these circumstances SLANC and 
SLOPE would hardly be considered as approaches to use at the 
analysis stage, but they are included in the table for comparative 
purposes.

POST is a good choice only when there are no baselines, or when 
correlations are very low. CHANGE is an efficient approach when 
correlations are high and when one has more than one pre-entry 
measurement. When correlations are low and the number of post
treatment measurements are few, SLANC is a quite powerful choice 
even under these assumptions. ANCOVA is, of course, the method of 
choice, the only exception from this rule is when the number of 
subjects is very low, and when, thus, the regression coefficient [) 
becomes unreliably estimated.

S.5.1.2 Constant difference and other covariance structures

In the following table, a constant difference between mean 
response curves is once more assumed. The difference being that we 
now investigate the impact of departures from compound symmetry on 
the relative merits of the different summary statistics under 
investigation. In particular, a banded covariance structure is 
assumed. That is, the correlation is assumed constant on each 
diagonal of £. For instance, for the second example of table 5.5.2, 
the variance is proportional to one, the correlation between 
adjacent visits is .733, the correlation between two visits having 
one visit in between is .683, finally, the correlation between the 
very first and the very last visit is .633 .
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Table 5.5.2: Optimal linear summary statistics for a constant 
treatment effect and under covariance structures 
different from compound symmetry. Asymptotic relative 
efficiencies compared to other summary statistics. (In
all instances 5- 01 1,1,1], i.e. p-1 and r-3) .

E (banded) OPTI POST CHANGE ANCOVA SLANC SLOPE

o2: 1 i i 1
P : 1 .7 .7 .7 -.70 .,33 .33 .33 .39 .78 i . 66 .46

o2: 1 1 1 i
P : 1 .733 .683 .633 -.69 ..47 .29 .25 .41 .76 .98 .57 .39

o2: 1 1 1 1
P : 1 .767 .667 .567 -.71 .60 .22 .18 .42 .71 .92 .51 .33

o2: 1 1 1 1
P : 1 .833 .633 .433 -.81 1.00 -.11 .11 .36 .52 .68 .35 .21

o2-. 1 .9 .8 .7
P : 1 .7 .7 .7 -.62 .,25 .33 .42 .38 . 63 .99 . 76 .41

o2 : 1 1.1 1.2 1.3
P : 1 .7 .7 .7 -.76 .39 .33 .28 .39 .87 .99 . 58 .47

o2 : 1 1.33 1.67 2
P : 1 .7 .7 .7 -.88 .48 .31 .21 .37 .95 .96 . 46 .43

o2 : 1 2 3 4
P : 1 .7 .7 .7 -1.11 .59 .28 .13 .35 .86 .90 . 30 .33

o2 : 1 1.33 1.67 2
P : 1 .767 .667 .567 -.88 .74 .19 .07 .37 .76 .79 .30 .34

In the top half of rows in table 5.5.2, the effect of assuming 
declining correlations over time, as opposed to equicorrelations, 
is illustrated for a design with 1 pre and 3 post-randomisation 
visits. Here, a banded correlation structure is assumed with 
correlation coefficients decided in such a way that the overall 
average correlation, for the within-subjects covariance matrix, in 
all instances remain at 0.7 (which was found to be a plausible 
choice in practice from the examples incorporated in table 1.5.1) . 
The degree of decline in correlation for each further visit apart 
is .00, .05, .10 respectively .20 for the four rows reported here.
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The effect of declining correlations over time, for the optimal 
linear summary statistic, is that more weight should be put on the 
first post-randomisation visit, relative to the later, since this 
is the one most highly correlated with the baseline. As long as the 
degree of decline over time for the correlation coefficient remains 
reasonably small, say below 0.10 per visit, ANCOVA is close in 
relative efficiency to the optimal choice (with more than three 
post-treatment visits the ARE for ANCOVA relative to OPTI will tend 
to drop for this type of covariance structure).

As for ANCOVA; CHANGE, SLOPE and SLANC all lose in efficiency 
the more the correlations tend to decline over time. This is not 
true for POST, but with this degree of within-subject dependency it 
is never a method to be recommended.

In the bottom half of table 5.5.2, equicorrelation with a p of 
0.7 is assumed, now the consequences of departure from 
homoscedasticity is illustrated. Once again four visits are 
assumed, and four different scenarios are illustrated, with 
variances for the four time-points assumed as; 1,.9,.8,-7 ,
1,1.1,1.2,1.3 , 1,1.33,1.67,2 , and finally 1,2,3,4. Here we can 
see that ANCOVA is very robust against heteroscedasticity, not even 
when variances increase fourfold over the study period does the ARE 
relative to the optimal choice drop below 0.90.

As could be expected, when variances increase, more weight should 
be put on the first visit, the one with best precision post
randomisation. The only realistic alternative to ANCOVA in this 
setting is CHANGE, with moderately increasing variances over time its 
ARE increases and approaches unity, this is because the regression 
coefficient P gets closer to one, which is implicitly what is assumed 
when one is analysing data with a mean change approach.

In the final row of the table, the joint effect of increasing 
variances and declining correlations over time is illustrated. For 
the specific example outlined, an analysis of covariance with the 
first post-randomisation visit as dependent variable (i.e.
"throwing away" the later data), and with the pre-entry measurement 
as covariate, would actually be more powerful than ANCOVA. The ARE 
for this simple approach is 0.92 relative to the optimal choice.
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5 5.2 A  linear d i v e r g e n c e  between m e a n  r e s p o n s e  p r o f i l e s

What normally springs to mind in relation to linearly divergent 
treatment effects, is the situation where both mean treatment 
curves follow straight lines, but with different regression 
coefficients, as exemplified in the left figure on page 163.
However, for linearly divergent treatment effects more complex 
situations like in the figure at the right on the same page, are 
equally well covered (i.e. we may have a which is non-constant 
over time in the model on page 162) . All we assume is that the mean 
treatment difference increase linearly with time.

5.5.2.1 Linear divergence under compound symmetry

As previously explained in section 5.3, SLANC is the optimal 
linear summary statistic in this situation. This has equal 
increments between weights, but with the weights shifted downwards 
in such a way as to correspond to a covariance analysis. More 
specifically, when the c'-vector has been scaled such that the 
weights for the post-treatment visits sum to one, the weight for 
the pre-entry measurement will be -p.

To get some idea on how the relative efficiencies among the 
summary statistics under investigation change depending on the 
number of measurements and the degree of correlation, the following 
table is presented.
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Table 5.5.3: Optimal linear summary statistics for a linear
divergence between mean response curves, and under 
compound symmetry. Asymptotic relative efficiencies
compared to other summary statistics.

8 ' P OPTI POST CHANGE ANCOVA SLANC SLOPE

0,1,2,3 .1 SLANC .80 .27 .82 1 .45
.3 SLANC .63 .36 .76 1 .60
.5 SLANC .44 .44 .71 1 .74
.7 SLANC .26 .51 .66 1 .85
. 9 SLANC .08 .57 .62 1 .95

0,1,2,3 .7 SLANC .26 .51 .66 1 .85
0,0,1,2,3 .7 SLANC .20 .65 .73 1 .88
Of Of Of If 2 f3 .7 SLANC .18 .71 .76 1 .85
Of 1 .7 SLANC .51 .85 1 1 .85
Of 1,2 .7 SLANC .33 .63 .79 1 .84
Of 1 f 2f 3 .7 SLANC .26 .51 .66 1 .85
Of If 2f 3f 4f 5 .7 SLANC .18 .38 .50 1 .88
Ofl,2f3,4, 5,6,7,8,9,10 SLANC .10 .23 .31 1 . 91

The claim that SLANC does for linear divergence what ANCOVA 
does for constant differences, may be verified by comparing the 
ARE's for ANCOVA in this table, with the ARE's for SLANC in the 
corresponding table (5.5.1) on constant differences. All the 
figures are identical.

A relevant issue in connection with linear divergence under 
compound symmetry is how much more powerful the optimal choice, 
SLANC, is relative to SLOPE and. ANCOVA. This depends on the number 
of post-treatment measurements as well as on the degree of equi- 
correlation.

These relationships, contrasting ANCOVA with SLANC, and SLOPE 
with SLANC, are illustrated in figures 5.5.1 and 5.5.2, 
respectively. From figure 5.5.1 we see that, with few post
treatment measurements, ANCOVA is relatively powerful, especially 
when correlations are low. However, the more r increases the more 
superior will SLANC be relative to ANCOVA.
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F ig u r e  5 .5 .1  :
ARE's f o r  ANCOVA re la t iv e  to  SLANC u n d e r  l in ea r  d iv e rg en ce  and  com pou n d  
symmetry, as a function  o f  the n u m b er  o f post—trea tm en t  m eau rem en ts  and 
the d e g r e e  o f  e q u i c o r r e l a t i o n  (.3 , .5 , .7 o r  .9). A s s u m in g  1 b a s e l in e

2 3 4 5 6 7 8  9 10

N u m b e r  o f  p o s t —t r e a t m e n t  v i s i t s
F ig u r e  5 .5 .2  :
ARE s f o r  SLOPE re la t iv e  to  SLANC u n d e r  l in ea r  d iv e r g e n c e  an d  c o m p o u n d  
symmetry, as a function  o f  the n u m b er  o f post—trea tm en t  m eau rem en ts  and 
the d e g r e e  o f  e q u i c o r r e l a t i o n  ( .3 ,  .5 , .7 o r  .9 ).  A s s u m in g  1 b a s e l in e
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From figure 5.5.2 it is revealed that the degree of inferiority 
for SLOPE relative to SLANC depends primarily on the correlation. 
With p in the plausible range .5 to .7 (as suggested by the examples 
in table 1.5.1) the ARE stays around .80. This implies that a SLOPE 
analysis would require about 25% more subjects to obtain the same 
power as a SLANC analysis. With increasing r SLOPE gets somewhat 
closer to SLANC in relative efficiency, this is because P =  

gets closer to unity. The increasing inferiority for SLOPE when r 
goes from 1 to 2 is because SLOPE in the latter case gives the 
weight zero to the middle measurement.

Returning to table 5.5.3, we see, from the middle third of the 
table, that an increase in the number of pre-treatment measurements 
improves the situation for ANCOVA, while SLOPE remains at about the 
same efficiency relative to SLANC.
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5.5.2.2 Linear divergence and other covariance structures

The table below is composed in exactly the same way as the 
corresponding table in subsection 5.5.1.2, except that a linear 
divergence, instead of a constant difference, between mean response 
curves is assumed.

Table 5.5.4: Optimal linear summary statistics for linearly
divergent mean response curves and under covariance 
structures different from compound symmetry.
Asymptotic relative efficiencies compared to other 
summary statistics. (In all instances 5 ' -  [ 0,1,2,3] ) .

Ii (banded) OPTI POST CHANGE ANCOVA SLANC SLOPE

a2 : 1 i l l
P : 1 .7 .7 .7 -.70 -.18 .33 .85 .26 .51 .66 i .85
a2 : 1 1 1 1
P = 1 .733 .683 .633 -.63 -.14 .29 .85 .31 .57 .73 .99 .82
a2 : 1 1 1 1
P : 1 .767 .667 .567 -.57 -.10 .22 .88 .36 . 60 .78 . 98 .78
o2: 1 1 1 1
P : 1 .833 .633 .433 -.43 .05 -.11 1.06 .43 .62 .81 . 92 .70

a2 : 1 .9 .8 .7
P : 1 .7 .7 .7 -.58 -.20 .29 . 91 .23 .37 .58 .99 .68
o2 : 1 1.1 1.2 1.3
P : 1 .7 .7 .7 -.80 -.17 .36 . 81 .27 . 62 .71 .99 .93
a2 : 1 1.33 1.67 2
P : 1 .7 .7 .7 -.98 -.13 .39 .74 .30 .76 .78 .97 .97
o2 : 1 2 3 4
P : 1 .7 .7 .7 -1.35 -.07 .41 . 66 .33 . 82 .85 .89 .86

o2 : 1 1.33 1.67 2
P : 1 .767 .667 .567 -.82 .02 .29 .69 .42 . 86 .90 .97 . 94

For all departures from compound symmetry investigated, SLANC 
stays close to OPTI in relative efficiency. Only with an extreme 
increase in variance will the ARE drop below 0.9. ANCOVA gets 
relatively more powerful as correlations decline over time and/or 
variances increase with time, and will often be almost as powerful 
as SLOPE.
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SLOPE is usually a quite efficient approach to analysis under 
these circumstances, unless correlations and/or variances decrease 
with increasing time-intervals since randomisation. General results 
for increasing r are difficult to convey, these will depend on 
whether we assume that an increasing number of post-treatment 
measurements will imply a prolonged study period or shorter time- 
intervals between visits. Typically both ANCOVA and SLOPE will lose 
in efficiency relative to OPTI when r gets larger.

■; 5 3 Other types of divergence in mean response Profiles

Under a general covariance structure it is difficult to give 
any general advice relating to the relative merits of different 
possible summary statistics under various classes of differences in 
mean response profiles over time. However, we can explicitly 
evaluate results for any given choice of £ and 8 .

Under compound symmetry the optimal summary statistic will 
always be a covariance analysis, under any 8 '-vector assumed. This 
may be seen from the formula for the derivation of the weights for 
OPTI_CS given in section 5.4. The dependent variable will be a 
weighted sum of the post-treatment measurements, and when this sum 
is scaled to one, the (sum of the) weight(s) for the pre-treatment 
measurement(s) will always be -p. Thus, we end up with an analysis 
of covariance.

In fact, under compound symmetry, the weights for the different 
measurements, for the optimal linear summary statistic, will always 
be proportional to the vector of mean treatment differences.

To give just a flavour of the calculations one can do at the 
design stage when comparing various approaches to the analysis of a 
forthcoming study, another table involving ARE calculations between 
some summary statistics is given. Here, some of the possible 
classes of differences in mean treatment effects outlined in 
section 1.7 are exemplified, for two specific examples of 
covariance structures, both with homoscedasticity and a mean 
correlation of 0.7, but with and without declining correlations 
with increasing time-intervals between measurements.
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Table 5.5.5: Optimal linear summary statistics for some different 
classes of vectors of mean treatment differences, and 
for two different correlation structures. ARE's 
compared to some other summary statistics.

Z (banded) OPTI POST CHANGE ANC0VA SLANC SLOPE

A t t e n u a t e d  d i v e r g e n c e  :
(»•-[0,1,1.5,1.75])
p : 1 .7  .7 .7 - . 7 0  .03 .39 .58 .34 .67 .87 . 93 .74
p : 1 .767 .667 ,.567 - .6 4  .21 .34 .45 .45 .76 .98 .87 . 64

T r a n s i e n t  e f f e c t  
( » • - [ 0 , 2 , 1 ,  .5 ]  )

:

p : 1 .7  .7 .7 - .7 0  1 .07 .19 - .2 6 .21 .41 .53 .04 .01
p : 1 .767 .667 ..567 - . 8 2  1 .24 .03 - .2 8 . 16 .27 .34 .02 .00

E x p o n e n t ia l  d i v e r g e n c e .
( » • - [ 0 , . 5 , 2 , 5 ] )

p : 1 .7  .7 .7 .70 - . 4 9 . 13 1.37 .14 .28 .37 . 90 . 82
p : 1 .767 .667 ,.567 - .40 - . 6 6  - .31 1.97 . 18 .31 .40 . 80 .69

With an attenuated divergence, either ANCOVA or SLANC could be 
chosen, as regards efficiency. Of course, other aspects than 
efficiency are involved in this choice of summary statistic, 
especially as relates to how one wishes to estimate and report a 
difference in treatment effects. One important aspect which has not 
been discussed explicitly so far, relating to the choice of summary 
statistic, is to decide on what we really are trying to estimate. 
That is, what will the "bottom line" answer be from our analysis. 
Specifically, do our summary statistic estimate between-group 
differences in outcomes, within-group outcomes, or within-subject 
outcomes? In principle, the results in this chapter are developed 
for between-group comparisons. However, often the summary statistics 
will be equally useful in estimating within-group and within-sub ject 
outcomes. This may be exemplified by the two figures given on page 
163. When the underlying model is such that all subjects follow 
linear curves with time (as illustrated by the left-hand side 
figure), but with different rates of change between groups, a 
summary statistic like SLANC (or SLOPE) will be relevant in 
estimating all the three different types of outcomes outlined above.
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However, when a model as illustrated by the right-hand side figure 
holds true, SLANC (or SLOPE) estimates are only directly meaningful 
for between-group comparisons.

With a transient difference in mean treatment effects, none of 
the five summary statistics for which the ARE's are reported is 
appropriate. For a study of this type, one should preferably drop 
the last measurement, perhaps also the next last, and than use 
ANCOVA. A simple analysis of covariance with the first post
treatment measurement as dependent variable obtains an ARE of .95 
for the compound symmetry example, and .92 for the decreasing 
correlation example. The corresponding two ARE's when dropping just 
the final measurement are .75 and .58

With an exponential divergence, most of the post-treatment 
weights should be put on the last measurement, either by using SLANC 
or SLOPE, or by using an analysis of covariance with the last 
measurement as dependent variable. This piece of advice remains 
applicable as long as the variances do not increase too much for the 
later phases of the study, when the variances are proportional to 8' 
we get nearer to equal weights (for the post-treatment measurements) 
again. In fact, when the standard deviations are proportional to 8', 
the optimal summary statistic will put most of the post-treatment 
weight on the first measurement after randomisation.

5.6 SUMMARY AND DISCUSSION

A sound piece of statistical advice is that "the more you put 
into an analysis, the more you can expect out”. This can be applied 
to the choice of summary statistics for the analysis of repeated 
measures designs. The more information that is available from past 
experience and medical knowledge about expected treatment effects 
and within-subject dependencies, the more sensible the choice can 
be made for a summary statistic to increase both validity and 
sensitivity. The extent to which such information exists (and if it 
exists) will vary depending on therapeutic area, type of variable 
being measured, and the clinical phase the treatment is in. It is 
safe to say that there will never be perfect knowledge, but some 
information will usually be available.
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Unless more refined knowledge is available, the general advice; 
to use ANCOVA in all situations where a reasonably stable mean 
treatment difference over time is expected, and to use SLANC when a 
gradual divergence between mean curves seems plausible, will almost 
always result in valid and efficient inferences.

Not to use an analysis of covariance, when a pre-entry 
measurement is available, will always be a mistake. Apart from a 
highly probable loss of efficiency, there is also a risk that the 
results will not be strictly valid. For instance, CHANGE will 
overcorrect for a chance mean pre-treatment difference, and so will 
SLOPE. POST, on the other hand, simply ignores any such imbalance.

It is worth considering allowance of a cautious flexibility in 
the choice of summary statistic if the pre-defined 8' is clearly 
wrong. An example where this occurred is given in the childhood 
asthma trial reported by Van-Essen Zandvliet et al (1992), where in 
fact a linear divergence between mean curves over the study period 
was observed for FEVĵ , rather than the a priori assumption of a 
stable treatment effect. Restricting oneself to always stick 
rigidly to pre-specified summary statistics under all circumstances 
would be a poor scientific approach.

One underlying assumption for the optimal linear summary 
statistic theorem is the equality of covariance matrices between 
treatment groups. An alternative route to follow, if the underlying 
distributions are normal but the covariance matrices appear 
unequal, would be to substitute the quadratic discriminant function 
(see Lachenbruch and Goldstein, 1979), for the linear discriminant 
function, above.

In common with the methods for multiple endpoints, referred to 
above, we may easily run into the problem of obtaining negative 
weights for post-treatment measurements, when we are anticipating 
positive treatment effects. This will, for instance, often occur 
when mean curves diverge linearly with time (for SLOPE this occurs 
by definition) . A possible way of overcoming this problem might be 
to choose the maximin direction (Abelson and Tukey, 1963).
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This choice would maximize the minimum power over the orthant (Tang

(c' 5 )*et al, 1993). In principle this means finding m a x ------- =  d  £  O
c*° c' Zc

subject to the constraint that all c^'s for the post-treatment 
measurements should be non-negative.

Finally, in this chapter methods have been given that will 
allow efficient summary statistic approaches to be chosen for 
almost any pattern of differences in mean responses between 
treatments over time, and for almost any covariance structure. When 
treatment effects are not stable over time it is frequently the 
case that inferior and sometimes misleading analyses are being 
performed. By a sensible use during planning of the optimal linear 
summary statistic theorem, and comparisons of asymptotic relative 
efficiencies, powerful and valid summary statistics may be chosen 
for most repeated measures studies with continuous outcome 
measures.
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f. FURTHER PERSPECTIVES

6.1 COMPARISON WITH OTHER APPROACHES 

C 1 1 Introduction

The available approaches to analysis of continuous repeated 
measures data from comparative clinical trials can broadly be 
classified into two classes, unstructured and structured. In the 
former, no assumptions at all are made about the form or shape of 
the response profiles, and time is usually regarded as a factor, 
with the repeated measurement occasions as levels of the factor.
The latter class incorporates some feature(s) or structure of the 
response profiles, formally or informally, in the analysis.

A schematic overview of the main classes of approaches is given 
in figure 6.1.1.

Figure 6.1.1: Schematic overview of the main classes of approaches 
for the analysis of continuous repeated measures data 
in comparative clinical trials.

dependence
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In this thesis the usefulness of the summary statistic approach 
has been emphasized. Specific attention has been given to the 
choice of summary statistic and the choice of repeated measures 
design, with the latter choice being in terms of the number of pre 
(p) and post-treatment (r) measurements, as well as for the spacing 
in time of these evaluations. The objectives of these 
considerations have been to increase efficiency and enhance 
validity (e.g. removal of bias, incurred, for instance, by chance 
baseline imbalance between groups) under any plausible covariance 
structure and for any pre-declared difference in true mean 
responses over time between treatments. In this section, some of 
the more common alternative approaches will be described and their 
advantages and disadvantages relative to the summary statistics 
approach will be evaluated.

6-1.2__Some other approaches and the CPr »»»ml»

Some of the more common approaches for the analysis of 
continuous repeated measures data will now be described. To 
illustrate their usefulness, and to contrast them with the summary 
statistic approach, the CPK example from section 2.5 will be re
analysed.

6.1.2.1 Repeated univariate, time-point specific, tests

Many reports of clinical trials rely on repeated significance 
testing for all time-points using univariate t-tests or Wilcoxon's 
rank-sum test. In the CPK example eight post-treatment measurements 
were obtained. Submitting these time-points, performed at 1.5, 3, 
4.5, 6, 7.5, 9, 10.5 and 12 months, to univariate t-tests, based 
both on unadjusted post-treatment measurements and changes from 
baseline (mean of the three pre-entry evaluations) , as well as 
covariance adjusted post-treatment measurements (with the pre
treatment mean as covariate), results in the following table.
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Table 6.1.1: Univariate, time-point specific, analyses of the data 
from the CPK-example, t-tests based on post-treatment 
measurements, post-pre changes, and covariance adjusted 
post-treatment measurements.

E s t im a te d  d i f f e r e n c e  in  th e  means o f  t h e :  p - v a lu e s  f o r  t e s t  o f
T im e -
p o i n t
(mths)

P o s t  m eas . 
(SEM)

P o s t - p r e  meas. 
(SEM)

C o v a r i a n c e  a d j .  
p o s t  m e a s . (SEM)

P o s t  
m ea s .

P o a t -  
p r e  
mea a .

C ov .  
a d j .  
m eaa.

1 .5 .090 ( .0 4 0 ) .067 ( .023) .070 ( .0 2 3 ) .025 .004 .002

3 .059 ( .0 3 9 ) .036 (..028) .042 ( .0 2 7 ) .13 .20 . 12

4 .5 . 117 ( .0 4 8 ) .094 (..038) .098 ( .0 3 7 ) .015 .015 . 009

6 . 106 ( .0 4 1 ) .083 <.026) .086 ( .0 2 6 ) .012 .002 . 001

7 .5 . 082 ( .0 4 2 ) .059 <.033) .065 ( .0 3 2 ) .055 .077 .043

9 .070 ( .0 4 5 ) .047 ( .032) .050 ( .0 3 2 ) .13 .15 . 12

10 .5 . 104 ( .0 4 9 ) .081 ( .039) .085 ( .0 3 9 ) .037 .041 . 030

12 .056 ( .0 4 6 ) .033 ( .034) .036 ( .0 3 4 ) .23 .33 .28

Adopting, for instance, a (test-wise) significance level of 
.05, we see that, whichever of the three approaches to analysis we 
choose, we would be able to declare a statistically significant 
treatment effect at the time-points 1.5, 4.5, 6 and 10.5 months. At 
7.5 months only the test utilizing a covariance adjustment would 
reject the hypothesis of equal treatment means. While for the 
remaining time-points, at 3, 9 and 12 months, we would not be able 
to declare a significant treatment difference. Controlling the type 
I error by a Bonferroni correction, and multiplying all p-values 
for each approach to analysis by 8, only the outcomes at 1.5 and 6 
months, when basing the analysis on changes or covariance adjusted 
means, would remain statistically significant.

Several criticisms can be made relating to this approach. To 
begin with, no account in the analysis is taken of the fact that 
measurements at different time points are from the same subjects, 
i.e. within-subject correlations are ignored. Also, it is inherent 
in the design of a repeated measures study that one will be 
interested in the effect of time, both on mean responses within 
groups, and on differences in mean responses between groups, these 
issues are ignored when each time point is analysed separately.
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Further, dividing the results into "significant” and "non
significant" introduces an artificial dichotomy into serial data, 
which, for most biological variables change over time in a smooth 
and continuous manner. Generally, this is an inappropriate method, 
unless there are few time points, each of which are of interest in 
their own right.

6.1.2.2 Hotelling'a T2

Hotelling's T2 is sometimes used, but this approach addresses 
the wrong question by not taking the directions of the mean 
differences at the various time-points into account. Whereas we, in 
principle, nearly always expect uni-directional departures from 
the null hypothesis. A further drawback is that baselines are 
ignored, unless the vector of post-treatment measurements for each 
subject is substituted for the vector of changes from pre-entry. 
Hotelling's T2 is the multivariate analogue of the (square of the) 
univariate t-statistic. It is also a special case of the 
multivariate analysis of variance (MANOVA), to be described below. 
The definition of the test statistic is :

t2 = («a + )“ (7a. -  y» )T (y*. ->».)*

where nA and nB are the two sample sizes, and yt are the mean 
vectors of the repeated measurements for the two groups, and £ is 
the pooled sample covariance matrix. It can be shown that, with t

repeated measurements, (nA +n„-t-l) t2
t ( n A +»* - 2 )

F(t,nA+nB-t-\).

For the CPK example we get; T2-12.58, and hence, FgiMJ-1.50 (p-.16) 
This example fails to achieve significance while previous methods 
(e.g. ANCOVA had p-.OOl, see section 2.5) have indicated a highly 
significant treatment difference. This confirms our disbelief in 
the usefulness of Hotelling's T2 for repeated measures data.
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6.1.2.3 Repeated measures ANOVA

Repeated measures data are often submitted to a repeated 
measures ANOVA, also called a split-plot-in-time ANOVA. This 
approach is well described in many standard textbooks, see for 
instance; Fleiss (1986), Milliken (1990), and Crowder and Hand 
(1990). It is based on a comparison of mean profiles treating time 
as a factor (in a formal ANOVA sense). This method is based on the

model; y^ = <X + Pt+Yj + 8h ,

where a is the overall mean, P^ a fixed group-effect, jfj a fixed 
time-effect, <5,.; a fixed group-by-time interaction effect, a
random between-subjects error, and E^ a random within-subjects 
error. This model should preferably be extended with a covariate 
adjustment for the pre-entry level, e.g. by addition of the term 
O-y^o- This will be discussed further below, but tor simplicity it 
will not be included in table 6.1.2 .

For the analysis, the available information is partitioned into 
between and within-subject variation. This leads us to an 
"orthodox" split-plot ANOVA (see, Fleiss, 1986), as illustrated in 
the table below.

Table 6.1.2 : Analysis of variance table for data 
measurements study.

from a repeated

Source of Degrees of Sum of Mean
variation freedom squares squares F-ratio

Groups g-1 ' X  ~ y ~ Y m s g Fc = MSc /MSs

Subjects n.-g <£X<5>.. - ÿ j MSS

Times t-1 MSj Ft = MSt /MS„

Interaction (g-1) (t-1) X  X  n‘ fe* -  - y.j.+ y ..Y MS, F, =  MS,/MSt

Residual (n.-g) (t-1) X X X ( y *  ->y. - J u  + y i..Y m s r

Total D ft 1 M Z S £ U -* ) ’
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The first two lines in the table correspond to the between- 
subjects differences, and the following three to the within- 
subjects differences. For convenience, the indices for the 
summations have been left out, n. is short for the total sample 
size. Fg is the test for a group main effect, it is identical to a 
test of the equality between groups for the means (or the sums) 
over time for the subjects (i.e. identical to POST). It is valid 
irrespective of the nature of the covariance structure.

Fj is the test for a group-by-time interaction. The absence of 
an interaction implies that the group mean profiles are of the same 
shape, but they may be at different overall levels. For this test 
to be strictly valid we would have to be able to randomise the 
order of the time-points, which is clearly inpossible. However, if 
the covariance structure is such that all normalised contrasts 
among the repeated measurements have the same variance (sphericity, 
also termed the Huynh-Feldt type H-structure, after Huynh and 
Feldt, 1970), the test is still valid (Compound symmetry is a 
special case of sphericity). If this does not hold an approximate 
procedure based on "e-adjusted" degrees of freedom for the F-test 
has to be used to allow for this departure from the assumed 
covariance structure (see. Box, 1954). Then, both numerator and 
denominator degrees of freedom are multiplied by this correction 
factor, which is confined to lie in the range ( l / ( ( - l ) S £ S l ) .  For 
instance, the test statistic Fj is, under the null hypothesis, 
assumed to follow a distribution.

There are two estimates of e in common use, the Greenhouse- 
Geisser estimate (Geisser and Greenhouse, 1958, Greenhouse and 
Geisser, 1959) and the Huynh-Feldt estimate (Huynh and Feldt,
1976). A description of, and contrasting of, these correction 
factors goes beyond the scope of this thesis. Enough is to say that 
when the test for sphericity (which is given by most statistical 
packages) is rejected, adjusted degrees of freedom should be used.

Ft is the test of an overall time effect, averaged over 
treatment groups. This test is usually of little interest, and for 
its validity to hold the same assumptions about sphericity as above 
must hold, otherwise the approximate tests must be used.
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Important between-subject covariates (e.g. pre-entry 
measurements) should, whenever possible, be included in the model. 
However, these will only enter the between-subjects part of the 
analysis. I.e. FG would reproduce an ANCOVA analysis if the pre
entry mean was included in the model, but F.j and Fj would not be 
affected. Thus, the between-subjects part is identical to a mean 
summary statistic approach.

Generally, using standard statistical packages, subjects with 
missing values are excluded from repeated measures ANOVA. To 
prevent this, when there are only a few missing measurements, some 
kind of interpolated or estimated values might be substituted for 
the missing values. Alternatively, non-orthogonal applications of 
analysis of variance are available. However, a proper use of 
correction factors for the degrees of freedom is very complicated 
under these circumstances.

Repeated measures ANOVA has several drawbacks. Firstly, it is 
restricted to the comparison of mean profiles. The curve joining 
the means over the time points for a treatment group may not be a 
good descriptor of a typical curve for an individual. Important 
variation in the shapes and locations of curves for different 
subjects may be hidden. Using it, for instance, for peaked data is 
of dubious value. Secondly, the overall F-statistics ignores 
totally the time ordering of the data. Permuting the time-points in 
the same manner for all patients will not affect any of these 
statistics. Upon finding a significant group-by-time or time effect 
one is usually recommended, in a typical explorative data-analysis 
manner, to investigate a set of orthogonal (i.e. independent of 
each other) contrasts. Normally, one uses polynomial contrasts, and 
starts by looking at the contrast of (t-l)th degree, if this is 
non-significant one continues with the (t-2)th, and so on until 
finding an individual contrast making a significant contribution. 
When this is found, for say, the (t-k)th degree contrast, one 
declares that a polynomial function of degree (t-k) is needed to 
explain the overall changes in response over time (time effect), or 
the differences in mean changes in response over time between 
groups (group-by-time interaction).
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In textbooks it is "fortunately" mostly the case that one ends up 
with a linear (or perhaps quadratic) polynomial, which makes 
interpretation feasible. The topics of multiple testing, power and 
sensitivity in this process are hardly ever touched upon.

For the CPK example, including the pre-entry mean as covariate, 
Fq-10.5 which on (1,149) degrees of freedom has p-.OOl, identical 
to ANCOVA as already described. Fj is also of interest, this 
statistic equals 0.78, so there are no indications of a treatment- 
by-time interaction. FT (which normally is of little interest) 
equals 3.01 which on (t-1,(t-1)(n.-g)) - (7,1050) degrees of 
freedom has a p-value of 0.004. However, the rejection of the 
sphericity assumption (p<0 .0001) necessitates adjustment of the 
degrees of freedom. The Huynh-Feldt e equals 0.85 and the 
Greenhouse-Geisser e * 0.81, use of the former changes the p-value 
to 0.007, still highly significant. Looking at figure 2.5.1 one 
might guess that there is a slow linear increase over time for the 
CPK-levels, averaged over groups. Let us proceed to test this using 
polynomial contrasts for the time dimension. The relevant 
significance tests are summarised in table 6.1.3 below.

Table 6.1.3: Tests of significance for polynomial contrasts over 
the time dimension (averaged over treatment groups)
for the CPK example.

Contrast F (1,150) p-value

Linear 2.96 .09
Quadratic 5.36 .02
Cubic 6.34 .01
Quartic 0.00 .99
Quintic 0.68 .41
6th degree 5.74 .02
7th degree 0.01 .93

If we choose a conventional 5% level we end up needing a 6th- 
degree polynomial to describe the pattern of changes over time. 
Suggesting that such a model is necessary to describe the overall 
time dependencies is clearly not meaningful. However, to get a 
feeling for how well polynomials up to the third degree fit this 
example, figure 6.1.2 is given. We see, from the observed pattern 
of overall means over time, why the cubic contrast was significant
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Whether a model involving a cubic polynomial is medically 
meaningful, or simply represents an overreaction to random noise, 
is a different question.

For this example the group-by-time interaction was not 
significant, had it been, however, we would have needed a 5th- 
degree polynomial (the quintic contrast had p-0.04) to describe the 
differences in pattern of changes over time between the two groups.

In summary, this method provides overall comparisons between 
mean profiles for treatment groups, which might be useful if one 
knows little about the structure of the profiles, as a kind of 
hypothesis generating method. Upon finding a significant overall F- 
statistic various linear contrasts have to be investigated in order 
to gain an understanding of what kind of effects are involved. 
However, when allowing for a proper covariate adjustment for pre
entry levels, to reproduce an ANCOVA analysis for the between- 
subjects part, and with pre-specified hypotheses regarding 
contrasts to be tested for the time-dimension, to properly address 
questions relating to the treatment-by-time interaction, it is a 
conceivable alternative .

itfure 6.1.2 : '
ver®ll mean* over time (•) Tor the CPK—example (n = 152), with fitted polynomial 
urves ( by least squares) u p  t_o third degree (i.e. linear, qu adratic and cubic)
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6.1.2.4 Repeated measures MANOVA

A repeated measures MANOVA is a multivariate analysis of 
variance applied to a repeated measures design. Relative to a 
repeated measures ANOVA, a different viewpoint is taken in that the 
t measurements i .•••,)'* on individual j in treatment group i are 
regarded as a single vector observation. With the multivariate 
approach, the overall comparisons are made in terms of sums of 
squares and cross-product matrices instead of with sums of squares. 
F-ratios are replaced by ratios of determinants or other functions 
of eigenvalues (e.g. Wilks’ lambda, Hotelling-Lawley’s trace, Roy’s 
largest root or Pillai-Bartlett’s trace). These test-statistics are 
obtained from H ■ E~', where H stands for the hypothesis matrix 
(which typically consists of t-1 orthogonal contrasts) and E for 
the error matrix (for more details see; Fleiss (1986), Hand and 
Taylor (1987), and Crowder and Hand (1990)).

The MANOVA model, without covariates, may be written as; 
y# = ̂ + Z #, where is the observed t-dimensional vector of 
responses for subject j in treatment group i, is the underlying 
mean vector for group i, and is the covariance matrix, assumed 
multivariate normal and identical between groups.

For this case, when no structure is imposed on or £, the test 
for an overall treatment effect is identical to the corresponding 
test in a repeated measures ANOVA (and again identical to a summary 
statistic approach, e.g. ANCOVA when the pre-entry mean is included 
in the model). Further, when there are only two treatment groups, 
the MANOVA tests for treatment-by-time interaction, and for overall 
time effect, are identical to Hotelling T2-tests (two-sample, and 
one-sample, versions, respectively).

In MANOVA a completely general structure is allowed for the 
covariance matrix (i.e. we do not have to bother about adjustments 
of degrees of freedom, as in the repeated measures ANOVA) . The 
MANOVA is a very general approach which often is less powerful than 
its univariate counterpart, the reason being the losses in degrees 
of freedom caused by the need to estimate (t+l)t/2 parameters for 
the covariance matrix.
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Using a standard statistical software package (like PROC GLM in 
SAS, SAS, 1992) one gets the output structured in much the same way 
as for repeated measures ANOVA. For the CPK-example the between- 
subjects part is again identical to what we get by using the 
summary statistics. The group-by-time interaction is also here non
significant, F (7, 144)-.97, p-.46 . For this example MANOVA obtains
a more extreme F-statistic for the time main effect than repeated 
measures ANOVA, F (7, 144)-3.62, p-.OOl. In summary, this approach, 
in its standard format, suffers from the same deficiencies as 
repeated measures ANOVA, though, many refinements are available.

Repeated measures ANOVA and MANOVA can differ markedly in the 
type of departures from the null hypothesis that they are able to 
detect. It has sometimes been recommended to perform both at the 
a/2 level (Looney and Stanley, 1989).

6.1.2.5 Ante-dependence analysis

One further approach among the "unstructured" alternatives that 
will be mentioned is the one labelled ante-dependence analysis.
This approach was developed by Kenward (1987) as an improvement on 
MANOVA. Realising that it is possible to decompose the MANOVA 
likelihood-ratio statistic (Wilks' lambda) into a product of 
independent univariate statistics, which are simple functions of 
analysis of covariance F-ratios. He developed the ante-dependence 
analysis as a way of saving degrees of freedom for a multivariate 
analysis. With MANOVA, all of the univariate statistics in the 
decomposition of the likelihood-ratio test are calculated having 
one of the individual time-points as dependent variable with all 
preceding time-points as covariates. This uses up a lot of degrees 
of freedom and causes, often, an unnecessary loss in power. Kenward 
suggested that usually it is only a few of the observations 
immediately preceding the dependent variable that make a real 
contribution as covariates, by omitting all the earlier ones many 
degrees of freedom can be saved.
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Formally, we are saying that for some value g, yk |yt_,..,y4_f is 

independent of .....y, <k>g) . This is the definition of an ante-
dependence covariance structure of order g (Gabriel, 1961). The 
basic principle of the ante-dependence approach to analysis is, 
first, to test for the order of ante-dependence. Than, significance 
tests similar in spirit to the likelihood-ratio test can be 
performed under the suggested degree of ante-dependence. For more 
details on this approach, see; Kenward (1987), and Crowder and Hand 
(1990).

6.1.2.6 General linear mixed models

The methods outlined so far have not made any assumptions at 
all, at the outset of the analysis, about the form or the shape of 
the profiles (mean treatment curves over time). We will now move on 
to classes of approaches, which, like the summary statistic 
approach, incorporates some feature(s) or structure of the profiles 
(like linear rate of change with time), formally or informally in 
the analysis.

More sophisticated methods have evolved from the simpler 
summary statistic approach. Most of these fall into the class of 
general linear mixed models, where "mixed" stands for a mixture of 
fixed and random effects in the linear model. General overviews 
covering this field may be found in Crowder and Hand (1990),
Lindsey (1993), and Jones (1993).

Based on the work of Harville (1977), Laird and Ware (1982) 
proposed a very general linear mixed model for longitudinal data;

where y,. is an n^xl response vector for subject i, X ; is an n^xb 
design matrix, P is a bxl vector of regression coefficients assumed 
to be fixed, Z, is an n^xg design matrix for the random effects,
Yi, which are assumed to be independently distributed across

subjects with where B (for between-
subjects) is an arbitrary covariance matrix.
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The within-subject errors, £,, are assumed to be distributed as £, ~ 

NÎO.ff’w J  , where w, (for within-subjects) , is a covariance matrix 
which usually (because the random effects have removed many of the 
variance components) may be parameterized using a few parameters. 
Often it is assumed that W, is equal to the identity matrix.

This model is very general since different subjects can have 
different numbers of observations, as well as different observation 
times. Most of the common statistical models for continuous 
measurements are special cases of this general linear mixed model.

A simple illustration of a linear mixed model will now be 
given. Assuming a repeated measures design with 2 treatment groups 
and 3 visits, the model (without covariates) for subject i in group 
A is;

Pi

y ah' 1 0 0 0  0 0" Pi
n T € Ail

y mi = 0 1 0 0 0 0 P 3

Pa
Pi

+ 1 ■Yaì + £ Ai2

.y*a. 0 0 1 0 0 0 1 Ai3 _

L P*
and correspondingly for subject j in group B;

y hi "10 0 1 0 o' Pi
B

Y B̂jl
y »¡I = 0 1 0 0 1 0 Hi

B
+ l • r „  + £Bj2

y hi. _0 0 1 0 0 1 H a
B. l _£bp _
Hi

A .
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With these models arbitrary mean response profiles are 
accommodated for the two groups, also a random subject effect (7) 
is allowed for in the model. For group A the mean response curve 
over the three visits equals (Jj, P2 and P3, respectively, while P4 
to Pg represent the differences between the two mean curves over 
these three visits.

Attempting to heuristically explain what the Laird and Ware 
model is about, we might think of the profile from each subject as 
following some specified functional form, where the parameters of 
the function are allowed to vary among the subjects. Thus, the 
regression coefficient vectors, the may be viewed as random
drawings from some multivariate population.

In effect, the parameters of the function provide the summary 
statistics. The specification of the model for the profile, 
together with the error distribution and covariance structure of 
the repeated measurements, permits a complete formal analysis of 
the data for a wide variety of data structures. In particular, 
complex sets of data with irregular and unbalanced times of 
measurement can be accommodated. General linear mixed models also 
provide a convenient framework for prediction. For model-building, 
hypothesis testing, and estimation under this general frame-work, 
see the references given above.

Work in this area has been published under different headings, 
like; growth curves, random regression coefficient models (or two- 
stage models), and multi-level models.

The growth curve model with random effects was developed in a 
series of papers by C.R. Rao (1959,1965,1968,1987), see also 
Potthoff and Roy (1964), Grizzle and Allen (1969), and Lange and 
Laird (1989) . Growth curve analysis emphasise the explanation of 
within-subject variability by the natural developmental or ageing 
process. In contrast, repeated measurements models typically assume 
that individual effects remain constant over the time period of 
interest (e.g. the "true underlying mean").
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The multi-level model is an extension of the two-stage model 
described above. Goldstein <1987> and others have applied multi
level models to education data, where the random terms conveniently 
may be thought of as appearing at different levels, e.g. individual 
child, class, school, town, etc. Corresponding levels for a 
clinical trial might be; individual measurement, visit, period, 
subject, hospital, and country. For an extended account of these 
methods, see Goldstein (1987).

6.1.2.7 Other specific approaches

Another specific structured approach is the "latent class 
model" proposed by Skene and White (1992). They considered 
situations where several distinct modes of response within a group 
(e.g. "responders" and "non-responders") were anticipated. In such 
situations the effect of treatment can be characterized both by the 
shape of the fitted profiles and by estimating the proportion of 
cases who exhibit each particular response profile . They suggested 
how such experiments could be analysed through the introduction of 
a latent variable into the standard model. This approach has a 
certain appeal, however, categorizing all subjects as "responders" 
or "non-responders" introduces an often unrealistic dichotomy for 
an underlying continuous variable.

¿.1.3__Modelling qt lrlthla-aubjact dependencies

Repeated measurements on the same subject are inherently 
stochastically dependent. Ignoring this dependence when modelling 
the responses results in two problems: inefficient estimation of 
regression parameters, and, more important, inconsistent estimates 
of precision. Both need to be avoided.

There exists two useful ways of modelling the stochastic 
dependence; by random effects, and by variance components. These 
two strategies will be contrasted in this section.
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Modelling with variance components is a direct way of 
accounting for the statistical dependence. This approach is based 
on the partition of variation among measurement into two basic 
types: between-subjects, and within-subjects. A certain structure 
is then specified for the within-subject covariance matrix. A 
simple example of such a structure is compound symmetry, which 
consists of two variance components, the variance, assumed 
homogeneous among time points, and a correlation, assumed identical 
between time points. In fact, compound symmetry is equal to a 
random intercept model, that is for a model with a random effect 
for the intercept, all correlations would be zero. This is a 
general relationship, any random effect model can be recast as a 
fixed-effect model with a complex response covariance pattern 
(Muller and LaVange, 1992).

To express this in another way, variance components can mop up 
unexplained variation, the covariance structure can be thought of 
as a surrogate for unmeasured (and perhaps unmeasurable) covariates 
(Louis, 1988) .

Instead of directly modelling the stochastic dependence with 
variance components, one might assume that the subjects were chosen 
at random from some large population. Then, the parameters in the 
model which describe the differences among the subjects are taken 
to vary over this population, according to some distribution. This 
is known as a random effects model (Lindsey, 1993), and the 
correlations among responses for an individual are assumed to arise 
from natural heterogeneity in regression coefficients (for the 
effects included in the model) among people. Given knowledge of the 
true response pattern for an experimental unit, i.e. including all 
relevant covariates, the measurement process gives rise to 
independent errors. If there still exists autocorrelation among 
repeated measurements in a random effects model, this may be a 
consequence of under-specification of the mean structure for the 
experimental units of each treatment group (see; Skene and White, 
1992, and Selwyn and DiFranco, 1993). The flexibility of random 
coefficients models may make them useful for certain data with 
peculiar covariance structures.
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But due to the necessary arbitrariness in choosing which 
coefficients are random, they usually do not provide a satisfactory 
description of the underlying process generating the data. If some 
structure is known to exist in the covariance matrix, it is most 
often preferable to model it directly.

In summary, directly modelling the stochastic dependence 
structure, as in a variance components model, and assuming that 
some parameter distinguishing the units has a random distribution, 
as in the random effects model, can both result in essentially the 
same model. In fact, the random effects model is more limited, 
since for that model the covariances are restricted to be non
negative (Lindsey, 1993) .

6-1-4_Relevance to practical reaeaxcb
The approaches categorized as "unstructured" have usually 

little to offer in relation to comparative clinical trials. When 
emphasis is on exploratory data analysis, and the generation of 
hypotheses, they are more relevant, but in most circumstances 
different types of graphical displays will serve these purposes 
better.

The overall test for a treatment-by-time interaction (e.g. Fj 
in section 6.1.2 .3) has some appeal, but if different shapes of 
mean responses over time between groups is anticipated, this is 
more directly tested using a SLOPE or SLANC analysis (on 
transformed data if necessary). How one should find a 
scientifically meaningful interpretation of a significant 
difference in (for instance) a fifth degree polynomial contrast 
over time between groups goes beyond my imagination.

It is more meaningful to contrast the summary statistic 
approach with the more sophisticated general linear mixed models. 
The generalizability for this latter class of models is impressive. 
There may be an arbitrary mixture of fixed and random effects, the 
error structure may be taken to have any specified form, and if 
necessary non-linear models may be used (see, Berkey, 1982).
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Obvious advantages are; allowance for missing values and irregular 
measurements, flexibility in modelling (interactions, time- 
dependent covariates, etc.), and the full range of statistical 
inference (goodness-of-fit, formal comparison of models, and so 
on). Among the disadvantages we have; greater reliance on 
asymptotic properties, difficulties in correct specification of the 
model, and complexity.

Maybe the complexity is the central issue, it is both a great 
strength (as noted above) and a definite weakness. Aspects 
contributing to making the complexity a negative characteristic 
include;

- How much of what these more sophisticated approaches do will 
it be possible to communicate to non-statisticians ?

- What is likely to be included in a clinical study report, 
accepted by authorities, or included in a medical journal ?

- What is really generalizable from a very complicated model ?

- In the next similar clinical trial will a completely 
different model be chosen when using the same model- 
selecting procedure ? i.e. how sensitive is the final model 
to relatively small changes in the observed data ?

- With such a wide range of possibilities in selecting a model 
and performing an analysis, is it not possible to squeeze 
the data until it confesses almost any desired p-value ?

- In effect, how many significance tests are really performed 
in the process of building and analysing a linear mixed 
model, what about type I and II errors ?

- Also, given that data in repeated measures designs often is 
very limited, model verification/discrimination is 
difficult. Probably these methods are best suited for large 
important data sets .
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The trade-off between the simpler summary statistic approach 
and the more complex modelling approaches is a familiar one in 
statistics. However, in most standard applications the summary 
statistic approach is more than adequate, and should in general be 
the method of choice for repeated measures designs.

6.2 NEEDS FOR FURTHER METHODOLOGY

6 -2 . 1__Extension of the nummary sta tistic  approach

A linear mixed model with one random effect (the intercept for 
each subject), for data which is complete and balanced, is 
equivalent to a summary statistic approach. When there are several 
random effects (e.g. intercept, slope and curvature) the linear 
mixed model (in the balanced case) might be termed a multivariate 
summary statistic approach. Thus, in many ways the natural 
extension of the summary statistic approach leads us to the class 
of general linear mixed models. However, in this subsection we will 
concentrate on discussions of possible useful extensions of the 
summary statistic approach, while trying to preserve simplicity.

6.2.1.1 Missing values

Missing values are common in any clinical trial, repeated 
measures designs are, by nature, especially susceptible to this 
problem. Missingness may occur for several reasons, like; 
occasionally missed visits, non-informative and informative drop
outs, treatment-related withdrawals, end-of-study censoring, 
observation missing due to technical failure, too sick to attend, 
etc. Whether the missingness is assumed to be random (ignorable) or 
not is an important distinction which will greatly affect our 
possibilities of making valid analyses.
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Little and Rubin (1987) distinguish between observations that 
are "missing completely at random" (MCAR) , where the probability of 
missing an observation is independent of both the observed 
responses and the missed responses, and "missing at random" (MAR), 
where the probability of missing an observation is independent of 
the missed observations.

Missing data is an extensive research topic on its own (see, 
e.g., Diggle and Kenward, 1994), and hence only some of the 
possible alternatives to the handling of missing values in the 
context of summary statistics for repeated measures will be 
mentioned. More explicitly, the following four alternative 
approaches will be given some consideration;

1) Include only patients with complete series of measurements.

2) Include only time-points where all (most) data are available.

3) Include all patients and time-points irrespective of 
missingness (through an all-encompassing model to estimate the 
summary statistics with missing data).

4) Use a stratification by missingness pattern.

These four approaches for the handling of missing data rely on 
slightly different assumptions for their validity. As a 
preliminary, we may note that it will usually still be possible to 
calculate the summary statistics in the presence of missingness. 
However, the assumption of identical distribution for the summary 
statistics in the population will not hold when they are derived 
using subjects with different numbers and choices of measurements. 
Departure from this assumption may often, but not always, be 
negligible. We also have to pay attention to the correctness of our 
underlying model. Often, missing data are more common towards the 
end of the study. Consider this to be the case, and suppose that we 
are using a mean summary statistic approach to the analysis. Then, 
if the treatment effect declines (or rises) towards the end of the 
study, and if the amount of missingness is unequal between groups, 
we will most likely end up with biased results.
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Approach 1) is often used because of its simplicity. For some 
other approaches, like repeated measures ANOVA, it is used by 
necessity (unless we substitute some kind of interpolated or 
estimated values for the missing measurements) . We do not have to 
worry about the identical distribution of the summary statistics, 
and calculations are simple, but for its strict validity we have to 
make the most restrictive missingness assumption, MCAR. MAR is not 
enough, since if missingness is allowed to depend on the observed 
values of a subject, and if missingness, as is often the case, is 
more common among low(poor)-scoring subjects, this will bias the 
results in favour of the less efficient treatment.

Approach 2) is similar in spirit to approach 1), but instead of 
excluding subjects with incomplete series of measurements, we 
exclude visits with missing observations. If there is a lot of end- 
of-study censoring, excluding one or a few measurements near the 
end is often a realistic approach. This may of course slightly 
alter the conclusions one will be able to draw from the study (if 
the effective study period decreases substantially). In principle, 
this approach only has to assume MAR (unless, perhaps, when the 
choice of exclusion is data dependent/provoked) , since we are not 
making any conclusions relating to the time-points excluded. As a 
follow-up to excluding some time-point (s) it might still be 
necessary to use one of the other approaches on the remaining data, 
since there usually will be some missingness also for the earlier 
time-points.

One of the advantages with the summary statistic approach is 
that we do not have to throw out patients with a few missing 
measurements, we may still calculate our summary statistics (e.g. 
as long as there are any valid measurements post-randomisation for 
a subject we may calculate the post-treatment mean). Approach 3) 
is, thus, a possible alternative. Again, MAR is enough for 
validity, but as pointed out we have to pay attention to the 
correctness of our model. Also, with substantial missingness the 
assumption of identical distributions for the summary statistics 
will not apply. In these circumstances a weighted analysis might be 
appropriate (for instance, each subjects summary statistic could be 
given a weight according to its estimated precision).
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Matthews (1993) considered this in relation to data on foetal 
distress during labour when analysing the rate of change (using 
SLOPE) over time for the subjects (babies). His results suggests 
that a weighted analysis can increase both efficiency and validity 
when the assumption of identically distributed summary statistics 
is violated. In particular, use of robust weights (trimmed linear 
estimators of the dispersions for the individual SLOPES) seemed 
promising.

Approach 4), stratification by missingness pattern, has been 
suggested by Dawson and Lagakos (1991,1993). They suggested that 
one should divide the subjects into strata formed by the different 
missing data patterns, such that the summary statistics within each 
stratum all have the same distribution under the null hypothesis. 
For each strata, g, a standardized statistic

can be calculated. Here, l/fA denotes the sum of the summary 
statistics for the subjects in groups A (arbitrary choice) for 
stratum g, and t/f_ denotes the corresponding sum over both groups.

where S^j is the summary statistic for subject j in group i. These 
standardized statistics can then be combined into an overall

strata, and the Wg's are the weights. The choice of the weights do 
not affect the validity of the test, but they will influence the 
power. Some choice reflecting the relative precision of estimates 
of treatment effects in each stratum is recommended. For this 
stratified approach to be valid we only have to assume that the 
summary statistics are equally distributed conditional on the 
missingness patterns.

where g indexes the missingness
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Dawson and Lagakos (1991) gives two important cases when this 
applies; when the missingness in non-informative (i.e. MAR), and 
when the probability of missingness for a given level of the 
measurements is the same for the two groups. These validity 
criteria are less restrictive than what is required for an 
unstratified analysis. In conclusion, this stratified approach to 
analysis seems promising for hypothesis testing, however, it does 
not appear to be suited for estimation.

6.2.1.2 Graphical display of results from repeated measures 
trials

Graphical displays are a very effective way to visualize data 
and illustrate relationships. At the beginning of an analysis 
graphs may be used for: getting a feeling for the data, spotting 
potential outlying observations, suggesting relationships between 
variables, and for checking distributional assumptions. In this 
short account on graphical displays, emphasis will be on how to 
appropriately display the data and illustrate the conclusions at 
the reporting stage for a repeated measures trial.

When dealing with typical multi-dimensional data, care is 
needed in reducing the dimensionality for illustrative purposes (as 
well as for the analysis), not to lose important aspects of the 
underlying relationships. When the sample sizes so allow (say, 
nA-fnB^30) , individual graphs of response against time is a 
satisfactory option. Mostly this will not be feasible, certainly 
not for publication purposes. An alternative is to classify the 
curves into typical patterns, and to plot representative examples. 
However, care is needed to ensure that a biased selection has not 
taken place. This approach has a natural link to the latent class 
model referred to earlier in this chapter.

Most commonly mean curves for the treatment groups over time 
are given. This is often useful and enables large quantities of 
data to be plotted in a concise and meaningful way. A drawback is 
that correlations between time-points effectively are ignored.
Also, caution is needed, since sometimes mean curves are not 
representative of any typical subjects.
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Consider, for instance, peaked curves, where the peaks occurs at 
different time-points for different subjects. The mean of a sample 
of such curves is not likely to be meaningful, and may often be 
very misleading. This issue was considered by Matthews et al 
(1990). They suggested that a useful alternative in such peaked 
data is to plot the maximum for each subject against the time that 
the maximum occurred. This leads to the general recommendation that 
whatever summary statistics are felt appropriate for the analysis 
should also be illustrated graphically.

This implies that when a mean summary statistic approach seems 
appropriate, it should also be appropriate to display mean curves 
for treatment groups over time, and distributions of patient means 
by treatment groups. For instance, if ANCOVA is used, it is useful 
to plot post-treatment means versus pre-treatment means by groups 
with drawn in regression lines. This is illustrated, using the CPK- 
example, in figure 6.2 .1.

Figure 6.2.1 : "
CPK- * xam ple, pos t  means versus pre means l. \- t r e a t m e n t  group. 

Separa te l i '  f i t t e d  regression lines (i.e. nest, c  o n s tr et i n e d to 
t>e p a r a l l e l )  are shown for group A (solid line, stars) and 

group B (dashed line, diamonds).
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It is also valuable to illustrate the correlation structure and 
how the variability changes over time (see figures 2.5.2 and 
1.5.2). One problem that may arise in relation to mean curves is 
when the number of subjects changes over time. Frequently subjects 
faring less favourably tend to withdraw at a higher rate. If this 
rate is non-negligible misleading conclusions (imposing a 
conservative bias towards the more effective treatment) are likely 
to be drawn from the figure.

One informative method, not least for skewed data, is to 
display boxplots over time. For each measurement occasion one 
boxplot is given for each treatment group, displaying, for 
instance; first, second and third quartile with a box, tenth and 
ninetieth percentile with the whiskers, and finally (when falling 
outside the whiskers) the five lowest and five highest measurements 
with stars. This way a feeling not only for how the centre of the 
distributions changes over time, but actually how the whole 
distributions changes over time, may be conveyed to the reader. An 
example of this type of graphical display is given in figure 6 .2 .2, 
utilizing data from the PD2o-examPie in table 1.5.1 (selecting the 
subjects with complete series of measurements up to the third visit 
post-randomisation). This graph is accompanied, for comparative 
purposes, by a "standard" mean curves graph. One drawback with the 
boxplots is that there are no links between occasions for 
individuals. A partial solution might be to substitute the stars, 
indicating the outliers, for subject numbers (or some other labels 
identifying individual subjects) .

A final warning aimed at the plotting of arithmetically related 
variables will be given. Frequently figures displaying the changes 
(post-pre) versus the pre-entry measurements are given. The 
conclusion accompanying such a figure will almost without exception 
be that subjects with less favourable pre-entry levels experienced 
the largest improvements. This is potentially very misleading, the 
correlation between pre-entry values and changes will almost always 
have an (at least partly) arithmetic interpretation, with -1/V2 
expected in the "null" case (a typical case of regression to the 
mean, see chapter 4 for more details) .
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A citation from Senn (1989) will finalize this warning, "The 
best advice is to avoid investigating relationships between 
consanguineous measures: in statistics as in biology, incest breeds 
freaks . " .

6 2.1,3__Some further topics

Tri-eignlar measurements, i.e. when different subjects are 
evaluated at different points in time, poses problems similar to 
when there are missing values. We will (normally) still be able to 
calculate the summary statistics, but the validity of the analysis 
might be affected adversely. With very irregular patterns of 
measurement (unusual) the assumption of identically distributed 
summary statistics will be violated. Of possibly greater importance 
is the reliance we have to make on our model for the mean effects 
over time. Consider, for instance, a study where the linear rate of 
change over time is of interest, but where this rate maybe is not 
constant over time. If some subjects are measured primarily early 
on in the study, and others primarily during the later phases, then 
these subjects might certainly have different expected values for 
the summary statistics, irrespective of possible treatment effects. 
However, deliberately irregular measurements are unusual, but some 
variation in actual times around planned visits is common. It is 
important to consider when one may ignore these irregularities, and 
when one has to incorporate them into the analysis. How common 
irregular measurements are in practice, and how one should deal 
with them when they are of concern, is a subject for further 
research.

Cross-over experiments form an extensive topic in their own 
right. Even in their simplest version, the two-period cross-over 
design, they involve repeated measures on each subject. With more 
complex designs, this relationship become more obvious. Also, it is 
often the case that more than one measurement is taken on each 
subject in each period. There is much scope for work to be done on 
the use of summary statistics for this type of design. For an 
extensive overview on the topic of cross-over experiments, the book 
by Jones and Kenward (1989) is recommended reading.
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Of the available armoury of summary statistics, this thesis has 
almost exclusively been aimed towards linear summary statistics. 
Further corresponding research is needed for the non-linear 
alternatives, like; maximum response, time to reach maximum, time 
above a certain threshold, etc. In particular, recommendations for 
the design of such studies, and ways to improve the efficiency of 
their analysis using non-linear summary statistics, is of great 
potential interest.

A topic that was touched upon in section 3.3 was the issue of 
nnn-ecrual covariance matrices and treatment-by-time interactions. 
Further research is needed in this area, both to investigate the 
sensitivity of common approaches to design and analysis on modest 
departures from these assumptions, and for finding remedies when 
covariance matrices obviously are not equal, like logarithmic 
transformations when effects are multiplicative.

Binary and oatecrorical data appear frequently in repeated 
measures studies. Modelling treatment effects and within-subject 
dependencies are complicated by the fact that there is no "natural" 
equivalent to the multivariate normal distribution for these types 
of data. Most analyses are based, in one way or another, on the 
multinomial distribution, for which the same parameters occurs in 
both the first and second order moments of the distribution. This 
implies that no model can simultaneously achieve useful expressions 
for the joint, marginal, and conditional distributions, the 
interpretation of the model parameters will depend on this choice, 
and no approach will always be correct (Kenward and Jones, 1992). 
Relevant articles in this field have been written by; Agresti 
(1989), Hare, Lipsitz and Speizer (1988), and Kenward and Jones 
(1992) . Considering the inherent problems in dealing with within- 
subject dependencies for repeated measures categorical data, there 
is much need for work on summary statistics in this area.

Finally, we have the issue of multiple repeated measures 
outrnmps. e.g. when there are several response outcomes of interest 
being measured repeatedly over the course of the study. Examples of 
this are blood pressure studies with systolic BP and diastolic BP, 
and asthma studies with FEVĵ  and PD2o-
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The production of statistically valid and powerful analyses under 
these circumstances, that still are simple enough to be clinically 
meaningful, is a difficult balance and a true challenge.

6.3 CONCLUDING REMARKS

In most randomised clinical trials with a quantitative outcome 
measure subjects are assessed more than once to evaluate efficiency 
and safety aspects relating to the underlying medical question(s). 
One (or more) pre-randomisation visit (s) are usually performed, and 
they are accompanied by at least one (usually several) 
measurement(s) during treatment. Unfortunately, the analyses of 
such a repeated measures design in published reports of clinical 
trials are commonly rather inefficient, and sometimes even 
misleading. In particular a correct use of baseline measurements is 
often neglected. In some Instances they are ignored, at other times 
simple post-pre changes are used, both these choices being clearly 
inferior to proper analysis of covariance adjustments.

When multiple post-treatment measurements are available, they 
are often analysed separately, thus, ignoring the repeated measures 
aspect of the design, and the within-subject dependencies. Apart 
from not properly addressing hypotheses relating to the time 
dimension, this approach also imposes a loss in power.
Alternatively, repeated measures ANOVA is sometimes used, but this 
often fails to address the most relevant hypotheses in a 
sufficiently direct way.

The summary statistic approach has recently become increasingly 
popular, and I believe is the method of choice for most repeated 
measures designs. Among the attractive features, we find:
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1) Validity; No assumptions are needed about the covariance 
structure among the repeated measurements for the 
validity of the analysis.

2) Sensitivity; By extracting information from all available
repeated measurements into a summary statistic, 
and by reducing the random error by a covariance 
adjustment, powerful analysis are obtained.

3) Specificity; By an appropriate choice of summary statistic the
primary objective of the trial may be addressed 
in a direct and meaningful way.

4) Simplicity; The results arrived at are readily interpretable
and allow for an effective communication of the 
essential clinical trial findings.

This thesis has given specific advice on which summary 
statistic to choose under any given circumstances, to arrive at 
efficient and valid analyses. In particular, when a constant 
difference in treatment effects over time is anticipated, ANCOVA 
has been shown to be the method of choice. Similarly, under linear 
divergence between treatments over time, SLANC is the recommended 
approach to analysis. Further, explicit methods have been defined 
for comparing the relative efficiencies of different approaches to 
the analysis under any specified design considerations and 
anticipated alternative hypotheses. Also, recommendations have been 
made on how to design repeated measures trials with a view to 
maximizing statistical power and/or minimizing the required number 
of subjects, paying particular regard to the choice of the number 
of pre and post-treatment measurements.

In conclusion, I hope that the methods conveyed by this thesis 
will prove to be useful to many statisticians involved in the 
planning and analysis of repeated measures trials.
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E R R A T A . to the thesis:
"Analysis of repeated measures in clinical trials
using summary statistics", by Lars Frison 1994.

Page Row It says: It should say:

3 -3 learning teaching
19 2 P' P"1
19 5 to too
28 3 is the clinical objective if the clinical objective is
35 7 1c = - (p-i) ... o k - 1 ... r
35 7 uHII 1 - - (p-1) ... 0
38 -2 50 > subjects > 50 subjects
42 1 admittingly admittedly
56 -7 to too
73 3 covenient convenient
74 4 than then
77 -10 to too
81 -4 figure 4.2.1b figure 2.4.1b
93 -3 If we define We now define
99 11 do does

103 9 the variable the covariate
106 8 are our
118 -14 p p'
122 -1 wile while

p\r 1 + n B )
_ 2 _ 2 ~ _ 2 2 ^  j (7 2 2 a  j (7 2

nA nB (nA + n B -2) (°i2cr2 -  <7.2 )  n A ■ nB (o ",2<722 - 12 )

Should say: 4 U = 2 K +n„)
nA nt - (nA + nB - 2) nA

128 5 is at least twice is expected to be twice
128 -3 16 subjects 11 subjects
128 -2 17 or more 12 or more
129 4 to 430 to 277
129 6 gives given
130 Figure 3.6.2 should be replaced by the new figure 3.6.2
131 4 Y ji y j
133 10 give given
138 -7 to too
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Page Row It says: It should say:

139 -12
139 -13
147 -11
156 -2
160 -7
215 -13

one's ones
one's ones
true observed
one's ones
Than Then
groups group

Further, replace the passage of text starting on page 137 row -6 with; 
"To see this, ..." and ending on row 7 on page 138 with "xl .", with the 
following:

"The magnitude of attenuation that we expect, as a consequence of the 
use of a selection criterion under the current assumptions (e.g. when 
sampling from a bivariate normal distribution), is given by;

Using this formula it may be seen to which extent the correlation 
between x„ and xt is expected to be decreased due to regression to the mean, 
and hence how much less useful a covariate adjustment is likely to be. For 
instance, for the example above we would expect a correlation of 36/52=0.69 
without the use of a selection criterion, and a correlation of 0.42 with the 
specific choice of k=95mmHg.

One way to improve the situation is to perform two pre-entry 
measurements, one for classification purposes (xtl), and an additional 
baseline not underlying the selection (x01). Then, a more useful covariate 
adjustment may be based on the second unrestricted baseline."

2



F i g u r e  3 . 6 .2  : V a r i a n c e  r a t i o ,  V a r ( A N C O V A l )  /  V a r ( A N C O V A 2 ) ,  b a s e d  o n  
e x p e c t e d  v a l u e s  f o r  t h e  c o r r e c t i o n  f a c t o r s .  D e p e n d i n g  o n  
s a m p l e  s i z e s  a n d  d i f f e r e n c e s  b e t w e e n  " m i x e d "  c o r r e l a t i o n s

Mölndal, Sweden, 26 Aug 1994

Lars Frison


