
LSHTM Research Online

Magbity, EB; (1999) Methods for entomological evaluation of insecticide treated bed
net trials. PhD thesis, London School of Hygiene & Tropical Medicine. DOI:
https://doi.org/10.17037/PUBS.04655975

Downloaded from: http://researchonline.lshtm.ac.uk/id/eprint/4655975/

DOI: https://doi.org/10.17037/PUBS.04655975

Usage Guidelines:

Please refer to usage guidelines at https://researchonline.lshtm.ac.uk/policies.html or alternatively
contact researchonline@lshtm.ac.uk.

Available under license: http://creativecommons.org/licenses/by-nc-nd/2.5/

https://researchonline.lshtm.ac.uk

http://researchonline.lshtm.ac.uk/id/eprint/4655975/
https://doi.org/10.17037/PUBS.04655975
https://researchonline.lshtm.ac.uk/policies.html
mailto:researchonline@lshtm.ac.uk
https://researchonline.lshtm.ac.uk


METHODS FOR ENTOMOLOGICAL EVALUATION OF INSECTICIDE 
TREATED BED NET TRIALS

by
Edward Brima Magbity

Thesis submitted for the degree of Doctor of Philosophy 
in the University of London

London School of Hygiene and Tropical Medicine 
Department of Tropical and Infectious Diseases 

May 1999

1



ABSTRACT

This thesis is divided into 3 parts. The first part reports the effect of community-wide use 

of bed nets treated with lambdacyhalothrin (10mg/m2), on malaria vector Anopheles 

gambiae in Southern Sierra Leone. In the first year of the trial, 16 villages were 

randomly allocated to either remain without treated nets or to receive treated nets for all 

the inhabitants. During the first year of the trial, the treated nets provided personal 

protection for their users, but had very little impact on densities of An. gambiae 

mosquitoes. An. gambiae parous rates were significantly reduced in all intervention 

villages, but malaria sporozoite rate fell in only 7 of the 8 villages with nets. In the 

second year of the trial, there was clear evidence for a mass effect, shown by reduction 

of biting, parous and sporozoite rates in the villages that had had nets for two years, 

compared to controls. The interpretations and significance of these results are discussed.

The first part of this thesis also compares the relative sampling efficiency of two 

sampling methods, namely, light trap catches, and counting of blood fed mosquitoes with 

human bait catches, in estimating biting rates. Result showed that biting rates obtained 

from light trap catches (in both villages with and without treated bed nets) can replace 

those obtained from human bait catches. In contrast, counting of blood fed mosquitoes 

cannot replace human bait catches in estimating biting rates in villages without treated 

bed nets.

The second part of the thesis describes, analyses, and discusses the spatial and temporal 

distribution of An. gambiae mosquitoes in two Tanzanian villages. Data for this study 

were collected by carrying out an intensive mosquito sampling programme, using light
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traps in two Tanzanian villages. Taylor’s power law showed that aggregation indices for 

the spatial and temporal distribution of An. gambiae mosquitoes were not significantly 

different. This suggests that sampling effort should be equally allocated to spatial and 

temporal parameters (houses and night of sampling, respectively) when estimating 

mosquito abundance. The results also showed that for a given amount of sampling effort, 

the estimates of village-level mosquito abundance are more precise when sampling is 

carried out in randomly selected houses on each sampling night, than when the same 

houses are used on each occasion. However, in the case of estimating parous rates, it 

does not depend on whether the sampling was carried out in the same or a random 

selection of houses. The implications of these findings for designing sampling routines 

for entomological evaluation of treated bed nets are discussed.

The final part of the thesis describes the development of an immunoassay based on 

polyclonal antibodies for quantitative determination of pyrethroid insecticide on bed 

nets. This test is capable of determining in a semi-quantitative manner if the amount o f 

permethrin, deltamethrin or lambdacyhalothrin on a piece of mosquito netting is up to 

the level required for effectiveness. The test can be carried out in a modestly equipped 

field laboratory. The use of this test and the direction for future work are discussed.
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CHAPTER 1

INTRODUCTION

1.1 Global malaria problem

Despite intense research effort towards its control, malaria still remains the most important 

insect transmitted human disease in sub-Saharan Africa (Gillies & Warrell, 1993). Recent 

figures estimated that about 40% of the world’s 5 billion population live in endemic regions, 

reporting annually approximately 300-500 million clinical cases of malaria, of which about 

1.4-2.6 million die (WHO, 1996). About 90% of the deaths and 80% of the clinical cases 

occur in sub-Saharan Africa, where the majority of cases and deaths are among children. 

Malaria is therefore a major cause of infant mortality and the only parasitic disease 

comparable in impact to the world’s major killer transmissible diseases: diarrhoea, acute 

respiratory infection, tuberculosis and AIDS. The huge malaria problem in sub-Saharan 

Africa is due to the presence of the most virulent form of the malaria parasite Plasmodium 

falciparum, and especially to the efficiency of the African vectors, Anopheles gamhiae s.l 

and Anopheles funes tus.

The WHO recommended malaria control strategy for sub-Saharan Africa is based on early 

diagnosis and prompt treatment with anti-malaria drugs, and selective vector control (WHO, 

1995). Chloroquine has been at the forefront of malaria treatment, especially in Africa, 

because of its low cost and relative freedom from side effects (Foster, 1991). However, its 

usefulness is diminishing due to the problem of chloroquine resistant malaria, reported in
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many places (e.g., Antia-Obong et al., 1997; Ndyomugyengi & Magnussen, 1997; Sokhna et 

al., 1997). Alternative anti-malarials are often expensive and beyond the means of people 

living in malarious areas (Foster, 1991). In some countries multi-drug resistance has 

severely reduced the therapeutic value of available anti-malaria drugs (Kondrachine & 

Trigg, 1997).

In recent decades vector control has focused narrowly on the chemical control of 

mosquitoes, such as house spraying with DDT and other residual insecticides, and more 

recently on the use of insecticide treated bed nets (ITN). Though DDT resistant anopheline 

mosquitoes have been detected in several areas, DDT still remains effective for malaria 

control in other places, such as Ethiopia, Madagascar, Mexico, Ecuador, and India (Mouchet 

et al., 1998; Robert et al., 1997; Yadava & Sharma, 1995). While DDT resistance is very 

severe in South Asia and some parts of Southeast Asia because of its intensive use, it is very 

rare in Africa where DDT has been used only in limited areas. In South Africa DDT was 

continuously used for over 40 years but the main vector, An. arabiensis, remained fully 

susceptible (Sharp 1996). However, many programmes these days prefer the use of fast 

acting pyrethroid insecticides, with superior residual properties, which can produce greater 

reduction of malaria than DDT (Arrendondo-Jimenez et al., 1993; Hii et al., 1993; Kere et 

al., 1992; Mnzava et al., 1993). This switch to pyrethroids has also been stimulated by the 

growing but rather inconclusive evidence that DDT is harmful to human health (Bouwman 

et al., 1990; Curtis, 1994; Lopez-Carrilo eta!., 1997; Rogan et al., 1996).
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Between the 1950s and 1970s malaria eradication was achieved in the USA, USSR, 

Southern Europe, Madagascar and most Caribbean islands mainly by house spraying with 

residual insecticides, such as DDT or Dieldrin, and much progress was also made in the 

Indian sub-continent and parts of South America (Pampana, 1969; Potkar et al., 1995). 

Recently we have seen resurgence in parts of these areas, and other areas that were 

previously free of malaria (Lumaret 1962 cited in Mouchet et al., 1998; Mukhopadhyay 

1996; Sharp & Le Sueur 1996). This resurgence is partly the result of extensive 

deforestation, irrigation, urbanisation, breakdown of control programmes, or a result of the 

global warming phenomenon which has created conditions that favour the proliferation of 

mosquitoes (Bryan et at., 1996; Lindsay & Birley, 1996; Mouchet & Brenquer 1990; 

Service 1991). These growing environmental, population and climatic changes are likely to 

widen the geographical distribution of malaria, to areas with non-immune populations, a 

development which could have severe consequences (Lindsay & Marten, 1998; Mouchet et 

al„ 1998).

There is much interest in developing a malaria vaccine, but those that have been extensively 

field-tested gave either limited protection or no protection (Alonso et al. 1994; Graves 1998; 

Nosten et al. 1996; Sherwood, et al., 1996). Yet still we are very hopeful that sooner, rather 

than later, all the pieces of the malaria puzzle will come together to provide a lasting 

solution.
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1.2. Malaria in Sierra Leone

1.2.1. History of malaria in Sierra Leone

It is not known exactly when malaria first entered into Sierra Leone, but it could date as far 

back as to the time of its first settlers. It is known that the early European explorers were so 

decimated by fever that they nicknamed Sierra Leone “the white man ‘s grave" (Rankin 

1836).

The study of malaria in Sierra Leone began towards the end of the 1.9th century, with the 

arrival of military medical officers in Freetown who were concerned about the large 

proportion of newly arrived ship-workers and Europeans suffering from the disease 

(Duggan, 1897; Thin, 1896). In 1899 an expedition team from The Liverpool School of 

Tropical Medicine, headed by Sir Ronald Ross, visited Sierra Leone (Ross et al., 1900) to 

identify the main vectors of malaria in Freetown and to study their biology with a view to 

formulate a plan for malaria control. Ronald Ross and his team discovered that the 

Anopheles mosquitoes responsible for malaria transmission bred mainly in small water 

pools, pot-holes, tidal fringes, along the edges of streams and rivers and in drainages (Ross, 

1901). They then embarked on a massive mosquito control campaign, by filling up breeding 

places and clearing drainages, which led to a tremendous reduction in the number of adult 

mosquitoes in Freetown.

Blacklock (1921) studied the breeding sites and biology of the anopheline vectors of 

malaria, in and around Freetown, and discovered that while mosquito larvae bred in small 

puddles and at the edge of tidal streams, the adults rested predominately indoors. Gordon
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and Macdonald (1930) also carried out an intensive study of the biology and relative 

importance of the existing anophelines in malaria transmission, in the Freetown area. They 

concluded that An. gambiae was the main vector of malignant tertian malaria and that the 

part played by other anophelines was small and often localised.

The few studies of mosquitoes carried out in the provinces were limited mainly to 

determination of vector species and establishing their breeding sites. Blacklock and Evans 

(1926) carried out a survey of the mosquitoes at Daru, Eastern Sierra Leone, and found that 

An. gambiae was the main malaria vector in this region. A review by Gordon and 

Macdonald (1930) reported that the following species of anophelines were malaria vectors 

in Sierra Leone: An. gambiae Giles, An. funestus Giles, Anopheles marshalli Theobald, 

Anopheles mauritians Theobald, Anopheles nili Theobald, Anopheles pharoensis Theobald, 

Anopheles rhodensiensis Theobald, and Anopheles smithii Theobald.

Table 1.1 shows a summary of the prevalence of the different species of malaria parasite 

obtained in different studies among different age groups, in Sierra Leone. The table 

unsurprisingly suggests that falciparum malaria has recently become predominant over 

P.malaria. Malaria prevalence during the present decade in Bo is reportedly higher than that 

in Freetown in the 1930s, but there are no recent data for Freetown with which to establish 

whether the differences are due to a difference in location or increase of incidence over time.
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Table 1.1. Comparison of malaria prevalence obtained from different studies carried 
out in different parts of the Sierra Leone.

Age group Under 3 years of age 3 to 4 years of age 0 -7  years
Period 1931 1925-26 1924-25 1990-91
Place Freetown (Urban) Freetown

(Urban)
Freetown
(Urban)

Bo (Rural)

Authority Gordon 
et al 
(1932)

Gordon et 
al (1932)

Macdonald
(1926)

Blacklock &
Evans
(1926)

Barnish et al. (1993)

Season All
season

All season All season All season Dry Wet

Total
examined

348 821 1059 809 890 801

Total slide 
positivity 
rate (%)

41.0 38.6 50.5 20.8 69.7 70.1

P. falciparum 23.8 16.1 41.4 18.4 55.4 57.5
P. malariae 10.9 19.6 7.9 1.5 3.3 2.5
P. vivax* 1.7 0.1 1.0 0.3 - -

Mixed
infection

4.6 2.8 0.3 0.6 10.9 10.1

* Presumably mainly or entirely Plasmodium ovale, which was not recognised at the time of 
the early studies.

Most of the early clinical studies were done in the capital, Freetown. The few studies done 

in the provinces were limited to spleen rate determination. Woods (1914) worked in the 

Northern Province of Sierra Leone, and reported that the proportion of children with 

palpable spleen in the wet and dry season were 40% and 20% respectively. A more recent 

cross-sectional parasitological survey carried out by Mills (1967) in the same area revealed 

that about 70% of the population were positive for P. falciparum.

Between 1989 to 1992 Barnish and others did the first longitudinal investigation of malaria 

transmission in Sierra Leone (Barnish et al., 1993a & b). They carried out this study in 15
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villages in the north-eastern part of Bo District, in the Southern Province of Sierra Leone. 

Bockarie and others (1994a) captured nine species of anopheline mosquitoes, namely: An. 

gambiae, An. Junestus, Anopheles hancocki. Anopheles coustani. Anopheles obscurus, 

Anopheles ziemanni. Anopheles flavicosta. Anopheles barberellus and Anopheles marshalli. 

About 89.8% and 7.8% of the anophelines caught were An. gambiae and An. Junestus 

respectively. Chromosomal analysis of a sample of the An. gambiae caught showed that 

they belonged to An. gamhiae s.s. forest form (Bockarie et ai, 1993). Though An. gambiae 

and An. funestus were the only species found to be positive for sporozoites, the other 

Anopheles species still remain on the list of possible vectors.

Since 1946, the population of Sierra Leone has increased gradually, and the quest for money 

and food has led to a tremendous increase in human activities. In most parts of the country, 

diamond mining has resulted in the formation of numerous water pools and streams which 

form the breeding places for An. gantbiae mosquitoes. Farming activities have led to more 

bush and forest clearing, and construction of irrigation systems. An increase in the human 

population has also led to more bush clearing for constructing dwelling places. All these 

activities have caused an increase in vector breeding sites, and hence increased transmission 

intensity, and possibly morbidity and mortality from malaria. Table 1.1 suggests that there is 

more malaria now than there was in the 1930’s, though this difference could be due merely 

to the use of improved microscopes, by more experienced technicians.
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1.2.2. History of anti-malaria campaigns in Sierra Leone

The previous section briefly summarised the history of malaria research in Sierra Leone. 

This section presents a brief history of anti-malaria campaigns in Sierra Leone this century.

Anti-malaria campaigning in Sierra Leone started in 1901, during the malaria expedition of 

Sir Ronald Ross and others to Sierra Leone (Ross et al., 1901). Their malaria campaign was 

geared towards eliminating the breeding sites of anophcline mosquitoes, by drainage 

construction, filling up pools of water with stone and sand, levelling street surfaces, and 

removal of rubbish. Their effort was fairly successful because Ross (1901) reported a 

noteworthy reduction in the numbers of anophelincs found in both houses and breeding 

sites. Blacklock (1921) reported an apparent absence of mosquitoes in Freetown and in a 

survey of anopheline breeding places in the town found that Anopheles mosquitoes were 

almost entirely confined to the streams that crossed the city.

As a result of the success of Ross’s malaria campaign, The Medical and Sanitary 

Department of the Freetown colony continued the campaign with the aim of reducing 

transmission and mosquito nuisance through suppressing mosquito breeding (Gordon et al., 

1932). Some of the anti-larval measures adopted were: (i) oiling of pools, cesspits etc., (ii) 

digging of earth drains in all compounds, (iii) filling of puddles and other hollows with sand 

and stones, (iv) removal of refuse from compounds, (vi) closing of water wells, (vi) clearing 

of high grass and bushes, (vii) building of public latrines to replace cesspits, and (viii) 

prosecuting householders for allowing the presence of larvae in their compounds. These 

resulted in a drastic reduction of mosquitoes in Freetown. A mosquito survey in the Western
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Area of Freetown in 1930 and 1931 also confirmed a very great reduction in the number of 

anophelines, as a result of Gordon’s anti-malaria campaign. In 1930, Gordon and others 

(1932) initiated a campaign to permanently reduce mosquito breeding in Freetown, by 

constructing permanent modem street drainage, thereby eliminating puddles on the streets. 

This campaign went on for two years, but was prematurely suspended due to shortage of 

funds.

Regular spraying of dwelling places with pyrethrum insecticide in order to kill anophelines 

was introduced in 1940 by Mr. P. Slater, the then Malaria and Sanitary Superintendent, as 

part of an anti-malaria scheme for the Western part of Freetown and its district (Major & 

Ribband, 1946). However, after a brief period this was discontinued, probably due to the 

economic recession during the Second World War.

The present malaria control strategy is prompt case detection and treatment, through a cost 

recovery program in the Primary Health Care system. This scheme works quite well in 

places with hospitals and Health Centres, but there are many people living in areas that are 

far away from any health facility, who do not benefit from this system.

Recently, Peterson et al. (1993) conducted a malaria control trial to investigate the effect of 

lambdacyhalothrin treated bed nets on clinical malaria and its transmission, in the south

eastern area of Bo. The entomological aspect of this trial is described in Chapters 2 and 3 of 

this thesis. This trial revealed a 50% reduction in the incidence of clinical malaria in 

children of 5 years or less, due to the use of the treated nets (Marbiah el al., 1998). On the
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basis of this result the Ministry of Health started a National Malaria Control Program. This 

has been interrupted due to an on-going civil war.
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1.3. Designing vector control trials

1.3.1. Designing vector control trials in Africa: current perspective.

This section describes briefly the experimental designs that are currently used for evaluating 

vector control trials, and the situations where each design is appropriate.

A critical element of any vector control trial is its evaluation. The aim of evaluating a 

malaria control trial is essentially to provide reliable epidemiological evidence to support 

any claim of success or failure of the trial. An important element of this task is to answer the 

question, “can we attribute the changes observed during a malaria control trial to the 

intervention rather than to chance?” This is usually accomplished through careful designing 

of the trial, including adequate replication and appropriate controls, proper data collection, 

and appropriate analysis of the data. However, proper evaluation of any control exercise is 

not straightforward. Social, cultural, environmental, logistical and also ethical factors may 

affect the design, and hence the outcome, of a trial.

Evaluation of vector control trials can be performed in two different ways, either by 

comparing the malaria situation in a given location before and after the intervention 

(Historical controls), or by simultaneously comparing control and intervention areas 

(Contemporary controls). However, malaria is a very dynamic disease in that it can vary 

both spatially and temporally, that is, between neighbouring areas during the same period, 

and between successive years in the same location (Le Sueur et al., 1998; Snow et a/., 

1993). Hence the use of either method is not straightforward.
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Ideally, in order to use a historical control design, baseline data should be collected in the 

same location until a consistent trend is seen in the malaria situation, before introducing the 

intervention. This baseline period can be as short as 3 years or more than 20 years. The 

underlining objective being to get a consistent trend in the outcome variable in order that 

one can predict the malaria situation had the intervention not taken place. The difference 

between the predicted and observed estimates can then be attributed to the intervention.

Experimental design using contemporary controls aims to ensure that for epidemiologically 

similar villages any significant difference between them during a vector control trial can be 

attributed to the intervention. However, studies by Cattani et al., (1986) and Greenwood 

(1989a,b) have shown that even neighbouring villages can be quite different, as a result of 

the uneven distribution of risk factors - confounders. For vector control trials possible 

entomological confounders include, irrigated rice fields, bush clearing, altitude and 

proximity to breeding sites.

The uneven distribution of confounders among the groups receiving the different 

interventions can disguise the effect of an intervention. Randomisation of the intervention 

units into control and treated groups has been recommended as the method of choice for 

determining the effect of an intervention. (Lengelar & Snow 1996; Smith and Morrow 

1991). Through randomisation of a large number of sampling units, it is possible to balance 

extraneous variables associated with the response, between treated and control groups, so 

that the differences observed between groups are predominantly due to any treatment effect.

30



Entomological Evaluation o f  treated bed nets Chapter /

The random allocation of communities into control and treated groups can be done in two 

main ways. One is by pairing epidemiologically similar communities (based on similarity of 

pre-intervention data) and randomly allocating one in each pair to either the treatment or the 

control arm of the trial (Peterson et al., 1993). The other is by randomly allocating 

communities to either the treated or control group, without prior matching (Lyimo et al., 

1991). For the purpose of this document the former will be called “matched-pair 

randomisation”, and the latter “unpaired randomisation”. In principle, matched-paired 

randomisation is more appropriate for randomising a small number of communities, while 

unpaired randomisation is appropriate for a large number o f communities. This is because 

with large number of communities the randomisation itself can result in a heterogeneous 

mixture of units in each arm, which will maximise comparability, while with a small number 

of communities such heterogeneous mixing can leave considerable differences between the 

different arms of the trial. Hence, for small number of villages, matched-paired 

randomisation is preferable.

The main disadvantage of matched pair randomisation is that matches for individuals 

villages with unusual values for the confounder variable are sometimes hard to find, and 

imperfect matching removes only some of the confounder bias.

In order to carry out matched pair randomisation efficiently, Smith and Morrow (1991) have 

suggested at least 6 units in each arm of the trial. The units should be matched or stratified 

into pairs having similar underlying pre-intervention risks of the disease outcome in 

question, and be randomised within pairs. Stratification should be in terms of variables that
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are strongly related to the risk of the outcome of interest. For example, in a treated net trial 

in South Africa, Le Sueur and others (1998) used the matched pair randomisation design, 

utilising historical entomological data collected over a period of 7 years from the different 

experimental areas to identify villages with similar transmission patterns. These were 

matched, paired and randomly assigned to either the intervention or control group. This 

process made it possible for a change of 3% in malaria incidence between the paired areas to 

be detected at the 95% confidence level. Chapter 2 of this thesis describes the entomological 

results of a bed net trial in which the matched paired randomisation design was used.

The medium-scale field trials, such as that described above, have been followed by large- 

scale efficacy trials studying the effect of the intervention under optimally controlled 

conditions (Lengelar, 1996). Due to the large number of communities in these studies, 

unpaired randomisation was used, allowing estimation of the number of clinical cases or 

deaths averted by the intervention (D’Alessandro et al., 1995; Nevill et al., 1996). These 

have shown a dramatic reduction in malaria mortality for children under the age of 5 (Curtis, 

1996b).
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1.3.2. Historical review of the design of vector control trials

The previous section described the main types of experimental design currently used for 

evaluating vector control trials. However, before this status quo the evaluation of malaria 

control trials evolved through several stages, and this section reviews some of these 

changes. The present century can be divided into larval control, malaria eradication, and 

malaria control era, reflecting the various predominant control techniques during each 

period.

1.3.2.1. Larval control (1900 - 1949)

The earliest attempts to control malaria were mainly based on larval control in the form of 

engineering methods, environmental management, and destroying and oiling breeding sites 

(Gordon, 1932; Ross, 1901). These control exercises were conducted mainly at localised 

sites, such as harbours and army camps. Assessment of control exercises was often based on 

estimating the mosquito density, spleen rate, fever rate, or mortality attributed to malaria, 

through mosquito surveys, hospital admissions, and death registration (Covell et ai, 1938; 

De Meillon, 1936; Hocking, 1946). These estimates were assessed from year to year and the 

magnitude of these yearly changes in the controlled location was taken as direct indication 

of the success of the control exercises (Bruce-Chwatt, 1949; Ross, 1936; Viswanathan & 

Rama, 1949).

When DDT and other residual insecticides became available during the Second World War, 

they transformed the approach to malaria control from a localised activity to a wider and 

broader level, aimed at community-wide reduction of transmission. The design and
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evaluation of these malaria control exercises was based either on simultaneous comparison 

of the spleen rates, mortality attributed to malaria, or slide positivity rates, in a large treated 

versus a large untreated area (Elmendorf 1947 & 1948), or by changes in these statistics in 

the treated area (e.g., Eddey 1944; Gabaldon, 1949).

1.3.2.2. Malaria eradication era (1950-1969)

After 1950, global malaria eradication became a world-wide goal for public health, 

resulting in a number of pilot projects in Africa with intensive studies on vector and parasite 

prevalence (Pampana, 1969). The evaluation of these eradication programmes was mostly 

based on year to year changes in the number of malaria cases reporting for treatment at 

hospitals and clinics, and also through active surveillance.

In 1967 a WHO collaborative scheme for testing the effect of new residual insecticides on 

mosquitoes in the field was set up in Nigeria. These trials were usually performed at village- 

level, and the effectiveness of the insecticide was assessed by comparing the mosquito 

density and sporozoite rates in a treated village, with that in a nearby untreated village 

(Gratz et al., 1963; Pant, 1966). Treatment and control villages were selected on the basis of 

isolation, proximity and similarity of environment and anopheline density during the pre

spraying investigations (Rishikesh, 1978). Isolated villages were normally chosen in order to 

reduce infiltration of mosquitoes from neighbouring villages, and in some cases an artificial 

barrier was created around the candidate treated village by treating surrounding villages to 

prevent infiltration.
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1.3.2.3. Malaria control phase (1970-present)

When it became apparent that a world-wide eradication of malaria by house spraying with 

residual insecticides was not possible, especially in Africa, the focus was shifted from 

eradication to control. The backbone of malaria control in the current era has been house 

spraying with residual insecticides, mainly DDT and Dieldrin. However, in some cases 

house spraying has now been replaced by the use pyrethroid treated bed nets, which have 

been shown to be less expensive, but equivalent to house-spraying in reducing the incidence 

of malaria (e.g. Curtis et al., 1998).

Following the encouraging results obtained with the use of pyrethroid treated bed nets, there 

was a major effort to establish their feasibility, acceptability, safety and efficacy (Charlwood 

& Graves 1987, Snow 1987). Community-wide use of pyrethroid treated nets has been 

shown to reduce mosquito density, survival and sporozoite rate in some communities 

(Magesa et al., 1991), but not in others (Quinones et al., 1998). Its evaluation has been 

mainly at community rather than personal level with emphasis on community randomisation 

into replicate treated and control villages with longitudinal follow-up. Part of this thesis 

(Chapters 2 and 3) concerns an investigation of the effect of community-wide use of treated 

bed nets on the mosquito population in communities in Southern Sierra Leone.

Finally, unlike the eradication phase when the entomological outcome variables were 

essentially indoor resting and exiting densities and epidemiological evaluation depended 

mainly on passive surveillance, the entomological outcome variables used during the current 

phase have mainly been biting rates, survival rates and sporozoite rates, and the
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epidemiological evaluation has been mainly through active surveillance. This is because the 

aim of the malaria campaign during the eradication era was to wipe out all malaria cases so 

that there was nothing left when control activities stopped, hence the evaluations were 

mainly to answer questions like: “Are there still malaria attacks?” whereas, in the control 

phase the aim is to reduce disease and if possible transmission, so the evaluation is mainly to 

answer questions like; “Does the intervention reduce the number of clinical cases and 

malaria transmission?”
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1.4. Pyrcthroid treated bed nets

The preceding section alluded to pyrethroid treated bed nets as a newly emerging strategy 

for controlling malaria. This section will describe how this strategy offers protection, and 

the potential problems that threaten their long-term usage.

Pyrethroids are synthetic analogues of natural pyrethrum insecticides, but unlike the latter, 

they are photostable with high residual activity (Zebra 1988). Bed nets treated with synthetic 

pyrethroids can remain actively insecticidal for up to 1 year (Curtis et al., 1992a; Njunwa et 

al., 1991; Lindsay et al. 1991b; Miller 1994), and field trials show that treated nets are 

capable of reducing the incidence of clinical malaria and death in African children (Choi et 

al., 1995; Curtis, 1996b; Lengeler et al., 1998). Pyrethroid impregnated fabric such as 

mosquito nets, curtains, eaves strips, papyrus mats and cloth provide personal protection for 

their user by acting as barriers and/or repellents to reduce human-mosquito contact (Curtis, 

1992b). The treated fabric can also kill some of the mosquitoes that contact it, and when 

used by a large proportion of a community can reduce the biting rate on even those without 

treated nets. This type of community protection is referred to as “mass effect”.

It has been clearly shown from laboratory studies that treated nets almost always provide 

personal protection for their users (Curtis et al., 1991), but field trials showed that they 

provide community level protection only in some places and not in others (Lines, 1996a).
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1.4.1 Degree of protection

1.4.1.1 Community protection

Community-wide protection is the partial protection from infective mosquito bites which is 

offered to everyone, including those without a net, when most people in a community use 

treated nets (Curtis et a!., 1991). Vector control measures such as pyrethroid impregnated 

bed nets and house spraying can kill mosquitoes coming in to contact with the insecticide 

treated surface. This “mass killing effect” can reduce the number of mosquitoes, the 

mosquito life span and the proportion of mosquitoes with sporozoites in their salivary 

glands, thus even benefiting people in the community not using the intervention, by 

reducing the number of infective bites they receive (Curtis, 1992b).

In order to estimate the degree of community protection offered by a malaria control trial 

with treated nets, the intervention has to be carried out at the community rather than 

household or individual level (Smith & Morrow 1991). Communities with the intervention 

must be compared against communities without the intervention, and such communities 

must be at least 3 km away from the nearest neighbouring community, to minimize the 

possibility of migration of mosquitoes between communities. Part of this thesis, chapters 2 

and 3, will investigate evidence for a mass killing effect from community-wide use of 

treated bed nets in Southern Sierra Leone.
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1.4.1.2. Personal protection

Personal protection on the other hand is the protection offered by treated nets only to people 

using them. This is usually manifested by a reduction in the level of contact between the 

users and the vector (Lines, 1996a). Vector control methods such as insecticide impregnated 

fabrics, house spraying and untreated bed nets provide personal protection in different ways. 

Both untreated and impregnated bed nets provide a physical barrier between the mosquitoes 

and net users, but the latter can also acts as a mosquito repellent. House spraying on the 

other hand provides protection mainly at community level by killing mosquitoes. Its 

repellency could however be important where the vector is mainly partially zoophilic and 

malaria is hypoendemic, in which case even a small reduction in transmission could have a 

substantial impact (Macdonald, 1957).

1.4.2. Critical issues related to treated bed nets

Though insecticide treated nets have been shown to reduce clinical malaria and death in 

African children, the desirability of their long-term use has recently been questioned. While 

some people have expressed concern about the loss of immunity that may result from 

prolonged reduced exposure to malaria infection, others have expressed concern over the 

potential threat of insecticide resistance. In this section, these issues are discussed.
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1.4.2.1 Long-term impact of treated bed nets on clinical malaria

In a recent retrospective study, Trape and Rogier (1996) compared the rates of malaria 

attacks in areas with different transmission intensities, using data obtained from hospitals. 

They claimed that above a given threshold of transmission intensity (> 1 infective 

bites/year), the total number of malaria attacks a person is likely to suffer in his/her entire 

life-time is independent o f the intensity of malaria transmission. The only difference 

observed was that people in high transmission areas received most of their malaria attacks 

during childhood, while those in lower transmission areas received the majority of their 

attacks in adulthood. On the basis of this result they claimed that because treated bed nets 

might reduce a persons exposure to malaria by about 10-30 fold, their long-term use in high 

transmission areas can mimic a situation with lower malaria transmission intensity. They 

then pointed out that this could delay the acquisition of natural immunity in children and 

hence increase the risk period for malaria attacks in high transmission areas from early 

childhood (>5 years) to the entire childhood.

In addition, recently Snow et al., (1997) compared the incidence of paediatric admissions for 

severe malaria in five distinct communities in The Gambia and Kenya, and observed that the 

hospital admission rate for severe malaria in childhood was highest in areas of moderate 

transmission intensities, and lower in populations with high transmission intensities. They 

therefore claimed that because treated bed nets reduce exposure of children to malaria, their 

long term use in a high intensity area could mimic a situation with low to moderate 

transmission intensity that may prevent children from acquiring sufficient level of natural 

immunity to help fight off later attacks. As a result, prolonged use of treated nets by
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children living in high transmission areas could lead to a longer period of risk of severe 

malaria.

Moreover, Snow et al., (1997) pointed to results obtained in an earlier study (Snow et al., 

1994), which showed that severe anaemia is the predominant presentation of severe malaria 

among children in high transmission areas whereas cerebral malaria is predominant among 

older children in areas of lower transmission. They concluded that bed net usage in high 

transmission areas could result in an increase in the number of cases .with cerebral malaria 

and a decrease in severe anaemia.

These findings by Trape et al., (1996) and Snow et al., (1997) have giving rise to much 

debate. D’Alessandro and Coosemans (1997) have criticised the comparison of morbidity 

across distinct socio-economic and ecological environments by pointing out that these may 

have inherent social and cultural differences which could influence people’s tendency to 

take their children to hospital. They have also pointed out the limitations and possible biases 

associated with data from hospital admissions, by arguing that because of the wide 

availability of chloroquine most cases would be treated at home, and so may not report to 

the hospital. Lines (1997) also criticised the use of hospital data by pointing out that cerebral 

malaria (in low transmission areas) is more conspicuous than severe anaemia (in high 

transmission areas), so parents will be more inclined to take potentially fatal cases of 

cerebral malaria to hospitals than those with potentially fatal severe anaemia, which may 

explain the difference in hospital admission rates in the different areas.
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Greenwood (1997) has pointed out that the evidence from the large-scale trials suggests that 

the benefits obtained from treated nets are enormous and so until more convincing reasons 

are presented for abandoning it, people should not be deprived of these benefits.

The above debate has highlighted our limited understanding of the factors that determine the 

outcome of a malaria infection. However, even if we accept the assertion by Trape and other 

that the use of treated nets is likely to postpone malaria attacks from childhood to later 

years, this still would not warrant withholding nets from people. This is because even among 

non-immunes, malaria is more fatal in children than in adults hence if most of the attacks are 

postponed to later childhood them the fatality would be minimal (Molineaux, 1997). 

Therefore, the use of bed nets is good for children and so it would be unethical to deprive 

people in endemic communities of these benefits, especially when some of these 

communities do not have ready access to medical treatment.
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1.4.2.2. Effect on malaria vectors

Whenever insecticides are used there is always the threat of insecticide resistance. 

Laboratory crosses of two strains of Anopheles stephensi Liston, indicated that pyrethroid 

resistance in the case examined is recessive, hence emergence of resistance is likely to be 

slow (Curtis et al., 1990). However, data obtained by Vulule et al., (1994, 1996) from a 

community-wide permethrin treated bed nets trial in Kenya showed a significant rise in 

permethrin tolerance of An. gambiae collected in 4 villages after one year use of treated nets 

or curtains. There was however no further rise after two more years’ use. Curtis et al., 

(1998) has pointed out that this type of pattern is consistent with a life-shortening of 

mosquitoes coupled with the greater tolerance of younger mosquitoes (Hodjati & Curtis, 

1996) or other phenotypic effects of extensive use of pyrethroids in the area rather than with 

selection for resistance genes, which once started, might be expected to proceed so long as 

pyrethroid exposure continues. Recently, Darriet et al., (1997) reported pyrethroid resistance 

in a population of An. gambiae mosquitoes that have been exposed to agricultural use of 

pyrethroid insecticides in the Ivory Coast. On the other hand, in the small Tanzanian village 

of Mng’aza where bed nets have been used for about 8 years, repeated tests have so far 

revealed no rise in tolerance (Curtis 1996a). Also, in China, where up to 2 million nets have 

been impregnated with deltamethrin annually for 5 years there has so far been no evidence 

of pyrethroid resistance (Cheng et al., 1995).

The threat of pyrethroid resistance is very real, because there is no doubt that resistance 

genes are present in some populations, as artificial selection by Vulule et al., (1994) 

produced a strain with certain resistance. The potential threat o f knockdown resistance to
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pyrethroid insecticides as a result of exposure to treated bed nets is not to be taken lightly. It 

is now up to us to find ways of preventing the emergence of resistance. It is advisable to 

perform regular susceptibility tests in areas where pyrethroid treated bednets are used. This 

should ensure early warning of resistance, which can give adequate notice for its 

management. Recent studies in the Ivory Coast have shown that organophosphate and 

carbamate treatment of bed nets can perform at least as well against pyrethroid resistant 

mosquitoes as pyrethroid does against mosquitoes which are susceptible (Kolanzinski el al. 

In prep.). This is indeed very good news because these can be used against pyrethroid 

resistant mosquitoes, but more information is needed on the safety and acceptability of these 

new compounds before they can be used in the field.

There have also been reports of behavioural changes induced by treated bed nets. In a 

permethrin treated net trial in Papua New Guinea, Chari wood & Graves (1987) reported a 

change in peak biting time induced by pyrethroid treated bed net. In another trial in 

Tanzania, Njau et al., (1993) found that about 6 months after introducing treated nets in part 

of a Tanzanian village, mosquitoes were biting during the early hours of the night in houses 

with treated nets, but later on in the night in houses without bed nets. However, these 

behavioural changes are believed (J.D. Lines, personal communication) to be due to 

phenotypic changes rather than the permanent evolutionary changes (genotypic changes) 

observed in the biting cycle of An. punctulatus complex in the Solomon Islands (Sloof, 

1964), or with An. minimus in Thailand (Ismail, 1978), that were apparently caused by 

spraying DDT.
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Host preference in mosquitoes is genetically determined, and the effect of insecticide 

treated nets on opportunistic species may therefore be higher than for mosquitoes species 

with distinct preference for certain hosts. The main malaria vector in Africa, An. gambiae, is 

highly anthroprophilic and several studies have indeed shown that its human blood index 

does not decline after introduction of treated nets (Lindsay et al., 1993b; Magbity et al., 

1997; Magesa et al., 1991; Mbogo et al., 1996; Quinones et al., 1997). In contrast, Lindsay 

et al., (1989b) did observe a reduction in human blood index for An. gambaie in The 

Gambia. However, this is believed to be due to a decline in the number of An. melas feeding 

on man. Also, in Papua New Guinea Charlwood and Graves (1987) observed diversion of 

An.farauti to feeding on alternative hosts after introducing treated nets.
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1.5. Methodological issues in assessing various vector control trials.

Previous sections discussed the kinds of experimental designs appropriate for evaluating 

pyrethroid treated bed nets trials and the types o f protections which treated bed nets offer. 

This section will consider the indicators that need to be measured in the field in order to 

come to a reliable conclusion about the impact of pyrethroid treated bed nets.

Each vector control strategy has a distinct impact on malaria transmission, and its influence

can be predicted by considering its effect on the individual components of vectorial

capacity. According to Garrett-Jones (1964a), vectorial capacity is the potential daily rate at

which future inoculations arise from a currently infective case, in a population of susceptible

individuals. He formulated the following relationship for vectorial capacity

C = m.a2.Dn 
- logcP

where

C = vectorial capacity

m = the number of female mosquitoes per person 

a = the frequency with which each female mosquito bites man 

(so ma = bites per man per day)

p = survival rate of mosquitoes (so -l/logcp = average life-span of a mosquito in 

days)

n = length of sporogonic cycle in days.

However, since a = bh, where b = bites/day,

and h = the proportion of bites taken on man
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the equation becomes, C = m.b2 h2.pn
-  logcP

Modem methods that are expected to reduce malaria transmission include larviciding, 

environmental management, biological methods, and house spraying with residual 

insecticides, pyrethroid-impregnated materials, genetically engineered mosquitoes, and 

transmission blocking vaccines. However, here we are only concerned with the effect of 

pyrethroid treated material and house spraying with residual insecticides on the components 

of vectorial capacity.

Both house spraying and pyrethroid-impregnated material are supposed to kill adult 

mosquitoes, hence they can reduce the number of mosquitoes (m) and the life expectancy (p) 

of the mosquitoes (Curtis 1992b). There is also the possibility that they may divert 

mosquitoes to feed on alternative hosts, hence reducing the human blood index h 

(Chariwood & Graves 1987). The vectorial capacity is very sensitive to changes in mosquito 

survival rate (p), because p is raised to the power n (n>10). Therefore in evaluating trials 

involving residual insecticides (house spraying and treated netting), efforts should be 

concentrated primarily on reliable assessment of survival rates, then sporozoite rates, human 

blood index and mosquito density.

Some trials have attempted to assess survival rates, sporozoite rates, mosquito density and 

human blood index (See Table 1.2). However, because of the paucity of understanding of 

the spatial and temporal variation of these entomological outcomes, the designing of these 

trials and their data collection and analysis have been very difficult. Part of this thesis
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(Chapters 5 & 6) will describe and analyze spatial and temporal variation of density and 

parous rates of Anopheles mosquitoes. This will be carried out in order to make pragmatic 

recommendations for designing entomological sampling routines.

1.5.1. Sampling methods:

The previous section described the indicator variables that need to be estimated when 

evaluating an insecticide treated bed net trial. This section describes the methods for 

estimating human vector contact (b) in the presence of insecticide treated nets. Several 

methods exist for measuring b, and some methods are more reliable than others are, so it is 

necessary to know how each method works and how it relates to the outcome of interest.

One way in which insecticide treated bed nets protect people is by reducing contact between 

the vectors and humans (reducing b). In evaluating this effect it is important to consider 

contact between the vector and people sleeping under treated nets, without bed nets, and the 

overall average number of bites (Lines, 1996). The next sub-sections describe the methods 

by which human-vector contact can be measured in each case.
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1.5.1.1. Estimating human-vector contact o f people sleeping under treated bed nets.

Currently available methods do not permit the reliable estimation of human-vector contact 

for people using impregnated bed nets in ordinary houses, even though some have tried. For 

example, Lindsay et al., (1989b) counted the number of fed mosquitoes in a room, obtained 

from daily collection from window exit traps (ET) and pyrethrum spray catches (PSC), to 

estimate the degree of contact between people sleeping under treated bed nets and 

mosquitoes. However, this method is unreliable because more mosquitoes are likely to leave 

rooms with treated nets than those without, and it is difficult to estimate the proportion of 

exiting mosquitoes that are actually caught, since some may escape counting by leaving 

through openings not covered by traps (Quinones et al., 1998). At the same time, some 

mosquitoes may be knocked down at night and eaten by ants and hence escape counting. As 

a result more mosquitoes in treated rooms than in untreated rooms will escape counting, 

hence bias the measurement.

The most reliable available method for estimating contact between the vector and bed net 

users is by using special huts known as ‘experimental huts’ (Smith, 1964). These 

experimental huts enable reliable trapping of exiting, dead and indoor resting mosquitoes, 

and hence can provide dependable information on the level of contact between the net users 

and mosquitoes. However, it is worth noting that experimental huts are smaller than normal 

bed rooms, and so do not completely mimic what happens to a sleeper inside a normal bed 

room.
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1.5.1.2. Estimating human-vector contact of people not sleeping under treated bed 
nets in a community with high net ownership.

Some trials have shown that community-wide use of pyrethroid treated bed nets can have a 

mass killing effect on local mosquito populations, which may provide a partial protection 

even for those who do not habitually use treated nets (Magesa et al., 1991). One way in 

which the mass killing effect is manifested is by reducing mosquito abundance in the 

community, which can lead to a reduction of the number of bites suffered by non-bed net 

users in that community.

The most direct method for estimating the degree of contact between the vector and people 

not using impregnated net (level of ‘mass killing’) is by direct collection from human baits 

(Service, 1993). This usually involves using human volunteers as baits for hungry blood 

seeking mosquitoes, and mosquitoes landing on these are caught by means of a hand torch 

and an aspirator (Service, 1993). It is important that the mosquito collection be carried out 

away from the influence of pyrethroid treated fabrics because the pyrethroid may repel 

mosquitoes and hence prevent then from coming to the human baits (Lindsay et al., 1992; 

Lines, 1996a). Even though human biting catches provides the most direct estimate of 

human - vector contact, they are very tedious, difficult to supervise, costly, exposes the 

catchers to an increased risk of disease, and are subject to collector bias.

Several surrogate sampling methods for measuring mosquito biting rates have been 

developed (Service, 1993). The most commonly employed is a battery operated light-trap
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placed beside an occupied untreated bed net (Lines et a!., 1991). While this method has been 

shown in some places to be almost as effective as direct landing catches of some mosquito 

species (Davis et al., 1995; Lines et al. 1991), other studies have found no clear relationship 

(Mbogo et al., 1993). Where a relationship exists, light-traps have been found to be free of 

collector bias, easy to supervise and not labour intensive.

Another method that has been used to estimate human vector contact in people not sleeping 

under treated bed nets is to count blood-fed mosquitoes in simultaneous pyrethrum spray 

catches (PSC) and window exit-trap catches (ET) in the same room (Lindsay et al., 1989a). 

The PSC sample mosquitoes resting in the room, while window exit-traps sample exiting 

mosquitoes. Some workers believe that the use of these two methods simultaneously in the 

same room can provide an indirect estimate of the human - vector contact of people not 

sleeping under treated bed nets. However, the reliability of this method in estimating human 

biting rate has not yet been determined.

Part of this thesis (Chapter 4) investigates the reliability of light trap catches, and counting 

blood fed mosquitoes, in estimating biting rates of An. gambiae mosquitoes in Southern

Sierra Leone.
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Table 1.2. Designs and entomological outcomes that have been used in evaluating 
various bed net trials (Part of this table was taken from Quinones, (1996))

Country Design Number of 
villages

Outcomes References

B c R Treated Control D p s H
The G am bia y ✓ ✓ 6 6 X ✓ ✓ L in d say  e t al. (1993b)

✓ ✓ ✓ 1 0 ' t X ✓ ✓ S n o w  e t al., 1987

✓ ✓ ✓ 3 3 ✓ ✓ y T h o m so n  et al., ( 1995)

X ✓ ✓ 2 2 ' î X ✓ ✓ L in d sa y  et al. (1989b)

✓ ✓ ✓ 10 10 ✓  * V ✓ ✓ Q u in o n es  et al., (1997)

T anzania ✓ ✓ X 2 2 ' î s ✓ ✓ M ag esa  e t al., (1991)

✓ ✓ ✓ 4 4 ' % X ✓ ✓ C u rtis  et al., (1998)

B urkina Faso ✓ ✓ X 0.5 0 .5 V * ✓ ✓ X R o b ert & Cam evale 
(1 9 9 1 )

Zaire ✓ ✓ X 1 1 V * ✓ ✓ X K arch  e t al., (1993)

K enya ✓ ✓ X 2 2 V * ✓ ✓ X B each  e t al., (1993)

y ✓ V 33 3 0 ✓ * s ✓ ✓ M b o g o  et al., (1996)

G uinea
Bissau

y ✓ X 3 3 ✓ * X ✓ X Jaen so n  et al., (1994)

C am eroon V X X i* 0 • / * ✓ ✓ X Le G o f f  et a l , (1992)

P apua New 
G uinea

s X X 1 0 ✓ * ✓ X ✓ C harlw ood  & G raves et 
al.. (1987)

India ✓ X X 3 9 ✓ * X X X Jan a-K ara  et al., (1995)

✓ ✓ X 1 1 X ✓ X Jam bulingam  et al., 
(1989 )

Thailand ✓ ✓ X 3 2 ✓ * ✓ ✓ X S om boon  et al., (1995)

M alaysia ✓ ✓ X 2 2 ✓ * ✓ ✓ X V yth ilingam  et al., (1995)

Solom on
Island

✓ X X 23 2 0 s X X K ere e t  al., (1993)

✓ X X ~ T ~ 0 ✓ * ✓ X X S am araw ickrem a et al., 
(1 9 9 2 )

X ✓ X 1 1 X ✓ X X H i i e / a / . ,  (1993)

C hina ✓ ✓ X 9 1 ✓ * ✓ X X L i e / a / . ,  (1989)

✓ X X 4 1 y * X X X D apeng  et al., (1996)

Sierra Leone ✓ ✓ ✓ 8 8 ✓ ✓ ✓ C h ap te r  2 o f  this thesis

Benin ✓ ✓ X 0.5 0 .5 ✓ ✓ ✓ X A k o g b e to  & N ahun 
(1996)

Key for design and outcom e variables: B = B aseline data collected; C = contem porary co n tro ls  used (* evaluation by 
com paring  before and after changes in each ou tcom e variable); R = villages random ised: O u tco m e  = indicators that have 
been m easured in the trial; D =biting rates on unprotected people (* estimated by hum an bait catches; f  estim ated by 
counting  blood fed m osquitoes; % estim ated by ligh t trap catches); P=Parity rate; S=sporozoite ra te ; H=Human blood-m eal 
index.
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1.5.1.3. Estimating human-vector contact of the overall community

The average man-vector contact can be estimated by calculating the weighted average of the 

man-vector contact for those under nets and those without nets, in a community. This can be 

performed by adding the total number of bites on all treated net users to the total number of 

bites on all those in the community without treated nets, and dividing by the total number of 

people in the communities. Thus,

Average man-vector contact = (Bp x Np) + (Bu x Nu) -------------.------ 2
(Np + Nu)

where,

Bp = biting rate on protected people - estimated from the number of mosquitoes 

that fed on a bed net user in experimental huts.

Bu = biting rate on unprotected people, estimated either from outdoor human 

biting catches, or, from light-traps.

Np = Number of people sleeping under bed nets 

Nu = No of people sleeping without bed nets
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1.5.1.4. Diversion to people without bed nets

In investigating mosquito biting rates in people without treated nets by either HBC or by 

counting blood fed mosquitoes in untreated rooms, one should be mindful of the possibility 

of diversion of mosquitoes from protected to unprotected people in their quest for blood- 

meals.

Experimental hut studies by Lines et al., (1987) showed that an unprotected person sleeping 

close to a treated net suffers fewer mosquito bites, than in the absence of the treated net. 

Lindsay et al., (1992) using six experimental huts, five of which were occupied by sleepers 

with untreated nets and one by a sleeper with a treated net, showed that mosquitoes do not 

concentrate in nearby huts without treated nets. In a village-scale treated bed net trial in 

Papua New Guinea, Charlwood and Graves (1987) showed that community-wide use of 

treated nets can divert An.farauti from humans to animals. The evidence so far accumulated 

seems to suggest that mosquitoes are not diverted by treated nets to unprotected people, but 

that the use of treated bed nets by some members of a community provides partial protection 

for nearby less fortunate ones without nets. In a recent study in Ghana, Binka et al., (1998) 

showed a 6.7% increase in mortality among non-users with each 100m shift away from the 

nearest compound with treated nets, within a 500m range. This indicates that the insecticide 

gave some protection to nearby non-users, and does not divert mosquitoes to them.
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1.5.2. Methodological issues

The previous section discussed the mosquito sampling procedures for estimating the 

parameter b, for net users and non-users. This section describes the methods for estimating 

the other components of vectorial capacity, and some other useful parameters in evaluating 

treated bed nets.

Mosquito samples collected from the field need to be processed in order to get information 

about individual mosquitoes. While some of the procedures for processing field mosquitoes 

are fairly simple and straightforward, others require very complex skills. Table 1.3 lists 

some useful parameters that one may need to estimate when evaluating a treated net trial, 

together with brief notes on their units of measurement, their methods of assessment and 

comments on the methodologies.

Quantitative determination of the amount of insecticide residue on nets is at present done 

only by the slow and expensive method of gas chromatography and mass spectrometry 

(GC/MS) which is not readily available in most countries where nets are likely to be used 

(e.g., Magbity el al., 1997; Mbogo el al., 1996). Quality control of routine net dipping 

operations has therefore not been possible in most bed net trials. A much cheaper and 

simpler alternative method is the ‘Beilstein test’, which is a qualitative rather than 

quantitative test for permethrin on nets (Muller el al. 1994). There is an urgent need for a 

simpler test for quantitative determination of pyrethroid residues on nets, which could be 

done in laboratories with modest facilities. Part of this thesis (Chapters 7 & 8) will describe
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the development of an ELISA test based on polyclonal antibodies for testing pyrethroid 

deposits on mosquito netting.

Kits have also been developed for determining the duration of insecticide activity on fabrics 

and also for testing insecticide susceptibility of local mosquitoes (WHO 1986). It is 

recommended that mosquitoes of the same age be used in each test, because mosquito 

susceptibility to insecticide varies with age (Hodjati & Curtis 1996; Lines & Nassor 1991). 

Hodjati (1998) has also suggested the use of median time for knockdown, instead of the 

WHO recommended procedure of determining mortality after a fixed exposure time, when 

testing insecticide susceptibility. The is because the use of median time for knockdown 

would permit earlier detection of resistant heterozygous so that appropriate action could be 

taken before it evolved to homozygous population.

ELISA kits have been developed for identifying the origin of the blood meal in individual 

mosquitoes (Service, 1986). There are however serious difficulties in obtaining 

representative mosquito samples for the estimation of human blood index (HBI). Outdoor 

mosquito sampling is not very productive because of the large area involved in sampling, 

but some anopheline species can be concentrated in artificial outdoor resting sites, such as “ 

pit shelters” or other artificial locations (Service, 1993). It is difficult to estimate the 

proportion of the overall mosquito population that rests indoors relative to outdoors, and 

therefore it is unclear how to combine the (usually very different) estimates of HBI obtained 

from indoor and outdoor samples to get village-level estimates. Garrett-Jones (1964b)
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recommended that the use of the unweighted mean of HBI obtained from samples collected 

from human dwellings and others from other types of resting-places would provide a most 

reliable possible estimate of HBI.

For example,

HBI (population) = HBI (indoor) + HBI (barns) + HB! (fences)
3

Several methods exist for determining the survival rate of mosquitoes. For example, the 

method of Polovodova, (1949) permits one to estimate the age of a mosquito by determining 

the number of times it has laid eggs, and the Detinova (1962) method allows the proportion 

of mosquitoes that have laid at least one batch of eggs, to be estimated. The former 

technique is far superior to the latter, but it is used seldom because it is technically difficult, 

and very few people actually know how to do it. The latter is relatively easy and hence has 

been used more often, though it provides only a crude estimate of mosquito survival 

potential.

Malaria sporozoite rate can be determined by two methods, salivary gland dissection and a 

sporozoite immunodiagnostic technique based on monoclonal antibodies to 

circumsporozoite protein (Wirtz et al„ 1987). The former is time consuming, requires 

appropriate technical skills, can be only undertaken on fresh samples and does not permit 

the identification of individual Plasmodium species, but it is cheap and can be done in the 

field. On the other hand the immunodiagnostic technique allows for rapid estimation of 

sporozoite antigen rates on large numbers of dried samples and offers the possibility of

57



Entomological Evaluation o f  treated bed nets Chapter /

identifying the Plasmodium species in the mosquitoes in the field. Its main disadvantage is 

that it detects circumsporozoite protein which could be in oocysts or shed in the haemocoele 

of the mosquitoes and not necessarily in the salivary glands. However, results from the 

immunodiagnostic method have been found to correlate very strongly with those from 

salivary gland dissection (e.g. Adungo et al., 1991), especially if the test is performed on the 

head-thorax portion of the mosquitoes.
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Tablel.3. Entomological parameters and their measurements in implementing 
treated net trials.

P a r a m e te r s D e fin it io n s M e th o d s  o f  m e a su r em en t C o m m e n t s
D o s a g e  o f  
in s e c t ic id e

Q u a n ti ty  o f  
in se c tic id e /m 2 o f  
net.

G a s  c h ro m a to g ra p h y  an d  
m a ss  s p e c tro sc o p y .

T h is  te s t  is  ra th e r  s lo w  an d  c a n  o n ly  
p ro c e s s  v e ry  few  sam p les . T h e re  a re  
n o w  e f f o r ts  to  d ev e lo p  a te s t  b a se d  on  
m o n o c lo n a l  a n d  p o ly c lo n a l a n tib o d ie s .

D u r a b il i ty  o f  
R e s id u a l  
a c t iv ity  o f  
in s e c t ic id e

%  m o rta li ty  a f te r  
3 m in u te s  
e x p o s u re  p e r io d

B io a s s a y  c o n e s  o r  w ire  
fra m e  f o r  ne ts . 3 m in u te s  
e x p o s u re  tim e

Id e a l ly  m o s q u ito e s  fo r  th is  te s t  sh o u ld  
b e  F 1 o f f  s p r in g  co lle c te d  fro m  co n tro l 
v i l la g e s  w h e re  no  in se c tic id e  is u sed , 
an d  m u s t  a l l  b e  o f  th e  sam e  age .

S u sc e p t ib ility %  m o rta li ty  o n  a 
W H O  in sec tic id e  
im p reg n a ted  
p ap e r.

W H O  s u s c e p tib il i ty  te s tin g  
k its .

It m a y b e  p re fe ra b le  to  u se  m e d ia n  tim e  
fo r  k n o c k d o w n  (K D 5o), ra th e r  th a n  a  
f ix e d  e x p o s u re  tim e a s  re c o m m e n d e d  by  
W H O .

M a n -b it in g
r a te

N u m b e r  o f
m o sq u ito
b ite s /m a n /n ig h t

H u m a n  b a i t  ca tch es  
(H B C ) , l ig h t- tra p  ca tch  
(L T C )  a n d  o th e r  tra p p in g  
m e th o d s .

T h e s e  a s s e s s  th e  n u m b e r o f  b ite s  th a t an  
u n p ro te c te d  h u m an  re c e iv e s /n ig h t. T h is  
is  e x p e c te d  to  be  re la ted  to  th e  v il la g e  
le v e l m o s q u i to  ab u n d a n ce .

B itin g  r h y th m H o u r(s )  o f  p ea k  
b it in g

H u m a n -b i t in g  ca tch  an d  
lig h t- t r a p  ca tc h e s  by  ho u r.

H B C  is  re c o m m e n d e d .

H u m a n  b lo o d  
in d e x  (H B I )

P ro p o rtio n  o f  
fre sh ly  fed  
fem a le s  w ith  
h u m a n  b lood .

B lo o d m e a l  E L IS A , e tc . I t is  d i f f i c u l t  to  o b ta in  a  re l ia b le  e s tim a te  
o f  H B I b e c a u s e  o f  th e  d if f ic u lty  in 
o b ta in in g  a  re p re se n ta tiv e  sa m p le  fro m  
all p o s s ib le  m o sq u ito  re s tin g  s ites.

S u r v iv a l  ra te P ro b a b ility  o f  
m o sq u ito  
s u rv iv in g  th ro u g h  
e a c h  day .

P a rity  r a t e  d e te rm in a tio n , 
m u l t i - p a ro u s  ag e  g rad in g , 
d e la y e d  s p o ro z o ite  ra tes  
a n d  m a rk -re le a se - re c a p tu re  
e x p e r im e n ts .

D a ily  m o s q u ito  su rv iv a l ra te  h a s  th e  
la rg e s t im p a c t  on  m a la r ia  tra n sm is s io n  
a n d  it m u s t  b e  m e asu red  in  tr ia ls  
in v o lv in g  in s e c tic id e s  a g a in s t ad u lt 
v e c to rs .

S p o r o z o ite
r a te

P ro p o rtio n  o f  
s p o ro z o ite  
p o s itiv e  
m o sq u ito e s

S p o ro z o ite  E L IS A  o r  by  
s a liv a ry  g la n d  d issec tio n .

E L IS A  m e th o d  te sts  fo r  th e  p re s e n c e  o f  
s p o ro z o ite  a n t ig e n , w h ile  th e  d is s e c t io n  
m e th o d  in v e s t ig a te  fo r  sp o ro z o ite s  in 
s a l iv a ry  g la n d s . H o w e v e r , th e  fo rm e r 
p e rm its  th e  id e n tif ic a tio n  o f  th e  p a ra s ite  
s p e c ie s  in  th e  m o sq u ito , w h ile  th e  la tte r  
d o e s  n o t.

E n to m o lo g ic a l  
in o c u la t io n  
r a te  (E I R )

O b se rv e d  n u m b e r  
o f  in fe c tio u s  
b ite s /m a n /d a y

p ro d u c t  o f  m a n -b itin g  ra tes  
a n d  s p o ro z o ite  ra te

E IR  is  m o re  re liab le  th a n  th e  V C  
b e c a u s e  o f  th e  few er p a ra m e te rs  in its  
c a lc u la t io n .

V e c to r ia l  
c a p a c ity  (V C )

P o te n tia l n u m b e r  
o f
in o c u la t io n s /d a y  
a r is in g  from  o n e  
in fe c tiv e  ca se

O b ta in e d  fro m  the  
f o l lo w in g  p a ram e te r  
e s t im a te s ,  H B I, m o sq u ito  
d a i ly  s u rv iv a l  ra tes , le n g th  
o f  g o n o tro p h ic  cy c le  an d  
m a n -b i t in g  ra tes.

T h is  p a r a m e te r  is u su a lly  n o t  v e ry  
r e l ia b le  b e c a u s e  it is th e  p ro d u c t o f  la rg e  
n u m b e r  o f  p a ra m e te rs , e a ch  o f  w h ic h  is 
m e a s u re d  w ith  its o w n  e rro r . T h e  e r ro r  
o f  th e i r  p ro d u c t  is th e re fo re  e x tre m e ly  
la rg e .
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1.6. Aims:

In spite of the success of treated bed nets, field evaluation is still fraught with difficulty.

Various methodological and statistical constraints interfere with the successful and

efficient evaluation of malaria vector control trials. Within these constraints, this thesis

will consider the following:

• Design and methodological issues in the entomological evaluation of pyrethroid 

treated bed net trials.

• Statistical and sampling issues in the entomological evaluation of pyrethroid treated 

bed net trials.

• Developing a field based test for determining the quantity of pyrethroid deposit on 

bed nets.

The aims of this work were:

1. to investigate evidence of a mass killing effect from a lambdacyhalothrin treated 

bed net trial in Southern Sierra Leone.

2. to investigate the reliability of light traps and counting of blood fed mosquitoes for 

determining biting rates of An. gambiae mosquitoes in Southern Sierra Leone

3. to make pragmatic recommendations for designing entomological sampling 

routines.

4. to develop an ELISA test for quantitative determination of pyrethroid deposits on 

bed nets.
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1.7. General outline of the thesis

The thesis is divided into three parts namely: Entomological evaluation of a treated bed 

net trial; Designing mosquito sampling routines; Developing an ELISA for measuring 

pyrethroid deposits on mosquito netting. These different parts contribute towards 

improving the evaluation of insecticide treated bed net trials and programmes in Africa.

Chapter 1 is a general introduction of the three parts of the study, and addresses the 

issues involved in entomological evaluation of pyrethroid treated fabrics. Chapters 2 

and 3 describe the entomological evaluation of the first and second year respectively, of 

a trial with lambdacyhalothrin treated bed nets in Southern Sierra Leone. Chapter 4 

investigates the reliability of CDC light trap catches and counting blood-fed mosquitoes 

for estimating biting rates of An. gambiae in southern Sierra Leone. Chapters 5 and 6 

describe, analyse, and discuss mosquito spatial and temporal distribution and their 

implications for allocation of sampling effort for estimating mosquito abundance and 

parous rate.

Chapters 7 and 8 describe the methodology used for producing polyclonal antibodies 

for determining the quantity of pyrethroids on bed nets. They also describe the 

optimization, standardization, and validation of the ELISA test. Chapter 9 provides a 

final discussion and conclusion of the above studies, and addresses the impact of the 

various findings on improving the evaluation of vector control.
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PART 1

CHAPTER 2.

EFFECTS OF COMMUNITY-WIDE USE OF LAMBDACYHALOTHRIN 

IMPREGNATED BED NETS ON MALARIA VECTORS IN RURAL SIERRA

LEONE.

2.1. Introduction.

The use of mosquito nets impregnated with pyrethroid insecticide such as permethrin, 

deltamethrin or lambdacyhalothrin, is an important advance in malaria vector control. 

Pyrethroid impregnated bed nets act both as a physical barrier, by protecting the sleeper 

from mosquito bites, and as a chemical barrier, by repelling mosquitoes away from the 

sleeper and also killing mosquitoes that contact the nets (Knols & Takken 1998; Snow el al., 

1987). The use of an impregnated bed net protects the person sleeping under it, and in some 

cases when used by an entire community, can result in a ‘mass killing effect’ on the local 

mosquito population, often manifested as reductions in the density, parity and malaria 

sporozoite rate of the mosquitoes. Community use of treated nets is therefore expected to 

kill a large proportion of the local mosquitoes before they can reach the age at which the 

malaria parasite reaches maturity, thus reducing the malaria risk for the whole community 

(Curtis el al., 1992b). In this chapter an attempt is made to evaluate the mass killing effect of 

community-wide use of lambdacyhalothrin treated bed nets, on a population of An. gambiae 

mosquitoes in southern Sierra Leone.

Various field trials have evaluated the impact of community-wide use of pyrethroid treated 

bed nets on anophcline vectors of malaria and on malaria transmission. In some trials there
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has been clear evidence for a ‘mass killing effect’ on the local vector population indicated 

by reduced density, sporozoite rate or longevity, such as in Burkina Faso (Camevale et al. 

1988; Robert et al. 1991), in Tanzania (Curtis et al., 1998; Magesa et al., 1991; Maxwell et 

al., 1999), in Cameroon (Le Goff et al., 1992), in Zaire (Karch et al., 1993), in Papua New 

Guinea (Charlwood and Graves 1987), in India (Jana-Kara et al., 1995) and in China (Cheng 

et a!., 1995). In The Gambia, Thailand and Kenya however, no such effect has been seen 

(Lindsay et al., 1993b; Mbogo et al., 1996; Quiñones et al., 1998; Somboon et al., 1995; 

Thomson et al., 1995) - treated bed nets did not seem to reduce mosquito survival, outdoor 

biting rate, sporozoite rate or human blood index. The contradictory nature of results 

obtained for the same mosquito species in separate areas suggests that the effect of bed nets 

on different populations of Anopheles species depends on local circumstances.

The implication of a mass effect in such places (e.g. Tanzania and Burkina Faso) is that in 

implementation schemes, there is an additional epidemiological advantage in ensuring that 

there is a high rate of coverage; in this case even those without nets would feel the impact. 

By contrast, in situations where a mass effect has not been evident, (e.g. The Gambia) 

treated nets benefit only those who use them properly. In such places treated nets could 

reasonably be targeted at vulnerable members of the community, especially young children 

and pregnant women.

Malaria control by impregnated bed nets has not been assessed previously in the rain forest 

belt of West Africa under conditions of perennial transmission maintained by low vector 

abundance. This study (Bamish et al., 1993b; Bockarie et al., 1994a; Marbiah et al., 1998;
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Petersen et al., 1993) investigated the effect of community-wide use of lambdacyhalothrin- 

treated bed nets on clinical malaria in children. The entomological aspect aimed primarily at 

evaluating the mass killing effect of nets on the mosquito vectors. In this trial clinical 

evaluation was of primary interest, and entomological evaluation was carried out to 

supplement the results of the clinical evaluation.
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2.2. Specific objectives

The specific objectives of the entomological evaluation were to determine the effect of 

community-wide use of lambdacyhalothrin treated bednets on female An. gambiae 

mosquitoes with respect to the following parameters:

1. Abundance in villages.

2. Sporozoite rates.

3. Parous rates.

4. Human blood index.

5. Entomological inoculation rate.
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2.3. Material and method

2.3.1. Study area.

The study area was in the North-eastern part of Bo district, near the town of Bo (located at 

about long. 12.5° W, lat. 8°N), and has been described by Bamish el al. (1993a). It 

comprised 16 villages with an initial population of 11,157, and with individual villages 

ranging from 115 to 1575 people. Villages nearer Bo are at an altitude of 100m above sea 

level (‘lowland’), and the surrounding vegetation is mainly secondary palm-bush, 

interspersed with numerous swamps which are mostly cultivated for rice. About 40km 

(Northeast) away from Bo the area rises to 320m above sea level (‘highland’) where the 

vegetation is a mixture of grassland, secondary forest and swamps. The study area receives 

rain from May to October (wet season), followed by 6 months without rain (dry season), 

with rainfall (as recorded at a meteorological office in the town of Bo) totalling 3200mm 

between June 1992 and May 1993.

Inhabitants of the study area were mainly Mende by tribe and subsistence rice farmers, but 

they also grow groundnuts, oil palm, banana, cassava, coffee and cocoa. In some villages, 

the people rear sheep, goats and pigs, which were allowed to rove around freely within the 

village.

Before this study, bed nets were very scarce in these villages with less than 1% bed net 

ownership. A Knowledge Attitude and Practice survey showed that the people were not 

using bed nets because of their high cost, which was beyond the means of most villagers 

(E.B. Magbity, and K. David, unpublished data).
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Malaria is hyper-endemic and transmission is perennial in the study area, with overall 

prevalence, in mass surveys of children regardless of fever symptoms, of about 60% 

(Bamish et al., 1993c). P. falciparum is the predominant species o f malaria in the area. 

Preliminary entomological studies of the biology, ecology and distribution of the anopheline 

vectors of malaria were reported by Bockarie et al. (1994c) for 4 of the 17 villages included 

here. The main malaria vector is An. gambiae s.s. forest form of Coluzzi et al. (1985), 

usually breeding in temporary pools, such as pot-holes on roads, open pits and gutters, but 

not in swamps (Bockarie et al., 1993). This vector is anthroprophilic, endophagic and bites 

late at night (Bockarie et al., 1994c).

2.3.2. Study design.

The study design has been described by Petersen et al. (1993). Two o f the villages (villages 

5 and 6) which were about 100m apart were merged and regarded as one village (village 6). 

Sixteen villages, 10 in the lowland and 6 in the highland, were paired on the basis of 

population size because preliminary studies have shown that they were similar in their 

incidence of clinical malaria in children. One of each pair of villages was randomly 

allocated to receive treated nets and the other did not receive nets. The stratification was 

done in this way because clinical outcomes were of primary importance in the trial and, for 

this, village size was considered to be more relevant than entomological outcomes (which 

were of secondary importance). In this way the residents of 4 lowland and 4 highland 

villages received impregnated bed nets, while 6 lowland and 2 highland villages remained
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without nets as controls. The inhabitants of the control villages without nets were promised 

treated nets after one year.

In addition, a double-blind randomised study was carried out using Maloprim prophylactics 

(pyrimethamine + dapsone) in each village. This involved children aged between 6 months 

and 5 years, half of whom received Maloprim while the others received placebo tablets, 

fortnightly. The clinical evaluation was carried out through weekly morbidity surveys and 

cross-sectional surveys once every 6 months in each village.

2.3.3. Bed net impregnation and distribution.

Bed nets were made of polyester, 156 mesh per square inch (SiamDutch, Bangkok Mosquito 

net Co.). Three different sizes of nets were used: small (area=l 1.64m2), medium (area = 

14.52m2) and large (area = 15.48m2). The nets were impregnated with lambdacyhalothrin at 

a target rate of lOmg a.i./m2 of net. All nets were of the same material, and it was estimated 

that this material absorbed, after dipping and wringing, 27.5mls of water per m2. The 

insecticide (2.5% EC lambdacyhalothrin) was therefore diluted by adding 13.8mls to each 

litre of water.

Prior to the distribution of the nets, the number and size of the sleeping places (including 

sleeping mats) in each house were counted and recorded. In June 1992 all sleeping places in 

the villages allocated to receive nets were supplied with appropriate nets.
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2.3.4. Mosquito sampling.

Mosquitoes were sampled monthly from June 1992 to July 1993 in each village by four 

collection methods (WHO 1975): human biting catches (HBC), light-trap collections (LTC), 

pyrethrum ‘knockdown’ spray catches (PSC) and window exit-trap (ET) collections.

Two pairs of catchers working alternate 3-hour shifts from 1900 to 0700 hrs carried HBC 

out monthly in each village on the veranda of a designated house. LTCs were carried out 

monthly in three designated bedrooms per village using CDC light-traps operated beside 

occupied untreated bed nets for the whole night (Lines et al., 1991; Magesa et at. 1991). In 

each study village, exit traps were fitted to three other designated bedrooms (with or without 

bed nets) wherein PSCs were made in the morning immediately after removing the exit- 

traps.

2.3.5. Mosquito processing.

All the anopheline mosquitoes caught were identified morphologically according to the keys 

provided by Gillies and Coetzee (1987), and their gonotrophic stage assessed, as unfed, fed, 

half-fed or gravid (WHO, 1975). Ovaries of unfed female anophelines were routinely 

dissected to determine parity (Detinova, 1962). The abdomens of blood-fed female 

mosquitoes were squashed onto filter papers and the host animal from which the bloodmeal 

originated identified by the ELISA method of Service et al. (1986). The head and thorax of 

all anophclines caught were tested for circumsporozoite antigen, by the ELISA method 

(Wirtzefa/., 1987).
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2.3.6 Data analysis.

For the calculation of season mosquitoes densities, monthly catches from each village were 

log-transformed as logm(x+1). The villages were allocated to 4 categories: lowland villages 

with nets, lowland villages without nets, highland villages with nets and, highland villages 

without nets. The seasonal mean and confidence intervals for each category of villages were 

calculated using STATA 5.0 statistical software (StateCorp, 1995). The effect of treated nets 

on mosquito densities were calculated using Mann-Whitney U statistics by the STATA 5.0 

statistical software. In order to adjust for the effects of altitude and season on mosquito 

abundance, 4 separate analysis were performed comparing nets versus no net villages: effect 

of net in the lowland villages in the wet season; effect of net in the lowland villages in the 

dry season; effect of net in the highland villages in the wet season; and effect of nets in the 

highland villages in the dry season. The total ranksum, expected ranksum and variances for 

all the analysis were then calculated and substituted in the formular for z 

z = (ranksum — expected ranksum)/ Variance.

Seasonal parous and malaria sporozoite rates were compared in the net versus no net and 

lowland versus highland villages by Mann-Whitney U statistics test.
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2.4. Results.

2.4.1. Mosquito density

The overall proportion of Anopheles species collected by different methods from June 1992 

to July 1993 (14 months) are shown in Table 2.1, showing that An. gambiae predominated 

(> 99%) in all samples.

Table 2.1. Proportion of different female Anopheles species caught by each sampling 
method. HBC=human bait catches; PSC=pyrethrum spray catches; 
LTC=light trap catches; ET=exit trap catches.

Sampling
Method

An. gambiae An. fu nest us Other Anopheles 
species

Total Anopheles 
caught

HBC 99.7% 0.3% 0 1572
PSC 99% 0.7% 0.3% 2443
LTC 99.5% 0.5% 0 427
ET 99.1% 0.47% 0.47% 419

Figure 2.1 shows the monthly fluctuation of female An. gambiae mosquitoes after bed nets 

were installed in June 1992. The figure shows a similar pattern of fluctuation of An. 

gambiae abundance in villages with and without nets in the lowland and highland; more 

mosquitoes in the wet than the dry season (z=7.514; p < 0.001). HBC man-biting rates was 

consistently less in highland than in lowland villages (z= 4.036; p < 0.001) (Figure 2.2 and 

Table 2.2). Because very few mosquitoes were caught in the dry season, most of the analysis 

will be of wet season mosquito samples.

Mann-Whitney analysis shows no significant difference in man-biting rates of An. gambiae 

between villages with and without nets (z=0.992, p=0.75). Significantly more mosquitoes 

were also collected per light-trap/night in lowland compared with highland villages
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(z=4.357; p< 0.001), but like HBC there was no significant difference in the number of 

female An. gaw6/ae/trap/night between villages with and without nets (p > 0.10).

Figure 2.1. Monthly geometric mean man-biting rates oi An. gambiae in different
classes of villages, during the first year of intervention, following installation of 
impregnated bed nets during (June) 1992.

— D—  low/net 
— 'a  ~  low/no net 
— ■*—  high/net 
~  -* — high/no net
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Figure 2.2. Geometric mean man-biting rates of An. gambiae in each village (with (+) 
or without (-) treated nets) during the wet season, June - October 1992 and 
May -July 1993. See Table 2.5 for names of numbered villages.

lowland Highland

Figure 2.3. Geometric mean light-trap density of An. gambiae in each village (with (+) 
or without (-) treated nets) during the wet season, June - October 1992 and 
May - July 1993. See Table 5 for names of numbered villages.
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2.4.2. E ndophily, cxophily and personal protection.

Indoor-resting densities of female An. gambiae during the rainy season (Figure 2.4), were 

significantly greater in villages without nets than in those with treated nets (z=5.28, p < 

0.001). More An. gambiae were also caught exiting from rooms without treated nets than 

from rooms with nets (Figure 2.5), but this difference of exit-trap collection was of 

borderline significance (P < 0.061). Comparison of the proportion of An. gambiae females 

exiting from rooms (Figure 2.6), calculated as the number in exit-trap/(number in exit-trap + 

number in spray catch), indicated a significantly greater degree of exophily from rooms with 

treated nets compared to rooms without nets (z=2.143, p= 0.013).

Figure 2.4. Geometric mean indoor-resting density of An. gambiae in each village (with 
(+) or without (-) treated nets) during the wet season, June - October 1992 and 
May - July 1993. See Table 2.5 for names of numbered villages.
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Figure 2.5. Geometric mean exit-trap density of An. gambiae in each village (with (+) 
or without (-) treated nets) during the wet season, June - October 1992 and May 
- July 1993. See Table 2.5 for names of numbered villages.

Figure 2.6. Percentage of An. gambiae females caught exiting from rooms in each 
(village with (+) or without (-) treated nets) during the wet season, June - 
October 1992 and May - July 1993. See Table 2.5 for names of numbered 
villages.
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Among 654 fed An. gambiae tested, representing mosquitoes from all sampling methods in 

the villages with and without nets. 98.9% of 253 and 99.2% of 401 were positive for the 

presence of human blood in the villages with and without nets, respectively.

2.4.3. Survival and sporozoite rates.

The overall parous rate of the pooled samples of An. gambiae caught in villages with treated 

nets was 48.8% (n=373) compared with 61.5% (n = 543) in villages without nets. 

Comparisons of wet season parous rates among lowland villages confirmed the highly 

significant difference between those with and without nets (z=2.345, p=0.019), but no such 

contrast was found between An. gambiae from highland villages with and without nets 

(z=l .461, p=0.144; Table 2.3).

Table 2.2 An. gambiae seasonal and annual bites per man per night (with 95%
confidence interval. Cl) in each type of village, i.e., low or high altitude, with 
or without bed nets. The shaded portions represent villages with nets; 
^indicates excluding village 8.

V illa g e  T y p e M a n -b it in e  ra te s  (9 5 %  (  ! )
A lt itu d e N et W et D ry A n n u a l
L o w Y es 5 .5 0 0 .0 7 2 .1 6

(1 .2 0 -1 8 .0 5 ) (0 .0 0 -0 .4 2 ) (0 .4 8 -5 .6 2 )
* L o w * Y e s * 3 .6 8 * 0 .24 * 1 .5 2

(0 .5 7 -  1 2 .7 4 ) (0 .0 0 -1 .2 2 ) (0 .3 0 -3 .8 8 )
L o w N o 5.31 0 .5 7 2 .4 6

(2 .05 -1  1 .76 ) (0 .0 8 -1 .2 9 ) (1 .0 0 -5 .0 5 )
H ig h Y es 0 .2 6 0 .1 0 0 .4 3

(0 .0 0 -2 .6 6 ) (0 .0 0 -0 .2 7 ) (0 .0 0 -1 .0 7 )
H ig h N o 0 .7 7 0 .07 0 .4 6

(0 .0 9 -1 .8 7 ) (0 .0 0 -0 .3 0 ) (0 .0 7 -1 .0 0 )

it,
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Table 2.3 An. gantbiae seasonal and annual parous rates (with 95% confidence 
interval, Cl) in each type of village, i.e., low or high altitude, with or without 
bed nets. The shaded portions represent villages with nets; ^indicates 
excluding village 8. Similar boxes signify significant differences between 
treated and corresponding control villages.

V illa g e  T y p e  Parity  ra tes  (9 5 %  C l )
A lt itu d e N et W e t D r y A n n u a l
L o w Y es 45 .1%  o f  

(3 9 .0 -5 1 .1 % )
297 3 3 .3 %  o f  

(0 .8 -9 0 .1 % ) 3
45.4%  o f  
(3 9 .3 -5 1 .7 % )

300

* L o w *Y es *53.2%  o f  
(4 5 .1 -6 0 .2 % )

171 * 3 3 .3 %  o f  
(0 .8 -9 0 .1 % )

3 *52.3%  o f  
(4 4 .6 -6 0 .3 % )

174

L o w N o 60 .6%  o f  
(5 6 .1 -6 5 .1 % )

475 7 5 .0 %  o f  
(5 7 .4 -8 8 .5 % )

32 6 1 .5  o f  
(5 7 .2 -6 5 .8 % )

507

H ig h Y es 64 .4%  o f  
(5 2 .3 -7 5 .2 % )

73 0 64.4%  o f  
(5 2 .3 -7 5 .2 % )

73

H ig h N o 61 .1%  o f  
(4 3 .5 -7 6 .9 % )

36 0 61 .1%  o f  
(4 3 .5 -7 7 .0 % )

36

Figure 2.7 Sporozoite rates of An. gambiae mosquitoes caught in each village with 
(+) or without (-) net during the wet season, June - October 1992 and May - 

July 1993. See Table 2.5 for names of numbered villages.
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Table 2.4 Anopheles gambiae seasonal and annual sporozoite rates (with 95%
confidence interval) and EIR in each type of village, i.e., low or high altitude, 

with or without bed nets. EIR for each village type calculated from the average 
EIR of individual villages within a village type (Table 2.5). Similar boxes 
represent significant differences between villages with nets and the 
corresponding villages without nets.

Village Type Sporozoite rates (95% Cl) EIR
Altitude Net Wet Dry Annual Wet Dry Annual
Low Y e s 5.11% o f  7 2 4  

( 3 .6 2 - 6 .9 7 % )  *
10.81% o f  3 7
( 3 .0 3 - 2 5 .4 2 % )

5 . 3 9 %  o f  7 6 1
( 3 .8 9 - 7 .2 3 % )

0.215 0.022 0.127

*Low ♦ Y e s *1.83% o f  4 9 1
( 0 .8 4 - 3 .4 5 % )

*0/23 *1.75%of 514
( 0 .8 0 - 3 .3 0 % )

* 0 .0 6 3 *0 * 0 . 0 3 9

Low N o 5.24% o f  3 0 7 4  
( 4 .7 8 - 6 .0 9 % )

9 . 7 0 %  o f  1 3 4
( 5 .2 7 - 1 6 .0 2 % )

5.42% o f  3 2 0 8  
( 4 .6 7 - 6 .2 6 % )

0 .2 9 0 0 .0 5 3 0.173

High Y e s 0 .5 5 %  o f  183
( 0 .0 1 - 3 .0 1 % )

0/13 0.5% o f  1 9 6  
( 0 .0 1 - 3 .2 4 % )

0.003 0 0.003

High N o 6 .2 5 %  o f  112
( 2 .5 5 - 1 2 .4 5 % )

12.50% o f  8
( 0 .3 2 - 5 2 .6 5 % )

6.92% o f  1 2 0  
( 2 .9 2 - 1 2 .7 1 % )

0 .0 3 9 0.001 0.031

(* excluding Buma, Village 8, see table 2.5)

During the wet season, the overall sporozoite rate in An. gambiae mosquitoes in villages 

with nets was 4.2%, not significantly different from the rate of 5.3% in villages without 

nets, in the dry season, the overall malaria sporozoite rate of 9.4% for An. gambiae was less 

than the rate of 5.03% in the wet season. Full details of mosquito density (man-biting rates), 

parous rate, sporozoite and entomological inoculation rate (EIR) for each village, during the 

wet season, are given in Table 2.5.

The estimated wet season EIR values in the highland villages without nets averaged 0.04, 

7.2-fold less than the figure of 0.290 observed in the lowland villages, whereas in villages 

with nets the wet season EIR was only 0.003 in highland villages, 72 fold less than the 

estimate of 0.215 in lowland villages. The last of these values was strongly affected by the 

village Buma (no. 8), which had an exceptionally high sporozoite rate of 12%. Excluding
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this village, the mean estimated E1R for lowland villages with nets was reduced to 0.063, 

about 4.5 fold less than that for lowland villages without nets, but 21 fold more than the 

mean E1R o f  0.003 for highland villages with nets (Table 2.4).
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Table 2.5 An. gambiae man-biting, parous and sporozoite rates (with 95% confidence 
intervals) and EIR of malaria for unprotected people living in each village, 
during the wet season. Shaded portions represent the presence of treated bed
nets.

Village name 
(Code)

Altitude Net Man-biting 
rate (95% Cl)

Parous rate Sporozoite
rate

*EIR

Bumbeh (1) low Yes 3.97
(1.98-7.31)

57.1% of 66 
(44.8-69.7%)

1.6% of 194 
(0.3-4.5%)

0.06

Blama (5,6) low Yes 2.99
(1.97-4.36)

53.7% of 56 
(44.5-68.7)

3.4% of 118
(1.1-9.9%)

0.10

Buma (8) low Yes 5.47
(3.19-9.00)

34.8% of 126 
(23.9-41.1%)

12% of 233 
(8.1-16.9%)

0.67

Sami (9) low Yes 2.42
(1.34-3.99)

47.2% of 49 
(34.4-63.7%)

1.1% of 179 
(0.1-4.1%)

0.03

Nengbema (2) low No 3.18
(1.90-5.01)

68.1% of 69
(55.8-78.8%)

4.0% of 650 
(2.6-5.8%)

0.13

Nyandeyama (3) low No 3.87
(2.75 - 5.33)

69.6% of 60 
(62.1-85.3%)

4.1% of 611 
(2.7-6.0%)

0.16

Tondoya(4) low No 6.44
(4.26 - 9.54)

61.1% of 103
(50.1-69.7%)

6.0% of 333
(3.7-9.1%)

0.39

Ngalu (7) low No 3.92
(2.50 - 5.90)

57.8% of 45
(42.1-72.3%)

5.6% of 214 
(2.9-9.6%)

0.22

Konjodorma (10) low No 4.82
(3.14-7.18)

56.1% of 106
(43.6-64.8%)

3.8% of 684
(2.3-5.3%)

0.18

Kpeteina (11) low No 7.45
(5.30- 10.35)

58.4% of 106
(44.7-64.7%)

8.9% of 582 
(6.5-11.3%)

0.66

Palima (12) high Yes 1.84
(1.06-2.90)

“ 0/65 0

Kpakuma (13) high Yes 0.75
(0.42- 1.16)

_ 1.7% of 58 
(0.4-9.2%)

0.01

Njala Komboya 
(15)

high Yes 0.63
(0.31 - 1.03)

* 0/28 0

Sahn (16) high Yes 0.74
(0.43- 1.11)

“ 0/32 0

Mendewa (14) high No 0.41
(0.20 - 0.67)

4.8% of 42 
(0.5-16.2%)

0.02

Gumahun (17) high No 0.83
(0.41 - 1.37)

" 7.1% of 70 
(2.4-15.9)

0.06

* E IR , e n to m o lo g ic a l in o c u la t io n  ra te  o f  m a la r ia  in  e a c h  v illag e  c a lc u la te d  f r o m  s p o ro z o ite  ra te  m u ltip lie d  by  
d a ily  m e an  b it in g  ra te  o f  An. gamhiae.
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2.5. Discussion.

Malaria transmission in the study area was perennial, maintained by a relatively low 

abundance of vectors, consisting almost exclusively of An. garnbiae s.s. forest form 

(Bockarie et al. 1993), which accounted for more than 99% of all anopheline bites on 

humans.

Our human-biting catches on verandas and light-trap collections indoors were designed to 

assess any possible mass killing effect of treated bed nets on the mosquito biting rates 

(Curtis et al. 1990; Jana-Kara, 1995; Lines, 1996a & Magesa et al., 1991), but showed no 

evidence for any impact on man-biting rates. One might have expected that, since the local 

An. gambiae was strongly endophagic and fed late at night, treated nets would have had a 

strong impact on malaria transmission as measured by EIR. For example, in Tanzania where 

An. gambiae is also strongly endophagic and anthropophilic, Magesa et al. (1991) reported 

reductions of 90% in the EIR and 70% of the man-biting rate, while Curtis et al., (1998) also 

in Tanzania, recently reported 89.9% and 59.1% reductions in EIR and man-biting rates, 

respectively, and a 34% reduction in man-biting rate was reported in Burkina Faso (Robert 

and Camevale, 1991).

Parous rates of An. gambiae in villages with impregnated nets were significantly less than 

in villages without nets, suggesting that treated nets reduced vector survival and hence 

vectorial capacity. This result agrees with reports from Burkina Faso (Camevale et al. 1988; 

Robert et al. 1991), Tanzania (Magesa et al. 1991), Cameroon (Le Goff et al. 1992) and 

Papua New Guinea (Charlwood and Graves 1987). In contrast, little or no entomological 

impact has been detected in The Gambia (Quinones et al., 1998), Kenya (Mbogo et al.
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1996) or Thailand (Somboon et al., 1995), despite the efficacy of pyrethroid-impregnated 

bed nets in reducing malaria incidence in all these situations.

With such an effect on mosquito survival rate in the lowland villages, a reduction in malaria 

sporozoite rates would have been expected in villages with treated nets, but the results are 

rather ambiguous as to whether such a reduction actually occurred. If the village of Buma is 

excluded from consideration, a clear effect is apparent: of the 15 remaining villages, the 7 

lowest sporozoite rates were all in treated villages and the 8 highest in untreated villages. On 

the other hand Buma, a treated village, had a sporozoite rate of 12%, by far the highest 

sporozoite rate of all. No firm conclusion is therefore possible but, on balance the evidence 

suggests that sporozoite rates were reduced in most villages with treated nets.

It is worth noting that about half o f the children in each village (with or without nets) took 

Maloprim as a prophylactic, fortnightly. This would be expected to reduce parasite rates, 

and thus indirectly reduce gametocyte rates, although Maloprim is not itself gametocidal. 

Since children often make up a reasonable proportion of the malaria infectious reservoir in a 

community (Graves et al., 1988), it is expected that the sporozoite rates observed in all 

villages were probably less than they would have been if the children were not taking 

Maloprim.

It is rather surprising that a reduction in parous rates was not accompanied by a reduction in 

density. Other trials in Africa have either shown evidence for a mass effect by 

demonstrating a reduction in mosquito abundance and parous and sporozoite rates (e.g. 

Tanzania: Magesa et al., 1991 and Curtis et al., 1998), or have shown evidence for no mass 

killing effect at all (e.g, The Gambia; Lindsay et al., 1993b; Quinones et al., 1998). This
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result could therefore be interpreted in two different ways. One is that there was indeed a 

mass killing effect but the trial failed to detect it. The other interpretation is that there was 

actually no mass killing effect, and the evidence for it was spurious.

If there was a mass killing effect, the failure of the trial to detect it could have been due to 

several reasons. Firstly, it could have been because of the inadequacy and unreliability of 

the sampling design used for estimating mosquito abundance -  that is, the fact that HBC was 

carried out only once in each village per month. The results in chapters 5 and 6 show that 

because of the spatial and temporal aggregation of mosquitoes, sampling should be repeated 

in several houses on each sampling night, and on several nights a month in each village.

Secondly, a real impact on mosquito abundance may have been disguised by the migration 

of mosquitoes from villages with nets to those without nets. Migration has previously been 

suggested as a possible explanation for the lack of evidence for a mass killing effect in bed 

net trials in The Gambia (Lindsay et al., 1993b; Quinones 1996; Thomson et al., 1995;).

Conversely, if the treated nets actually did not produce a mass effect on vector abundance, 

this could be attributed to two reasons. Firstly, it could be due to the relatively low dosage of 

lambdacyhalothrin (lOmg a.i./m2) on the nets. Trials in The Gambia have shown that the 

insecticide dosages on routinely treated bed nets vary greatly (Alonso et al., 1993a; 

D’Alessandro et al., 1995). D’Alessandro et al., (1995) found that only 48% of treated nets 

had the required dose of insecticide. In the present trial, the actual amount of the insecticide 

on the nets was not determined, so it is possible that most o f  the nets had sub-optimal doses 

of insecticide. In Thailand, Somboon et al., (1995) also used lambdacyhalothrin 10mg/m2 

impregnated bed nets giving substantial reduction in malaria incidence (Aramrattana, 1993)
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but found no effect on vector populations (mainly An. minimus Theobald species A). 

However, recently Curtis et al., (1998) in Tanzania reported a mass effect in a trial where 

some of the nets were treated with 10mg/m2 and 20mg/m2 of lambdacyhalothrin. Generally, 

however, evidence for mass killing effect with a-cyanopyrethroids has often been 

demonstrated in trials where nets were treated with higher doses of insecticide. For example, 

Karch et al., (1993) and Robert et al., (1991) in Africa and Cheng et al. (1995) in China 

reported mass effects on biting rates when nets were treated with 25mg/m2 of deltamethrin - 

another a-cyanopyrethroid. These results seem to suggest that, even though 

lambdacyhalothrin is lethal to mosquitoes, the low dosage of 10mg/m2 may not reduce 

vectorial capacity because most of the nets would have sub-optimal doses of insecticide 

which are not capable of killing mosquitoes.

Secondly, it is possible that the apparent reductions observed in parous rates and sporozoite 

rates were a result of the weakness of the study design. In this trial, as in many other African 

trials (e.g., Lindsay et al., 1993; Mbogo et al., 1996), epidemiological outcomes were of 

primary interest, while entomological outcomes were of secondary importance. Hence 

entomological outcomes were not considered in the village randomisation process. As a 

result, it is not clear whether the villages with nets were similar, in entomological terms and 

before intervention, to those without nets, so any difference observed could be due to the 

natural differences between the villages, and not to the treated nets.

Significantly fewer mosquitoes rested indoors during the daytime in houses with treated nets 

than in those without nets, and the nocturnal exophily from rooms with treated nets (ET 

collections) was also significantly greater than from those without nets, indicating that the 

nets had an excito-repcllent effects on mosquitoes. This finding agrees with results of
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experimental hut studies (e.g. Darriet el al., 1984; Lindsay et al., 1991a) in which fewer 

mosquitoes were found resting in huts with pyrethroid-treated nets than in those without 

nets. It also agrees with results from field trials, for example in Burkina Faso (Robert & 

Camevale 1991), where permethrin impregnated nets caused much larger percentages of 

both fed and unfed mosquitoes to exit from huts.

Despite the lack of evidence for ‘mass killing effect’, our Sierra Leone intervention did 

achieve a clear and substantial epidemiological impact. The clinical evaluation showed that 

children exclusively using either lambdacyhalothrin impregnated mosquito nets or 

Maloprim prophylaxis in this trial suffered 49% and 42% fewer episodes of P. falciparum 

malaria compared with their peers in the control group, while those using the combination of 

Maloprim prophylaxic and lambdacyhalothrin treated bed nets enjoyed a 72% protective 

efficacy against P. falciparum clinical malaria (Marbiah, 1998). Moreover, children using 

the combined strategy (treated nets and Maloprim) had on average 0.37 episodes of clinical 

malaria per child/year, compared with 0.65, 0.78 and 1.3 episodes per child/year in the 

treated nets, Maloprim and control groups, respectively. The results also showed that only 

2.3%, 5.7% and 8% of children using, the combined strategies (treated net and Maloprim), 

treated net and Malaprim respectively had more than 2 episodes o f clinical malaria a year, 

compared to 18.4% in the control. Other malariometric indices were also significantly 

affected. For example, a 6% increase in average haematocrit level was noticed in children 

using the nets solely, as well as a significantly decrease in their mean spleen rate 

(Marbiah et al., 1998).
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CHAPTER 3.

EFFECT OF LONG-TERM USE OF LAMBDACYHALOTHRIN IMPREGNATED 

BED NETS ON ANOPHELES GAMB1AE IN SOUTHERN SIERRA LEONE.

3.1. Introduction

The previous chapter described, analysed and discussed the entomological results of the first 

year of a lambdacyhalothrin bed net trial in southern Sierra Leone. This chapter describes, 

analyses and discusses the entomological results of the second and third years of the 

intervention. This introductory section discusses the possible effects of long-term use of 

treated bed nets on local anopheline populations.

Most field trials of pyrethroid treated bed nets have reported only the results of the first year 

of the intervention, and so we do not yet know much about the effects of prolonged use of 

treated bed nets on local Anopheles populations (e.g. Le-Goff et al., 1992; Lindsay et al., 

1993b). In the short-term, we might expect a reduction of parous and sporozoite rates, and 

mosquito density as observed in Tanzania by Magesa and others (1991). We might also 

expect phenotypic behavioural changes, such as diversion to feeding on other hosts, and 

change in biting cycle as observed by Charlwood et al., (1987) in Papua New Guinea, and 

Njau et al., (1993) in Tanzania. A priori, possible long-term changes are: gradual reduction 

of transmission intensity, the evolution of pyrethroid resistance, evolutionary behavioural 

changes (e.g., diversion to feeding on alternative hosts or change in biting cycle), and/or the 

loss of natural immunity to malaria by local human populations (Trape and Rogier, 1996).
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A reduction in transmission intensity by prolonged use of treated bed nets could occur 

through several possible mechanisms. One such mechanism is that the insecticide may 

accumulate on the net as a result of repeated treatments, which could increase the mosquito 

killing potential of the net. Another possible mechanism is that, since treated nets can reduce 

mosquito abundance, parous and sporozoite rates, (e.g., Magesa et al., 1991) their continual 

use might gradually reduce transmission intensity, that could even culminate to eradication. 

Such an effect has been previously observed in Zanzibar (Schwartz et al., 1997) and the 

Plateaux of Madagascar (Lumaret 1962) where malaria was virtually eliminated as a result 

of prolonged DDT house spraying. However, we should realise that eradication can occur 

only in places where the basic case reproduction rate, Ro, is relatively low (Macdonald 

1957) or where vector control is extremely intense. In a setting with low Ro treated nets 

might easily reduce the Ro value to below one, which can lead to a gradual reduction in 

malaria transmission, even to eradication.

Prolonged exposure of Anopheles mosquitoes to DDT has been shown to select for DDT 

resistant mosquitoes in local mosquito populations (Rathor et al., 1980). Pyrethroids like 

DDT are neurotoxins and they produce similar lesions in the motor nerve terminals of a 

variety of insect species (Miller 1988). Physiological resistance to pyrethroid insecticides 

has already been observed in a population of An. gambiae mosquitoes in the Ivory Coast 

(Darriet et al., 1997), and also in Kenya where a population of An. gambiae mosquitoes 

showed increased tolerance to permethrin as a result of exposure to permethrin treated bed 

nets (Vulule et al., 1994 & 1996). Hence, it is very likely that prolonged use of pyrethroid 

treated bed nets can eventually select for pyrethroid resistance in local mosquito
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populations.

A permanent evolutionary behavioural change in the biting cycle of An. punctulatus 

complex was observed in the Solomon Islands as a result o f  prolonged house spraying with 

DDT (Sloof, 1964; Taylor 1975). Ismial et al., (1978) in Thailand also observed a shift in 

the biting patterns of both An. minimus and An. balabacensis after treatment of houses with 

DDT. Pyrethroid treated bed nets and house spraying with DDT have almost identical 

effects on mosquitoes; irritate or kill those that contact the insecticide. We might therefore 

expect to observe behavioural changes similar to those arising from long-term DDT house 

spraying to also occur as a result of prolonged use of pyrethroid treated nets.

Moreover, it has been shown in various trials that treated bed nets reduce human exposure to 

malaria, which in theory could decrease immunity (Baird 1995). In the short-term it has 

been shown that treated nets reduce the incidence of clinical malaria in African children, but 

this could be the result of the combined effect of reduced exposure to malaria, and the high 

level of anti-malaria immunity acquired by the population before the intervention (Modiano 

et al., 1998; Molineax 1997). Modiano et al., (1998) have further shown that the impact of 

bed nets on infection rates was positively correlated with the level of anti-malaria immunity. 

If insecticide treated bed nets reduce children’s exposure to malaria and hence delay their 

acquisition of natural anti-malaria immunity, we do not yet know how this might affect 

malaria transmission and the incidence of clinical malaria. Snow et at., (1997) and Trape & 

Rogier (1996) have provided some evidence showing that it can lead to a shift in the burden 

of the disease from early childhood to the entire childhood, hence increasing the risk period
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of severe malaria in children (See Section 1.5.2.1). In addition, Snow and others (1997) also 

showed that prolong use of treated nets might increase the incidence of severe malaria in 

children.

The primary objective of the present study was to investigate the impact of prolonged use of 

lambdacyhalothrin treated bed nets on the incidence of clinical malaria in children in 

Southern Sierra Leone, an area hyper-endemic for malaria. Entomological monitoring was 

carried out within this framework, to determine the impact of prolonged use of treated bed 

nets on mosquito behaviour and malaria transmission by An. gambiae s.l..
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3.2. Materials and methods

3.2.1. Study area and experimental design

A brief description of the study area, village randomisation, bed net impregnation and 

distribution were given in the previous chapter, and a detailed description can be found in 

Petersen et al., (1993). At the beginning of the trial in June 1992, eight of 16 villages were 

allocated randomly to receive mosquito nets by lottery among the village chiefs, and the 

remaining eight were promised treated nets after one year. Four villages which received nets 

and two which did not were in the high altitude area (> 400m above sea level), while the rest 

were in the low altitude area (< 100m above sea level). In August 1993, treated nets were 

supplied to the eight villages which did not receive nets in the first year, and the nets 

supplied in the first year were washed and re-impregnated with lambdaeyhalothrin (lOmg 

a.i./m2). All new sleeping places in the villages were also supplied with treated nets.

In the second year of the study, additional funding was received to continue the 

investigation. Since there were no longer control villages without nets, 12 new villages 

within the same area were recruited in October 1993, of which six were allocated randomly 

to receive treated bed nets while the other six were not given nets (Table 3.1). The new 

villages were in the same general area as the original study villages, so they were not 

expected to be substantially different in epidemiological terms than the originally study 

villages in their malaria epidemiology. The first year (Year 1) of the trial was from June 

1992 to July 1993, and the second year (Year 2) was from August 1993 to November 1994. 

The wet season is from May - October (6 months), while the dry season is from November 

to April (6 months).
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Figure 1. A sketch of the relative location of the villages in the study area.# represents villages recruited in Year 1 and received nets 
in Year /; O represents control villages in Year 1 that received nets in Year 2; ♦  represents villages recruited in Year 2 
and received nets in Year 2, O represents control villages recruited in Year 2. The sketch is not drawn to scale.

Highland villages

Names of lettered villages are: 1= Bumbeh; 2 Nengbema; 3=Nyandeyama; 4=Tondeya; 5=Blama 1; 6= Blama 2; 7=Ngalu: 8 =Buma:

9=Sami; 10=Konjodorma; 11= Kepetema Bagbeh; 12 Palima; 13 Kpakuma; 14=Memdewa; 15=Njala Komboya; 16=Sahn:

17=Gumahun; 18=Ngelehun Badja; 19 Baama; 20=Kpetema Badja; 21 Gbaama Yandowe; 22= Jaiama; 23 = Dambala; 24= Dandabu.

25 = Sembehun; 26=Fulawahun; 27=Baoma; 28=Manjama; 29=Pindegumahun; 30=Bayama.
ot



Entomological evaluation o f treated bed nets Chapter 3

3.2.2. Mosquito sampling.

Mosquitoes were sampled once a month using 4 sampling methods: human bait batches 

(HBC), light trap catches (LTC), pyrethrum spray catches (PSC) and exit trap catches (ET). 

These sampling methods have already been described in Chapter 2. Briefly, HBCs were 

carried out outdoor in verandas, LTCs were carried out indoors with the light trap hung 

besides an occupied untreated bed net and, ETs and PSCs were carried out in the same 

bedrooms.

Mosquito sampling in all the 9 highland villages was discontinued in November 1993 

because of political unrest in the area. Data for the second year of the intervention were 

therefore collected only in the 19 lowland villages, 4 of which were recruited in Year 1 and 

received nets in the same year (Group 1), 6 of which were recruited in Year 1 but received 

nets in Year 2 (Group 2a), 4 of which were recruited in Year 2 and received nets the same 

year (Group 2b) and 4 of which were recruited in Year 2 but remained as controls without 

nets (Group 3) (See Table 3.1)

3.2.3. Mosquito processing

All female Anopheles mosquitoes caught were morphologically identified using the keys 

developed by Gillies and Coctzee (1987), and their abdominal stages scored as unfed, fed, 

semi-gravid or gravid. Some unfed female An. gamhiae mosquitoes from HBC collections 

were dissected for parity (Dctinova 1962). Heads and thoraces of all female Anopheles 

mosquitoes were dried, preserved in a dcssicator and later tested for the presence of 

circumsporozoite antigen by the ELISA method (Wirtz el al., 1987).
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3.2.4. Susceptibility testing.

Susceptibility of female An. gambiae mosquitoes from villages in which treated nets had 

been used for more than 2 years (Group 1 villages) was tested. FI female mosquitoes from 

these villages were exposed to 0.025% lambdacyhalothrin treated paper for one hour in 

batches of 10-25, using WHO susceptibility test kits. Exposed mosquitoes were transferred 

to recovery tubes lined with clean filter paper and provided with 10% glucose soaked cotton. 

Mortalities were scored after a 24-hour recovery period.
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3.2.5. Statistical analysis

Monthly catches from each village were log-transformed as logm(x+1), and seasonal 

geometric means and 95% confidence intervals calculated using the STATA statistical 

software (StataCorp 1995). Firstly, biting, parous and sporozoite rates of mosquitoes in 

Group 2ct villages were compared with Group 2b villages, to determine if these two groups 

of villages could be combined into a single group, namely, as villages which received nets in 

1993 (Group 2). Significance testing of the number of mosquitoes in Group 1 and 2 relative 

to Group 3 villages was performed using Mann-Whitney statistics (adjusting for season) as 

described in chapter 2. Seasonal parous and malaria sporozoite rates in villages with nets 

were compared with villages without nets by Mann-Whitney test using the STATA 

software. Wilcoxon matched paired test was used to compare seasonal parous and sporozoite 

rates between Year 1 and Year 2 in Group J and Group 2 villages. The mean biting time of 

the mosquitoes was calculated for each village group by assuming that each mosquito was 

collected in the middle of the period, i.c. all mosquitoes collected between 2100 and 2200 

hours were assumed to be collected at 2130 hours (Quinones, 1996). The time was then 

weighted by the numbers biting in each hourly period.
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3.3. Results

3.3.1. Mosquito density

3.3.1.1. Mosquito composition

As before (Chapter 2), virtually all the Anopheles mosquitoes caught (98.4% of 6976) were 

An. gambiae s.l., and the great majority of these (90.6%) were caught in the wet season.

Table 3.2 shows that the biting rates estimated from LTC and HBC and, parous and 

sporozoite rates during Year 2 in Group 2a villages (villages recruited in Year 1 but 

receiving nets in Year 2) were not significantly different from those in Group 2b villages 

(villages recruited in Year 2 and receiving nets in Year 2). The two groups of villages were 

therefore treated as one group, Group 2 (villages which received nets in Year 2), in all 

subsequent analysis.

Table 3. 2. Comparison of geometric mean biting rates, estimated from HBC 
(bites/man/night/season) and LTC (catch/trap/night/season), parous and 
sporozoites rates in villages which were recruited in Year 1 but received nets in 
Year 2 (Group 2d) with those recruited in Year 2 and received nets in Year 2 
(Group 2b). P-value for the difference between Group 2a and 2b; ns — not 
significant; S7?=Sporozoite rates; P/?=Parous rates.

Wet season i95% confidence interval) Drv season i95%  confidence interval)

Group 2a Groun 2b P-value Groun 2a GrouD 2b D-value

HBC 3.86 9.09 0.324 0.65 0.75 0.546 ns
( 1 .0 5 - 1 0 .4 8 ) ( 0 .2 9 - 7 8 .4 3 ) n s ( 0 .0 0 - 1 .7 9 ) ( 0 .3 2 - 1 .2 1 )

LTC 1.13 0.97 0.745 0.18 0.26 0.354 ns
( 0 .6 7 - 1 .7 3 ) ( 0 .1 9 - 2 .2 8 ) n s ( 0 .0 6 - 0 .3 2 ) ( 0 .0 3 - 0 .5 5 )

PR 52.60% 45.73% 0.117 59.10% 63.64% 0.851 ns
( 4 7 .1 0 - 5 9 .5 1 % ) ( 3 8 .7 - 5 2 .9 % ) n s ( 4 3 .3 - 7 3 .7 % ) ( 3 0 .8 - 8 9 .1 % )

SR 2.73% 2.47% 0.213 4.93% 4.54% 0.115 n s
|  ( 1 .7 2 - 4 .2 4 % ) ( 1 .0 - 5 .0 % ) n s ( 1 .4 - 1 2 .2 % ) ( 0 .1 - 2 2 .8 % )
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3.3.1.2. Effect on mosquito abundance.

Figure 3.2 shows the pattern of monthly variation in HBC mosquito biting rates in Years 1 

and 2. in villages of Groups 1, 2, and 3. The figure shows that the patterns o f monthly 

variation in biting rates of Art. gambiae in Groups I, 2 and 3 villages were generally similar, 

showing higher mosquito abundance in wet season than dry season. In both Years I and 2 

the biting rates in Group I (netted) villages during the dry season was lower than in villages 

without nets, but Group 1 villages showed the highest biting peak in the wet season.

Figure 3.2. Monthly variation in biting rates of An. gambiae mosquitoes on
unprotected people in villages with nets (Group 1 and Group 2) and without 
nets (Group 3), in Year 1 and Year 2. Group 2 villages were without nets in Year 

1 but had nets in Year 2.

Months
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Table 3.3 shows the mean daily biting rates (bites/man/night) in the wet and dry seasons, 

obtained by HBC and LTC in each village group. The table shows that more mosquitoes 

were caught in all the three groups of villages in Year 2 than in Year 1. However, the table 

further shows that during Year 2, the mean number o f An. gambiae caught by both HBC and 

LTC in Group 1 villages were lower than those in Groups 2 which in turn were lower than 

in Group 3 villages. Mann-Whitney analysis on the HBC confirmed that the number of 

mosquitoes caught during Year 2  in Group 1 villages was significantly lower than in Group 

3 (z=4.21, d.f.= 196, p<0.01), but not in Group 2 villages (z=0.94, d.f.= 123, p=0.235). 

Moreover, during Year 2 the number of mosquitoes caught in Group 2 villages was 

significantly lower than in Group 3 villages (z=3.17, d.f.= 143 p<0.01).

The An. gambiae indoor resting and exit trap densities obtained from PSC and ET 

collections respectively, were significantly higher in villages without nets than in those with 

nets (Table 3.4). In addition, both indoor resting and exit trap mosquito densities in Group 1 

villages were significantly lower in Year 2 than in Year 1.
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Table 3.3. The geometric mean number of Anopheles gambiae (95% Confidence 
intervals) caught by human biting catches (bites/man/night/season) and light 
trap catches (catch/trap/night/season) during the wet and dry seasons of Year 1 
and Year 2. Shaded background indicates the presence of treated bed nets.

mean bites/man/night mosq./light-trap/night

Net status Season Year 1 Year 2 Year 1 Year 2
group 1 Wet 3.92

(1.96-7.16)
5.83
(2.37-11.58)

1.49
(0.66-2.75)

0.85
(0.36-1.15)

group 2 Wet 4.42
(2.84-6.65)

7.57
(4.96-11.33)

1.24
(0.66-2.09)

1.09
(0.70-1.57)

group 3 Wet - 17.62
(8.46-36.72)

2.84
(0.93-6.64)

group 1 Dry 0.19
(0.02-0.40)

0.69
(0.17-1.44)

0.11
(0.05-0.18)

0.18
(0.01-0.37)

group 2 Dry 0.55
(0.23-0.95)

0.86
(0.50-1.32)

0.19
(0.08-0.29)

0.21
(0.10-0.33)

group 3 Dry “ 4.19
(2.00-7.97)

- 0.84
(0.39-1.58)

Table 3.4. The geometric mean number of Anopheles gambiae (95% Confidence 
intervals) caught by pyrethrum spray catches (catch/room/ night/season) 
and exit trap catches (catch/trap/night/season) during the wet season of 
Year 1 and Year 2. Shaded background indicates the presence of treated 
bed nets. PSC and ET in treated villages were carried out in rooms with treated 

nets.

mosa./room/nieht Mosa./exit trao/nieht
Net status Season Year 1 Year 2 Year 1 Year 2
group 1 Wet 0.12 0.06 0.48 0.17

(0.04-0.21) (0.01-0.12) (0.29-0.70) (0.07-0.30)
group 2 Wet 2.90 0.09 1.19 0.37

(2.38-3.50) (0.05-0.13) (0.87-1.55) (0.25-0.51)
group 3 Wet - 0.36 - 1.20

(0.16-0.58) (0.65-1.93)
group 1 Dry 0.02 0 0.04 0.05

(0-0.07) (0 - 0.07) (0-0.11)
group 2 Dry 0.06 0.005 0.24 0.08

(0-0.12) (0-0.01) (0.12-0.36) (0.04-0.13)
group 3 Dry - 0.29 - 0.45

(0.11-0.50) (0.22-0.73)
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3.3.1.3. Effect of treated nets on hourly biting pattern of An. gambiae mosquitoes.

Figure 3.3 show the hourly biting pattern of An. gambiae mosquitoes in each group of 

villages, during Year 2. As shown in the figure, the hourly biting rates in the 3 village 

groups reached their peaks at about 2300 hours. About 49.9% (95% CI=46.3-52.2) of the 

mosquito in villages with treated nets occurred before midnight, compared to 43.2% (95% 

CI=38.3-48.2%) in villages without nets. The difference was however of borderline 

significance (p=0.056). Chi-square analysis for trend showed no significant difference 

between the hourly biting patterns in Groups 1 and 3 villages. The average biting times of 

mosquitoes in Groups 1. 2 and 3 villages were 0108, 0135 and 0134 hours, respectively 

(Calculated as described in section 3.2.5).

Figure 3.3. Hourly variation in An. gambiae biting rates in villages with (Group 1 
and 2) and without nets (Group 3) in Year 2.
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3.3.2. Effect on parous, sporozoite and EIK

Table 3.5 shows the parous, sporozoite and daily entomological inoculation rates in the wet 

and dry seasons for each village group, in Year 1 and 2. Accoding to the table the seasonal 

parous rates during Year 2 were lower in Group I than in Group 2 villages, which in turn 

was lower than in Group 3 villages. Mann-Whitney rank sum test confirmed that, the parous 

rate of An. gatnbiae in the wet season of Year 2 was significantly lower in Group 1 than in 

Group 3 villages (z=2.301, p=0.021). In addition, Wilcoxon matched paired test showed that 

the wet season parous rate was significantly lower during Year 1 than in Year 2, in both 

Group 1 (z=1.826, p=0.067), and Group 2 villages (z=2.201, p=0.028). (Also see Table 

3.50).

Whereas in Year 1, there was no significant difference in the wet season sporozoite rate 

between villages with treated nets and those without, in Year 2, the difference between 

Group 1 and Group 3 villages was significant (z=2.309, p=0.021). Wilcoxon matched- 

paired test shows that the sporozoite rates were lower in Year 2 than in Year / in Group 1 

(z= 1.826; p=0.068) and Group 2 villages (z=2.202, p=0.028).

In Year 1 the daily EIRs for unprotected people living in Group 1 villages (with nets) during 

the wet and the dry seasons were only about 0.15 and 2.5 times respectively, lower than 

those living in Group 2 villages (without nets). However, during Year 2, the daily EIRs 

during the wet and dry seasons in Group / villages were about 10 and 8 times respectively, 

lower than in Group 3 villages (without nets), while than in Group 2 villages was about 4 

times lower than in Group 3 villages (See Table 3.5). In addition, the EIR in Group / and 2

1 0 0
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villages during the wet season in Year 2 were about 45% and 13% lower than that in Year 1.

Tables 3.6 and 3.7 show the wet season human biting, sporozoite, parous and entomological 

inoculation rates in the wet seasons of Year 1 and 2 for each village. The tables show a 

considerable reduction in sporozoite and parous rates during Year 2 relative to Year 1, in 

Groups 1 and 2 villages. However, the overall biting rates seem to be higher in Year 2 than 

in Year 1, even in Group 1 villages.

Table 3.5. The seasonal Parous rates, Sporozoite rates and entomological inoculation 
rates (infection/man/night/season) of An. gambiae in the different villages. 
Shaded background indicates the presence of treated bed nets.

Parous rates (95% C.I.) Sporozoite rates (95% C.I.) EIR
Net
status

Season Y e a r  1 Y e a r  2 Y e a r  1 Y ea r 2 Y ea r 1 Y ear 2

grou p  1 Wet 45.1% of 297 
(39.4-50.9%)

29.3% of 249
(23.7-35.4%)

5.11% of 724
(3.62-6.97% )

1.8% of 493 
( 0.8 -3.4% )

0.20 0.11

grou p  2 Wet 60.6% of 475 
(56.1-65.1%)

44.4% of 486 
(40.0- 49.0%)

5.24% of 3074 
(4.78-6.09% )

2.6% of 1048
( 1.7-3.7%)

0.23 0.20

grou p  3 Wet 57.1% of 168 
(49.3-64.7%)

_ 6.3% of 718 
( 4.6- 8.3% )

_ 1.11

grou p  l Dry 33.3% of 3 
(0.8- 90.6%)

52.6% of 19
(28.9-75.6%)

10.5% of 38 
(3.0 -25.4% )

2.8% of 36 
(0.1-10.5%)

0.02 0.02

grou p  2 Dry 75.0% of 32 
(56.6- 88.5%)

62.3% of 61
(49.0-74.4%)

9.7% of 134
(5.3 - 16.0%)

5.1% of 99 
( 1.7- 11.4)

0.05 0.04

grou p  3 Dry " 67.8% of 59 
(54.4-79.4%)

" 3.8% of 265 
(1.8-6.8%)

" 0.16
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3.3.3. Insecticide susceptibility

When mosquitoes from Group 1 villages were exposed to filter papers treated with a 

discriminating dose of lambdacyhalothrin, 100% mortality after 24 hours was observed, 

while those exposed to control papers (without insecticide) had an average of 9% mortality. 

4 sets of experiments using mosquitoes from each group 1 village were carried out, and they 

all showed 100% mortality on exposure to a discriminating dose of lambdacyhalothrin.
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Table 3.6. Wet season biting and parous, rates of An. gambiae in each village during 
Years 1 & 2. , Group 1 — villages that had nets in both Years 1 and 2; Group 
2=villages that received nets in Year 2; Group 3 = villages without nets in Year 2. 
Shaded portions signify presence of nets.

Biting rates Parous rates
Village Codes Net

status
Year 1 Year 2 Year 1 Year 2

Bumbeh 1 Group 1 3.97
(1.98-7.31)

17.20
(0.00- 57.55)

57.0% of 66 
(44.8-69.7%)

39.5% of 43
(25.0-55.6%)

Blama 6 Group 1 2.99
(1.97-4.36)

4.97
(0.66-10.99)

53.7% of 56 
(44.5-68.7)

28.4% of 42 
(15.7-44.6%)

Buma 8 Group 1 5.47
(3.19-9.00)

3.45
(0.27-14.70)

34.8% of 126
(23.9-41.1%)

16.1% of 87 
(9.1-25.5%)

Sami 9 Group 1 2.42
(1.34-3.99)

6.45
(0.20-29.34)

47.2% of 49
(34.4-63.7%)

39.0% of 77 
(28.1-50.8%)

Nengbema 2 Group 2 3.18
(1.90-5.01)

2.49
(0.00-6.56)

68.1% of 69
(55.8-78.8%)

46.2% of 26 
(26.6-66.6%)

Nyandeyama 3 Group 2 3.87
(2.75 - 5.33)

9.94
(0.37-30.81)

69.6% of 60 
(62.1-85.3%)

47.8% of 62 
(34.0-59.9%)

Tondeya 4 Group 2 6.44
(4.26 - 9.54)

9.42
(0.96-19.28)

61.1% of 103
(50.1-69.7%)

49.4% of 81
(38.1-60.7%)

Ngalu 7 Group 2 3.92
(2.50-5.90)

6.01
(0.50-30.84)

57.8% of 45
(42.1-72.3%)

44.0% of 41
(28.5-60.3%)

Konjodorma 10 Group 2 4.82
(3.14-7.18)

6.05
(1.19-11.04)

56.1% of 106 
(43.6-64.8%)

40.8% of 49
(27.0-55.8%)

Kpetema 11 Group 2 7.45
(5.30- 10.35)

7.22
(0.43-20.13)

58.4% of 106 
(44.7-64.7%)

46.4% of 28 
(29.5-66.1%)

Gbaama 
Yandoema 21

Group 2 - 14.52
(0.30-79.72)

- 42.9% of 105
(33.2-52.9%)

Fulawahun 25 Group 2 5.20
(0.00-13.88)

- 43.8% of 16
(19.8-70.1%)

Sembehun 26 Group 2 - 9.38
(0.00-33.20)

25.0% of 4
(0.6-80.6%)

Pindegumahun
29

Group 2 20.53
(0.65-44.87)

* 41.9% of 74
(30.5-53.9%)

Jaiama 22 Group 3 22.01
(0.00-67.39)

- 60.4% of 53 
(46.0-73.6%)

Dandabu 24 Group 3 - 13.45
(0.00-76.27)

- 71.4% of 21
(47.8-88.7%)

Baoma 27 Group 3 - 19.99
(0.00-28.85)

- 56.1% of 41
(39.8-71.5%)

Manjama 28 Group 3 - 16.02
(0.10-51.30)

* 49.1% of 53 
(35.1-63.2%)

Bayama 30 Group 3 - - - -
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Table 3.7. Wet season sporozoite and inoculation rates of Art. pambiae in each 
village during Years 1 & 2. VC = Village code Group 1 = villages that had 
nets in both Years 1 and 2; Group 2=villagcs that received nets in Year 2; 
Group 3 = villages without nets in Year 2. Shaded portions signify presence 
of treated net.

Sporozoite rates EIR
VC Net

status
Year1 Year 2 Year 1 Year 2

Bunibeh 1 Group 1 1.6% of 194 
(0.3-4.5%)

0.8% of 121
(0.1-4.5%)

0.06 0.14

Blama 6 Group 1 3.4% of 118 
(1.1-9.9%)

0% 0.10 0

Buma 8 Group 1 12% of 233 
(8.1-16.9%)

1.4% of 142 
(0.2-5.0%)

0.67 0.05

Sami 9 Group l 1.1% of 179 
(0.1-4.0%)

0.7% of 172 
(0.4-5.0%)

0.03 0.11

Nengbema 2 Group 2 4.0% of 650 
(2.6-5.8%)

2.7% of 74 
(0.3-9.4%)

0.13 0.07

Nyandeyama 3 Group 2 4.1% of 611
(2.7-6.0%)

0% 0.16 0

Tondeya 4 Group 2 6.0% of 333 
(3.7-9.1%)

4.5% of 200 
(2.1-8.4%)

0.39 0.42

Ngalu 7 Group 2 5.6% of 214
(2.9-9.6%)

1.4% of 148 
(0.2-4.8%)

0.22 0.40

Konjodorma 10 Group 2 3.8% of 684
(2.3-5.3%)

3.0% of 99 
(0.6-8.6%)

0.18 0.18

Kpctema 11 Group 2 8.9% of 582 
(6.5-11.3%)

4.3% of 94 
(1.2-8.4%)

0.66 0.31

Gbaama 
Yandoema 21

Group 2 - 2.08% of 48 
(0.5-11.1%)

- 0.30

Fulawahun 25 Group 2 - Oof 22 - 0
Sembehun 26 Group 2 - Oof 28 - 0
Pindegumahun
29

Group 2 - 3.1% of 195 
(1.1-6.6%)

- 0.63

Jaiama 22 Group 3 - 2.5% of 284 
(1.0-5.0%)

- 0.54

Dandabu 24 Group 3 5.5% of 110
(2.0-11.5%)

- 0.73

Bauma 27 Group 3 - 4.1% of 271 
(2.0-7.l%)

0.81

Manjama 28 Group 3 - 14.3% of 161
(9.3-20.7%)

- 2.29

Bayama 30 Group 3 14.3% of 35 
(4.8-30.3%)

- -
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3.4. Discussion

It has already been shown that in the short term insecticide-impregnated bed nets can reduce 

clinical malaria, infant mortality and malaria transmission. For example, child mortality was 

reduced by 33% and 17% in The Gambia and Ghana respectively (Binka et al., 1996; 

D’Alessandro et al., 1995), clinical malaria in children was reduced by 25% in Zaire (Karch 

et al., 1993) and 50% in Tanzania (Lyimo et al., 1991), while mosquito biting rates on 

unprotected people was reduced by 70% in Tanzania from the use of pyrethroid treated nets 

(Magesa etal., 1991).

In the first year of this trial (Refer to Chapter 2), the biting rate on unprotected people in 

villages with nets was not significantly different from that in villages without nets during the 

first year of the trial. But, in the second year of the trial, the mosquito biting rates in villages 

that had had nets for two years seem to be significantly lower than in the control villages 

without nets. However, it is not clear whether the new control villages recruited in the 

second year were similar, in terms of mosquito abundance, to treated villages studied in the 

first year. It is unlikely that by chance all the control villages had naturally higher mosquito 

abundance than the treated villages, before the trial. It is however not possible to be 

confident that the difference in mosquito abundance between treated and control villages in 

the second year was due to the use of treated nets.

The results also show that both the parous and sporozoite rates in villages that had had nets 

for two years, during the wet season, were lower in the second year than in the first year. 

Moreover the parous and sporozoite rates in the Group 2 villages was lower in the second,
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when they had treated nets, than in the first year when they were without nets. These results 

suggest evidence for a reduction in mosquito sporozoite and survival rates due to the use of 

treated nets. However, the magnitude of the reduction in parous and sporozoite rates was 

lower than that which was observed in Tanzania (Magesa et al., 1991). In contrast, all the 

treated net trials in The Gambia have shown no effect on parous rate and sporozoite rates 

An. gambiae mosquitoes (Lindsay et al., 1993; Quinones et al., 1998; Thomson et al., 1995). 

Taking all the evidence together, it seems that the mass killing effect from community-wide 

use of treated nets in Sierra Leone was not as strong as that observed in Tanzania, but it was 

stronger than that in The Gambia, where there is no mass effect on any o f the entomological 

indicators.

This apparent improvement in the impact of the treated nets on biting rates during the 

second year over the first year can be attributed to one or more of three possible reasons. 

Firstly, it may have been a by-product from increasing the number of villages with treated 

nets in the study area, that might have reduced the effect of movement of mosquitoes from 

neighbouring villages without treated bed nets to those with them (See Appendix 1 for 

layout of the study area). Inter-village migration of mosquitoes was investigated by 

Thomson et al., (1995) in a marked-recapture experiment in The Gambia, and has been 

suggested as a factor that might distort the results of entomological evaluation of pyrethroid- 

treated bed nets (Quinones 1996).

Secondly, it is possible that during the first year, the dosage of insecticide on the nets (lOmg 

a.i./m2 ) was too low to cause any substantial killing of mosquitoes, but that the dosage was

106



Entomological evaluation of treated bed nets Chapter 3

increased as a result of accumulation o f insecticide from re-treating the nets in the second 

year. This higher dosage would be expected to increase the mosquito killing potential of the 

treated nets. The possibility of insecticide accumulating on bed nets from repeated 

impregnation is supported by results from laboratory studies by Miller et al., (1995), which 

showed that some deposits of lambdacyhalothrin can remain on a treated bed net even after 

three washes. In addition, bioassay results from two treated net trials in Tanzania showed 

that the knockdown effect o f treated nets on mosquitoes was greatly increased after the nets 

were re-impregnated compared to that after the first impregnation (Curtis et al., 1998; 

Maxwell et al., 1999).

Thirdly, the apparently improved effect of the nets in the second year was possibly due to 

the net impregnation being better supervised during the second year of the trial because of 

experience gained during the first impregnation, thus resulting in more efficient net 

treatment.

Results from this trial showed that the peak biting time of An. gambiae mosquitoes in 

villages with treated nets and those without were similar, at 2300 hours. However, slightly 

more mosquitoes in villages with treated nets than in those without nets took bloodmeal 

before midnight. The average biting time of mosquitoes in villages with or without bed nets 

was about 0130 hours.

It is a cause for concern that prolonged and large scale use of pyrethroid impregnated bed 

nets may lead to pyrethroid resistance in the local mosquito population. There have been
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some reports of increased tolerance of mosquitoes to permethrin insecticides (Vulule et al., 

1994), and also pyrethroid resistance resulting from agricultural use of pyrethroids in the 

Ivory Coast (Darriet et al., 1997), but we found no evidence of resistance in the population 

of An. gambiae mosquitoes that had been exposed to lambdacyhalothrin for more than 2 

years. Similarly, there is no evidence of pyrethroid resistance in China, where bed nets have 

been used for the past 7 years on a very large scale (Kang et al., 1995), and in a small 

Tanzania village where treated bed nets have been used for more than 8 years (Curtis 1996).

The results from this trial showed that bed nets treated with lambdacyhalothrin every 12 

months showed no clear evidence for a mass killing effect on the mosquito population in the 

first year of the trial (See chapter 2), but some evidence in the second year of the trial.
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CHAPTER 4.

THE RELATIVE EFFICIENCY OF LIGHT-TRAP COLLECTION, AND 
COUNTING BLOOD FED MOSQUITOES FOR ESTIMATING BITING RATES OF 

ANOPHELES GAMBIAE s.l. MOSQUITOES IN SOUTHERN SIERRA LEONE.
4.1. INTRODUCTION

Measuring the biting rates of mosquitoes constitutes a very important aspect of 

entomological monitoring of vector control interventions such as insecticide treated nets 

(ITN). Man-biting rate is also an essential component of vectorial capacity (C) and 

entomological inoculation rates (EIR), the two most important concepts for describing and 

comparing transmission intensities in entomological terms (Garrett- Jones 1964a). This 

chapter investigates the efficiency of two sampling methods, light trap catches (LTC) and 

counting blood fed mosquitoes (BFC), for determining biting rates of An. gambiae 

mosquitoes in Southern Sierra Leone.

The most direct way of estimating biting rates is by human biting catches (HBC), because 

with this method mosquitoes are caught while engaged in the very act of biting (Service 

1993). However, this method has logistical problems. For example, it is difficult to 

supervise, expensive, labour intensive and requires skilful catchers. It also has ethical 

problem, because it may expose the catchers to more mosquito bites and hence an increased 

risk of contacting malaria. These objections have led to a search for surrogate methods that 

can provide indirect but reliable estimates of man biting rates. The two most common 

surrogate methods for estimating man biting rates arc CDC light traps (LTC)(Lines et al., 

1991), and counting blood fed mosquitoes (BFC) in occupied bedrooms (Lindsay et al., 

1989b).
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Odctoyinbo (1969) made the first comprehensive study of light-traps as a sampling method, 

and found that they can be used for assessing night-time densities of different mosquitoes 

species, but added that they were not reliable for assessing human biting rates. This method 

was latter modified by Garrett-Jones & Magayuka (1975), who showed that by placing the 

light trap beside an occupied untreated bed net its efficiency for assessing human biting rate 

can be improved. Since then, various studies have investigated the reliability of light-traps 

for measuring human biting rates of various mosquito species, including An. fluviatitis 

(Gunasekaran et al., 1994), An. albitarisis. An. triannulatus, An. aswaldoi. An. 

neomaculipaipis (Rabio-Palis & Curtis 1992), An. gantbiae (Davis et al., 1995; Faye et al., 

1992; Lines et al., 1991; & Mbogo et al., 1993). Results obtained from these studies have 

not always been concordant with each other. For example, two separate studies carried out 

in Tanzania (Davis et al., 1995; Lines et al., 1991) showed that a light trap hung beside an 

occupied untreated bed net is an efficient way of measuring human biting rate of An. 

gambiae mosquitoes. But Mbogo et al., (1993) working in Kenya showed that light-traps did 

not provide an adequate estimate of the man-biting rate of An. gantbiae mosquitoes. Smith 

(1995a) attributed this difference to what he called “statistical misunderstanding”, and 

pointed out that the transformation logio(x+l) did not closely approximate to log(x) for low 

number of mosquitoes (x), as in the case of Mbogo et a! (1993). He suggested the use of 

Poisson regression in such situations.

Unlike light trap catches, no comparative study has yet been done to determine the relative 

efficiency of BFC for estimating biting rates. This method has been used with the reasonable
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assumption that after a mosquito has acquired a bloodmeal from a sleeper it may either rest 

indoors or leave the room. It is expected that mosquitoes leaving the room would be trapped 

in window exit traps, while those resting indoors would be caught by pyrethrum spray 

catches (PSC). Lindsay and others (1989a,b) used this method to estimate the biting rate of 

An. gambiae mosquitoes in Gambian villages. Lines (1996a) criticised this method as a 

means of measuring protection against mosquito biting enjoyed by the sleepers in a room, 

by pointing out that window traps are much less efficient at catching exiting females than 

PSC catches are at catching those that stay in the room. He argued that most of the 

mosquitoes enter at night after the window exit trap has been installed, so it is reasonable to 

expect that some mosquitoes could escape by the apertures through which they entered the 

room. The proportion that escapes catching can be large and variable and is of course 

unknown. This is likely to bias the biting rate estimate obtained, especially in rooms with 

treated nets where more mosquitoes are expected to exit as a result of the repellancy of the 

insecticide.

In this chapter an effort is made to separately determine the reliability of biting rate 

estimates obtained from light-trap catches (LTC), and from counting blood fed mosquitoes 

(BFC), by comparing them with those obtained from matched human biting catches (HBC). 

The comparison is extended to investigate the effect of treated nets on the efficiency of 

LTC.
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4.2. OBJECTIVES

The specific objectives of this study were to determine:

1. whether human biting rates of An. gambiae mosquitoes estimated from light trap catches 

is a good replacement for those obtained from human bait catches;

2. whether the reliability of biting rates measured from light trap catches is affected by the 

presence of treated bed nets in a community;

3. whether human biting rates of An. gambiae mosquitoes estimated from counting blood- 

fed female mosquitoes are good replacement for those obtained from human bait

catches.
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4.3. METHODOLOGY

4.3.1. STUDY AREA

The study was undertaken in 16 villages in the North-eastern part of Bo District which were 

part of a bed net trial investigating the effect of lambdacyhalothrin treated bed nets on 

malaria morbidity in children, and on malaria transmission intensity. These villages have 

already been described in Chapter 2.

4.3.2. SAMPLING METHODS AND PROCESSING

In each village, mosquitoes were sampled using HBC once a month on the veranda of a 

designated house by a team of 4 mosquito catchers working in pairs on alternate 3-hour 

shifts. Mosquito collection started from 1900 hours and continued till 0700 hours the next 

morning. On either the same night as, or adjacent night to, the HBC, battery operated CDC 

light-trap catches were carried out beside occupied bed nets in 3 other designated houses 

(Lines et al., 1991). In each sampling room a single light trap was suspended about 1.5m 

from the floor and about 0.2 to 0.5m from the bed net. The traps were turned on at about 

1900 hours and off at about 0700 hours the following morning by a member o f the project 

staff, who also enquired whether the sleeper noticed any malfunctioning of the trap during 

the night.

On the same night as the CDC light-trap collection, window exit traps were installed at the 

windows of 3 further designated bedrooms (with or without bed nets) wherein PSCs were 

carried out in the morning immediately after removing the exit-traps (Lindsay et al., 1989a).
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All mosquitoes caught were identified using the key of Gillies and Coetzee (1987), and 

sorted by gonotrophic stage (WHO 1975).
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4.4. STATISTICAL ANALYSIS

The total number of An. gambiae mosquitoes caught by 3 light traps was compared with the 

number caught by HBC on either the same or an adjacent night. The total number of blood- 

fed An. gambiae mosquitoes caught in 3 bedrooms (BFC) was similarly compared with the 

number caught by HBC on either the same or an adjacent night.

Prior to the analysis, data collected using LTC and BFC were matched with those from 

HBC, by village and date of sampling. The daily number of mosquitoes (x) caught by each 

sampling method was transformed toy = lo g m (x + l) .  The relative sampling efficiency was 

measured as the ratio of the number of mosquitoes caught by the surrogate catching method 

to the number caught by the standard catching method, which in this case was HBC (Altman 

& Bland 1983).

To test whether the relative sampling efficiency was dependent on mosquito density, the 

relative sampling efficiency of the two methods, calculated as ( lo g (L T C +  l) - lo g ( H B C +  / ) )  

was plotted against a joint estimate of mosquito abundance, calculated as, 

((log(LTC+ l)+log(HBC+1))/2) (Altman & Bland, 1983). A regression slope that is not 

significantly different from zero signified that the relative sampling efficiency was 

independent of mosquito density, while a slope that was significantly different from zero 

meant that it was dependent on density. This analysis was repeated for BFC.
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4.5. RESULTS

4.5.1. Mosquito abundance

A total of 2,644 female An. gambiae mosquitoes were caught by all the sampling methods 

(See Table 4.1). BFC yielded the least number of mosquitoes (13%), with only about 11% of 

the catches from villages with treated nets. As a result of this low catch, the comparison of 

BFC with HBC was not extended to villages with treated nets.

Figure 4.1 shows the percentage frequency of sampling occasions on which various numbers 

of mosquitoes were caught by each sampling method. It shows that about 45% of all the 

mosquito sampling occasions yielded no mosquitoes, and less than 20% yielded more than 

five mosquitoes.

Table 4.1. Number of female An. gambiae mosquitoes caught by each sampling 
method in villages with and without treated bed nets. PSC= Pyrethrum 
spray catches; ET=Exit trap catches.

Number caught (n)

Sampling method Villages with nets Villages without nets Total

Blood feds (PSC+ET) 39 305 344

Light-trap catches 556 813 1369

Human-bait catches 509 422 931

Total 1 104 1540 2644
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Figure 4.1. Frequency of occasions with which various numbers of An. gambiae 
mosquitoes were caught by each sampling method.
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4.5.2. Relationship between the number caught by HBC and other sampling methods

Figure 4.2 shows the relationship between biting rates estimated from LTC and HBC in 

villages with and without nets. Significant positive relationships were found between 

matched LTC and HBC of An. gambiae mosquitoes both in villages with bednets(r2 = 0.408) 

and without them (r2 = 0.382).

Figure 4.3 shows the relationship between biting rates estimated from counting blood fed 

mosquitoes and human bait catches in villages without nets. A weak positive relationship 

was found between matched BFC and HBC in villages without treated nets (r2 = 0.048).

The geometric mean ratio of matched LTC and HBC based on observed variances in 

villages with nets was 0.85 (0=0.74-0.98), statistically less than unity, while in those 

without nets, it was 0.96 (0=0.78-1.19). The effect of treated bed net (treatment) on the 

relative sampling efficiency of LTC was assessed by ANOVA performed on the log- 

transformed ratios of the paired mosquito catches (Table 4.2). The results show a significant 

difference in mean log-ratios between villages with nets and those without, after adjusting 

for village. A substantial proportion of the variance between the log-transformed ratios was 

explained by treatment variation. However, no treatment effect was found significant when 

the ANOVA was performed without adjusting for village.

The geometric mean ratio of matched BFC and HBC in villages without bed nets was 0.69 

(Cl: 0.53-0.92), also significantly less than unity. This shows that the total number of blood
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fed mosquitoes caught in three bedroom by combined ET and PSC collections was 

significantly less than that caught by matched HBCs.

Figure 4.2. The relationship between HBC and matched LTC of An. gambiae 
mosquitoes in villages with treated bed nets and those without.
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Figure 4.3. The relationship between HBC and matched BFC of An. gambiae 
mosquitoes in villages without bed nets.
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Table 4.2. ANOVA on the log-transformed ratios between light-trap catches (LTC) 
and human bait catches (HBC), calculated as (log(LTC+l) - log(HBC+l)), in 
villages with and without treated bed nets.

Source Partial SS d.f. MS F P

Between treatments 0.807 1 0.807 4.93 0.0275

Between villages 4.349 24 0.223 1.30 0.0742

Residual 36.196 221 0.164

Total 41.745 248 0.172
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4.5.3. Relationship between relative sampling efficiency and mosquito abundance.

Figure 4.4 shows the relationship between the relative sampling efficiency of LTC 

(calculated as log(LTC+ l)-log(HBC)) and mosquito abundance (calculated as 

(log(LTC+ l)+log(HBC+1))/2) in villages with nets, and those without. A regression slope 

significantly different from zero was detected in villages with treated bed nets (r = -0.216, 

d.f. = 166, P = 0.003), but not in those without treated bed nets (r = -0.110, d.f. = 81, P = 

0.312). A regression slope statistically different from zero, as observed in villages with 

treated bed nets, signifies that the sampling efficiency was dependent on mosquito 

abundance, while a slope that is not statistically different from zero, as observed for villages 

without bed nets, indicates that it does not depend on density. However, both regression 

slopes were low. Moreover, the confidence interval of the regression slope for treated 

villages (slope =0.216 and 95% Cl = 0.072 : 0.358) overlaps considerably with that for 

untreated villages (slope 0.110 and 95% Cl = -0.105 : 0.326).

Figure 4.5 shows the relationship between the sampling efficiency of BFC and mosquito 

sampling abundance in villages without treated bed nets. Regression analysis showed that 

efficiency decreased significantly as mosquito abundance increased (r = -0.35, d.f. = 55, 

P=0.006) which indicates that the sampling efficiency was related to mosquito abundance.
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Figure 4.4. The relationship between the relative sampling efficiency of LTC 
(log(LTC+l)-log(HBC+l)) and mosquito abundance
((log(LTC+l)+log(HBC+l))/2) in villages with and those without treated bed 
nets. The line shows the relationship between the trapping efficiency and 
mosquito density.
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Figure 4.5. The relationship between the relative sampling efficiency of BFC 
(log(BFC+l)-log(HBC+l)) and mosquito abundance
((log(BFC+l)+log(HBC+l))/2) in villages without treated bed nets. The line 
shows the relationship between the trapping efficiency and mosquito 
density.
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4.6. DISCUSSION

The result of this study showed that the number o f An. gambiae mosquitoes caught in LTC 

was strongly positively correlated with those obtained from HBC performed on either the 

same or an adjacent night, in both villages with treated nets and those without. However, the 

relative sampling efficiency of LTC was slightly dependent on mosquito abundance in 

villages with treated nets but not in those without, and ANOVA showed that treatment effect 

accounted substantially to the variation of trapping efficiencies. It therefore appears that 

biting rates obtained from LTC would replace those obtained by HBC in villages without 

treated nets but not in those them. However, the regression coefficients for the relative 

sampling efficiency against mosquito abundance both in treated and untreated villages were 

very low, and the 95% confidence intervals of the regression slope in villages with treated 

nets was just outside zero. Therefore, it appears that the magnitude of the effect of treated 

nets on biting rates obtained from LTC was not large enough to be of practical significance. 

It is also possible that if LTC were carried out in sentinel houses without treated nets in all 

the room, the impact of the treated net would have been insignificant.

The geometric mean ratio of LTC and HBC in villages without treated nets was not 

significantly different from unity, signifying that the total number of An. gambiae 

mosquitoes caught by 3 light traps operating in different bedrooms for the whole night was 

not significantly different from that caught by two human baits working from dusk to dawn 

on the same or an adjacent night. This result is identical to that obtained for An. gambiae 

mosquitoes by Lines et al., (1991) in nearby villages in Northern Tanzania. In villages with 

treated bed nets, the mean ratio of LTC and HBC was, marginally less than unity, signifying
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that the total number of An. gambiae mosquitoes caught by 3 light traps was marginally 

statistically lower than that caught by two human baits. However, the mean relative 

sampling efficiency in both treated and untreated villages were very close to unity (0.86 and 

0.96, respectively) and the 95% confidence intervals of the relative sampling efficiency in 

villages with treated nets overlapped considerably. Therefore, for most practical purposes, 

three light traps to can catch almost as much mosquitoes as two human baits working from 

down to dusk, in both villages with and without treated bed nets.

The number of mosquitoes caught by BFC correlated poorly with HBC in villages without 

bed nets, and the sampling efficiency of BFC decreased significantly with mosquito density, 

signifying that BFC can not reliably replace HBC for estimating human biting rates. It is, 

however, necessary to point out that on about 80% of sampling occasions BFC caught no 

mosquitoes. It would therefore be more appropriate to use Poisson regression for the 

analysis of this data (Smith 1995).

The conclusion from this study is that LTC can be used as a substitute for HBC to estimate 

biting rates of An. gambaie mosquitoes both in villages where a large proportion of the 

inhabitants use treated bed nets, and in those without treated bed nets. The use of surrogate 

sampling methods for estimating biting rates in evaluating trials with residual insecticides is 

a common practice in most places. These definitely have their advantages, but their 

reliability should be properly determined against the standard method before using them.
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PART 2

CHAPTER 5.

ANALYSIS OF THE SPATIAL AND TEMPORAL DISTRIBUTIONS OF 

ANOPHELES GAMBIAE IN TWO TANZANIAN VILLAGES

5.1. Introduction

Unlike plants, most animals move, so the spatial information usually collected by animal 

ecologists is less precise than the maps of individuals often analysed by plant ecologists. 

The problem of identifying and understanding patterns o f distribution remains central to 

insect ecology. The situation would be easier if insects were randomly distributed, in which 

case the Poisson distribution would adequately describe them. However, ecologists long ago 

observed that insects are hardly ever distributed in this way (Beall, 1935; Marshall, 1939; 

Williams, 1937), even within small apparently uniform areas (Bliss, 1941). Neyman (1939) 

made several attempts to fit the Poisson law to distributions of various insect species, but 

failed at every attempt. Southwood (1978) concluded that insect distributions are generally 

aggregated - that the individuals are more clustered than would be expected if a random 

distribution applied.

This clustering often gives rise to problems of precision in the evaluation of vector control 

interventions. Such interventions normally aim to reduce vector densities and, in order to 

find out whether such a reduction has occurred, it is necessary to estimate and compare 

mean densities in areas with and without the intervention. The greater the degree o f 

clustering, the more difficult it is to obtain estimates of adequate precision. This is because 

the clustering makes it difficult to select a representative sample of houses for estimating
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village-level estimates. In practice, even substantial absolute differences in observed village- 

level mean densities often cannot be shown to be statistically significant. An example of this 

was seen in the vector control trial described in chapter 3, where the mean wet season 

mosquito densities observed in villages with nets and without nets did not differ 

significantly, although the former was 2.5-fold less than the latter (See Table 3.3).

In randomised control trials in which the community is the unit of intervention, the aim is 

normally to obtain, for each outcome of interest, a single estimate from each community. 

This enables the estimates from treatment communities to be compared in a simple manner 

with those from the control communities. In the case of malaria vector control trials, this 

typically entails estimating, in each of a series of communities, the mean vector density for 

the whole village over an entire year, or at least over a transmission season. This task is 

somewhat simplified by the fact that most methods of sampling malaria vector mosquitoes 

have a natural sampling unit, for example ‘the number of bites per person per night’ in the 

case of human bait catches, ‘number of females per bedroom’ in the case of indoor-resting 

catches, or ‘females per trap-night’ in the case of light-trapping. However, all these methods 

normally show considerable variation in the numbers caught from house-to -house, night to 

night and month to month. The spatial and temporal variation is partly random (i.e. due to 

sampling error) and partly systematic (e.g. house A may consistently have more mosquitoes 

than house B; the number of mosquito caught in each house in, say week 10 may be higher 

than in week 11).
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In order to increase precision and reduce sampling error, it is necessary to increase sampling 

effort, but in practice the available resources invariably limit sampling effort. Moreover, in 

many trials, epidemiological indices are regarded as the primary outcome measure, while 

entomological measures are regarded as of secondary importance (e.g. Smith & Morrow 

1991). Thus designing an entomological sampling routine for a vector control trial normally 

involves making adhoc decisions about how to apply the resources available for vector 

sampling in a manner that will maximise the precision of the estimates obtained. This is 

rarely a simple task, since variation in both space and time must be considered.

The question therefore arises of how best to distribute sampling effort in order to maximise 

the precision of the estimates of village-wise means. Some of the constraints are obvious. 

For example, it is well known that the mosquito population can sometimes expand 

explosively, up to 10-fold in a month, and this means that sampling in each village must be 

repeated at least monthly, and preferably more often, in order to ensure that the estimates 

obtained will reflect such changes. Other decisions about how to design the sampling 

routines are less obvious. In particular it is usually unclear how to distribute sampling efforts 

between houses and nights, in order to allow for these two major sources of variation. 

Suppose, for example, that monthly estimates of mean density in each village are required, 

and that no more than twelve light-trap catches can be carried out in each village in each 

month. Is it better to trap six times in each of two houses, or twice in each o f six houses, or 

four times in each of three houses? And, in the latter case, is it necessary that the nights should 

be at weekly intervals, or would the easier task of sampling over 4 consecutive nights yield 

more or less the same amount of information? Should the same ‘fixed’ houses be sampled on
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each occasion, or should a new set be chosen randomly on each occasion? A further 

complication arises when - as is normally the case - estimates of the parous rate and 

sporozoite rate are also required, in addition to estimates of density. Is the best routine for 

comparing densities between villages also the best for comparing parous rates?

These are the questions addressed in Part 2 of the thesis (Chapters 5 and 6). They have 

received very little attention in the medical entomological literature. For example, they are 

not mentioned in Service’s otherwise comprehensive 1,000-page book on mosquito 

sampling (Service 1993), although the book does include detailed discussions of patchiness 

and precision in estimates of larval density. In order to introduce the issues involved, this 

section begins by considering the range of biological and environmental factors that are 

likely to influence vector abundance at any one place and time. This is followed by a general 

account of how insect ecologists have approached the problem of analysing natural 

distributions of insect abundance. Taylor’s power law is then used to examine spatial and 

temporal aggregation of mosquitoes. This is followed by an examination of the effect of 

various environmental factors on the spatial and temporal variation of mosquitoes. 

Therefore, most of part 2 is devoted to presentation and analysis of a series of light trap 

samples obtained from experiments conducted in villages near Muheza, Tanzania.

The aim of this work was to sample mosquitoes in an unusually intense manner in both 

space and time, in order to allow the relative importance of spatial and temporal variation to 

be compared. In addition, this intensive sampling regime allowed random sub-samples from
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the data to be used to simulate what the result would have been if various alternative 

strategies of less intense sampling had been used instead.
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5.2. Study objectives

The specific objectives of this study were:-

1. to provide guidelines for dividing a given number of sampling effort between times and 

places of sampling, when estimating village-level mosquito densities

2. to determine whether the same houses should be used on each sampling occasion, or a 

random selection of houses, when estimating village-level mosquito density and parous 

rates

3. to determine whether the routine for estimating village-level mosquito abundance should 

also be used for estimating parity rates

4. to examine the effect of various environmental factors on the abundance and catchability 

of An. gambiae mosquitoes.
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5.3. Factors that affect mosquito density

The previous section described the implications of the spatial and temporal variation of 

mosquitoes for their sampling in entomological evaluation of vector control trials. This 

section presents background information on the effects of environmental and biological 

factors on spatial and temporal variation in mosquito abundance.

The factors that affect mosquito density fall into two broad categories: environmental and 

biological factors (see Table 5.1.). Several reviews have been written on the effect of these 

factors on mosquito density (e.g. Bidlingmayer 1974, 1985), so only a brief account of how 

these factors affect mosquito activities is presented here.

TABLE 5.1. List of some environmental and biological factors that affect the number 
of mosquitoes caught by light-traps.

ENVIRONMENTAL FACTORS BIOLOGICAL FACTORS

Location of trap; speed of the fan; number of sleepers; Biting cycle; degree of

house design; presence of smoke in the house; presence of endophily; degree of

animals near the house; presence of bed net; presence of endophagy; degree of

insecticide in room; distance from breeding site; presence anthropophily.

of rice fields; local vegetation; covering vegetation; wind

speed; moonlight; rain during mosquito sampling; rainfall

2 weeks prior to sampling; humidity; temperature, light

trap, batteries, attractiveness of host.
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5.3.1. Environmental factors that affect mosquito abundance.

Environmental factors that affect the number o f mosquitoes caught at any particular house 

(See Table 5.1) can be generally divided into host-specific factors, such as number of 

humans and animals in a house and attractiveness of the humans, and house-specific factors, 

such as proximity to breeding sites, design, vegetation, isolation, elevation, degree of smoke 

inside the house and the use of mosquito repellents, and meteorological factors, such as 

moonlight, humidity and wind speed.

The effect of host factors on mosquitoes was first established by Haddow (1942) and Gillies 

(1951), who showed that hungry mosquitoes were attracted to houses in densities that were 

directly related to the number of human occupants. It has also been shown that the human 

biting rates of some mosquito species are greatly reduced in the presence of cattle, chickens, 

pigs and other alternative hosts, (Schofield and White 1984; Subramanian et al., 1991). 

Other studies have also shown that human attractiveness to mosquitoes vary from person to 

person (Lindsay et al., 1993c).

The design and location of houses, and human activities occurring in them, have been shown 

to affect their attractiveness to mosquitoes. The following house factors have been shown to 

increase anophcline entrance into houses: house isolation, location of a house near a stream 

or lake, and unscreened open windows and eaves (Lindsay et al., 1993b; Lindsay and Snow, 

1988; Schofield and White, 1984). Anopheline entry has been found to be reduced by the 

following factors: presence of a ceiling, use of bed net, woodsmoke, burning of pyrethrum
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in houses, and closed eaves (Bockarie et al., 1994b; Vemede el al., 1994; Lindsay & Snow 

1988).

Several studies have shown that a difference of a few yards in locating a trap or bait can 

determine whether the catch will consist of several hundred mosquitoes or of less than a 

dozen (Bellamy and Reeves, 1952; Bidlingmayer, 1974; Trape et al., 1992). Smith (1995b), 

using light-traps observed fewer anophelines in elevated than in low-lying parts of a 

Tanzanian village. Lindsay et al., (1993b), Smith et al., (1995b) and Trape et al., (1992) 

found that mosquitoes showed a greater tendency to concentrate in houses nearest to rice 

fields or other permanent breeding sites than houses farther away.

It has been clearly documented that light-trap catches of many mosquito species are lower 

during moonlit than moonless nights (Bidlingmayer 1967; Miller et ai, 1970; Rubio-Palis 

1992). Bidlingmayer (1985) claimed that on moonlit nights the illumination contrast 

between light from the moon and that from the light-trap is less than on moonless nights. As 

a result the light from the light-trap appears to be brighter during moonless than moonlit 

nights, thus attracting more mosquitoes.

Other factors that have been shown to reduce the number of mosquitoes caught by any given 

sampling method are high wind velocity, low humidity and low temperature (Bidlingmayer, 

1967; 1974; 1995; Lindsay et al., 1995, Snow, 1980). Dow and Gerrish (1970) showed that 

the flight activity of most mosquito species increases with humidity. In South Africa, Sharp 

(1983) investigated the effect of environmental factors such as temperature, wind speed and
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rain on the biting cycle of An. merits. Not surprisingly, both wind speed and rain decreased 

biting activity.

5.3.2. Biological factors

Knowledge of the biting rhythms of mosquitoes is critical in scheduling the sampling of the 

biting female population using bait collections. Other intrinsic behaviours that could affect 

the number o f mosquitoes caught include degree of endophily, anthroprophily and 

endophagy, and the length of the gonotrophic cycle.
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5.4. Statistical methods of analysing spatial variations

This section briefly describes how insect ecologists have analysed and described natural 

distributions of insect abundance. In addition, it also describes the application of Taylor’s 

Power law to the analysis of spatial and temporal distribution of mosquitoes, when seeking 

to estimate mosquito abundance.

5.4.1. Poisson distribution

Several mathematical models have been proposed for describing the spatial distribution of 

insect populations. The simplest is the Poisson distribution, in which the variance, s2, is 

equal to the mean, m:

s2 = m.

It assumes a purely random population in which there is an equal probability of an organism 

occupying any point in a homogenous environment (Ruesink 1980). However, insects are 

hardly ever distributed in this manner.

5.4.2. Negative binomial

Several distributions exist for describing aggregated distributions (Patil & Josh 1968), but 

the negative binomial distribution has proved to possess the widest applicability in 

describing the spatial pattern of invertebrate populations (e.g., Ascombe 1949; Bliss & 

Fisher 1955; Evans 1953). The distribution is completely described by the mean and the 

exponent, k, which is a measure of the amount of aggregation. However, Bliss and Owen 

(1958), and Taylor et al., (1978) have criticised the use of the common parameter k, 

claiming that it is not consistent within species.
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5.4.3. Taylor’s power law

Taylor’s power law is an empirical law that has been widely used to describe the degree of 

aggregation of biological populations. It has been used to describe the spatial and temporal 

distribution of various insects (Taylor et al., 1980), and has also been widely applied to 

evaluate dispersion (Ribeiro el al., 1996), determine sample sizes (Ruesink 1980), and 

transform data for statistical analysis (Healy & Taylor 1962). This law has therefore been 

used in this study to analyse the spatial and temporal distribution of An. gambiae 

mosquitoes.

5.4.3.1. Spatial aggregation of mosquito populations

Taylor’s power law (Taylor 1961) showed empirically that the spatial variance, s2, 

characteristic of a species at a particular stage in its development, is proportional to a 

fractional power of the mean population density, m, at that place. That is, 

s2 = amb’

The equation is typically linearised with logarithmic transformation, to

log/ofs2)  = log,(/a) + b logw(m)

Taylor claimed that the intercept a. is a scaling factor related to sample size, and that the 

slope, b, is an index of aggregation that is dependent upon species behaviour and the 

environment. Taylor and co-workers substantiated this relationship with many studies 

ranging from protozoa to human populations (Taylor 1961, 1978, 1980). A value of b = 1 

indicates random distribution, while b > 1 indicates aggregated distribution, and b < 1 

indicates a regular distribution (Taylor 1961).
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Taylor (1961) also claimed that if the variance of a set of samples are related to the mean by 

a power law s2 = amh , then an appropriate transformation can be found from the formula,/? 

= 1 - b/2. According to this relationship if p  = 0, a logarithmic transformation is

appropriate for a given set of data; if p=0.5 a square root transformation is appropriate. 

Taylor et al., (1978) showed that most insect populations have b values between 1 and 2, 

giving transformation factors, p , between 0 and 0.5, indicating a transformation somewhere 

between the square root and the logarithmic.

Taylor’s power law has come under considerable criticism, that the index, b, does not differ 

between species and is inconsistent within species (e.g., Downing 1986).

5.4.3.2. Temporal aggregation of mosquito populations

Taylor et al., (1980) also postulated that just as each species has its own fixed, functional 

relationship between spatial variance (ss2) and mean population density (ms ) over an area at 

all times described by a power law, so temporal stability (s,2) is also a power function of 

mean population density (mi) over time at all places, given as

s,2 = am,h or, log s 2 = log(a) + blogfmj.
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5.5. Estimating sample sizes for determining village-level mosquito abundance.

Choice of sample size appropriate to obtaining reliable estimates of a particular 

entomological index is both a statistical and a practical matter: statistical because it depends 

on the precision required, and practical because it depends on the amount of resources 

available. Therefore the actual sample size used is often a trade-off between the precision 

required and the amount of resources available.

Precision refers to the degree of closeness of repeated estimates to each other (Sutherland 

1996). There are as yet no agreed critical levels of precision for any given purpose. As a 

result, different studies have estimated mosquito density for identical purposes by the same 

methods but using different sample sizes, hence achieving different levels of precision. An 

example of the extent of variability of sample sizes can be seen by examining the sample 

sizes that have been used for entomological monitoring o f different treated bed net trials. 

While Magbity et a!., (1997) in Sierra Leone estimated monthly human biting rates per 

village by performing only one HBC in each of 16 village per month, Magesa et al., (1991) 

in Tanzania performed 2 HBCs per month in each of 5 villages, and Robert and Camevale 

(1991) in Burkina Faso obtained the same index by performing 8 HBCs a month, in each o f 

the two sections of his study village. These differences in the number of sampling effort 

certainly contributed to differences in the precision of the results obtained in these studies.

Sample sizes can be calculated for specific levels of precision. Karandinos (1976) described 

several methods for determining optimum sampling size, but the method used here defines 

the optimum sample size as that which permits the estimated mean to be within a defined
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fraction of the true population mean. This approach has been used to get the expressions 

below. Table 5.1 shows the expressions for estimating sample sizes with different degrees of 

precision.

TABLE 5.1. Expressions for calculating the optimum sample sizes (n) for different 
statistical models.

Model General
expression

Sample size when standard 
error is expressed as a 
fraction (c) of the mean.

General s.e. = Vs2/n n = s2/c2x2

Poisson s2 = X n = l/c2x

Negative Binomial s2 = x + x2/k n = (k + x)/c2kx

Taylor’s Law s2 = axb n = axb'2/c2

n= sample size estimated; s= standard deviation; k=aggregation index obtained from negative 
binomial analysis; x = mean number of mosquitoes; b=Taylor’s aggregation index; c=precision.
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5.6. Methodology

5.6.1. Study area.

Data for this study were collected in the district of Muheza, Tanga region, in north-eastern 

Tanzania. Two villages, Enzi and Tengeni, situated within a radius o f 7km from the district 

headquarter town of Muheza, were selected for this study. Each village consisted of several 

hamlets, separated from each other by short stretches of secondary bush. Enzi was divided 

into three hamlets, Mnundu, Shuleni, and Mgnaza, while Tengeni was divided into six 

hamlets, including Tengeni Central and Kwamkangara. The population of each hamlet 

ranged between 300 and 800 people. The main economic pursuit o f  the inhabitants was 

agriculture, with an emphasis on com, swamp-rice, cassava, banana and coconut 

cultivation. They also reared livestock, some of which were allowed to graze within and 

around the villages. This region had two rainy seasons a year; a short rainy season from 

December to January, and a long rainy season from April to June.

Falciparum malaria was holocndemic in this area, with Anopheles gantbiae and Anopheles 

funestus the primary malaria vectors. These vectors bred mainly in the swamps and 

numerous ditches within and around the villages.

Houses mostly consist of one or two rooms with mud plastered walls and with low thatch 

roofs. The eaves of most houses are open, which facilitates mosquito entry and exit. The 

average number of people per house was about 4, with their chickens, sometimes a dog and 

with other livestock. Cooking is typically done inside the house or under the eaves of the 

porch.
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5.6.2. Study design

The study was conducted in 4 hamlets, Enzi Mnundu, Enzi Mgnaza, Tengeni Central and 

Tengeni Kwamkangara. In each hamlet, 6 designated houses were randomly selected and a 

room in each was chosen for mosquito sampling. All sleeping places in the sampling rooms 

were supplied with untreated bed nets, so that a total of 30 untreated mosquito nets were 

distributed to 24 rooms in the 4 hamlets.

During the first 12 weeks, from February to April 1996, mosquitoes were sampled in only 

two hamlets, Enzi Mnundu and Tengeni Central. In each week a hamlet was randomly 

selected for mosquito sampling for the first set of three consecutive nights (from Sunday to 

Tuesday), followed by sampling in the other hamlet for the second set of 3 nights (from 

Wednesday to Friday). On each sampling occasion mosquitoes were sampled 

simultaneously in all 6 sampling rooms in a particular hamlet.

6 light-traps numbered from 1 to 6, and 10 batteries (6V, 10A) numbered from 1 to 10 were 

used. Each fully charged battery was capable of working effectively for two nights before 

been recharged.

Mosquitoes were sampled using light-traps, placed beside an occupied untreated bed net as 

described by Lines et a!. (1991). Prior to each sampling occasion, the light-traps were 

distributed randomly to the various houses, while the batteries were distributed haphazardly. 

Each householder was instructed in the proper operation of the trap and participated in the 

study by turning the traps on at sunset. The traps were turned off in the morning by the
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project staff, who also recorded the trap and battery numbers used in each room, and the 

number of people who had slept in the room the previous night. The staff also enquired if 

the people notice any malfunctioning o f the trap during the night. Data for traps that did not 

work properly were discarded. During the entire study 21 data points were discarded for this

reason.

During the subsequent 6 weeks, from April to June 1996, the sampling design was altered to 

include two more hamlets, Enzi Mgnaza and Tengeni Kwamkangara, in order to widen the 

sampling area. Each week mosquitoes were now sampled simultaneously in a pair of 

neighbouring hamlets (Enzi Mnundu and Enzi Mgnaza, or Tengeni Central and Tengeni 

Kwamkangara) in six randomly selected houses (3 from each hamlet) for 6 consecutive 

nights. Sampling was alternated between the hamlet pairs each week, and a new set of 

houses was selected each week

5.6.3. Mosquito processing

Mosquitoes from the villages were taken to the Muheza field station laboratory, where they 

were morphologically identified according to the keys provided by Gillies and Coetzee 

(1987), and their gonotrophic stages scored as unfed, fed, semi-gravid or gravid. The 

number of mosquitoes of each species and gonotrophic stage were counted and then 

recorded. All male mosquitoes were discarded.

Some female An. gambiae mosquitoes were dissected for parity determination using the 

method described by Detinova (1963).
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5.7. Statistical analysis

Taylor’s power law was used to analyse both the spatial and temporal variation of An. 

gambiae in each of the study villages. For the analysis of spatial variation in mosquito 

abundance, the mean, x„ and variance, s 2, (untransformed xs, and s /)  of An. gambiae 

mosquitoes were calculated for each night in each village. The spatial aggregation index of 

mosquitoes was estimated by regression of s 2 against xs, after transforming both to log/o 

scale (Taylor 1961).

For the analysis of temporal variation the means and variances were calculated per house 

per night for mosquitoes collected within each month. Monthly intervals were used for 

calculating s,2 and x, because we wanted to assess day-to -day variability within months. The 

variability of mosquitoes between days in a month was determined by regression of s 2, on 

at,, after transforming both s 2 and x, to log|0 scale (Taylor 1961).

Taylor and Woiwod (1982) observed that results from application of the power law could be 

biased if low means (m < 2) and variances (s2 < 4) are included in the analysis. These low 

values can distort the regression coefficient by reducing the slope and increasing the 

intercept of the regression line. Therefore, all Power law regression analyses of these data 

were carried out after excluding means, m < 2, and variances, s2 < 4. In the present case, 

only one record had to be excluded from the data for spatial analysis, and none from the 

data for temporal analysis.
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The least squares linear regression procedure of STATA 5.0 (Statacorp, 1995) was used to 

determine variables in the Power law. Confidence intervals were used to determine if the 

slope of the regression lines (b values) were significantly greater, or less than, 1.
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5.8. Results

5.8.1. Spatial and temporal variation of mosquito abundance

Figures 5.1a and b, and 5.2a and b show the day-to-day and house-to-house variation of the 

number of female An. gatnbiae mosquitoes caught by light-traps in individual houses during 

the first 12 weeks of the study. Unsurprisingly, the figures show that the number of An. 

gatnbiae caught by a light trap in the same house varied from night to night, while those 

caught on the same night varied from house-to-house within a hamlet. Although both 

hamlets were fairly small and the houses quite close to each other, differences of about 10- 

fold were often observed between the numbers of mosquitoes caught on successive nights in 

the same house, and also at different houses on the same night. Part of the observed 

variation was systematic, because some houses consistently attracted more mosquitoes than 

others.
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Figure 5.1. Day-to -day variation of the number of female An. gambiae caught in light- 
traps in (a) houses 1 to 3 and (b) houses 4 to 6 in Enzi. Day 1 was 5th February 
1996.
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Figure 5.2. Day-to -day variation of the number of female An. gambiae caught in light- 
traps in (a) houses 1 to 3 and (b) houses 4 to 6 in Tengeni. Day 1 was 5,h 
February 1996.
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5 .8 .2 . P o w e r  la w  r e g r e s s io n  a n a ly s is

Power Law regression analysis for both spatial and temporal distributions of the abundance 

of An. gambiae mosquitoes yielded slopes significantly greater than one, signifying spatial 

and temporal aggregation of An. gambiae mosquitoes (See figures 5.3. and 5.4.). Table 5.2 

shows that the spatial and temporal aggregation indices in Enzi were not statistically 

different from the corresponding indices in Tengeni.

The results also showed that the spatial aggregation indices in both Enzi and Tengeni were 

not significantly different from their corresponding temporal aggregation indices. The 

spatial aggregation index for the pooled villages was also not significantly different from the 

corresponding temporal aggregation index. This signifies that the degree of spatial variation 

of An. gambiae mosquitoes was not significantly different from the degree of temporal 

variability.

As can be seen from Table 5.2 the transformation indices for An. gambiae mosquitoes, 

estimated from p=l-b/2 (See Section 5.7) were not significantly greater than zero. This 

indicates that a logarithmic transformation is the most appropriate for transforming data on 

abundance in An. gambiae mosquitoes.
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Figure 5.3. Taylor's power law regression for spatial analysis of variance against the 
mean density of An. gambiae in each village. Each data point stands for the log- 
transformed mean and variance of the number of An. gambiae per light trap 
caught over all the houses sampled on a particular night in each village.

5.00
4.50 -
4.00
3.50
3.00
2.50
2.00

1.50 
1.00 

0.50
0.00

0.50

♦  Enzi 

------Enzi

Tengeni

"Tengeni

0.70 0.90 1.10 1.30 1.50 1.70 1.90 2.10 2.30
Iog10(mean mosquitoes abundance/house/night)

ISO



Io
g1

0(
va

ria
nc

e 
be

tw
ee

n 
da

ys
 w

ith
in

 
m

on
th

s 
in

 e
ac

h 
ho

us
e)

Entomological evaluation o f treated bed nets Chapter 5

Figure 5.4. Taylor’s power law regression for temporal variance against the mean 
density of An. gambiae in the two villages. Each data point stands for the log- 
transformed mean and variance of the number of An. gambiae per trap night 
caught over all the houses sampled on a particular night.
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Table 5.2. Regression coefficients of Taylor’s power law for spatial and temporal 
variability of An. gambiae s.L. Subscript s and t stand for spatial and temporal 
values respectively, p is a transformation factor, r2 = goodness of fit of the 
regression model, p = 1 - b/2 (See section 6.7).

a b (95% C.I.) P T 2

as a, bs b, Ps P t 7 7 ^ 77
Enzi 0 .6 9 0 .6 3 1 .9 9

( 1 .5 8 ;  2 . 4 1 )

1 .83

( 1 .5 5 ;  2 .1 1 )

0 .0 0

( 0 .2 1 ;  - 0 .2 0 )

0 .0 8

( 0 .2 2 ;  - 0 .0 6 )

0 .6 3 0 .8 4

Tengeni 1 .8 6 0 .8 9 1 .7 0

( 1 .4 4 ;  2 . 0 1 )

1 .7 7

( 1 .4 7 ;  2 .0 6 )

0 .1 5

( 0 .2 8 ; -  0 .0 1 )

0 .1 1

( 0 .2 6 ;  - 0 .0 3 )

0 .7 6 0 .8 4

both
villages

1 .3 2 0 .6 9 1 .7 9

( 1 .5 7 ;2 .0 4 )

1 .82

( 1 .6 3 ;  2 .0 8 )

0 .1 0

( 0 .2 1 ;  - 0 .0 2 )

0 .0 9

( 0 .1 9 ; -  0 .0 4 )

0 .7 2 0 .8 6
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5.8.3. Optimum allocation of sampling effort between space and time for estimating 
An. gambiae densities.

The optimum allocation o f sampling effort between houses (space) and nights (time) was 

calculated using Taylor’s Power law (See table 5.1). It was calculated for three levels of 

precision, 5%, 10% and 20%. For example, a sample size which gives a 5% precision is that 

which would permits the estimated sample mean to be within 5% of the population mean.

Figure 5.5. Taylor’s Power law estimation of the number of sampling houses/night that 
would permit An. gambiae abundance to be estimated to within 5%, 10% and 
20% of the actual abundance on each occasion, in our study villages for 
different mosquito densities.
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F ig u r e  5 .6 . T a y lo r ’s la w  e s t im a t io n  o f  th e  n u m b e r  o f  s a m p lin g  n ig h ts /v il la g e /m o n th
th a t  w o u ld  e n a b le  o n e  to  e s t im a te  m o s q u i t o  a b u n d a n c e  to  w ith in  5 % , 1 0 %  and  
2 0 %  fo r  e a c h  m o n th , fo r  d if fe r e n t  m o s q u it o  d e n s it ie s .

Figures 5.5 and 5.6 show the number of houses sampled per night per village and sampling 

nights per month per village, respectively, that would permit village-level mosquito 

abundance to be estimated to within 5%, 10% and 20% of the population mean, for a range 

of mosquito densities. The figures clearly show that for each level of precision the total 

number of sampling occasions or houses sampled is inversely related to mosquito density.

Comparison of Figures 5.5 and 5.6 shows that at each level of sampling precision the 

number of sampling nights per month per village is slightly higher than the number of 

sampling houses per night per village. Hence, in order to estimate mosquito abundance with 

a given level of precision, sampling effort should be allocated so that the frequency of
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sampling per month per village is slightly higher than, or at least equal to, the number of 

houses sampled per night.

Further examination of figures 5.6 revealed that sampling in each house for about 4 nights a 

month would permit a house-level mosquito abundance in a particular month to be estimated 

to within at least 20% of its true value. Figure 5.5 revealed that sampling in at least 3 houses 

per village per night would permit village-level mosquito abundances to be estimated to 

within 20% of the true abundance for that night.
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5.9. Discussion

Power law analysis of the spatial distribution of An. gambiae mosquitoes in the two 

Tanzania villages revealed clustering. Spatial clustering indicates that the mosquitoes were 

more attracted to some houses than others. This result agrees with that obtained by Ribeiro 

el at., (1996) in Ethiopia, who also showed spatial clustering of adult An. gambiae 

mosquitoes. In their study, clustering was observed mainly at the peripheral houses of the 

study village, which may imply that factors related to the location of the houses, such as 

their distance from breeding sites, vegetation around the houses, etc., rather than house- 

specific factors (e.g., house design, presence o f open eaves), are involved. In the present 

study, the villages were small (150m wide x 150m long), and so most o f the houses were 

closed to bushy vegetation, but their relative distances from the major breeding sites were 

different. Hence, it is possible that both the location of, and factors specific to, the houses 

could have been responsible for the differences in the number of mosquitoes caught in 

different houses on the same night.

When mosquito samples are taken over a period of time, the issue of temporal variability 

becomes crucial. Analysis of temporal variability for An. gambiae mosquitoes revealed a 

clumped within-month distribution. We know that some meteorological factors (e.g., rainfall 

during the previous week) have long-term impact on mosquitoes and may even affect their 

actual abundance, while others only act over the short term (e.g., wind velocity) and affect 

only the catchability of mosquitoes (Bilingmayer, 1985). The relative degree to which these 

long and short-term factors contribute to the number of mosquitoes caught by any given 

sampling method is as yet unknown. Hence the degree to which the number of mosquitoes
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caught in light traps actually represents the mosquito population is also unknown. Gillies 

(1970) commented that “mosquito sampling carried out indiscriminately without due regard 

to all those factors that affect its distribution may still yield a “good” catch of insects, but 

the interpretation of the data obtained in terms of vector ecology and abundance may easily 

became a matter of sheer speculation or personal opinion”. This means that without an 

understanding of the key factors that affect the number of mosquitoes caught by a given 

sampling method, the interpretation of any mosquito data obtained from routine sampling is 

likely to be uncertain. Consequently, it is very important to understand the main 

determinants of mosquito abundance in a given area, so that sampling programmes can be 

designed based on such knowledge rather than using sampling routines which do not take 

these into consideration.

Analysis showed that temporal and spatial aggregation indices for individual villages were 

not significantly different from each other. This suggests that for a given number of 

sampling efforts, the optimum allocation is that in which the frequency of sampling per 

village per month is equal to the number of houses sampled per village per night. For 

example, the most appropriate allocation of 4 sampling effort a month, would be to sample 

twice a month in 2 houses on each occasion.

Taylor’s power law was used to show that by sampling in 3 houses per night in a village, the 

village-level mosquito abundance for that night can be estimated to within 20% of the 

population estimate for that night. In addition, power law analysis of temporal variability 

showed that by sampling on at least 4 nights a month at a particular house, the house-level
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mosquito abundance for that month could also be estimated to within 20% of its true 

monthly average. It is, however, unclear how to combine these in order to get village-level 

mosquito estimates for each month, within a given level of precision.

It is worth noting that these sample sizes are only initial estimates, because whereas 

temporal aggregation was estimated by sampling for 12 nights every 30 days, only 6 of the 

more than 50 houses in each village were used to estimate spatial aggregation. The estimate 

of temporal variability is therefore likely to be more reliable than the corresponding estimate 

of spatial variability. It is possible that if more houses had been used the magnitude of the 

spatial variation would have been different.

As a result of spatial and temporal aggregation, and the dependence of variance on the 

mean, data involving mosquito counts often need to be transformed for parametric statistical 

analysis (Southgate 1978). Taylor (1961) claimed that the slope (b) of the linear regression 

derived from Power law analysis could provide an indication of the most appropriate 

transformation for statistical analysis. The transformation indices obtained from the spatial 

and temporal aggregation indices o f An. gambiae mosquitoes were not significantly different 

from zero, indicating that a logarithmic transformation is appropriate for their analysis 

(Healy & Taylor 1962).

The main conclusion of this study is that temporal (between-night) and spatial (between 

houses) aggregation indices are approximately equal in this study area. This conclusion is 

tentative, because very few houses were sampled, and over a short period of 5 months, so it
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would be necessary to repeat this study in the same geographic area over a longer period 

using more houses to verify the results. It is likely that the (estimates of) spatial and 

temporal aggregation indices would be different in other places, so there is also a need to 

repeat this study in different geographic locations to investigate the relative levels of spatial 

and temporal aggregation. This work therefore opens the way for similar studies in the 

future. We need to find out what the dominant spatial and temporal factors are, whether the 

same houses should be used on each occasion or a random selection o f houses, and whether 

the same routine for estimating mosquito abundance should be used for determining parity 

rates. These issues are considered in the next chapter.
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CHAPTER 6

SPATIAL AND TEMPORAL DISTRIBUTION OF ANOPHELES GAMBIAE 

MOSQUITOES IN NORTH-EASTERN TANZANIA - IMPLICATIONS FOR 

MOSQUITO SAMPLING.

6.1. INTRODUCTION

The previous chapter examined spatial and temporal aggregation of An. gambiae mosquitoes 

in two Tanzania villages, and concluded amongst other things that the degree of temporal 

variability was not statistically different from that of spatial variability. This suggests that 

for a given sampling effort, the sampling protocol which gives the most precise estimate o f 

mosquito abundance is that in which the frequency of sampling per village per month is 

equal to the number of houses sampled per village per night.

This chapter investigates:

1. some environmental factors that may affect the number of mosquitoes caught in light 

traps;

2. whether sampling in the same ‘fixed’ houses on each occasion gives more precise 

estimate of mosquito abundance than sampling in a random selection of houses;

3. whether the same routine which optimises the precision of estimating village-level 

mosquito abundance also optimises the precision of village-level parous rates.

The chapter is concluded with pragmatic recommendations on how to distribute sampling 

effort when village-level population estimates are required. The focus is on the relatively well-
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defined and well-studied context of malaria vector control in Africa, but the principles 

established are likely to be more widely applicable.
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6.2. Study area, design, data collection and mosquito processing.

The study area and design were described in the previous chapter. All mosquitoes caught 

were morphologically identified according to the keys provided by Gillies and Coetzee 

(1987), and their gonotrophic stages assessed. Ovaries of unfed and freshly fed anophelines 

were routinely dissected for parity (Detinova, 1962). Heads and thoraces of all anophelines 

were preserved for sporozoite rate determination by the ELISA method (Wirtz et al. 1987).

On each sampling occasion, the following information was recorded using the following

codes:

1. the moon phase (no moon = 0, quarter moon=l, half moon = 2 and full-moon = 3) on the 

night of sampling

2. rainfall during sampling (rainfall = 1, no rainfall = 2)

3. the number o f people who slept in the sampling room

4. the state of the windows (unscreened = 1, screened = 2)

5. the type of roofing on the house (thatch = 1, corrugated zinc = 2).
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6.3. Statistical Analysis

The data were analysed using two different statistical software packages. Firstly, the data 

were analysed using the Multilevel modelling program, MLN (Goldstein et a!., 1995), to 

examine the effect of various environmental factors on the spatial and temporal distribution 

of mosquitoes. Secondly, the precision of estimating village-level mosquito densities and 

parous rates using different pre-determined sampling routines were determined using the 

STATA statistical software package (Statacorp, 1995).

6.3.1. Multi-Level Modelling (MLN analysis)

Multilevel models are random coefficient models suitable for the analysis of data with some 

underlying hierarchical structure (Goldstein & McDonald (1988). MLN was used in this 

work because it permits the significance of each factor to be estimated together with its 

relative contribution to the spatial and temporal variance. In this way, it was possible to 

assess the effect of each factor on mosquito abundance and its influence on the spatial and 

temporal variability of mosquitoes.

The data were collected by sampling mosquitoes for 108 nights in 22 houses in 4 hamlets 

(two villages), and our aim was to investigate the effect of various environmental factors 

(explanatory variables) on the number of An. gambiae mosquitoes caught, and also on their 

day-to-day (temporal), and house-to-house (spatial) distribution. It is assumed that the 

number of female An. gambiae mosquitoes caught on the i'h night in the j h house can be 

described in terms of village (¿>/), (village l=Enzi, and village 2=Tengeni), month of 

sampling (62) (February = month 1, ...June = month 5), state of the windows in each
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sampling house (¿>3 ) (open = 1, closed = 2 ), moon-phase on night of sampling (6 4 ) ( 1 = no 

moon; 2= half moon; 3= full moon), number of people who slept in the room (b$), rainfall 

during sampling (b6), (rainfall =1, no rainfall = 2), roofing of the houses (bj), (l=thatch, 2= 

corrugated zinc), by the equation

yij— bo+ 6lXjj + ¿>2Xy + ¿>3Xy + i>4Xjj + ÔsXy + ¿>«Xy + b7xj + Uj + Cy ......................... 6.1.

where yy is the natural logarithm of the number of mosquitoes caught on the i 'h night at the 

f h house, b0 is the intercept, Uj indicates that over and above any given number of 

mosquitoes caught each house has it own contribution, and c,y is the extra contribution of 

day-to-day variation in the number of mosquitoes. Thus Uj and c,y are random variables, 

assumed to have a mean of zero and a constant variance (Goldstein 1995).

The assumptions of the model are normality and independence of the level 1 and level 2 

residuals. It is also assumed that missing responses are randomly distributed with respect to 

their location and magnitude.

The mosquito distribution was positively skewed and the previous chapter showed that the 

logarithmic transformation was most appropriate for its transformation. The data were 

therefore transformed to the natural logarithm, and treated as a negative-binomial 

distribution. The hierarchical order of the random effect model adopted was: record 

identification number in level 1; day of sampling (Feb. 5 as day 1) in level 2 (temporal), and 

houses (spatial) in level 3 (Goldstein 1995). This permitted the random variance to be
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partitioned between spatial and temporal variations, in order that the effect of each factor on 

spatial and temporal variation could be determined (See appendix 2 for the programme).

6.3.2. Estimating sampling precision for determining mosquito abundance.

This analysis was undertaken in order to compare the relative precision of the estimates of 

mosquito abundance obtained from different sub-samples of the data representing various 

alternative sampling routines. The counts of female An. gambiae mosquitoes caught in 

individual light-traps were log-transformed to the scale log/o(x+l). The STATA 5.0 

statistical package was used to design statistical programmes capable of generating different 

subsets of this data, with each subset simulating possible data from a less intensive sampling 

routine (See Appendix 3).

Thus, a program was designed to generate a subset of the data collected from Enzi by 

simulating the routine of sampling one night a week in a single designated house for 12 weeks. 

This program was run 1000 times to generate 1000 subsets of data. The mean log mosquito 

count for each of the 1000 simulated data sets was calculated, and a new data set containing the 

1000 means was constructed. The mean of these means and the width of its 95% confidence 

interval was then calculated. The width of the 95% confidence interval was determined by first 

sorting the individual means in ascending order and then removing the top 25 and bottom 25 

records. The range of the remaining 950 records was then taken to be the width of the 95% 

confidence interval.
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The Relative precision was estimated as the percentage relative precision (PRP) , which is 

expressed as:

PRP = 50 x (size o f the confidence interval) /  mean (Sutherland, 1997).

For each sampling routine, the sampling precision was calculated for data generated when the 

same houses were used, and also when the houses were randomly selected on each sampling 

occasion.

The main data set was collected by sampling 3 nights per week per village in 6 houses per 

nights per village over a period of 12 weeks. In order to simulate a sampling routine where one 

fixed house was sampled each week it was assumed that the choice of house (one of the six) 

was made first. Then in each of the 12 sampling weeks one of the three sampling days was 

chosen randomly (for a period of 12 weeks). There were therefore 6 x 312 = 3,188,646 possible 

data sets for this simulated routine. To simulate a sampling routine where a new house is 

randomly selected each week (without exclusion) the total number of possible permutations is 

1812 (about 1.156 x 1015). It was assumed here that in each week there were 18 possible 

observations to choose from (3 days x 6 houses) so over 12 weeks, there would be 1812 possible 

data sets. There were therefore sufficient sub-sets of data to carry out the simulation exercises.

166



Entomological evaluation o f treated bed nets Chapter 6

6.3.3. Estimating sampling precision for determining parous rates

The procedure used for calculating the precision of estimating parous rate was similar to that 

described above for mosquito abundance. The parous rates were calculated for each of the 1000 

simulated data sets, by dividing the total number of parous mosquitoes caught by the total 

number of mosquitoes dissected in each subset of data. These were used to construct a new data 

set containing 1000 parous rates. As before, the 1000 estimates were ranked and the top and 

bottom 25 were excluded; the range of the 950 estimates was designated the 95% confidence

interval.
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6.4. Results

6.4.1. Multilevel modeling

MLN analysis was used to determine the effect of some environmental factors on mosquito 

abundance, and also on their spatial and temporal distributions. The approach was to 

construct a multilevel model and include factors in this model in a step-wise manner. The 

factor, village, was the first to be introduced in the model and was kept in it even though it 

was not statistically significant, because we expected the other factors to be related to the 

village in which sampling was carried out. The other factors were then included in the model 

in an arbitrary order. Factors (other than village) that were found to be not statistically 

significant were excluded from the model.

Results o f  the multilevel modelling (MLN) analysis of the effect of various factors on 

temporal and spatial variation in An. gambiae densities are shown in Table 6.1. Table 6.2 

summarises the effect of various environmental factors on the number of mosquitoes caught 

and on their spatial and temporal variation.

Table 6.1 shows that there was no significant difference between the number of An. gambiae 

mosquitoes caught in the two villages, whether or not the other factors were taken into 

account. Tables 6.2 shows that including village in the model (model 2 in Table 6.1) reduced 

the house-to -house variation by 22% [(0.94-0.73) x 100/0.94], while the day-to-day 

variation was reduced by 14%. It is to be noted that a decrease in variance indicates that a 

factor explains some of the variation, while an increase in variance signifies that the factor 

uncovered more variation. The results also revealed significant differences in the number of
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mosquitoes caught in different months (Model 3). Table 6.2 shows that by including month 

of sampling in the model the spatial variation was reduced by about 23%, while the temporal 

variation was increased by about 18%.

Table 6.1 also shows a significant difference between weeks in the number of mosquitoes 

caught. By including week in the model the spatial variance was further reduced by 13%, 

with no major impact on the temporal variance.

Further analysis suggests that the number of An. gambiae mosquitoes caught was inversely 

related to the number of sleepers. When the number of sleepers was included into the model 

the spatial and temporal variances were increased by 33% and 5% respectively.

The state of the windows (screened or open), type of roofing (thatch or corrugated zinc) and 

rainfall and moon phase on night of sampling, did not affect the number of mosquitoes 

caught.

169



Entomological evaluation o f treated bed nets Chapter 6

Table 6.1. Parameter estimates (SE) of different models showing the effect of various 
environmental factors on the abundance, temporal and spatial distribution of 
An. gambiae mosquitoes. Factors that had no significant effect on mosquito 
abundance (screened or unscreened windows, type of roof, rainfall and moon- 
phase on sampling night) were omitted.

Parameters Model 1 Model 2 Model 3 Model 4 Model 5
Constant 3 .6 9  (0 .2 1 ) 2 .9 0  (0 .5 8 ) 2 .1 0 (0 .5 3 ) 2 .8 6 (0 .5 3 ) 3 .1 6 ( 0 .6 0 )
Village - 0 .5 2  (0 .3 8 ) 0 .4 4 (0 .3 3 ) 0 .5 9  (0 .3 2 ) 0 .6 3  (0 .3 6 )
Month of - - 0 .21 (0 .0 4 )* 0 .5 5  (0 .1 3 )* 0 .5 1  (0 .13 )*

sampling
Week of - - - -0 .1 8 (0 .0 3 )* 0 .1 8 (0 .0 3 ) *

sampling
Number of - * * - -0 .2 2  (0 .07 )*

sleepers

Level three random parameters - spatial(houses)(u in equation 6.1)
0 .9 4  (0 .3 0 ) 0 .7 3  (0 .2 3 ) 0 .5 6 (0 .1 8 ) 0 .4 9 (0 .1 6 ) 0 .6 5  (0 .2 1 )

Level two random parameter - temporal (days)(c in equation 6.1)
0 .7 6  (0 .0 5 ) 0 .6 5  (0 .0 4 ) 0 .77  (0 .0 5 ) 0 .7 9  (0 .0 5 ) 0 .8 3  (0 .0 5 )

Although standard errors o f the random parts are given in the tables, they are known to be 
unreliable particularly for small sample such as this and should not be used to assess the 
degree o f significance o f the estimates. Likelihood ratio statistics were therefore used to 
assess significance differences. * represents a significant effect o f a factor.

Table 6.2 Summary of the effect of various environmental factors on mosquito 
abundance and on the spatial and temporal variation.

% reduction in spatial and temporal 
variance by stepwise inclusion of 
various factors.

Factors Effect on mosquito 
abundance

Spatial variation Temporal
variation

Constant - - -
Village ns 22% 14.0%
Month of sampling P < 0.005 23% -18.0%
Week of sampling P<0.005 13% -2.5%
No. of sleepers P < 0.005 -33% -5.0%
Total change 25.0% -11.5%
E g. a change in spatial variance o f 22% caused by village is the difference between the 
house-to -house variance in model l and model 2 (refer Table 6.1) as a percentage o f the 
house-to -house variance in model l(i.e., (0.94-0.73)/0.94 = 0.22). The others were 
calculated in similar manner.
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6 .4 .2 . SAMPLING PRECISION

6 .4 .2 .1 . E s t im a t in g  M o s q u ito  Abundance

The approach used for calculating the precision of estimating mosquito abundance using 

various less intensive sampling routines, in either the same or randomly selected houses, is 

described in section 6.3.2. The sampling precision for each sampling routine was then 

estimated as the percentage relative precision (PRP) (The PRP is inversely related to the 

precision of the sampling estimate). For various predetermined levels of sampling effort, the 

PRP was compared between sampling routines where fixed houses were selected and those 

where random houses were selected.

Figures 6.1a and 6.1b show for each village the precision of estimating mosquito abundance 

as a function of sampling routine involving various amounts of sampling effort. The figures 

compare the precision obtained when estimating mosquito abundance by sampling in the 

same houses with that obtained where random houses were selected on each occasion. The 

figures show that the precision of estimating mosquito abundance increases as the number of 

houses sampled and also as the frequency of sampling increases. The figures also reveal 

higher sampling precision when sampling was carried out in randomly selected houses, than 

when the same houses were used on each sampling occasion.

Figure 6.2 compares the relative precision of estimating the abundance of An. gambiae 

mosquitoes using different allocations of the same total sampling efforts, in a randomly 

selected set of houses on each occasion. It is clear from the figure that the precision of 

estimating the abundance o f An. gambiae mosquitoes generally increases when the sampling
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frequency is increased. This suggests that the differences in precision were mainly due to the 

total number of sampling efforts, but that there was a moderate improvement in favour of 

frequent sampling.

Figure 6.3 compares the precision of estimating mosquito abundance by sampling weekly 

with sampling on two consecutive nights a fortnight, using the same total sampling effort. 

The figure clearly reveals that sampling at weekly intervals produced more precise estimates 

than sampling on two consecutive nights per fortnight.
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Figure 6.1a. Precision of estimating A/i. gambiae abundance over 12 weeks in Enzi 
using various sampling procedures, in either the same houses (dotted lines) or 
in a random selection of houses on each occasion (full lines).

Figure 6.1b. Precision of estimating A«. gambiae abundance over 12 weeks in Tengeni 
using various sampling procedures, in either the same houses (dotted lines) or 
in a random selection of houses on each occasion (full lines).
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Figure 6.2. The relative sampling precision for different allocation of the same 
sampling efforts using a random selection of houses on each sampling occasion 
in Tengeni village. W= Weekly sampling; F=Fortnight sampling; M=monthly 
sampling.

Figure 6.3 Comparison between the precision of the estimates of mosquito abundance 
obtained by sampling once a week and two consecutive nights a fortnight, using 
the same total sampling effort.
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6.4.3. Spatial and temporal distribution of parous rates

Figures 6.4 and 6.5 show the week to week and house-to -house variation of the parous rates 

of An. gambiae mosquitoes in two Tanzanian villages. The figures show that, unlike 

mosquito abundance, the patterns of weekly variation of parous rates at individual houses in 

the same village were remarkably similar. However, Chi-square analysis showed that there 

were significantly differences between the parous rates estimates for individual houses in 

each village (Enzi: %2 = 13.20, d.f=5, p=0.022; Tengeni: x2 = 19.07, d.f. = 5, p=0.002). 

There was also a significant difference between the overall parous rates for the two villages 

(X2 = 4.94, d.f-1, p=0.026).

Tabic 6.3 Parous rates, number of An. gambiae dissected from catches in each 
sampling house in each village (95% Confidence interval).

House
Number

Enzi Tengeni

1 79.4% of 954 (76.6-81.8%) 82.6% of 644 (78.2-85.4%)
2 78.3% of 614 (74.8-81.5%) 80.9% of 1063 (78.4-83.2%)
3 72.6% of 453 (68.0-76.8%) 75.9% of 730(72.6-78.9%)
4 75.1 % of 349 (70.1 -79.4%) 76.2% of 473 (73.1-80.8%)
5 74.0% of 213 (66.2-80.6%) 74.6% of 421 (70.1-78.6%)
6 83.6% of 110 (75.1-89.8%) 81.7% of 119(73.7-86.8%)
Combined
sites

76.5% of 2793 (74.9-79.1%) 78.9% of 3460 (76.5-80.3%)
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Figure 6.4. Spatial and temporal distribution of parous rate of An. gambiae in 
Enzi.

■HOUSE6 
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5 6 7 8
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Figure 6.5. Spatial and temporal distribution of parous rate of An. gambiae in 
Tengeni

■HOUSE 6 
■HOUSE 5 
■HOUSE 4

HOUSE 1

The week o f sampling refers to the week a particular sample was collected, starting from the 
week of February 5th, when sampling commenced.
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6.4.3.1. Precision of estimating parous rates

The procedure for calculating the precision of estimating parous rates using each sampling 

routine is described in section 6.3.3. As in the case of mosquito abundance, the precision of 

estimating parous rates was calculated in terms of the percentage relative precision.

Figures 6.6 and 6.7 compare the precision of estimating parous rates by sampling in the 

same houses on each occasion with that where a random selection of houses were used on 

each occasion, in each village. The figures show that, as in the case of estimating mosquito 

abundance, the precision with which parous rates are estimated increases as the number of 

houses sampled and the frequency of sampling increase. However, unlike the estimation of 

mosquito abundance, there seem to be no clear differences in the precision of estimating 

parous rates between sampling in a random selection of houses and sampling in the same 

houses on each occasion.

Figure 6.8 shows the precision with which parous rates were estimated for different 

allocations of the same sampling effort. The figure show no major changes in relative 

precision of different allocations of the same total sampling effort, although slightly higher 

precision is apparent in the case of sampling carried out at a higher frequency.
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Figure 6.6. Precision of estimating Parous rates in Enzi using various sampling designs 
in either the same houses (dotted lines) or in a random selection of houses 
on each occasion (full lines).

Figure 6.7. Precision of estimating Parous rates in Tengeni using various sampling 
designs in either the same houses (dotted lines) or in a random selection of 
houses on each occasion (full lines).
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Figure 6.8. The relative precision of parous rate estimate from various allocation of the 
same sampling efforts in a random selection of houses. W= Weekly 
sampling; F=Fortnight sampling; M=monthly sampling.

179



Entomological evaluation of treated bed nets Chapter 6

6.5. Discussion

The key conclusions from this study can be stated as follows:

• The degree of spatial aggregation of An. gambiae mosquitoes is equal to the degree of its 

temporal aggregation. This means that for estimating village-level mosquito abundance 

the frequency of sampling per month should be equal to the number of houses sampled 

per sampling occasion in each village. For example, the optimum allocation of 4 

sampling effort a month per village is to sample twice a month in two houses on each 

occasion.

• When estimating village-level mosquito abundance, it is preferable to sample in a 

random selection of houses on each sampling occasion rather than using the same set of 

houses each time.

• When estimating village-level parous rates, it does not matter whether sampling is 

carried out in the same houses or in a random selection of houses on each occasion. 

Hence, a random selection of houses can be adopted to permit the simultaneous 

determination of village-level mosquito abundance and parous rates.

• When estimating village-level mosquito abundance it is better to distribute sampling 

occasions evenly within each month. For example, if sampling on four occasions a 

month, weekly sampling is recommended.

• When comparing mosquito abundance between paired villages, it is advisable to sample 

in both villages on the same nights. For example, paired treatment and control villages 

should be sampled on the same night.
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It is not surprising that the precision of estimating mosquito abundance was higher when 

sampling was carried out in a random selection o f houses than when sampling in the same 

fixed houses on each occasion. This is because since mosquito distribution is aggregated, a 

random selection of houses increases the spatial representativeness of the estimate.

On the other hand, sampling in either a random selection of houses or a fixed set of houses 

on each occasion did not seem to affect the precision with which parous rates were 

determined. A possible explanation is that even though mosquito distribution is aggregated, 

parous and nulliparous mosquitoes are expected to be randomly distributed within a 

mosquito population, and between individual houses. There are as yet no known 

environmental factors that preferentially attract mosquitoes on the basis of their parity 

status.

The MLN analysis facilitated an assessment of the relative contributions of various 

environmental factors to the spatial and temporal distribution of mosquitoes. The analysis 

showed that the factor, village, explained a large proportion of the temporal variation in 

mosquito abundance. This was probably because sampling was not carried out on the same 

nights in the two villages. It seems that the variation in mosquito abundance over time was 

confounding the village level-estimates. The implication of this for designing sampling 

routines is that, for entomological evaluation o f vector control trials, it is advisable to 

sample mosquitoes in matched control and treatment villages on the same nights. If the 

villages arc nearby, such a design would ensure that the meteorological circumstances 

during mosquito sampling are similar.
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The MLN analysis showed that month to month differences explained some o f the spatial 

variation and also uncovered additional temporal variation. This is because certain spatial 

factors may change from month to month. For example, it is expected that breeding sites 

may change from month to month, which may affect mosquito distribution within a village. 

At the same time some meteorological changes that affect mosquito abundance may be more 

dominant in some months that in others, hence by including month of sampling in the 

model, these differences were uncovered. The implication of this for mosquito sampling in 

evaluating vector control trials is that in assessing mosquito abundance, it is advisable to 

perform the analysis on at least month estimates rather than on averages over several 

months. The latter may hide some of the differences between control and treated villages.

Surprisingly, our results show that the number of mosquitoes caught was inversely related to 

the number of sleepers in a room. This is contrary to results obtained in earlier studies by 

Haddow (1942) and Gillies & Wilkes (1972) showing that the number of mosquitoes caught 

in a room increases as the number of sleepers increases. Gillies and Wilkes (1972) found 

that mosquitoes were attracted to the carbon dioxide from human breath in numbers that are 

directly proportional to the number of sleepers. The reason for this disparity is not yet 

known, but its implication for mosquito sampling is that the number of people who sleep in 

a sampling room is an important factor, and therefore should be taken into consideration 

when designing sampling routines. This could be done either by recording the number of 

sleepers and including it as a factor in the final statistical analysis, or by sampling in rooms 

with the same number of sleepers, in paired treated and control villages.
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Not surprisingly, the analysis showed that the precision with which mosquito abundance is 

estimated increases as the sampling frequency increases. This result is similar to that from 

two independent studies by Loomis & Hanks (1959) and Miller et al., (1977), who 

correlated the average mosquito abundance from sampling 7 nights per week with that from 

sampling 1,3 and 5 nights per week. They observed that the correlation increased with 

increase in sampling frequency.

183



Entomological evaluation o f treated bed nets Chapter 6

6.6. Recommendations

The recommendations from this study are:

1. when estimating village-level mosquito abundance with a predetermined sampling 

effort, it is better to sample in a random selection of houses on each occasion rather than 

using the same houses each time; in addition the mosquitoes caught from this sampling 

regime can be used for estimating parous rates.

2. when estimating mosquito abundance in vector control trials, it is preferable to distribute 

the sampling occasions evenly within each month, rather than clumping all the sampling 

occasions over a short period.

3. it is important to record the number of sleepers in each sampling room and include it as a 

factor in the final statistical analysis, so that its effect can be segregated from the effect 

of the intervention.

4. when estimating mosquito abundance in a vector control trial, it is preferable to sample 

intensively an alternate sets of village pairs each month. For example, with 6 village 

pairs, it is advisable to sample mosquitoes in alternate 3 village pairs each month.
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PART 3

CHAPTER 7

DEVELOPING AN ELISA METHOD FOR PYRETHROID DEPOSITS IN 

MOSQUITO NETTING.

7.1. Background

Trials in Africa have shown that mosquito nets impregnated with pyrethroid insecticides 

can protect African children from clinical malaria and death (Alonso et al. 1993a; Nevill 

et al. 1996). This method of malaria control is simple, requires little skill and can be 

supervised by village health workers (Lindsay et al., 1989b). WHO has recently 

recommended the use of pyrethroid impregnated bednets for malaria control (WHO, 

1996). Depending on the insecticide used, the bednets need to be retreated at least 

between 6 - 12  months interval. It is, however, not yet clear which distribution channels 

will deliver insecticides for re-treatment of nets (Lines 1996b). Three possible channels 

are:

1. through PHC facilities, whereby nets of all villagers are treated at the same time

2. through PHC facilities but by individual treatment as required

3. by home dipping, whereby individuals take the insecticide home to treat their nets. 

Probably the first of these gives the best opportunity to supervise and standardise the 

dipping process.

During a bednet impregnation exercise in The Gambia, Alonso and others (1993b) aimed 

at treating nets at 500 mg a.i./m2, but they used up insecticide equivalent to 1000 mg /m2, 

and found that the insecticide concentration on individual nets ranged from <100 to 

-1000 mg/m2, with a mean of 170 mg/m2. This clearly shows huge between-net variation
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in insecticide uptake, and also tremendous loss of insecticide. It is possible that other 

delivery methods may give even more between-net variation in insecticide uptake. The 

need for quality control in routine net treatment is therefore critical.

There is already a qualitative test for the presence of permethrin residue on nets (Muller 

et al. 1994). This is indeed very valuable, but it can only answer question on whether the 

net has been treated or not. There is thus clearly a need for a properly quantitative test, 

with which it would be possible to compare the performance of different distribution 

strategies, and to check that the doses delivered fall within an acceptable range defined 

by safety and effectiveness.

Current routine analytical methods for detecting permethrin and other pyrethroids rely 

upon the use o f  chemical procedures involving solvent extraction in conjunction with 

high pressure liquid chromatography (HPLC), or gas chromatography (GC) with either 

electron detection (GC\ECD) or mass spectrometry (GC-MS) (Bonwick et al., 1994b; 

Yasin et al., 1995). Although capable of good sensitivity such methods are restrictive in 

that a considerable investment in time, equipment and operative skills is required. In 

practice this means that not many samples can be analysed and the results are often not 

available for several months. These limitations make such analysis almost useless for 

routine quality control.

Immunoassays offer an alternative to such chemical methods, and have the potential to 

provide a rapid screening procedure with faster sample throughput at lower cost. 

Ultimately, they could be developed for field situations. Immunoassays such as the 

enzyme linked immunosorbent assay (ELISA) have been previously reported for many
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pesticides (Wratten and Feng 1990) including the pyrethroid permethrin, (Bonwick et 

al„ 1994a; Skerrit et al., 1992; Stanker et al., 1989).

To develop an ELISA for such small molecules as pesticides, an immunogen first has to 

be produced. In the work of Stanker et al., (1989) and Skerrit et al., (1992), antibodies 

were raised against an immunogen containing a permethrin analogue (3- 

phenoxybenzyl). This hapten was coupled to a carrier protein and this resulted in 

production of antibodies specific for the phenoxyphenyl moiety distal to the point of 

conjugation o f the protein. Bonwick et al., (1994a) raised similar antibodies by linking 

haptens that mimicked the moieties o f interest (phenoxybenzoic acid) to a carrier protein 

via a four or six carbon chain, as spacer. In this way, they raised polyclonal antibodies 

against 3-phenoxybenzoic acid (PBA) which successfully detected the phenoxyphenyl 

moiety of the permethrin molecule in an indirect competitive ELISA. The aim was to 

develop a test to detect permethrin in environmental matrices, contaminated surface 

waters, sediment and biota (Bonwick at al., 1994b)

This study aimed to utilise the ELISA methodologies developed by Bonwick et a!., 

(1994a) to detect and quantify pyrethroid deposits on mosquito netting, and to validate 

the immunoassay by comparison with Gas Chromatography and Mass Spectroscopy 

(GC-MS).

Entomological evaluation o f treated bed nets Chapter 7
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7.2. Objectives

The specific objectives of this study were to:

1. raise polyclonal antibodies to one or more pyrethroids

2. modify the previously developed competitive ELISA for use in determining 

pyrethroid levels on nets

3. develop techniques for extracting pyrethroid residues on nets into aqueous media.

4. check the accuracy of the ELISA method against GC-MS

5. define the range of cross-reactivity between the polyclonal antibodies produced and 

other pyrethroid insecticides.
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7.3. The basic structure of pyrethroid insecticides.

The basic structure of synthetic pyrethroids is shown in figure 7.1 The pyrethroids can be 

basically divided into two different moieties, namely, the phenoxybenzyl moiety (PBA) 

and the cyclopropane moiety (CPA). The basic structure of especially the PBA moiety is 

similar among most pyrethroids. Hence, it was expected that antibodies produced against 

the PBA part of the permethrin molecule can cross-react with other pyrethroid 

molecules. In the study by Bonwick et a!., (1994a) and Pullen & Hock (1996), 

polyclonal antibodies produced to the PBA part of the permethrin molecule were able to 

recognise the PBA moiety of other pyrethroids, and even those of the alpha-cyano 

derivatives (PBCN).
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7.4. Methodology

Pyrethroids are small molecules that are not immunogenic and so cannot be used to 

immunise rabbits. They are also unsuitable for coating microtitre plates. Therefore two 

conjugates of the hapten (PBA) were made with two different carrier proteins. 

Thyroglobulin (THY) carrier protein was used to raise the antiserum, while bovine 

serum albumin (BSA) carrier protein was used to coat the plate. In this way only 

antibodies against the common moiety (PBA) should be detected.

7.4.1. Immunogen preparation

Phenoxybenzyl alcohol (PBA), phenoxybenzoic acid (PBA), phenoxybenzyl- 

cyanohydrin (PBCN) and their succinate derivatives (PBA-HS; PBCN-HS) were 

conjugated to two different types of proteins: bovine serum albumin (BSA) and porcine 

thyroglobulin (THY). Succinic anhydride (HS) or 6 -aminohexanioc acid (6 C) was used 

as a carbon spacer (Bonwick et al., 1994a), and the mixed anhydride method of Erlanger 

et al., (1980) was employed. This method produced a conjugate whereby the 

phenoxybenzyl group was attached via an ester bond to a four or six carbon spacing 

group and to a carrier protein, as shown diagrammatically in figures 7.2 and 7.3.

Two different conjugation procedures were adopted: cither the hapten (PBA or PBCN) 

was joined to the spacer (4C or 6 C) and then conjugated to the protein (BSA or THY) as 

in figure 7.2; or the protein was first linked to the spacer and then conjugated to the 

hapten as shown in figure 7.3.
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7.4.2. Preparation of the hapten-spacer moiety

50mg of phenoxybenzyl alcohol (PBA) or Phenoxybenzylcyanohydrin (PBCN) and 

150mg of succinic anhydride (4C) or 6  aminohexanoic acid (6 C) were dissolved in 

32mls of pyridine. The mixture was stored overnight at room temperature, after which 

20mls of chloroform was added to the mixture, followed by 30mls of distilled water to 

remove excess succinic acid. The organic and aqueous phases were separated using a 

separating funnel, and the organic phase was dried using a rotary evaporator. The 

product was re-suspended in chloroform and this cycle repeated three times. The final 

product was a pale-brown oil, which was stored at 4°C until further use.

7.4.3. Preparation of the spacer-protein molecule.

lOmg carrier protein (BSA/THY), 50mg of spacer (6 -aminohexanoic acid (6 C) or 

succinic anhydride (4C)) and 50mg of ethyl-3-(3-dimethyaminopropyl) carbodiimide 

(EDC) were dissolved in distilled water (pH 7). The mixture was stirred for 4 hours, and 

allowed to stand in the dark at room temperature for 14 hours. The protein-spacer 

conjugate was then purified by dialysis, freeze-dried, and stored in desiccated form until 

further use.
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7.4.4. Preparation of the conjugate

The pH of 500mls of distilled water was adjusted to 7, by adding droplets of dilute 

sodium hydroxide solution. 2 0 mg of protein (or protein-spacer moiety) was dissolved in 

lOmls of distilled water (pH 7). 200pl of hapten-spacer moiety (or 30mg hapten) was 

dissolved in dimethylformamide (DMF), and added drop-wise to the protein (or protein- 

spacer moiety) solution. Next, lOmg of dicyclohexyl-carbodiimide (DCC) was dissolved 

in 1ml DMF, and added slowly to the protein/hapten-spacer (or hapten/protein-spacer) 

mixture. The mixture was stored overnight in the dark, at room temperature. The hapten- 

spacer-protein conjugate was purified by dialysis in a large volume (5 litres) of water, 

freeze dried and stored in desiccated form at 4°C.
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Figure 7.2. Diagrammatic representation of the production of conjugate by linking 
hapten-spacer moiety to protein

crxr̂ "."̂
3 -Phenoxybenzyl alcohol (PBA) Succinic anhydride (HS) 

OH
Protein (BSA/THY)

3-Phenoxybenzyl hemi succinate (PBA-HS)

Conjugate

Figure 7.3. Diagrammatic representation of the production of conjugate by 
linking protein-spacer moiety to the hapten

Protein (BSA/THY)
Succinic anhydride (HS)

Conjugate (PBA-HS-BSA)
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7.5. Buffers and pesticide stock solutions

The coating buffer consisted of physiological buffered saline (PBS) which was made by 

dissolving 8 gms of NaCl, 0.2gm of KC1., 0.24gm of KH2 PO3 , and 1.44gms of KH2 PO4 

in 1 litre of distilled water and the pH was then adjusted to 7.4. The ELISA and washing 

buffers consisted of PBS with Tween-20 (0.001 and 0.05%, respectively). The blocking 

solution was 3% dried non-fat milk (w/v) in PBS. The substrate solution was 0.6mg/ml 

of 2,2’-azinobis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) (1CN, USA) in 100 nM 

Citrate buffer (pH 4) with peroxide (0.015%, w/v). One of the substrates used was 

3,3’,5,5’-tetramethybenzidine (TMB) (obtained from Sigma Chemicals (USA)), which 

was utilised without further treatment. Pesticide stocks were made up in either methanol 

or acetone, and stored in the dark at 4°C. The carbonate-bicarbonate buffer (pH 9.6) 

consisted of 1.59g of Na2 C0 3 , 2.93g of NaHC0 3 , and 0.2g of NaN3 , made up to 1 litre 

with distilled water.
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7.6. Production of polyclonal antisera.

Female New Zealand white rabbits weighing 4-8 kg were used for raising polyclonal 

antibodies. Approximately, 3 month old rabbits were immunised with either PBA- or 

PBCN- conjugated to thyroglobulin (THY) as immunogen by repeated subcutaneous 

injection of immunogen adjuvant mixtures. Earlier studies have shown that BSA-linked 

conjugates are preferable for plate coating to THY-linked conjugates (Bonwick G. pers. 

comms). Since BSA-linked conjugates were going to be used for plate coating, the 

rabbits were immunised with THY-linked conjugates. This ensured that only antibodies 

to the common moiety, PBA or PBCN, could be detected. Freund’s complete adjuvant 

was used on initial immunisation but was subsequently replaced by Freund’s incomplete 

adjuvant (Herbert 1973). The rabbits were boosted on a monthly basis for 6 months, and 

then sacrificed and bled.

The rabbits were also bled at least monthly, after each booster immunisation. This was 

done by inserting an 18mm gauge hypodermic needle by 5-10mm into the central ear 

artery after the dorsal surface of the ear had been shaved and moistened with alcohol 

(Kurstak 1985). About 1 ml of blood was taken on each occasion. The serum was 

isolated by centrifugation, and sodium azide added as a preservative at a final 

concentration of 0.02% w/v. Serum was aliquoted and stored at -20°C, or stored and 

used without further treatment. Antisera from rabbits were titred using the indirect 

ELISA method, by coating 96 well plates with PBA-6C-BSA, PBCN-6C-BSA, PBA- 

HS-BSA or PBCN-HS-BSA. The rabbits were sacrificed and bled after 7 months, when 

they had produced sufficiently high levels of titred antiserum.
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7.7. Testing anti-sera for the presence of anti-PBA/PBCN antibodies

The indirect ELISA method was used to test antisera for the presence of anti-PBA/PBCN 

antibodies. A 96-well microtitre plate was coated with 50pl/well of a solution of 5pg/ml 

of PBA-6C-BSA. The plate was left overnight at 4°C. The non-specific binding sites 

were blocked with a solution of 3% non-fat milk (250pl/well) at 37°C for 1 hour. The 

plate was then washed 5 times with washing buffer. Rabbit antiserum was serially 

diluted with the ELISA buffer, then dispensed into the wells (50pg/well) and incubated 

at 37°C for 1 hour. After five further washings of the plate, goat anti-rabbit peroxidase 

was linked antibodies were added to the wells (1:2000 dilution in ELISA buffer with 1% 

ovalbumin, lOOpl/well) and incubated for 1 hour at room temperature. A further 5 

washings were followed by addition of ABTS substrate solution (lOOpl/well). Product 

formation was monitored at 405nm with a DYNATECH MR5000 microtitre plate reader 

(DYNATECH, Chantilly, Va, USA).
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7.8. Preliminary optimisation of the indirect competitive ELISA conditions

An indirect competitive ELISA format (IC-ELISA) was adopted for performing the 

immunoassay. This involved coating the plate with a fixed amount of the antigen, and 

allowing it to compete with the inhibitor for a limited amount of primary antisera. Due to 

the small size of the pyrethroid molecules (e.g. relative molecular mass of permethrin = 

217 Da) they are unlikely to bind to the microtitre plate in a fashion that makes them 

available for interaction with the binding sites of the much larger antibody molecules. 

Instead, hapten-carrier protein conjugates are used for coating the plate. Conjugates with 

BSA were used which differed from those used for raising the anti-hapten antibodies 

(THY) in order to prevent binding of anti-carrier protein antibodies. Next, the enzyme- 

labelled antibody was added to bind with primary antibodies that had bound to the 

antigen on the plate. Finally, a substrate was added to change colour according to the 

degree of binding between the primary antibody and the coating antigen.

The following standard initial procedure was carried out to optimise of the IC-ELISA

test:

1. the conjugate concentration to use for plate coating was selected. This was required 

to be the least quantity of the conjugate giving near maximal binding of the antisera

2. the dilution of the enzyme-labelled antibody was optimised by selecting the dilution 

that gave a low background and also allowed quantitation over a large range of 

antisera dilutions

3. finally, the polyclonal antibody dilution was optimised by selecting the dilution that 

produced the highest absorbance reading on the linear portion of the sigmoid curve 

for the optimum enzyme-labelled antibody concentration.
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7.8.1. Optimisation of plate coating

It has been observed previously that haptens conjugated to bovine serum albumin (BSA) 

are more effective for plate coating than those linked to thyroglobulin (THY) (Graham 

Bonwick, unpublished data). Hence separate plates were coated with PBA-HS-BSA, 

PBCN-HS-BSA, PBA-6C-BSA and PBCN-6C-BSA. The optimum concentration of each 

conjugate required for plate coating was determined by checkerboard titration of serially 

diluted antiserum against a range of coating antigen concentrations (0.5 -  20pg/ml). The 

assay was then performed as for the indirect ELISA described in section 7.7.

7.8.2. Optimisation of enzyme-labelled and polyclonal antibody dilution

To determine the optimum dilution of both the primary antibody and the enzyme- 

labelled antibody to use in the IC-ELISA, the guidelines for assay design proposed by 

Kenemy (1991) and the suggestions by Micallef & Ahsan (1994) were followed. 

According to these, the appropriate primary antibody and enzyme-labelled antibody 

concentrations should be selected by making serial dilutions of both, and testing different 

combination of primary antibody dilution and peroxidase labelled antibody dilution. The 

optimum dilution of each reagent was determined as described in section 7.8. above.

The plates were first coated with the optimum concentration of the coating antigen. The 

antibody and enzyme-labelled antibody dilution were optimised by checker-board 

titration. This was carried out by serially diluting the primary antisera against a range of 

enzyme-labelled antibody concentrations. The assay was then performed as described for 

the indirect ELISA described in section 7.7.
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7.9. Indirect competitive ELISA

A modified format of the indirect competitive ELISA format (IC-ELISA) of Bonwick el 

al., (1994a) was used for the quantitative analysis of pyrethroids in various solvents 

(Figure 7.4). Microtitre plates were coated with the optimum plate coating concentration 

of a given antigen: 0.5pg/ml for PBA-6C-BSA, 5pg/ml for PBCN-6C-BSA and lOpg/ml 

for PBA-HS-BSA. Unreacted binding sites were blocked with 3% non-fat milk solution 

(250pl/well), for 1 hour at 37°C. The blocking solution was removed and the plate 

washed 5 times. Antiserum that had been diluted with ELISA buffer was mixed with the 

target analyte (pyrethroid standards or samples) in small test-tubes, such that a final 

concentration of 5% acetone or methanol (v/v) was obtained at the optimum antibody 

dilution. After incubating for 2 hours at 37°C, the inhibitor/antibody mixtures were 

applied to the plate (50pl/well) and then incubated for 1 hour at 37°C. After 5 washes the 

assay was performed as for the indirect binding ELISA format described in section 7.7.

Product formation and thus absorbance at 405mm was related to the degree to which 

binding of the first antibody to the plate-coating antigen was inhibited by the standard 

concentration of target analyte. This was recorded as a percentage inhibition. Microtitre 

plates wells containing all the assay components except the inhibitor were included with 

each plate. The absorbance recorded for these wells was taken to represent 0% 

inhibition. Wells on the same microtitre plate which contained all the assay components 

except the antiserum (1st antibody) and the competitor were included and the absorbance 

taken to represent 100% inhibition.

Percentage inhibition was calculated as = (/,, - 1, lx 100
lo
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7 .1 0 . R e la tiv e  p o te n t ia l  o f  v a r io u s  so lv e n ts  to  e x t r a c t  p y r e th r o id  d e p o s it s  fr o m  
m o sq u ito  n e t t in g .

Pyrethroids are insoluble in water, but the IC-ELISA must be performed in the aqueous 

phase. There are two distinct methods of extracting the pyrethroid from mosquito netting 

in order to perform the immunoassay. One is to extract the pyrethroid from the net using 

a non-polar solvent, which is then replaced with a polar solvent. The other is to extract 

the pyrethroid using a polar solvent (which is miscible with water). The latter is 

definitely simpler and more straightforward.

An experiment was therefore carried out to determine the relative potential of various 

polar and non-polar solvents to extract pyrethroids from mosquito netting. The 

experiment involved a two step extraction procedure. In the first step, the net sample was 

put in 20mls of the solvent and allowed to stand for 30 minutes. In the second step the 

same piece of netting was put into another 20mls of the same solvent and sonicated for 

30 minutes. The sonication was expected to remove most, if not all, of the remaining 

pyrethroid deposit from the mosquito netting.

To determine the potential of each solvent to extract, permethrin, from netting, 4 pieces 

of mosquito netting were treated with different concentration of permethrin (200 and- 

400mg/m2). The netting pieces were allowed to dry away from direct sunlight. From 

each piece of netting smaller pieces (each 5cm x 5cm) were cut off and put into separate 

beakers containing 20mls of methanol, acetone, hexane or dichloromethane, and then 

allowed to stand for 30 minutes. Each piece of netting was then removed and placed into 

another beaker also containing 20mls of the solvent and sonicated for 30 minutes. The 

permethrin extract in each beaker was dried by rotary evaporation, and the residue re
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suspended in lOmls of hexane to which 0.05ug f  of dichlorophenylbenzoic acid has 

been added as internal standard for the GC-MS analysis. The samples were analysed 

using GC-MS analysis. This was carried out by Mohamed Ali (Chemistry Department, 

University of Salford). The potential of each solvent to extract permethrin was 

determined from the amount of pyrethroid that was extracted in the first step, relative to 

the target dose on the net. We were mainly concerned about the amount o f permethrin 

extracted in the first step because the test is intended to be used in a field laboratory, 

where a sonicator may not be available. It is very likely that the insecticide on the nets 

could be extracted simply by placing the netting in a solvent and allowing it to stand for 

a couple of minutes. Therefore, it was necessary to identify the solvent that was best at 

extracting pyrethroids in this manner.
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7 .1 1 . R e su lts

It was clear from preliminary results that BSA-linked antigens coated microtitre plates 

better than THY-linked ones. Coating of plate was therefore carried out using BSA- 

linked antigens, while the antisera was produced from haptens linked to THY.

7 .11 .1  O p t im is in g  p la te  c o a t in g .

The optimum concentration of each coating antigen for coating microtitre plates was 

established by performing a checker-board titration o f different concentrations of the 

plate coating antigen, against serial dilutions of the antibody, as described in section

7.8.1. Kenemy (1991) has suggested that it is preferable to use the least quantity o f plate 

coating antigen concentration giving near maximal binding of antisera. This is because at 

high concentrations of coating antigen there is a tendency for protein molecules to bind 

to each other because of limited space on the plate surface. Such protein-protein 

interactions arc generally weaker than those between the protein and plastic and can 

result in dissociation of apparently bound protein during the assay.

A steep dilution curve is necessary because it shows that antigen concentration is 

sensitive to changes in antibody concentration.

Figures 7.5, 7.6 and 7.7 show the absorbances obtained by checker board titration of 

different concentrations (0.5-20pg/ml) of various plate coating antigens (PBA-6C-BSA, 

PBCN-6C-BSA, and PBA-HS-BSA) against different dilutions (500-40,000 dilution) of 

anti-PBA-HS-THY antisera. Most of the antisera dilution curves were sigmoid with the 

absorbance inversely related to the antisera concentration.
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Figure 7.5 clearly shows that the antigen concentration of 0.5gg/ml of PBA-6C-BSA, the 

lowest used in this experiment, produced near maximal absorbance readings, and was 

therefore selected for plate coating. Figure 7.6 shows that an antigen concentration of 

5pg/ml PBCN-6C-BSA was the lowest antigen concentration that produced near 

maximal absorbance readings. Figure 7.7 shows that an antigen concentration of 

lOpg/ml of PBA-FIS-BSA was the lowest concentration that produced near maximal 

absorbance readings.

Figure 7.5 shows that the PBA-6C-BSA plate-coating antigen showed better reactivity 

than the other antigens (PBCN-6C-BSA and PBA-HS-BSA) with anti-PBA-HS-THY 

antisera, because its absorbance reading, for the same antigen dilution, were higher than 

that for the other antigens. Therefore, PBA-6C-BSA antigen (0.5pg/ml) was used for 

plate coating in all subsequent experiments.
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Figure 7.5. Absorbance results of the checker-board titration of anti-PBA-HS- 
THY against PBA-6C-BSA antigen.
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7.11.2 Optimisation of enzyme-labelled and polyclonal antibody dilution of each 
plate coating antigen.

Figure 7.8 shows the absorbance readings obtained from checker-board titration of 

different dilutions of the enzyme-labelled antibody against a range of dilutions (200- 

20,000) of anti-PBA-HS-THY antisera. The plots show a sigmoid curve in which 

absorbances are inversely related to the antisera dilution.

The purpose of optimising the enzyme-labelled and polyclonal antibody dilutions is to 

develop a test that is sensitive (show changes in absorbance reading) to changes in 

antibody concentration. The optimum peroxidase-labelled dilution is therefore that 

which shows a low background and covers a wide range of antisera dilutions, for the plot 

of absorbance against reciprocal dilution of antibody. It is also important that the slope 

should be steep, which indicates that it responds noticeably to changes in antisera 

concentration in the assay.

Gosling & Basco (1994) proposed that the optimum antisera dilution should be that 

which corresponds to the absorbance at the top of the linear portion of the sigmoid curve, 

for the optimum enzyme-labelled antibody dilution.

Figure 7.8 shows that a peroxidase dilution of 1/1000 produced a low background, 

covered a wide range of antisera dilution and also produced a steep slope. The primary 

antisera dilution at the top of the linear portion of that plot was about 1/500. Hence for 

PBA-6C-BSA antigen, an antiserum dilution of 1/1000, and a peroxidase anti-body 

dilution of 1/500, were chosen for the IC-ELISA test.

209



ab
so

rb
an

ce
 (4

05
nm

)

Entomological evaluation o f treated b ed  nets Chapter 7

Figure 7.8. Absorbance reading of checker-board titration of anti-PBA-HS-THY 
antiserum against different dilutions of peroxidase-labelled goat anti
rabbit antibody, on a plate coated with 0.5pg/ml of PBA-6C-BSA
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7.11.3. Determining the performance of the IC-ELISA using standard solutions of 
different inhibitors.

After selecting the optimum antigen concentrations for plate coating and the antisera and 

peroxidase-labelled antibody dilutions, an indirect competitive ELISA (IC-ELISA) was 

performed as described in section 7.9, using standard solutions of phenoxybenzoic acid, 

permethrin and lambdacyhalothrin (an a — cyano pyrethroid) insecticides (as inhibitors) 

dissolved in methanol.

Figures 7.9a, b and c show typical IC-ELISA inhibition curves using anti-PBA-HS-THY 

antibody against standard solutions of phenoxybenzoic acid, permethrin and 

lambdacyhalothrin, respectively, as inhibitors. Each figure shows that the percentage 

inhibition increases as the concentration of the inhibitor increases.

Figure 7.9a shows no clear difference between the concentrations of different standard 

solutions of phenoxybenzoic acid. However, it is possible to classify the concentration of 

phenoxybenxioc acid as low (< lOpg/ml), medium (about 50pg/ml) or high (> 

lOOpg/ml). Figure 7.9b shows a significant difference between the percentage inhibition 

of 100, 200pg/ml, and 400pg/ml of permethrin. It possible to classify the concentration 

of permethrin as low, medium or high. Figure 7.9c shows a significant difference in the 

inhibition resulting from 5pg/ml and lOpg/ml of lambdacyhalothrin.
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Figure 7.9. Typical IC-ELISA showing the percentage inhibition of anti-PBA-HS- 
THY antibody by standard concentrations of (a) phenoxybenzoic acid 
(PBA) (b) permethrin and (c) lambdacyhalothrin. Each point represents the 
mean inhibition for 6 replicates of the same concentration o f inhibitor, and 
the error bars represent standard errors (± 2s. e)

(a) Phenoxvbenzoic acid

(b) Permethrin

Concentration of permethrin (pg/ml)

(c) lambdacvhalothrin
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7.11.4. Relative potential of various solvents to extract pyrethroid deposits from 
mosquito netting

The relative potential of various solvents to extract permethrin deposits from mosquito 

netting was determined by a two-stage extraction process followed by GC-MS analysis 

of the extracts, as explained in section 7.10. The potential of each solvent to extract 

permethrin was assessed in terms of the ratio of permethrin extracted during the first step 

to that during the second step.

Tables 7.1 shows the amount of permethrin extracted from the first and second steps, 

using different solvents. The table shows that with hexane, dichloromethane and acetone 

about 98% of the total amount of permethrin extracted was in the first step, while 

methanol extracted slightly less (about 94%).

Table 7.1. The amount of permethrin extracted in each extraction step, using 
various solvents, as determined by GC-MS analysis. Target dosage 
represents the amount of permethrin used for treating the net.

Amount of permethrin extracted during l sl and 2nd extraction steps.
Hexane (pg/ml) Acetone (pg/ml) Methanol(pg/ml) Dichloromethane

(Pg/ml)
Target
dosage

1st Step 2nd Step 1st Step 2nd Step Is* Step 2nd Step 1st Step 2nd Step

200pg/ml 148.2 3.65 150.1 1.9 206.1 24.1 207.1 10.6

200pg/ml 206.6 3.75 195.4 1.9 184.6 5.8 215.4 5.4

400pg/ml 279.8 4.32 278.3 9.6 264.9 18.2 261.2 2.8

400pg/ml 369.2 17.2 307.6 8.7 271.1 13 334.6 4.2

Average
ratio
extracted in 
first:second

45.5 1 61.6 1 18.9 1 58.1 1
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7.12. Discussion.

In this study an attempt was made to develop an ELISA test based on polyclonal 

antibodies to quantify permethrin deposits on mosquito netting. Since permethrin is 

small and not immunogenic it was necessary to link it to a high molecular weight 

protein, such as BSA or THY, to make it immunogenic (Bonwick et al., 1994a). 

However, permethrin does not have a functional group through which it could be 

conjugated to a carrier protein, so it was necessary to use an analogue, phenoxybenzoic 

acid (PBA). Antibodies recognising this group (PBA) were considered valuable since the 

group is common to several synthetic pyrethroids (See figure 7.1).

In its present format the ELISA test is capable of differentiating between standard 

permethrin concentrations of lOOpg/ml, 200pg/ml and 400pg/ml. Even though this test 

was produced against the phenoxybenzyl moiety of permethrin, it was able to quantify 

pyrethroids of the alpha-cyano derivatives, such as lambdacyhalothrin. Statistically, it 

can differentiate between lambdacyhalothrin concentrations of 5pg/ml and lOpg/ml, in 

standard solution of insecticides, because the confidence intervals did not overlap.

A permethrin concentration of 200 mg/m2 on mosquito nets (equivalent to 200pg/ml 

used this study) has been found to be effective for net treatment (Hodjati & Curtis 1997), 

while lambdacyhalothrin concentration of 10-25 mg/m2 of netting (equivalent to 10- 

25pg/ml) has been used in most bednet trials (e.g., Magbity et al., 1997; Somboon et al., 

1995; Curtis et al., 1998). The present test therefore appears capable of determining if 

the amount of permethrin or lambdacyhalothrin on a piece of netting is sub-optimal or 

optimal, which is sufficient for some field purposes.
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It is however quite possible that with some further modification of the assay condition, 

such as, the dilution of the antiserum and the concentration of the coating antigen, the 

performance of the test could be greatly improved. For example, it is possible that even 

though the immunogen did not contain BSA, antibodies may have been produced against 

it because of its presence in the diet of the rabbit. These antibodies can actually bind to 

the BSA on the plate and distort the assay sensitivity. If this was a problem, another way 

of solving it would be to use a monoclonal antibody.

Pyrethroids are very insoluble in water and so are usually extracted from samples by 

organic solvents, e.g. toluene and methanol. However, since the antibody reactions takes 

place in an aqueous phase, a water miscible solvent is preferred for extracting pyrethroid 

from mosquito nets for immunoassays. Our results clearly show that acetone, methanol, 

hexane and dichloromethane were capable of extracting most of the pyrethroid from 

mosquito netting. The average amount of insecticide removed from the nets by each 

solvent was equivalent to 70% of the target dose -  the dose that was intended to be on 

the nets. However, because of the between and within variation of insecticide uptake the 

present result can be interpreted in two possible ways. Firstly, it is possible that each 

solvent actually removed all the insecticide that was on the net. A second possibility is 

that each solvent removed only a fixed fraction of the amount of insecticide that was on 

the nets. There was however no substantial difference in the amount of permethrin 

extracted by each solvent relative to the target dose. Therefore, since hexane and 

dichloromethane are not water miscible, acetone and methanol could be used for 

extracting pyrethroids from mosquito netting. However, acetone seemed to remove a 

higher proportion of insecticide during the first extraction, so it would be preferred for 

extracting insecticides for field purposes.
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It is possible that these solvents may affect assay performance, so these and several other 

factors are investigated in the next chapter.
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CHAPTER 8.

OPTIMISING AN INDIRECT COMPETITIVE ELISA TEST 

FOR QUANTITATIVE DETERMINATION OF VARIOUS 

PYRETHROIDS INSECTICIDES ON BEDNETS.

8.1. Introduction

The previous chapter described an attempt to develop an ELISA for determining 

pyrethroid deposits on mosquito netting. However, in the format described so far, the 

assay can only provide a semi-quantitative estimate, i.e., it can only tell that the 

pyrethroid concentration on a piece of netting is low, moderate or high. This test is 

adequate for some field purposes, because often what is required is to know if the 

amount of insecticide on a treated net is within the dosage required for safety and 

effectiveness. It was however anticipated that the sensitivity of the test could be 

improved by reducing the non-specific binding through further optimisation of the assay 

conditions. This chapter describes attempts to do so, in order to generate a more 

sensitive quantitative test.

The development and optimisation of immunoassays in general requires careful and 

systematic investigation. The most common method of optimising an ELISA is by 

breaking down the assay into its component parts, and identifying the key variables that 

may affect the assay performance. The general approach, to optimise a factor that 

influences the response, is to vary the factor independently, while holding other factors 

constant. Sittampalam et al. (1996) identified about 16 factors that may affect assay
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performance. Kenemy (1991) identified the following hierarchy of general factors that

may reduce optimal performance of an ELISA,

Most trouble-------------------------------- least trouble
Coating > Detector > Enzyme/substrate > sample

It was commented that various components of the test developed in chapter 7 could be 

modified to improve its sensitivity. For example, the polyclonal antisera produced 

consist of a cocktail of several antibodies with different specificities. It is possible that 

some of these have cross-reacted with other molecules on the plate, such as epitopes on 

the bovine serum albumin (BSA), or on the non-fat milk used to block the plate. It is 

also possible that reducing the concentration of the antisera in the assay could improve 

the assay output, by reducing non-specific binding between the antibodies and the plate. 

Moreover, the solvent used for extracting the pyrethroid may have affected the binding 

between the inhibitor and the antibody, and it is therefore necessary to optimise the 

percentage of solvent in the assay mixture (Bonwick et al., 1994a; Giraudi el al. 1998; 

Miyake el al., 1998).

In this chapter therefore, an attempt is made to optimise some of the assay conditions in 

order to reduce non-specific binding, and also to validate the test by comparing its 

results with those obtained by Gas Chromatography and Mass Spectroscopy (GC-MS).
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8.2. Objectives

1. To determine the ELISA buffer that promotes optimal binding of the plate-coating 

antigen.

2. To determine the effect o f different solvent levels on assay performance.

3. To determine the effect on assay performance of pre-incubating the primary 

antibody in various solutions.

4. To identify the substrate that improves assay performance.

5. To compare the results obtained from ELISA test with those from GC-MS chemical 

analysis.
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8.3. Methodology/ results.

Several investigations were carried out to determine the optimum conditions for 

performing the IC-ELISA. For example, it was necessary to find out which buffer 

would optimise plate coating. Moreover, because of the cocktail nature of the 

polyclonal antibody produced, it was important to reduce non-specific binding between 

antibodies in the mixture and non-PBA epitopes on the plate.

8.3.1. Effect of pre-incubating the primary antibody in various solutions on the 
assay performance.

The rationale behind the IC-ELISA is that the sample (inhibitor) competes with the 

antigen on the plate for a limited quantity of anti-PBA antibodies. The inhibitor 

therefore uses up some o f the anti-PBA antisera, thereby reducing the amount available 

for binding with the antigen on the plate. The antibodies that bind to the antigen on the 

plate later bind to the peroxidase-labelled anti-rabbit anti-IgG, which then subsequently 

react with a substrate to give a signal. It was expected that the difference in signal 

between the wells with antibody alone and those with the antibody and sample would 

be proportional to the amount of antigen in the sample (Voller & Bidwell, 1980). This 

approach was expected to produce a very sensitive test if only anti-PBA antibodies 

bound to epitopes on the plate. However, if some IgG antibodies bound non-specifically 

to non-PBA epitopes on the plate, these too would produce a signal that would interfere 

with the signal from the specific binding and could render the test less sensitive.
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In addition, when performing the IC-ELISA, the primary antibody is introduced into the 

microtitre plate wells after the wells have already been coated with a antigen (e.g., 

PBA-6C-BSA) and blocked with non-fat milk. Considering that the primary polyclonal 

antisera consists of a mixture of antibodies, it was possible that some of these might 

bind non-specifically with non-PBA epitopes on the plate (mainly BSA and non-fat 

milk), which can affect assay performance. It was expected that by pre-incubating the 

polyclonal antisera in mixtures of these proteins before introducing it on the plate, 

antibodies that would have bound non-specifically to epitopes on the plate would be 

absorbed, and so would not distort the signal from the specific binding.

To test the efficiency of such pre-incubation the antisera was diluted in various 

solutions of physiological buffered saline (PBS), 3% non-fat milk in PBS, 5% BSA in 

PBS, and a mixture of 3% non-fat milk and 5% BSA in PBS) and incubated for lhr at 

37°C. An indirect ELISA was then performed as described in section 7.6, using serial 

dilutions of the pre-incubated antibody solutions. A plot of absorbance against antisera 

dilution was constructed for each solution, and the pre-incubating mixture that produced 

the least slope was selected as the best solution for pre-incubation, because it was 

expected that it absorbed antibodies that would have non-spccifically bound to non- 

PBA epitopes on the plate to increase the magnitude of the signal.

Figure 8.1 shows that the milk/BSA mixture produced the least slope, hence all 

subsequent assays were performed after pre-incubating the primary antibody in a 

mixture of 3% non-fat milk and 5% BSA.
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Figure 8.1. The absorbance readings of indirect ELISA performed by pre
incubating the anti-PBA polyclonal antisera in different protein 
solutions (3% non-fat milk in PBS; 5% BSA in PBS; and mixture of 
3% non-fat milk and 5% BSA in PBS).

reciprocal dilution o f PBA-HS-THY antisera

8.3.2. Investigating the effect of various coating buffers on assay performance.

The mechanism by which protein sticks to plastic microtitre plates is not yet properly 

understood. The interaction between plate material and the protein to be bound is 

complex with dependence on charge, hydrophobicity, pH, temperature and undoubtedly 

other factors (Pruslin et al., 1991). Kemeny (1991) pointed out that certain charges 

expressed on the protein and its hydrophobicity could play an important part. The 

charge expressed by a protein partly depends on the pH of the buffer in which it is 

dissolved (Kcmcny, 1991). An experiment was therefore designed to identify a buffer 

that would optimise binding of the antigen to the microtitre plate.
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The plate-coating antigen (0.5pg/ml of PBA-6C-BSA) was made up in different buffers 

(PBS pH 7.4; Carbonate/bicarbonate pH 9.6; and acetate/citrate buffer pH 4.0). Plates 

were coated with these solutions, and an indirect ELISA performed as described in 

section 7.6, except that the primary antibodies were pre-incubated in BSA/milk 

solution. The buffer that produced the highest absorbance was taken as the one that best 

enhanced the binding between the antigen and the plate, because it was expected that 

the magnitude of the signal was directly related to the amount of bound antigen. Figure

8.2 shows that the carbonate/bicarbonate buffer (pH 9.6) gave the highest absorbance, 

hence it was used for all subsequent assays.

Figure 8.2. The relative effects of various coating buffers on and assay 
performance. Each plot represents the absorbance against PBA-HS- 
BSA antisera dilution obtained from indirect ELISA performed on 
plate coated with 0.5pg/ml of PBA-6C-BSA dissolved in either PBS, 
acetate or carbonate buffer.

100 1000 10000 100000 
reciprocal dilution of PBA-HS-THY antisera
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8.3.3. Optimum concentrations of antigens for coating microtitre plates

Using the carbonate buffer as a plate-coating buffer and pre-incubation stage, the 

optimum concentration of the antigen (PBA-6C-BSA) was again investigated. The 

antigen was dissolved in carbonate buffer (pH 9.6), and the anti-PBA polyclonal 

antisera was pre-incubated in milk/BSA mixture. A checkerboard titration similar to 

that described in section 7.7.2, except that antisera was pre-incubated for one hours in a 

milk/BSA mixture and the antigen was dissolved in carbonate buffer, was carried out to 

determine the optimum plate-coating antigen concentration.

The optimum concentration of the antigen was determined as explained in section 

7:11:1 — the least amount of antigen that produce near optimal binding with the anti-

PBA antisera.

Figures 8.3, 8.4 and 8.5 show the plots of absorbance against reciprocal dilutions of the 

primary antibody for different antigen concentration. Each plot shows a sigmoid curve 

with the absorbance inversely related to the reciprocal dilution of the primary antibody.

As can be seen in figures 8.3, 8.4 and 8.5, the optimum concentrations of the plate 

coating antigens were as follows: 4pg/ml for PBA-HS-BSA, l.Opg/ml for PBCN-6C- 

BSA and 0.50pg/ml for PBA-6C-BSA. However, for the same concentration of coating 

antigen, PBA-6C-BSA gave the highest absorbance, so it was selected for use in all 

subsequent experiments.
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Figure 8.3. Plot of absorbance against reciprocal dilution of PBA-HS-THY 
obtained from indirect ELISA performed to determine the optimum 
concentration of PBA-HS-BSA. The primary antibody was pre-incubated in 
BSA/non-fat milk solution, and the antigen was dissolved in carbonate 
buffer.

reciprocal dilution of PBA-HS-THY antibody

Figure 8.4. Plot of absorbance against reciprocal dilution of PBA-HS-THY 
obtained from indirect ELISA performed to determine the optimum 
concentration of PBCN-6C-BSA. The antibody was pre-incubated in 
BSA/non-fat milk solution, and antigen was dissolved in carbonate buffer.
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Figure 8.5. Plot of absorbance against reciprocal dilution of PBA-HS-THY 
obtained from indirect ELISA performed to determine the optimum 
concentration of PBA-6C-BSA. The antibody was pre-incubated in 
BSA/non-fat milk solution, and antigen was dissolved in carbonate buffer.

reciprocal dilution o f PBA-HS-THY antibody
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8.3.4. The effects of solvent concentration on the assay performance

When performing the IC-ELISA, small quantities of the pyrethroid extracts, in the 

organic solvent, are added to the assay mixtures, as inhibitor. It is possible that the 

binding of the antibodies and the antigen/inhibition may be affected by the quantity of 

the organic solvent in the assay mixture.

In the previous chapter, acetone was established as the solvent of choice for extracting 

pyrethroid from mosquito netting. The effect of acetone concentration on the assay was 

investigated by carrying out an IC-ELISA in different concentrations of acetone, using 

standard solutions of permethrin as inhibitor. The solvent concentration that gave the 

steepest slope for the antisera dilution plot was taken as the optimum solvent 

concentration for the assay.

Figure 8.6 shows that acetone concentration of 5% in the assay mixture produced the 

steepest slope and highest inhibition.
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Figure 8.6. Inhibition curves obtained for IC-EL1SA performed with standard 
solutions of permethrin as inhibitor in different concentrations of 
acetone using plates coated with 0.5pg/ml of PBA-6C-BSA.

100 1000 
Permethrin concentration (pg/ml)
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8.3.5. Optimising the dilution of the primary antibody dilutions.

Using the new modifications, experiments were again carried out to determine the anti- 

PBA antisera dilution that permitted the most sensitive determination of permethrin 

concentration. IC-ELISA tests were performed using different anti-PBA antisera 

dilution (1/1000-1/8000 dilutions), by first pre-incubating the antibodies in non-fat 

milk/BSA solution, and performing the assay in 5% acetone solution. The primary 

antibody concentration that produced the steepest slope was chosen as the optimum 

antibody dilution for determining the concentration of inhibitor in the assay, because it 

showed higher sensitivity to changes in inhibitor concentration.

In this experiment 1/4000 dilutions of anti-PBA-HS-THY antibody produced the 

steepest inhibition slope.

Figure 8.7. Inhibition curves obtained for IC-ELISA performed with permethrin 
as inhibitor in different dilutions of PBA-HS-THY antibody on plates 
coated with 0.5pg/ml of PBA-6C-BSA.

8 0

7 0

6 0

0  5 0

1  4 0  

5  3 0

20

10

0

permethrin concentration (pg/ml)

229



Entomological evaluation o f  treated bednets Chapter 8

8.3.6. Comparing the effect of different substrates on ELISA performance.

The sensitivity of an ELISA partly depends on the performance of the substrate used. 

Three of the substrates available for peroxidase-labelled antibody are o-phenlydiarnine 

(OPD), 2,2’-azinobis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS), and 3,3’5,5- 

tetramethybenzidine (TMB).

In order to select the substrate that is most effective for the IC-ELISA, an experiment 

was carried out to compare the relative effect of these substrates on the performance of 

the IC-ELISA. An IC ELISA was performed with standard solutions of permethrin as 

inhibitor on a plate coated with 0.5pg/ml PBA-6C-BSA. Three different substrates were 

used in the assay, and the substrate that produced the steepest slope for the plot of 

inhibition against permethrin concentration was selected as the most effective for the 

assay, because it is expected to be most sensitive to changes in inhibitor concentrations.

Figure 8.8 shows that the substrate TMB produced the steepest slope, hence it was 

selected as the substrate of choice for this assay.
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Figure 8.8. Inhibition curves obtained for IC-ELISA performed with permethrin 
as inhibitor using different substrate (OPD, ABTS and TMB).

♦  TMB
-----■— OPD
-  - A -  ABTS

100
Permethrin concentration (pg/ml)

1000
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8.3.7. Determining the performance of the IC-ELISA using standard solutions of 
different inhibitors.

With these new modifications to the IC-ELISA (using carbonate buffer to dissolve 

plate-coating antigen, pre-incubating the primary antibody in BSA/Milk mixture, 

performing the assay in a solution with 5% acetone and using TMB as substrate) 

experiments were again performed to determine the performance of the modified IC- 

ELISA using standard solutions of different inhibitors in acetone.

Figure 8.9, 8.10 and 8.11 show typical IC-ELISA plots of percentage inhibition against 

permethrin, deltamethrin and lambdacyhalothrin concentrations, respectively. 

Correlation analysis showed a strong correlation (r > 0.90, p=0.001) between the 

percentage inhibition and the concentration of inhibitor. Examination of the confidence 

intervals (+ 2 s.e) of the percentage inhibition for different concentrations of 

permethrin, shown in figure 8.9, revealed significant differences between the percentage 

inhibition of 25pg/ml, 50pg/ml, lOOpg/ml, 200pg/ml, 300pg/ml and 400pg/ml of 

permethrin.

Figure 8.10 shows no clear difference between different deltamethrin concentrations 

because the confidence intervals overlapped. It seems, however, that the test could 

distinguish between 5pg/ml (low), 20pg/ml (medium) and 40pg/ml (high) of 

deltamcthrin. Figure 8.11 shows significant differences between lambdacyhalothrin 

concentrations of 5pg/ml, lOpg/ml and 25pg/ml. These results show an improvement 

over the results obtained in the previous chapter, where the lambdacyhalothrin

Entomological evaluation o f  treated bednets Chapter 8
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concentration could only be classified as less than or greater than 5pg/ml, and 

permethrin concentrations of 200 and 300pg/ml could not be differentiated.

Figure 8.9. Typical inhibition curve for different permethrin concentrations in 
acetone. Each point represents the mean inhibition for 6 replicates of the 
same concentration of inhibitor, and the error bars represent standard errors 
(± 2s. e)
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F ig u r e  8 .1 0 . T y p ic a l  in h ib it io n  c u r v e  fo r  d if fe r e n t  d e l ta m e th r in  c o n c e n tr a t io n s  in 
a c e to n e . Each point represents the mean inhibition for 6 replicates o f the 
same concentration o f inhibitor, and the error bars represent standard errors 
(± 2s.e)

F ig u r e  8 .1 1 . T y p ic a l  in h ib it io n  c u r v e  fo r  d i f f e r e n t  la m b d a c y h a lo th r in  
c o n c e n tr a t io n s  in  a c e to n e .  Each point represents the mean inhibition for 6 
replicates o f  the same concentration o f inhibitor, and the error bars represent 
standard errors f± 2s.e)

234



Entomological evaluation o f treated bednets Chapter 8

8.3.8. Q u a lity  c o n tr o l  o f  GC-MS a n a ly s is

The standard test for determining pyrethroids on mosquito netting is GC-MS chemical 

analysis. An experiment was designed to determine the consistency of results from GC- 

MS analysis, by repeated testing (by GC-MS analysis) of the same samples over 

different time intervals. Between analysis, the samples were kept at 4°C.

Tables 8.1 and 8.2 show the result obtained by performing repeated GC-MS chemical 

analysis on the same test samples of permethrin and deltamethrin, respectively, over 

different time intervals. The results show some variation in the absolute values of 

insecticide concentration determined by GC-MS analysis on the same samples on 

different occasions. However, results of the analysis performed on the same samples on 

the same day were very similar. The variation in the absolute values of GC-MS results 

between occasions was in most cases very slight.
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T a b le  8 .1 a  R e s u lt s  o f  r e p e a te d  G C -M S  a n a ly s is  p e r fo r m e d  o n  d i f f e r e n t  o c c a s io n s  
o n  th e  s a m e  s a m p le s  o f  p e r m e th r in  e x tr a c te d  fr o m  n e t t in g  a n d  th e n  k e p t  at 
4 ° C . * =  c o n c e n tr a t io n  (p g /m l) .

S a m p le  N o . D a y  o n  w h ic h  G C -M S  w a s  p e r fo r m e d . D a y  1 =  d a y  o f  f ir s t  a n a ly s is

Days 1 Day 28 Day 28 Day 40 Day 45
P I 8.06* 7.54 7.68 5.90 6.97
P 2 4.16 1.26 2.25 2.60 2.65
P 3 6.19 2.59 2.22 2.61 2.62
P 4 20.4 22.11 23.42 25.77 27.45
P 5 18.24 16.35 13.75 19.47 19.60
P 6 26.40 30.45 25.97 26.87 26.76
P 1 0 25.14 31.29 32.32 28.18 27.69
P l l 23.13 27.4 27.07 33.57 30.32

T a b le  8 .1 b  R e s u lt s  o f  r e p e a te d  G C -M S  a n a ly s is  p e r fo r m e d  o n  d i f f e r e n t  o c c a s io n s  
o n  th e  s a m e  s a m p le s  o f  d e lta m e th r in  e x tr a c te d  fr o m  n e t t in g  a n d  t h e n  k ep t  
a t 4 ° C . * =  c o n c e n tr a t io n  (p g /m l) .

S a m p le  N o . D a y  o n  w h ic h  G C -M S  w a s  p e r fo r m e d . D a y  1 =  d a y  o f  f ir s t  a n a ly s i s

Days 1 Day 28 Day 28 Day 40 Day 45
D 1 7 0.054* 0.071 0.072 0.101 0.105
D 1 9 0.266 0.286 0.269 0.423 0.418

D 2 0 2.490 2.240 2.080 3.200 3.300
D 21 0.556 0.472 0.413 0.663 0.684
D 2 2 1.390 0.505 0.590 0.843 0.817
D 2 3 1.440 0.652 0.626 0.950 0.929
D 2 4 0.720 0.331 0.359 0.479 0.522
D 2 9 2.420 1.138 1.026 1.654 1.536
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8 .3 .8 .  C o m p a r iso n  o f  th e  r e s u lts  o b ta in e d  fr o m  th e  I C -E L IS A  w ith  th o se  fr o m  
G C -M S  a n a ly s is

In order to test the validity of the ELISA test, an experiment was designed to compare 

the performance of the ELISA against that of GC-MS analysis.

Mosquito netting pieces (20cm x 20cm) were treated with various concentrations of 

permethrin (100-600pg/ml), and deltamethrin (5-50pg/ml). A piece of the netting 

(10cm x 10cm) was removed and placed in lOmls of acetone for 30mins to extract the 

permethrin from it. IC-ELISA tests were performed using lOpl of each extract. The 

remaining solution was subjected to rotary evaporation and the acetone replaced with 

hexane for GC-MS analysis.

Figures 8.12 and 8.13 show regression plots of the permethrin concentration 

determined by GC-MS analysis against that obtained from IC-ELISA test. The figures 

show strong correlation, r =0.92 (p < 0.001) and r =0.87 (p=0.007), between ELISA and 

GC-MS results for permethrin and deltamethrin, respectively. The ELISA results for 

permethrin were slightly higher than those obtained from GC-MS, but the reverse was 

true for deltamethrin.
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F ig u r e  8 .1 2 .  C o m p a r iso n  o f  p e r m e th r in  c o n c e n tr a t io n  o b t a in e d  fr o m  E L IS A  
w ith  th a t fr o m  G C -M S  a n a ly s is .

F ig u r e  8 .1 3 .  C o m p a r is o n  o f  d e l ta m e th r in  c o n c e n tr a t io n  o b t a in e d  fr o m  E L IS A  
w it h  th a t fr o m  G C -M S  a n a ly s is .

238



Entomological evaluation o f treated bednets Chapter 8

8 .4 . D isc u s s io n

The previous chapter described an IC-ELISA test based on polyclonal antibodies which 

was capable of semi-quantitative determination of the quantity of permethrin or 

lambdacyhalothrin on mosquito netting. This chapter described modifications to the 

assay conditions in order to improve its performance. The modifications were:

• using sodium carbonate buffer (pH 9.6) instead of PBS to dissolve the hapten- 

protein plate coating antigen;

• pre-incubating the primary antibody in a mixture of 3% non-fat milk and 5% BSA 

for 1 hour before adding it to the coated microtitre plate wells;

• using TMB instead of ABTS or OPD as substrate;

• performing the assay in a solution with about 5-10% acetone.

These modifications resulted in some improvement in the assay performance. For 

example, the improved test can distinguish between standard concentration of 100, 200, 

300 and 400pg/ml of permethrin, which was not possible without these modifications. 

Moreover, the ELISA results for permethrin and deltamethrin correlated very strongly 

with those from GC-MS. The ELISA results for permethrin extracts were however 

slightly higher than those obtained from GC-MS, while the reverse was true for the 

deltamethrin extracts.

Quality control of the GC-MS results using the same samples showed slight variations 

in the absolute value of the concentration of insecticide measured on different 

occasions. However, the rankings of the GC-MS results between occasions showed high
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consistency. This slight variation in estimation of the absolute values of repeated GC- 

MS analysis creates some degree of uncertainly over the reliability of GC-MS as a 

standard method. However, there is at present no alternative to GC-MS.

Although other workers have previously tried to develop an ELISA test for pyrethroids 

(e.g. Bonwick et al., 1994; Hock and Pullen 1995), their work was limited to detecting 

pyrethroid rather than quantifying the amounts present. This is therefore the first 

attempt to develop a test for quantitative determination of pyrethroids in a solid matrix.

In this assay it was found that including acetone at between 5 and 10% did not impair 

the performance of the assay. These results are similar to those obtained by Skirritt et 

al., (1992), who also found that up to 10% methanol in the solution did not affect 

pyrethroid assay performance, but that 5% acetonitrile in solution was capable of 

reducing absorbance by 15%. Bonwick et al., (1994) also found that 10% methanol had 

no effect on assay performance, but with 20% methanol some impairment was 

observed.

In summary, an ELISA test based on polyclonal antibodies was developed to determine 

pyrethroid deposits on mosquito netting. This test is expected to be cheap when 

compared with GC-MS, and can be carried out in a field laboratory since it does not 

require any sophisticated instruments.
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It is also hoped that the present ELISA test based on polyclonal antibodies could 

facilitate community impregnation of treated bed nets, by helping to design a net 

dipping technique that would improve insecticide uptake. Until now this has been 

difficult because of the unavailability of GC-MS facilities in most places where nets are 

used. There is also the possibility of developing a test based on spraying insecticide 

directly on the net, which may reduce the problem of differential up-take of insecticide. 

Such a method would require considerable quality control, which may not be possible 

with a test based on GC-MS analysis. This ELISA test reported here would facilitate the 

development of an appropriate method.

It is also hoped that the present test based on polyclonal antibodies will be improved to 

one based on monoclonal antibodies, which would be expected to be more sensitive and 

consistent.
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CHAPTER 9

G E N E R A L  D I S C U S S I O N , C O N C L U S I O N S  A N D  F U T U R E  W O R K

9 .1 . I n tr o d u c t io n .

This chapter summarises the principal results from this work, and discusses their 

implications for entomological evaluation of vector control trials, especially treated bed 

nets. The field applications of some of these results will also be discussed. Each section 

will be concluded with suggestions for the direction of future work on these subjects.

9.2. W a s  t h e r e  e v id e n c e  o f  a  m a s s  e f fe c t  in  t h is  tr ia l?

Previous trials in Africa have either shown clear evidence for a mass killing effect by 

demonstrating a reduction in mosquito abundance and, parous and sporozoite rates (e.g. 

in Tanzania: Curtis et al., 1998; Magesa et al., 1991), or shown clear evidence for an 

absence of mass effect by showing no difference in these indicators (e.g. in The 

Gambia: Lindsay et al., 1993b; Quinones et al., 1998).

The trial conducted in Tanzania by Magesa et al (1991) showed a substantially lower 

mosquito abundance, and sporozoite and parous rates, in villages with treated nets 

compared to those without nets. What makes these result especially more convincing 

was that the age- structure of the mosquitoes in villages with nets, determined by the 

Polovodova (1949) age-grading technique, was much lower than the range seen in the 

untreated villages. This type of reduction in mosquito survival rate is most unlikely to 

result from natural causes alone. Moreover, the results of the recent trials by Curtis et
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al. (1998) and Maxwell et al. (1999) also showed a lower mosquito abundance and 

sporozoite rates in villages with treated nets than in those without. The conclusion is 

that treated bed nets have a clear and strong mass killing effect on An. gambiae 

mosquitoes in Tanzania.

In contrast, the several trials that have been carried out in The Gambia, using a variety 

of experimental approaches, have consistently showed evidence for no effect of treated 

nets on mosquito abundance, sporozoite and parous rates (Lindsay et al., 1993b; 

Quinones et al., 1998; Thomson et al., 1995). The conclusion therefore is that treated 

bed nets have no mass killing effect on An. gambiae mosquitoes in The Gambia.

In this trial in Sierra Leone, there was evidence for lower mosquito abundance in 

villages with nets than in those without nets in the second year, but not in the first year 

of the trial. However, it is not clear whether the new control villages recruited in the 

second year were similar ecologically to those treated villages that had been studied in 

the first year. It is unlikely that by chance all the control villages had naturally higher 

mosquito abundance than the treated villages, before the trial. It is however not possible 

to be confident that the difference in mosquito abundance between treated and control 

villages in the second year was due to the use o f treated nets.

The parous rates of mosquitoes were consistently lower in villages with treated nets 

than in those without nets. Parous rate is a more sensitive indicator of a mass effect of 

treated bed nets on mosquitoes than estimates of mosquito abundance. This result
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therefore provides evidence for a reduction in mosquito survival due to the use of 

treated nets, and hence provides further evidence for a mass effect. However, the 

magnitude of the difference in parous rates between treated and untreated villages was 

lower than that which was observed in Tanzania (Magesa et al., 1991). In contrast, all 

the treated net trials in The Gambia have shown no effect on parous rates of An. 

gambiae mosquitoes.

During the first year of this trial, the sporozoite rates were lower in 7 of the 8 villages 

with nets than in the 8 villages without nets, but in the second year of the trial, it was 

lower in all villages with nets than in those without. As explained above, the fact that 

the newly recruited villages were not randomly chosen means that it is not possible to 

be confident that the observed difference in sporozoite rates in the second year was due 

to the treated nets. Despite this doubt, in the villages that have had nets for two years, 

the overall sporozoite rate was lower in the second year than in the first. In contrast, the 

trials in Tanzania have consistently shown substantially lower sporozoite rate in 

villages with nets than in those without nets, whereas the trials in The Gambia have 

shown no effect on sporozoite rates at all. Hence the evidence for a reduction in 

sporozoite rate observed in this trial is not as strong as that in Tanzania, but greater than 

that which has been observed in The Gambia.

Taking all the evidence together, it seems that the mass killing effect from community

wide use of treated nets in Sierra Leone was not as strong as that observed in Tanzania,
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but it was stronger than that in The Gambia, where there is no mass effect on any of the 

entomological indicators.

9 .2 .1  H o w  c a n  e n to m o lo g ic a l  c h a r a c te r is t ic s  b e  c o n s id e r e d  in  th e  v i l la g e  
r a n d o m is a t io n  p r o c e s s?

In most trials, epidemiological outcomes are of primary importance, while 

entomological outcomes are of secondary importance. Hence, villages are matched only 

on epidemiological indicators. It is expected that if there is a need for reliable 

entomological evaluation, then the entomological circumstances of the villages should 

be taken into consideration during the village randomisation process. It is not yet clear 

how to simultaneously consider clinical and entomological circumstances in designing 

vector control trials. A possible approach would be to use baseline data to rank villages 

separately on clinical and then on entomological criteria. The two ranks could then be 

added for each village and the resulting scores used to produce a final ranking by which 

the villages could be matched. In addition, if clinical outcomes are of more importance, 

the ranking scores can be given more weights. Villages may rank quite differently in 

clinical and entomological criteria, and hence no perfect matching may be possible.

There is at present no standard practice for designing entomological evaluation of 

vector control trials. Future work should therefore include developing a simple protocol 

for designing vector control trials, which take both the epidemiological and 

entomological circumstances of individual villages in to consideration. This will help 

researchers in malaria endemic countries to evaluating vector control trials more 

effectively.
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9 .2 .2  M o v e m e n t  o f  m o s q u ito e s  b e tw e e n  v illa g e s

One of the reasons suggested for the lack of evidence for a mass killing effect in the 

first year of the trial was migration of mosquitoes from villages with to those without 

nets (Chapter 2). Thomson et al., (1995) and Quinones (1996) in The Gambia have 

identified migration of An. gambiae mosquitoes as a factor that can distort 

entomological results. In evaluating village-level entomological outcomes, it is 

therefore important to keep the effect of dispersal of mosquitoes to a minimum. Gillies 

(1961) estimated the average flight range of female An. gambiae mosquitoes marked 

with paint or radioisotope as between 1 to 1.5 km, and only a few flew beyond 3 km. It 

is therefore suggested that each intervention village should be at least 3 kms from its 

nearest neighbouring village in order to kept mosquito migration to a minimum. For 

villages that are less than 3 km apart, these could be assigned to the same intervention. 

In this way, any migration of mosquitoes would be between villages with the same 

intervention, and may not be very important.

9 .2 .3  I m p lic a t io n s  o f  “ m a ss  k il lin g  e ffe c t”

Evidence for a mass killing effect or a lack of it is important for managers o f vector 

control programmes who must decide whether nets should be targeted only at those who 

are at higher risk of severe and life-threatening malaria, or whether it is better to aim at 

high net coverage within a community. It is however doubtful whether this evidence is 

often taken into consideration when implementing bed net programmes. This is because 

in practice the nets are often sold to individuals, so affordability and willingness to pay
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determine the extent and pattern of usage. Evidence of the mass killing effect is most 

important if nets are free or highly subsidised, in which case the net providers can 

decide on the type of strategy to implement. There is so far no treated net programme in 

Africa that has been implemented using evidence for mass killing effect. For example, 

in Tanzania where evidence for a mass killing effect has been clearly demonstrated by 

Magesa et al., (1991) the bed net programmes are not implemented on the basis of these 

results. Nets are available in the private sector and only those who can afford and are 

willing to pay can have them.

Managers, however, ought to bear in mind that in places where clear evidence for a 

mass effect has been demonstrated, subsidies should be used to facilitate high net 

coverage in the community. This could be done by dividing the available subsidises into 

two parts; one part should directed to reducing the cost of the net for high risk groups, 

and the other (smaller fraction) direct to mass media campaigns about the benefits of 

treated nets. However, this may not solve the problem of equity, because even at very 

low prices some people would still not be able to afford the nets. The problem of equity 

may be approached by making provision for barter trading, wherein people who would 

like to exchange, for example, their chickens for a net, are able to do so.
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9.2.4 Future work on implementing treated net programmes

Research efforts should therefore be directed towards investigating strategies by which 

individual households can pay for their nets, such as barter trading with nets, and how 

to achieve equity in local communities. It is also important to educate communities on 

the higher risk of life-threatening malaria cases among children and pregnant women in 

endemic regions, so that these groups can be given priority in sleeping under treated 

nets. Such an educational programme is very important because in most places the main 

incentive for buying bed nets is to protect against nuisance mosquito bites, rather than 

protecting against malaria (Brieger et al., 1996; Richard et al., 1993), and in some 

places adults get priority over children in their use. The educational programme should 

encourage the purchase o f nets for children.
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9.3. Surrogate sampling methods; implications for estimating mosquito 
abundance.

Our results clearly show that human biting rates obtained from light trap catches (LTC) 

compare favourably with those obtained from human bait catches (HBC) in village with 

or without treated bednets (Chapter 4). A crude analysis of the cost of the two methods 

in the trial reported here shows that, it costs about $3 per night to perform three light 

trap catches in a single village, whereas it costs on average $10 per night to perform an 

all-night HBC (considering that 3 light traps catch as many mosquitoes as two human 

baits). It is therefore suggested that in places where biting rates estimates from LTC 

can replace those from HBC, the use of light traps should be encouraged. In addition to 

reducing the cost of mosquito sampling, it would also offer the opportunity of sampling 

in several houses on the same night, which is recommended for reliable estimates of 

mosquito abundance and parous rates (See chapter 5 and 6).

It is rather unfortunate that most o f the mosquitoes caught in light traps often die before 

dawn. Therefore LTC can not be used if mosquitoes are needed alive. Future work 

therefore should include finding out ways o f reducing the high mosquito mortality in 

light trap catches, so that the mosquitoes can be used for further investigations.
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9.4. Spatial and temporal distribution of An. gambiae mosquitoes.

A crucial aspect of entomological evaluation of malaria vector control trials is 

determining the effect of the control measure on village-level mosquito abundance (e.g., 

Curtis et al., 1998; Lindsay et al., 1989b, 1993b; Mbogo et al., 1996). Our results show 

tremendous day-to-day and house-to-house variation in mosquito abundance, which 

implies that sampling should be carried out in several houses on each sampling night 

and on several nights during each month (See chapters 5 and 6). It is also recommended 

that mosquitoes should be sampled in a random selection of houses on each sampling 

occasion. Finally, it is recommended that paired control and treated villages should be 

sampled simultaneously.

A substantial amount of planning is required to carry out LTC in random houses in 

villages where all sleeping places have treated nets, because the light trap should be 

placed besides an occupied untreated net. A possible strategy is to have a set of 

untreated nets to replace the treated nets in the sampling rooms on the night of 

sampling. However, some villagers may object to sleeping under nets that have been 

used in other rooms, for fear of bed bug infestations. This fear can be removed if some 

boiling water is poured on the nets after each sampling occasion, in order to kill any bed 

bugs they might be carrying.

Like mosquito abundance, parous rates are also subject to night to night variation, but 

are less subject to house to house variation than estimates of mosquito abundance 

(Chapter 6). We should therefore expect village-level parous rates to be more precise
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and reliable than village-level mosquito abundance. By coupling this with the fact that a 

reduction in parous rate (mosquito survival rate) has more impact on malaria 

transmission than reduction in mosquito abundance (Garrett-Jones 1964a), it might be 

more meaningful to allocate the often limited resources for entomological evaluation 

entirely to estimating parous rates, and ignore mosquito abundance.

For a fixed amount of sampling effort, a sampling routine which permits a more reliable 

estimate of parous rates while ignoring mosquito abundance, should involve frequent 

sampling in fewer houses on each occasion. The same houses, rather than randomly 

selected houses each time, can be used for mosquito sampling, and in order to 

maximise output it would be appropriate to sample in houses with high mosquito 

abundance and to dissect all the mosquitoes caught for parous rate determination.

The amount of sample effort used in various trials has been as varied as the ways in 

which the sampling effort has been allocated over space and time (compare, Magbity et 

ul., 1997; Magesa et al. 1991; Mbogo et al., 1996; Quinones et al., 1998; Robert & 

Camevale 1991). This work is expected to form the basis for developing specific 

rationales for distributing sampling efforts for estimating village-level mosquito 

abundance and parous rates in vector control trials.

Future work on spatial and temporal distribution could include trying the above 

approach which suggested estimating parous rates and ignoring mosquito abundance, to

251



Entomological Evaluation o f treated bed nets Chapter 9

evaluate vector control trials, and comparing the results with those obtained from 

estimating both mosquito abundance and parous rates.
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9.5. Role of ELISA test in implementation of insecticide treated nets projects.

An ELISA test based on polyclonal antibodies that can quantitatively determine 

permethrin and deltamethrin deposits on mosquito netting, was developed (chapters 7 & 

8). The test is especially useful for managers of treated bed net programmes, to enable 

them to determine if routinely treated bed nets have the required dose of insecticide.

Nets need to be retreated at least every 6-12 months, and various channels have been 

proposed for distributing insecticide (Lines 1996). Three possible channels are:

1. through PHC facilities, whereby nets of all villagers are treated at the same time,

2. through PHC facilities but by individual treatment as required,

3. by home-dipping, whereby individuals take the insecticide home to treat their nets. 

There is some fear that each of these distribution channels would result in nets being 

treated with very low or very high doses of insecticide. Doses that are too low would 

make the nets ineffective and may result in people being reluctant to treat their nets. 

Moreover, doses that are too high are wasteful and could conceivably, in extreme cases, 

be toxicologically harmful. It is hoped that the present ELISA test would help to 

determine the relative efficiency of net treatment using these channels and other 

channels.

It is also hoped that this test would facilitate the production of a dip-it-yoursclf net 

dipping kit, which would promote home net dipping and make the insecticide more 

readily available to local people. This ELISA test would help managers to determine the
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net dipping method that consistently results in the uptake of the optimal dose of 

insecticide.

Future work should focus on developing a test based on monoclonal antibodies for 

determining pyrethroid on mosquito netting. There is also the possibility of developing 

a dip-stick, or a dot-blot for testing nets. These may make it possible to perform the test 

on the mosquito netting itself and hence eliminate the need to cut nets (damaging whole 

nets) in order to extract insecticide.
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APPENDIX 1. A Multilevel modelling programme designed to investigate the effect of 
various environmental factors on the abundance and, spatial and temporal 
distribution of An. gambiae mosquitoes. T h e  v a r i a b l e s  w e r e  Im = m o n t h  o f  s a m p l in g ,  
v /7 /= v i l la g e , « p = n u m b e r  o f  p e o p l e ,  / / n = l ig h t  t r a p  n u m b e r ,  A m = b a t te r y  n u m b e r ,  
r a /7 i= p r e s e n c e  o f  r a in  d u r i n g  s a m p l in g ,  / ( / g = n u m b e r  o f  A n. g a m b ia e  c a u g h t / t r a p ,  
/ ( ¿ ^ n u m b e r  o f  An. fu n e s tu s  c a u g h t / t r a p ,  6 / « / = n u m b e r  o f  n ig h t s  f o r  w h ic h  t h e  b a t te r y  w a s  
u s e d  b e fo r e  c h a r g i n g ,  w e e A s = w e e k  o f  s a m p l in g ,  m oon=  m o o n  p h a s e  d u r i n g  s a m p l in g ,  
d a y s= d a y  o f  s a m p l in g  ( s e r ia l  c o u n t  o f  d a y s  s t a r t in g  w i th  t h e  f i r s t  d a y  o f  s a m p l i n g ) ,  
■ s/7es= houses  o f  s a m p l in g ,  w z>ii/ovv.v=state o f  th e  w in d o w  o n  th e  h o u s e ,  ro o f=  ty p e  o f  r o o f  o n  
t h e  h o u s e .

dinput cl-cl 5
D:\eddie\datal\subdat\tanzl .txt
name c l 'lm' c2 'vili* C3 'np' c4 'ltn' c5 'btn' c6 'rain' c7 Mtfg'c8 'ltff c9 'btnl' clO 'weeks' cl 1 'moon'
name c 12 'days' c 13 'sites' c 14 'windows' c 15 roof ‘
name c 16 'cons’
code 1 617 1 cl7
name c 17 'consb'
code 1 617 1 cl8
name c 18 'pvar'
code 617 1 1 cl9
name c 19 'idn'

identify 1 'idn' 
identify 2 'days' 
identify 3 'cons'

resp 'ltfg'

fpath c:\mln\nonlin 
prefile pre 
postfile post

explanatory 'cons' 
expl 1 'consb' 'pvar'

fpar 0 'consb' 'pvar'

link 'consb' 'pvar' g9
sete 1 'consb' 'consb' 'pvar' 'pvar'

setv 2 'cons' 
setv 3 'cons'

set b 10 2
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set b 11 1 
set b 12 0 
set b 13 3 
set b 14 0 
set b 15 1 
set b 16 0

setx 'cons' 3 'sites’ cl01-cl22 c20 
rcon c20

tolerance 2
maximumiteration 100

batch 
echo 0 
star
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APPENDIX 2

STATA statistical programmes used for generating different subsets of mosquito data for the 
main data sets (Chapter 6).

Program 1. This program was used to initialise the STATA program (directs it to the path 
where the .ADO files were stored).

global S_ADO "c:\stata\ado." 
adopath + c:\myado 
cd c:

Program 2; A typical STATA program designed to commands programme 3 to generate 1000 
subsets, each representing sampling in n houses a month in each village. This 
programme also calculates the mean mosquito abundance, or (in the case of 
estimating parous rates) the total parous and nulliparous, of each data set 
generated.

program define sampl 
set beep off
postfile eddie mean sampe var using samp2 
local i = 2 
while i' <= 1000 { 
quietly samp 12 
quietly summ ltfg, detail 
post eddie (_result(3)) ('i') (_result(4)) 
local i = 'i' + 1 
}
postclose eddie 
end
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Programme 3. A typical STATA programme used for generating a data set for a given
predetermined sampling routine. This particular programme was designed to 
generate a possible data set if sampling was carried out in a single fixed house 
once a month.

program define samp
use d:\eddie\data2\temp5.dta, clear
drop if vill == 1
gen u = uniformQ
local weekin = int(4*uniform())+l
sort month
by month: drop if weekmo —= 'weekin' 
local dayin = int(3*uniform())+l 
sort month
by month: drop if day —= 'dayin' 
local sitein = int(6*uniform())+l 
sort month
by month: drop if sites ~= 'sitein' 
end
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