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Abstract 
 
This article shows how cohort mortality rate projections of mortality models that involve 
age effects can be improved and extended to extreme old ages. 
 
Key Words: mortality rates, Cairns-Blake-Dowd mortality model, CBDX mortality model, 
Lee-Carter mortality model, projection, extreme old age. 
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1. Introduction 
 
 
A common problem in life insurance is to project mortality rates out to extreme old age.1 
This problem arises, for example, when an insurer wishes to price a life annuity. 
Unfortunately, a number of mortality models cannot project extreme old age mortality 
rates. This problem arises, for example, in mortality models of the Lee-Carter family (see 
Lee and Carter, 1992) which include an age effect. The maximum age in the sample age 
range then constrains the maximum age for which one can project the corresponding 
mortality rates.2 
 
The exceptions are models of the Cairns-Blake-Dowd (CBD) family (Cairns et al., 2006, 
2009). Because these models have no age effect, they can be used to project mortality 
rates to any ages without being constrained by the range of ages in the sample data used 
to calibrate the age effects. Moreover, the original CBD model was designed specifically 
for higher ages. Currie (2011) shows how CBD can be projected to very old ages.  
 
But what if one wants to use other models – specifically, models with age-effects – to 
project to very old ages? An answer is to smooth and then project the age effects, and then 
treat those smoothed and projected age effects as proxies for the very old age age effect 
                                                 
* Durham University Business School, Mill Hill Lane, Durham DHL 3LB, United Kingdom. Corresponding 
author: kevin.dowd@durham.ac.uk. The authors thank Andrew Cairns for helpful feedback. The usual 
caveat applies.  
♦ Pensions Institute, Cass Business School, City University of London, 106 Bunhill Row, London, EC1Y 8TZ, 
United Kingdom. 
1 This problem has long interested biologists and demographers. See, e.g., Coale and Guo (1989), Coale and 
Kiske (1990), Horiuchi and Wilmoth (1998), Thatcher et alia (1998), Thatcher (1999), Boleslawski and 
Tabeau (2001), Oeppen and Vaupel (2002), Bongaarts (2004), Zhavoronkov et alia (2012), and Ye et alia 
(2013). 
2 The Lee-Carter family of models has additional problems about which users wishing to project out to high 
ages should be aware.  In particular, they mechanically induce a deceleration of the gains of mortality, 
which can lead to an underestimate of the insurer’s liabilities. See, e.g., Debonneuil et alia (2018).  
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that we are lacking. Ways to smooth and project these age effects have been proposed by 
Haberman and Renshaw (2009) and by Dowd et alia (2019). We can then use these 
projected age effects to project the 𝑞𝑞 rates to any ages we wish.  
 
We work with the following model, known as CBDX, which combines features of both the 
Lee-Carter and CBD families of models.3 This model postulates that 𝑙𝑙𝑙𝑙𝑙𝑙 𝑚𝑚(𝑡𝑡, 𝑥𝑥), the log of 
the mortality or death rate, is given by:  
 
(1)                                     𝑙𝑙𝑙𝑙𝑙𝑙 𝑚𝑚(𝑡𝑡, 𝑥𝑥) = 𝛼𝛼(𝑥𝑥) + ∑ 𝛽𝛽𝑖𝑖𝐾𝐾

𝑖𝑖=1 (𝑥𝑥)𝜅𝜅𝑖𝑖(𝑡𝑡) + 𝛾𝛾(𝑐𝑐) 
 
where t refers to the time period, x refers to age, and 𝑐𝑐 = 𝑡𝑡 − 𝑥𝑥 refers to the year of birth, 
𝛼𝛼(𝑥𝑥), 𝜅𝜅(𝑡𝑡) and 𝛾𝛾(𝑐𝑐) are the age, period and cohort effects, respectively. In the case of 𝐾𝐾 =
3 (i.e., model CBDX3), the parameters are 𝛽𝛽1 = 1, 𝛽𝛽2 = (𝑥𝑥 − 𝑥̅𝑥), and 𝛽𝛽3 = (𝑥𝑥 − 𝑥̅𝑥)2 − 𝜎𝜎𝑥𝑥2 
which are fixed throughout ‒ where 𝑥̅𝑥 and 𝜎𝜎𝑥𝑥2 are the mean and variance of the ages in 
our sample age range.  The difference between (1) and the original CBD M7 model is that 
𝑙𝑙𝑙𝑙𝑙𝑙 𝑚𝑚(𝑡𝑡, 𝑥𝑥) replaces 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑞𝑞(𝑡𝑡, 𝑥𝑥) ‒ where 𝑞𝑞(𝑡𝑡, 𝑥𝑥) is the probability of dying (or death 
probability) at age 𝑥𝑥 in year 𝑡𝑡 ‒ and there is now a static base mortality table 𝛼𝛼(𝑥𝑥).4 
 
We now use this model to obtain the 𝑞𝑞 rate projections in Figure 1, where 𝑞𝑞 = 1 − 𝑒𝑒−𝑚𝑚.  
The figure shows the projected cohort 𝑞𝑞 rates for an individual just turned 70, alongside 
the bounds of the 95% prediction intervals for the same cohort 𝑞𝑞 rates. These were based 
on 10,000 stochastic simulation trials, assuming that 𝜿𝜿𝑡𝑡 = [𝜅𝜅1(𝑡𝑡), 𝜅𝜅2(𝑡𝑡), 𝜅𝜅3(𝑡𝑡)] follows a 
three-dimensional random walk with drift: 
 
(2)                                                    𝜿𝜿𝑡𝑡 = 𝜿𝜿𝑡𝑡−1 + 𝝁𝝁 + 𝑪𝑪𝑍𝑍𝑡𝑡 
 
 
where 𝝁𝝁 = [-0.1706e-1, 0.1969e-3, 0.8125e-5] is the drift vector, 𝑪𝑪 is the covariance matrix 
with diagonal elements [0.6576e-3, 0.8868e-6   0.5340e-9], and 𝑍𝑍𝑡𝑡  is a vector of standard 
normal variates.5 By cohort 𝑞𝑞 rate, we mean that the projections follow the cohort of just-
turned 70-year olds as they age over time. The projections have broadly the shape we 
would expect: they rise exponentially over time.  
 
However, it is apparent that the projections show a dip in the 3 last years, and so the 
projections at the 30-year horizon are below what we would have expected them to be 
had the projections from (most of) the earlier years continued out at the same rates of 
growth. This dip is likely to be the result of two factors. The first reflects increasing 
sample variation in the age effect as it moves into the extreme old age range (i.e., the 
increasing the randomness of death rates as the number of survivors decreases). The 
second relates to the cohort effect and the limit on information provided by the cohort 
effect’s 𝛾𝛾(𝑐𝑐) factor by the time the age-70 cohort reaches an attained age of 100.  
 
 

                                                 
3 This model was proposed in Dowd, Cairns and Blake (2020). 
4 Dowd, Cairns and Blake (2020) show that CBDX3 fits England and Wales mortality data better over a 
wider range of ages than CBD M7 which was specifically designed for ages above 50 and fits poorly at lower 
ages. See, e.g., Cairns et alia (2009). 
5 𝝁𝝁 and 𝑪𝑪 are estimated from the historical observations of 𝜿𝜿𝑡𝑡 
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Figure 1: Projected Mean and 90% Prediction Intervals for Cohort 𝒒𝒒 Rates for 
Australian Males Just Turned Aged 70 

 
Notes: Projected mean and 90% prediction intervals for cohort 𝑞𝑞 rates are obtained from 10,000 stochastic 
simulation trials based on the CBDX3 model applied to Australian male deaths and exposures data for 
sample years 1921:2014 and sample ages 40:100. Source: Human Mortality Database 
https://www.mortality.org/hmd/AUS/DOCS/ref.pdf. 
 
 
A further problem with these projections is that the projection horizons are limited by 
the sample age range. For example, given that the maximum age in the sample age range 
is 100, one can only project out to a maximum age of 100.  This problem implies that we 
cannot use mortality models with age effects as they currently are to value financial 
instruments whose values depend on the 𝑞𝑞 rates of the extremely old. In the present case, 
we could use the model to price term annuities whose maximum term did not extend 
beyond age 100, but we could not use the model to price, say, lifetime annuities or equity 
release mortgages. We would suggest that this limitation is a significant one, but can 
easily be rectified by using an age projection approach of the sort described above.  
 
This article shows how 𝑞𝑞 rate projections can be both improved to produce better 
behaved projection curves and extended to any future age, including ages well beyond 
the maximum age in the sample range.6   
 
The article is organised as follows. Section 2 revisits some basic relationships, section 3 
provides an empirical example and section 4 concludes.  
 
 
2. Basic Relationships: Age Effect, Death Rates and Death Probabilities 
 
 
Define the death rate 𝑚𝑚(𝑡𝑡, 𝑥𝑥) = 𝐷𝐷(𝑡𝑡, 𝑥𝑥)/𝐸𝐸(𝑡𝑡, 𝑥𝑥), where 𝐷𝐷(𝑡𝑡, 𝑥𝑥) is a matrix of the number of 
deaths of individuals aged 𝑥𝑥 in year 𝑡𝑡, and is the corresponding exposures matrix, i.e., 
𝐸𝐸(𝑡𝑡, 𝑥𝑥) is a matrix of the number of individuals aged 𝑥𝑥 in year 𝑡𝑡.  
 

                                                 
6 An earlier application of this proposed age effect projection method to term annuity pricing is provided 
by Dowd et al., (2019a). The approach adopted here is also similar in spirit to Denuit and Goderniaux 
(2005). 
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Define 𝛼𝛼(𝑡𝑡, 𝑥𝑥) = 𝑙𝑙𝑙𝑙𝑙𝑙 𝑚𝑚(𝑡𝑡, 𝑥𝑥) as the age effect for age 𝑥𝑥 and year 𝑡𝑡. Figure 2 shows a 
standard plot of 𝛼𝛼(𝑡𝑡, 𝑥𝑥) vs the death rate 𝑚𝑚(𝑡𝑡, 𝑥𝑥). 
 
 

Figure 2: 𝜶𝜶 vs Death Rate 

 
 

 
For obvious reasons, the theoretical death rate must always be bounded above by 100%. 
However, the empirical death rate can exceed 100% because of the possibility of 
measurement errors in the exposures data (see, e.g., Cairns et al., 2016).7 Accordingly, the 
Figure allows for possible death rates in excess of 100% on the x-axis. For convenience, 
we now drop the “(𝑡𝑡, 𝑥𝑥)” terms when they are clearly redundant. Note also that 𝛼𝛼 turns 
positive when m exceeds 100%. Thus, we should regard 𝑚𝑚 >100% or equivalently 𝛼𝛼 >0 
as empirical evidence of flawed data for extreme old age. Since we are interested in death 
rates varying from 0 to 100% or a little more, the Figure establishes that we should be 
interested in the 𝛼𝛼 range from -7 to somewhere a little above 0, say 1 or 2. 
 
However, we are not so much interested in the death rate 𝑚𝑚 as in the death probability 𝑞𝑞.  
Figure 3 shows the corresponding plot of the 𝑞𝑞 rate vs the 𝑚𝑚 rate. One would have to have 
𝑚𝑚 rates getting close to 500% to get 𝑞𝑞 rates that approach 100%.  
 
 
 
 
 
 
 
 
 
 

 
                                                 
7 Further, 𝑚𝑚(𝑡𝑡, 𝑥𝑥) = 𝐷𝐷(𝑡𝑡, 𝑥𝑥)/𝐸𝐸(𝑡𝑡, 𝑥𝑥) is the maximum likelihood estimator for the hazard function which must 
be positive, but not bounded by 1.  
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Figure 3: Death Probability vs Death Rate  

 
 

 
3. Projecting Extreme Old Age Mortality Rates: An Empirical Example 
 
 
Figure 4 shows the familiar plot of the estimated 𝛼𝛼 for Australian males for ages varying 
from 0 to 109.  Of particular interest is the way in which 𝛼𝛼� becomes more volatile from 
the late 90s onwards – notice especially the hook-shaped tail – reflecting the estimates’ 
increasing sensitivity to sampling variation as the age continues to increase. 
 
 

Figure 4: Australian Male 𝜶𝜶�:  Ages 0 to 109 

 
Notes: Based on the CBDX3 model applied to Australian male deaths and exposures data for sample years 
1921:2014 and sample ages 40:109. Source: Human Mortality Database.  
 
 
Figure 5 shows the same plot of estimated 𝛼𝛼 for Australian males for ages varying from 
40 to 109. Note the near linearity of the plot up to ages in the late 90s. This near-linear fit 
provides the basis for the 𝛼𝛼 projections to higher ages shown in Figure 5.  This Figure 
shows a blue plot of the sample 𝛼𝛼� going from ages 40 to 95. The red plot depicts the 𝛼𝛼 
projections going out to age 150. This second plot is a polynomial projection from the 
sample 𝛼𝛼� and we see that the projection is a well-fitting continuation of the sample 𝛼𝛼�. 
Observe too that the projection is smooth and free of the random variation in the sample 
𝛼𝛼�. 
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Figure 5: Australian Male 𝜶𝜶�: Ages 40 to 109 

 
Notes: Based on the CBDX3 model applied to Australian male deaths and exposures data for sample years 
1921:2014 and sample ages 40:109. Source: Human Mortality Database.  
 
 

Figure 6: Australian Male 𝜶𝜶� and Projected 𝜶𝜶: Ages 40 to 109 

 
Notes: See notes to Figure 5. 
  
 
We now propose the following method to obtain projected 𝑞𝑞 rates going out to age 150. 
First recall that the projected 𝑞𝑞 rates in Figure 1 were based on sample  𝛼𝛼�. Our approach 
is to replace the sample 𝛼𝛼� (which here would be those for ages 40 to 95) with the 
polynomial fitted 𝛼𝛼 underlying Figure 5, and we found that a quadratic equation gave the 
best fit.8 We then use the fitted 𝛼𝛼 to project the 𝛼𝛼 for the ages higher than 95, and these 
are shown as the red line in Figure 5. Finally, we splice the fitted and projected 𝛼𝛼 series 
to produce an 𝛼𝛼 series spanning ages 40 to 150 and we input this spliced 𝛼𝛼 series into (1) 
to obtain our projected 𝑞𝑞 rates.9  
 
The resulting projections for the mean and 90% confidence interval for cohort 𝑞𝑞 rates are 
shown in Figure 6. The 𝑞𝑞 projections and their bounds rise with age and eventually 

                                                 
8 The equation is 𝛼𝛼𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑥𝑥) = −0.0001𝑥𝑥2 + 0.1069𝑥𝑥 + 10.202.  The parameter estimates were derived 
using the Polyfit function in Matlab. 
9 Using 𝑞𝑞 = 1 − 𝑒𝑒−𝑚𝑚. 
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converge to 100% as the age continues to rise. The projections are smoother and more 
intuitively appealing than those in Figure 1.  
 
 

Figure 6: Projected Mean and 90% Prediction Intervals for Cohort 𝒒𝒒 Rates for an 
Australian Male Just Turned 70 

 
Notes: Based on the CBDX3 model applied to Australian male deaths and exposures data for sample years 
1921:2014 and sample ages 40:100. Source: Human Mortality Database. Projections make use of a spliced 
𝛼𝛼 series spanning years 70 to 150 that includes fitted 𝛼𝛼 for ages 70:95 and projected 𝛼𝛼 for ages 96:150.  
 
 
Figure 7 shows the projected survivorship probabilities corresponding to the 𝑞𝑞 
projections in Figure 6 for an individual just turned 70.  
 

 
Figure 7: Survival Probabilities for Australian Males Just Turned Age 70 

 
 

Notes: See notes to Figure 6. Survival probability = 1 −  𝑞𝑞. 
 
 
Table 1 shows the survival probabilities to key benchmark ages: 80, 90, 100, etc.  
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Table 1: Survival Probabilities for Australian Males Just Turned Aged 70 
 

Probability of survival to age 80 76.0% 
Probability of survival to age 90 32.3% 

Probability of survival to age 100 1.4% 
Probability of survival to age110 1.20e-05% 
Probability of survival to age 120 1.00e-18% 
Probability of survival to age 130 6.30e-40% 
Probability of survival to age 140 1.17e-65% 
Probability of survival to age 150 5.84e-93% 

 
Notes: See notes to Figure 6. Survival probabilities are based on mean 𝑞𝑞 projections.  
 
So the probability of surviving to age 100 is just over 1.4% and the probability of 
surviving to age 150 is about 5.84% with the decimal point moved 93 places to the left. 
To put this latter figure into perspective, the probability of surviving to age 150 is about 
1/2000th of the probability of winning the national lottery 14 times in a row – possible 
but not too likely.  
 
 
4. Conclusions 
 
 
This article shows how the projected cohort mortality rates from stochastic mortality 
models that depend on age effects can be improved by fitting and projecting the age 
effects themselves. The proposed approach produces smoother projected mortality rates 
and allows modellers to project cohort mortality rates out to ages well beyond the sample 
age range. This same approach can also be used to price financial instruments that 
depend on projected cohort mortality rates that eventually decline to zero, and the most 
obvious example would be to price a lifetime annuity. The proposed approach is thus of 
considerable practical use to mortality modellers, life actuaries and pension economists.  
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