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Abstract: Eight normal-hearing listeners practiced a tone-detection
task in which a 1 kHz target was masked by a spectrally unpre-
dictable multitone complex. Consistent learning was observed, with
mean masking decreasing by 6.4 dB over five sessions (4500 trials).
Reverse-correlation was used to estimate how listeners weighted each
spectral region. Weight-vectors approximated the ideal more closely
after practice, indicating that listeners were learning to attend selec-
tively to the task relevant information. Once changes in weights were
accounted for, no changes in internal noise (psychometric slope) were
observed. We conclude that this task elicits robust learning, which can
be understood primarily as improved selective-attention.

PACS numbers: 43.66.Ba, 43.66.Dc

1. Introduction

Detection thresholds for a fixed-frequency sinusoid deteriorate by 20–50 dB in the pres-
ence of spectrally unpredictable multitone complex (Kidd et al., 2007). Such masking
cannot be explained by overlapping activity in peripheral auditory filters, since it occurs
even when the masker is spectrally distal (‘across-channel interference’), or energeti-
cally weak (‘excess-additivity’). Instead, it is driven by higher order factors, including
the degree of masker uncertainty (Neff and Callaghan, 1988), or the amount of target-
masker similarity (Lee and Richards, 2011).

Whether listeners can learn to reduce such ‘informational’ masking is of gen-
eral interest, since it is a prominent source of discomfort and dissatisfaction, particu-
larly among hearing-impaired listeners. However, the extent of learning on such tasks
has tended to be obscured by the use of highly experienced listeners. Two studies by
Neff and colleagues did explicitly examine practice effects (Neff and Callaghan, 1988;
Neff and Dethlefs, 1995), and these concluded that performance remained “remark-
ably stable” across sessions. However, in neither study were listeners naïve to the task.
Thus, the listeners in Neff and Dethlefs (1995) completed 600 practice trials prior to
testing, while those in Neff and Callaghan (1988) had extensive experience (> 10 h)
of related masking tasks. Moreover, listeners generally completed fewer than 1000 tri-
als. Given that auditory learning tends to be greatest early in training (Hawkey et al.,
2004), and may extend over many thousands of trials, the full extent of learning re-
mains uncertain.

The mechanisms subserving learning also remain unclear, and understanding
them is important for the design of effective training schedules. One possibility is that
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levels of unpredictable masking are determined by the width of the listener’s ‘window
of attention’ (i.e., the spectral range over which auditory filter activity is integrated;
Lutfi, 1993). Learning may therefore represent a narrowing of this window, with lis-
teners learning to give weight only to the target region. Alternatively, learning may be
the result of reduced internal noise (i.e., reduced variability in the listener’s decision
variable), as has been suggested previously (Jones et al., 2013). We evaluated both of
these possibilities in the present study, using a two-step procedure developed by Berg
(2004). Firstly, reverse-correlation was used to estimate the relative weight the listener
gave to each spectral region. The observed weights were compared to the ideal to de-
rive a measure of efficiency. Secondly, the estimated weights were used to derive the
listener’s trial-by-trial decision variable, DV , and a psychometric curve was fitted to
the probability of responding ‘Interval 2’ as a function of DV . Since the goodness of
the weighting strategy was partialled out, the slope parameter could be interpreted as
an unambiguous index of internal noise.

2. Methods

2.1. Listeners
Eight listeners (five female) participated. They were aged 19–26, and had no prior
experience of psychophysics. All had audiometrically normal hearing (≤ 20 dB HL
bilaterally at 0.25–8 kHz octaves). Participants were recruited through advertisements
placed around the Nottingham University campus, and received £7.5/hour.

2.2. Task & Procedure
The task was two-alternative forced-choice [2AFC] tone detection, in which partici-
pants were asked to “pick the interval containing the target tone”. Each trial consisted
of two 300 ms observation intervals, separated by a 500 ms interstimulus interval.
Responses were unspeeded, and were followed by 250 ms of visual feedback.

In each block, a two-down one-up adaptive track was used to derive an esti-
mate of the listener’s 70.7% detection limen (DL), either in noise or in quiet. The level
of the target tone was initialized at 60 dB SPL. It was adapted in steps of 8 dB until the
second reversal, and 2 dB thereafter. Each block consisted of 50 trials. The number of
trials was fixed rather than the number of reversals in order to ensure that all listeners
received the same amount of practice. Before each block listeners were presented with
the target in quiet as a reminder.

Each session lasted approximately 45 minutes, and consisted of 16 noise blocks
and two quiet blocks. The 18 blocks were presented in random order, with a rest break
after the tenth block. Listeners completed five sessions over five consecutive days (4500
trials). Initially, participants also completed one practice trial in quiet and three prac-
tice trials in noise. To highlight the task demands, during this practice the stimuli du-
rations were increased to 800 ms, and noises were attenuated to 50 dB SPL.

2.3. Stimuli & Apparatus
The target was always a 1 kHz sinusoid, randomly assigned to one of two observation
intervals. In noise blocks, a 30-component multitone complex was also presented in
each interval. All stimuli were 300 ms in duration, including 10 ms cos2 on/off ramps,
and were presented diotically over Sennheiser HD 25-I headphones.

The frequency, phase, and amplitude of the noise components were indepen-
dently randomized on every presentation. Phases were randomly drawn from a rect-
angular distribution. Amplitudes were randomly drawn from a Rayleigh distribution,
and normalized so that the total masker level was always 60 dB SPL. Frequencies were
randomly drawn without replacement from 715 candidates, log-distributed between
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223–4490 Hz, excluding a third-octave notch geometrically centered on the target fre-
quency (891–1120 Hz). This notch served to minimize energetic masking, and was
slightly greater than the average equivalent rectangular band [ERB] at 1 kHz (Glas-
berg and Moore, 1990).

Stimuli were digitally synthesised in Matlab v7.4 (2007a, The MathWorks, Nat-
ick, MA) using 44.1 kHz sampling and 24-bit quantization. Digital-to-analog conver-
sion was performed by a PCI sound card (Darla Echo; Echo Digital Audio Corporation,
Carpinteria, CA). Listeners responded via a button box, and were tested individually in
a double-walled sound-attenuating booth.

2.4. Measures
DLs were calculated independently for each track as the mean target level (dB) at
the last four reversals. With noise blocks, the amount of masking was computed by
subtracting the mean DL in quiet (averaged over all blocks).

Relative weights were calculated via multiple logistic regression, as per Alexan-
der and Lutfi (2004). The dependent variable was the listener’s binary response (‘In-
terval 1’ or ‘Interval 2’). The independent variables were the differences in (dB) level
between the corresponding spectral region in each observation interval. In instances
where there was no energy in a spectral region, the level was set to 0 dB. The weights,
ω, were the regression coefficients, normalized so that their magnitudes summed to
1. As in Alexander and Lutfi (2004), the efficiency of the weight strategy was cal-
culated as one minus the root mean square (RMS) difference between observed and
ideal weights. The ideal strategy was to assign a weight of unity to the target bin and
zero-weight elsewhere, which would yield an efficiency value of 1.

The magnitude of the internal noise, σint, was calculated as the standard de-
viation of a zero-mean cumulative normal distribution, fitted to the binned probability
of a listener responding ‘Interval 2’ as a function of the estimated decision variable,
DV . The DV was defined as

∑n
i=1 ωi∆Li, where ∆Li represents the energetic level

difference (in dB) in the ith spectral bin, and ωi is the corresponding relative weight co-
efficient. Psychometric fits were made using PSIGNIFIT v2.5.6: a Matlab toolbox which
implements the maximum-likelihood method described by Wichmann and Hill (2001).

3. Results and Discussion

3.1. Learning
DLs in quiet and in noise are plotted for individuals in Fig 1. In quiet no learning
was observed, with all individuals well-described by linear regressions with near-zero
slope [βµ = 0.01; all p > 0.05]. In contrast, substantial learning was observed in the
masked condition. Linear fits yielded significant negative slopes for all but two (L5, L7)
listeners [p < 0.05], with improvement rates ranging from −0.02 to −0.18 dB/block.
Some data were better fit by broken-stick functions, suggesting a short initial phase
of rapid learning followed by a protracted period of more gradual learning. However,
the improvements in fit were small [∆r2/∆d.f. < 1] for all but L5, indicating that
learning may be more gradual than in more basic auditory tasks, such as frequency
discrimination (Hawkey et al., 2004). Grand mean masking decreased from 44.3 dB in
session one to 38.0 dB in session five [t(7) = 4.09, p = .005].

We conclude that the ability to detect a tone in unpredictable noise improves
robustly with practice. Furthermore since the performance of some listeners (e.g., L1
and L4) had not plateaued by the end of the study, further learning may have been
possible. This release from across-channel interference is consistent with Buss (2008),
who found that six of eight listeners improved with practice on an analogous intensity-
discrimination in unpredictable-noise task. However, widespread learning is contrary
to Neff and Dethlefs (1995), where tone-in-unpredictable-noise DLs appeared ‘remark-
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ably stable’ in most listeners. This difference is likely due to the listeners in Neff and
Dethlefs (1995) having completed 600 trials practice prior to training. Accordingly,
when the first 600 trials were excluded in the present study, regression slopes were
significantly shallower [t(7) = −2.43, p = 0.046], and failed to differ from zero (no-
learning) in 5 of 8 listeners [five p > 0.05].

Consistent with previous reports, there was substantial individual variability in
masking: 36.6–58.0 dB in session one, 31.6–50.0 dB in session five. Previous authors
have wondered whether such individual differences can be reduced by training (e.g.,
Durlach et al., 2003). As in Neff and Callaghan (1988), we found little evidence of
that here; between-subject variation in masking was approximately constant across
all five sessions, with the greatest variability occurring in session four where group
mean masking was actually lowest. There was some indication that variability within
listeners (intra-session masking S.D.) decreased with practice, but this change was not
significant [t(7) = 2.27; p = .058, n.s.].

3.2. Mechanisms of learning
Estimates of weights are shown for individuals in Fig 2. Most listeners gave greatest
weight to the target bin (1 kHz), but also appeared to weight irrelevant spectral infor-
mation. As in some previous reports, this overweighting was particularly prevalent at
the upper fringe of the stimulus (c.f., Watson et al., 1976), suggesting that a selective-
attenuation of these high frequency noise components alone may provide a substantive
release from masking. A repeated measures ANOVA yielded a significant main effect
of session on weight efficiency [F (4, 28) = 3.48, p = 0.020], indicating that listeners’
weighting strategies improved with practice. Thus, after practice listeners predicated
their decisions more selectively on the target spectral region.

To evaluate changes in internal noise, cumulative Gaussians were fitted to lis-
teners’ responses as a function of the estimated trial-by-trial DV . Group-mean esti-
mates of σint did not systematically vary across session [F (4, 28) = 0.20, p = 0.937, n.s.],
indicating that internal noise magnitude was not diminished by practice. However, as
shown in Fig 3, there was variability between listeners. For example, listeners L1 and
L4 exhibited a marked decrease in internal noise, as indicated by steeper psychometric
slopes in session five. Conversely, listener L8 shows very little change (but did exhibit
substantial learning; c.f., Fig 1).

Alternate psychometric fits were also made assuming ideal weights throughout
(i.e., P (‘Interval 2’) as a function of target level). These models did indicate a reduction
in internal noise [F (4, 28) = 5.49, p = 0.002, η2p = 0.44]. However they gave a markedly
poorer account of the raw data, with significantly greater deviance between model and
data [rm-ANOVA; F (1, 63) = 11.02, p = 0.013, η2p = 0.61]. Thus, we favor the combined
weight+internal noise account here, both as it provides empirically stronger fits, and
because of its potential to predict how performance will change depending on how
spectral composition of the stimulus varies.

In summary, training produced significant improvements in weight efficiency
but not internal noise – listeners learned with practice to attend selectively to the task-
relevant information. Finally, to examine whether these changes differed in effect as
well as significance, Monte Carlo simulations were run using the observed group-mean
changes in weight efficiency and internal noise. These simulations followed the same
test procedure as human listeners (i.e., same n trials, n listeners, etc.), and the simula-
tions similarly responded to the greatest weighted-sum-energy. Thus, the decision rule
was to respond ‘Interval 1’ only when

[∑n
i=1 ωi∆Li + σint/

√
2
]
> 0.

When internal noise was held constant at its mean session 1 value, and weight-
efficiency was varied from its session 1 to session 5 value, masking decreased by an
amount similar to the listeners [Sim : −7.2 dB; Listener : −6.7 dB]. Conversely,
varying internal noise and holding weight-efficiency constant produced no significant
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change in masking [p = .399]. These results suggest that improvements in selective
attention primarily determine learning on this task.

4. Conclusions

(1) Masking by unpredictable noise is reduced by practice in most listeners. Some of
this learning occurs rapidly, within the first 600 trials, but learning may continue
for several thousand trials.

(2) Improvements in weight efficiency underlie learning on this task, with listeners
becoming better-able to attend selectively to the task-relevant information.
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Fig. 1. (Left) Detection limens for individuals, as a function of block. DLs in quiet
and in noise are shown by filled squares and open circles, respectively. Solid lines
represent least square linear fits to the noise data. Dashed-lines denote broken-stick
fits, inflected after session 1. (Right) Group-mean (±1 SE) change in masking.
(Color online).
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Fig. 2. (Left) Individual weights, for the first (grey circles) and last (blue triangles)
session. Each point represents the geometric center of a third-octave spectral bin.
The target signal was always a 1 kHz sinusoid, so the optimal strategy was to always
give unit weight to the 1 kHz bin, and zero weight elsewhere. (Right) Group-mean
(±1 SE) change in weight efficiency. (Color online).
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Group-mean (±1 SE) change in internal noise magnitude. (Color online).
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