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Abstract

We consider a pharmaceutical Research & Development (R & D) pipeline management problem under two sig-

ni�cant uncertainties: the outcomes of clinical trials and their durations. We present an Approximate Dynamic

Programming (ADP) approach to solve the problem e�ciently. Given an initial list of potential drug candidates,

ADP derives a policy that suggests the trials to be performed at each decision point and state. For the classical

R&D pipeline planning problem with deterministic trial durations, we compare our ADP approach with other

methods from the literature, and �nd that it can �nd better solutions more quickly in particular for larger

problem instances. For the case with stochastic trial durations, we compare the ADP algorithm with a myopic

approach and show that the expected net pro�t obtained by the derived ADP policy is higher (almost 20% for

a 10-drug portfolio).

Keywords: Dynamic Programming, Pharmaceutical R&D Pipeline Management, Heuristics, Approximate

Dynamic Programming, Project Scheduling

1. Introduction

Most pharmaceutical companies develop several molecules and drugs simultaneously. Drug development

(from discovery to market launch) can take up to 15 years, and the average cost of a new drug is about

$1.3�2 billion of which 50% are spent on clinical trials (Lainez et al., 2012). The candidate drugs go through

four main stages of development: pre-clinical, Phase 1, 2, and 3. The last three stages are highly regulated

and systematized processes to determine the appropriate dosage and whether compounds are e�ective or not

for humans. The drugs that successfully completed all stages go to the approval process and then to the market

if approved. However, many drug candidates fail during the clinical trials (see Figure 1). On the other hand,

the pro�ts earned from a drug on the market can be quite substantial, e.g. around $ 16 billion per year (Lines,

2012).
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Figure 1: Drug discovery and development timeline (S Raghavendra et al., 2012)

The selection of di�erent drug candidates and resource allocation to the related development activities are

known as drug (R & D) pipeline management. Conducting a clinical trial constitutes many activities such as site

recruitment, site monitoring, site retention, patient recruitment, lab activities, and protocol approvals. These

activities involve several critical resources that are usually limited and not easy to expand at short notice. Thus,

although several drug candidates enter the clinical trial stages, not all of them may be conducted at the same

time.

Drug pipeline management requires to make interdependent and dynamic decisions. These include advancing

a drug candidate to the next stage when it successfully passed a clinical phase, or freezing it due to resource and

�nancial limitations. There is usually a �xed budget to be used for the drug development activities including

clinical trials. Since each trial takes up to 6 years, the decision of allocating resources to any project may result

in a lack of resources for another project during this period. Thus, the decisions taken today a�ect possible

actions in the future which makes the problem time-dependent.

Drug development activies are a�ected by several uncertainties. The most signi�cant uncertainty is observed

in the outcomes of clinical trials. Once the design of a trial has been approved by the regulatory agencies, a

targeted patient sample is recruited. However, there may not be enough patients to recruit or several companies

may be competing for the same pool of patients. Thus, the completion time of a trial may be delayed and cannot

be known in advance. In case portfolio planning decisions are made at �xed time intervals, some drugs that

already completed a phase may need to wait until the next decision point. On the other hand, time-to-market

(the time spent in the pipeline) is a crucial factor for the pro�ts to be earned from a drug due to a �xed patent

life (Jekunen, 2014). Thus, delaying a candidate should be avoided as much as possible and when trial durations

are stochastic, the timing of decisions within a portfolio planning process may be stochastic as well.
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Drug pipeline management is crucial for pharmaceutical companies considering the associated impact on

pro�ts and costs. Moreover, it is a highly complex process with a dynamic nature involving several uncertain-

ties. However, the industry generally manages the pipelines by ad-hoc policies rather than analytical methods

(Skrepnek et al., 2007). In this paper, we propose a stochastic dynamic programming formulation for the drug

pipeline management problem. Then, we develop an ADP approach based on value iteration that can account

for the complexities of the underlying problem and allows to solve larger portfolio planning problems than other

state-of-art methods which is important since the size of portfolios is expected to increase as the industry moves

toward more personalized medicine. We also compare the ADP approach with a greedy approach applied in

practice that ranks the drug candidates according to ENPV.

The rest of this paper is organized as follows. The next section presents the current literature related

to portfolio planning in pharmaceutical companies. Section 3 presents the stochastic dynamic programming

formulation. The ADP approach is explained in Section 4. Section 5 consists of the computational experiments

and the analysis of the results. Finally, Section 6 summarizes the paper and outlines avenues for future research.

2. Literature Review

Due to the stochastic and dynamic nature of pipeline management problems, a solution should recommend

an action at each possible state and time point. Such a mapping from state to action is called a policy. However,

as the problem size grows, the number of possible states increases quickly, making it harder to obtain the optimal

policy and requiring some approximation tools. The modelling and solution approaches in the literature can

be divided into mathematical programming and simulation-based approaches. To solve the pharmaceutical

portol�o planning problem, we propose ADP that combines simulation and dynamic programming to learn an

approximate policy. ADP has been used for many complex operations research problems such as data resource

planning (Li et al., 2014), project scheduling (Li and Womer, 2015), or patient scheduling (Saure et al., 2012;

Lu et al., 2018). To the best of our knowledge, it has not been applied to the pharmaceutical portfolio planning

problem before.

All papers in the literature consider the uncertainty in trial outcomes while trial duration uncertainty is

considered only in few simulation-based papers (Perez-Escobedo et al, 2012; Blau et al., 2004). The most

frequently used performance measure considered for portfolio planning is expected net present value (ENPV),

which takes into account the uncertainty of the outcomes as well as their discounted value with time.
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2.1. Mathematical Programming-based Approaches

The early papers focusing on drug pipeline management use two-stage stochastic programming. In this

framework, the �rst stage decisions are drug selection and capacity investments. The uncertainty in trial

outcomes is represented by a large number of scenarios. As the trials are completed, the additional information

is used to make the second-stage decisions that consist of capacity re-allocation or stopping some trials in case

of lack of resources. However, due to the required large number of scenarios, the resulting models are hard to

solve optimally. Thus, several heuristic approaches have been developed to solve real-size instances.

Rotstein et al. (1999) developed a two-stage stochastic programming model for simultaneous drug selection

and capacity planning for a single pharmaceutical production site. Since solving real-size instances to optimality

is computationally burdensome, they used a heuristic cut-o� procedure. In this method, the scenarios with

higher probabilities are selected until the overall probability across these scenarios is above a threshold level,

and then the problem is solved in this reduced scenario space. Their computational results indicate that when

the threshold level is around 0.5, the results are satisfactory while the computational e�ort drops signi�cantly.

Gatica et al. (2003) proposed to de�ne four possible outcomes (high, target, low and failure) for clinical trials.

Considering the integer capacity expansion variables as well, the model becomes a large MILP that can be

solved only for very small number of drugs. Thus, the cases solved in this paper only consist of four drugs.

Papageorgiou et al. (2001) developed a deterministic capacity planning model with multi-sites and multi-periods.

The model determines the promising drugs, when and where to produce them and the allocation and expansion

of the capacity. There is no uncertainty in clinical trial outcome and demand. Instead, they consider the transfer

pricing and the taxation framework, as well as manufacturing details, including setup, scale-up, quali�cation

and manufacturing suite structure.

Patel et al. (2013) considered portfolio planning by incorporating the trial design decisions (sample sizes)

and scheduling of trials simultaneously into the cost and duration parameters. They used integer programming

and considered budget constraints. They calculated the probability of success of a trial by combining frequentist

and Bayesian approaches assuming that a prior distribution is known for e�cacy. The decision variables are

binary, indicating whether a trial for a drug is started with a certain type of design at a particular time t. They

also developed a stochastic integer model (Patel and Ankolekar, 2015) that provides solutions for possible Phase

3 outcomes.

Colvin and Maravelias (2008) developed a multi-stage stochastic programming model to �nd the trials to

be performed for a given portfolio for each planning period. They reduce the number of scenarios and non-

anticipativity constraints by employing reduction techniques and could solve up to 5 drug instances. Later,
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Colvin and Maravelias (2010) extended their work by developing a novel branch and cut algorithm which

further improves the computational performance: they could solve up to 7 drug instances. Based on the model

presented in this paper, Solak et al. (2010) present a multi-stage stochastic model where the uncertainties are

required investment levels, updated return estimates and �nal return levels. They propose a sample average

approximation algorithm to �nd the solution.

To solve the same portfolio planning problem, Christian and Cremaschi (2015) proposed three heuristics:

shrinking horizon, multiple two-stage stochastic programming decomposition algorithm and a knapsack decom-

position algorithm. The �rst one decomposes the problem into smaller ones that are solved whenever resources

become available. The knapsack approach decomposes the original problem into several knapsack problems,

which are solved at decision points using a rolling horizon procedure. The results obtained for up to 7 drugs

are promising in terms of the optimality gap and computation time. In a more recent paper, Christian and

Cremaschi (2017) extended their knapsack decomposition algorithm by changing the time points where the

knapsack problems are produced. The modi�ed algorithm results in a smaller optimality gap (around 1% for

the 6-drug case) but comparatively larger computation times. They also extended their branch-and-cut algo-

rithm by a new branching method and combine it with the knapsack decompostion approach. Although the

memory requirement of the modi�ed algorithm is much smaller than the exact branch-and-bound algorithm,

the computation times are very large (around 643 hours for the 5 drug case).

Table 1 summarizes the important attributes of the related (both mathematical and simulation-based)

papers. The table shows that the trial outcome is the main uncertainty considered in almost all papers while

trial durations are only studied in two papers (Blau et al., 2004; Perez-Escobedo et al., 2012). Heuristics are

slightly more prevalent than exact methods.

Table 1: A review of the literature on drug portfolio planning

Papers
No. of stages Solution Approach Uncertainties

Single Two Multi Exact Heuristic Simulation Outcome Duration

Rotstein et al. (1999) X X X
Blau et al. (2000) X X X X
Papageorgiou et al. (2001) X X
Gatica et al. (2003) X X X
Blau et al. (2004) X X X X X
Choi et al. (2004) X X X X X
Rajapakse et al. (2005), (2006) X X X
Varma et al. (2008) X X
Zapata et al. (2008) X X X X
Colvin and Maravelias (2008), (2010) X X X
Solak et al. (2010) X X X
Perez-Escobedo et al. (2012) X X X X X
Patel and Ankolekar (2015) X X X
Christian and Cremaschi (2015), (2017) X X X
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A related stream of the literature to R&D pipeline management studies the project scheduling problem.

The project scheduling problem deals with �nding the starting times of a number of tasks that constitute a

project and brings a discounted cash �ow after all activities are completed successfully. The tasks preserve some

precedence relationship, i.e. need to be performed in order to achieve the pro�t. Creemers et al. (2010) and

Hermans and Leus (2018) aim to �nd the optimum starting time for each task in a project to maximize total

discounted cash �ow. They assume that the tasks have exponentially distributed durations. As di�erent from

Creemers et al. (2010), Hermans and Leus (2018) allow a task to be interrupted (preemption). They model the

problem as a continuous-time Markov Chain and suggests a near-optimal algorithm.

Wiesemann et al. (2010) study the project scheduling problem but suggest to �nd the optimum target

processing time for the activities instead of starting times. In this setting, an activity should start as early as

possible but never before its target processing time. With this change, they formulate the project scheduling

problem as a global optimization problem and solve with branch-and-bound algorithm with instances up to

30 activities. De Reyck and Leus (2008) study the project scheduling problem with deterministic activity

durations, unlimited resources and probability of activity failures. They show that the problem is NP-hard

but small instances can be solved with branch-and-bound to optimality. Di�erent from De Reyck and Leus

(2008), Creemers et al. (2009) consider stochastic activity durations and activity failures. They assume that

there are several modules that need to be completed for a project to be successful and bring pro�t. Each

module contains several activities and at least one of these activities should be completed successfully for the

module to be successful. Similarly, Creemers et al. (2015) develop a stochastic dynamic programming model for

project activities with uncertain task durations and outcomes. Not all modules have precendence relationships.

The problem studied in these papers presents a di�erent structure than ours which has several projects and

therefore several di�erent pro�ts/�nal modules. Finally, Choi et al. (2004) study the resource constrained

project scheduling problem in the presence of task duration, cost and outcome uncertainties. They propose

to overcome the computational complexity by limiting the state space heuristically. Speci�cally, they simulate

di�erent scenarios using three simple decision heuristics and only consider the states visited by these heuristics.

They use Bellman iteration to �nd the actions for each of these states by using the estimated state values by

the heuristics. However, the Bellman iteration steps as well as combining di�erent state spaces of the heuristics

are computationally burdensome. Besides, the heuristics may lead to non-optimum decisions because ignoring

states not visited by any of the heuristics may remove the optimal policy from the search space. In a later

study, Choi et al. (2007) apply Q-learning to expedite the computation of the state transitions while the rest of

the algorithm in Choi et al. (2004) stays the same. They also incorporate the arrival of new projects. Although
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Q-learning is useful as a model-free algorithm, it also requires to consider all state action pairs, instead of states

only. Therefore, it is more e�cient when the state transition probabilities are unknown or the set of future

possible states is quite large (Powell, 2011).

2.2. Simulation-based Approaches

Mathematical programming-based approaches usually su�er from an exponential increase in the number

of variables as the instance size is increased. Simulation-based methods can solve large size problems more

e�ciently, but need to be combined with detailed experiments to examine the quality of a solution. This section

summarizes previous research on pharmaceutical portfolio planning by utilizing simulation-based approaches.

We focus on two uncertainties a�ecting portfolio planning, namely trial outcomes and trial durations. First, we

summarize the studies with deterministic trial durations.

Blau et al. (2000) focus on selection and sequencing of drug candidates. They consider uncertainties in

clinical trial outcomes. First, they compared the candidates in terms of development capital cost, possible sales,

and success probabilities. After a portfolio has been selected based on this comparison, they applied a simple

heuristic utilizing Monte Carlo simulation to sequence the portfolio in the pipeline. They compared di�erent

sequences in terms of their ENPVs. However their method cannot explicitly enforce the resource constraints.

Instead, they suggest to keep track of resource constraint violations.

Rajapakse et al. (2005) used Monte Carlo simulation to model the uncertainty in trial outcomes and develop

a decision tool to examine di�erent portfolio management strategies. They consider di�erent planning aspects

such as resource management, manufacturing activities and clinical trials. Their tool can be used to evaluate

several performance outcomes of a given portfolio (no optimization). They show the practicability of the tool

in a case study. Later, they extended this work, (Rajapakse et al., 2006), by generating an e�cient frontier for

ENPV and risk (standard deviation of the NPV distribution) of each possible candidate. Each portfolio in the

e�cient frontier is considered as a possible solution.

The trial durations may be a�ected by uncertainties or resources allocated to them. For resource-dependent

trial durations, Zapata et al. (2008) developed a simulation-optimization based decision tool to aid the resource

management and scheduling of activities within a drug development pipeline. Similarly, Varma et al. (2008)

assume that resource allocations a�ect activity durations. They developed a decision tool that can be used to

assess the impact of various scheduling and resource allocation policies on several strategic metris such as ENPV,

risk and average time to market. Simulation optimization packages such as Sim-Opt has been utilized for the

research and development pipeline management by Subramanian et al. (2003), Subramanian et al. (2001).

Uncertainty in trial durations may a�ect the performance of a portfolio signi�cantly. Thus, several authors
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have considered stochastic trial durations in their modelling. Blau et al. (2004) consider several dependencies

among resources, manufacturing costs, �nancial returns and technical successes of drug candidates. They used

simulation to obtain the distribution of NPV for a portfolio and a genetic algorithm to optimize the drug

selection and sequencing. This combined method results in 28% increase in ENPV compared to a bubble chart

approach that visualizes the drug candidates according to their expected revenues and shows the pareto frontier.

However, it is also computationally burdensome; it takes about 60 hours for the algorithm to �nd a solution.

Extending the work of Blau et al. (2004), Perez-Escobedo et al. (2012) additionally consider multiple objec-

tives: NPV and risk of money loss. They combined simulation and a genetic algorithm to model the uncertainties

a�ecting the portfolio planning, such as activity durations and trial outcomes, by using intervals rather than

point-wise estimates.

2.2.1. Literature Gaps and Contribution

Our review shows that there are several gaps in the literature for the drug pipeline management problem:

• Few authors study the case where the trial durations are stochastic. Most of the time, the decisions need

to be taken as soon as information is obtained (such as the completion of a clinical trial). However, trial

durations cannot be known exactly beforehand due to the inherent uncertainties in the patient recruitment

process.

• The stochastic arrival of new candidates into the pipeline is not considered. The authors assume a �xed

set of drug candidates throughout the planning horizon.

• The number of drugs considered is at most 10, while the pipeline of top 25 pharma companies range from

66 to 251 drugs with an average of 141 drugs (Informa UK, 2017).

To adress these gaps in the literature, we propose a stochastic dynamic programming model and an ADP

algorithm. The proposed solution framework is �exible enough to incorporate the features not considered in

the current literature. Meanwhile, our approach still produces near-optimal policies for the instances up to 10

drugs, within a reasonable solution time, especially as the portfolio size increases.

3. Stochastic Dynamic Programming Formulation

In this section, we present a stochastic dynamic programming framework for the drug pipeline management

problem. We follow the model of Christian & Cremaschi (2015, 2017) that is in line with most of the models

presented in the literature. Later, this model is extended with uncertainty in trial durations. We assume that
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the revenue for a drug is obtained as a lump sum once all corresponding trials have been completed successfully.

In practice, pharmaceutical companies collect drug revenues over a long time horizon. However, this is assumed

to be certain and thus the revenues can be combined into a single net present value. Finally, we do not allow

preemption, i.e. a trial is not stopped before it is completed. The clinical trials are conducted based on a

protocol that has been approved by regulatory agencies beforehand.

Sets:

• The planning horizon is assumed to be �nite and divided into discrete time periods (decision points),

represented as t = 1, · · · , T at which the decisions are made. Note that if a trial is still continuing for a

drug candidate, no decision is made for this candidate until the current trial is completed. The duration

between two decision points is assumed to be �xed, e.g. 3 months.

• The number of drug candidates in the pipeline is P , while each candidate is represented with p = 1, · · · , P .

• We only consider the drugs in clinical stages that are denoted by s = 1, 2, 3.

Parameters:

• Duration of stage s for drug p: dps.

• Cost of stage s of drug p incurred at the start of the stage: qps.

• Probability to complete stage s of drug p successfully: φps.

• Maximum level of resource 1 available at any time: R1
max.

• Maximum level of resource 2 available at any time: R2
max.

• Resource 1 and 2 usage at stage s of drug p in every time period: r1ps and r
2
ps.

• Expected revenue to be obtained from drug p, if completed successfully: mp.

• Late launch penalty rate for drug p due to a shorter patent life: ρp.

• The fraction of diminished revenue due to opportunity cost of lost market share for drug p per time period:

γp.

State Variables:
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• The current status of drug p at time t is denoted by:

fpt =



2, if drug p has completed all stages successfully,

1, if the current stage of drug p has �nished with success,

0, if the current stage of drug p is still continuing,

−1, if the current stage of drug p has �nished with failure,

−2, if drug p is frozen.

• The current stage of drug p at time t is denoted by ψpt. If the project has not started yet or has failed,

then ψpt = 0.

• The number of periods that have passed since the current stage has started for drug p at time t is denoted

by hpt.

State of the system at time t is denoted by St = [ft,ψt,ht], where ft = {fpt, p = 1, · · · , P} and ψt and ht

are de�ned similarly.

Uncertainties: Note that the success probabilities are only e�ective when the drug completes a trial. We

de�ne φ′pt as the (e�ective) success probability for drug p at time t. In other words, φ′pt shows the success

probability of drug p for its current stage. Note that we need to update the duration passed for a trial. If

hpt + 1 < dp,ψpt ,

hp,t+1 = hp,t + 1, ∀p, t = 1, · · · , T − 1,

otherwise,

hp,t+1 = 0, φ′pt = φp,ψpt , ∀p, t = 1, · · · , T − 1.

For the stochastic trial duration case, we de�ne additional probabilities ζpt(hpt) showing the probability of

trial completion in the next period given that hpt periods have passed for trial t of drug p. This additional

uncertainty increases the number of possible future states, St+1, at each time period.

Decision Variables:

• We de�ne ypt as 1 if project p is advanced to the next stage at time t, and 0, if it is frozen (put on hold).

If a drug is frozen, it means that the next clinical trial does not start until an advancing decision (if any)

is made in a future period.
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Feasible Actions: The action that can be taken for a drug at time t depends on the status of the drug;

• If the current stage of a drug ended successfully, then,

� If it was the last stage (ψpt = 3), no action is taken, pro�t occurs and fpt is set to 2.

� Else, the decision maker should either advance the project to the next stage or freeze it.

• If the project was frozen (fpt = −2), again a decision has to be made about advancing or freezing the

project.

• If the current stage is continuing or failed (fpt = 0,−1), or the drug had completed all stages succesfully

(fpt = 2), then no action is taken (ypt = 0).

Note that the set of feasible actions is constrained by the available resources. The set of feasible actions available

at time t can be formulated as:

At =

{
yt

∣∣∣∣Rimax − ∑
p|fpt=0

rip,ψpt
≥
∑
p

yptr
i
p,ψpt

, ypt = 0 ∀ p|fpt = 0,−1, 2, i = 1, 2

}
. (1)

This formulation can be extended to consider more complex resource requirements. For example, if the resource

requirement at each time period is di�erent, then rip,ψpt
can be replaced with ritp,ψpt

and the feasibility within

several periods ahead would be considered. This extension is investigated in the computational experiments.

Note that two types of resources are used only for the comparison purposes with Christian and Cremaschi

(2015), in the rest of the experiments a single resource type is assumed.

Update the state after the action:

• If drug p is advanced to the next stage (ypt = 1), then the current stage and the drug status are updated:

ψp,t+1 = ψpt + 1, fp,t+1 = 0.

• Else if the drug is frozen (ypt = 0): ψp,t+1 = ψp,t, fp,t+1 = −2.

• Otherwise (the drug has failed), ψp,t+1 = 0.

Figure 2 presents the possible transitions between di�erent drug states. The drug can be in any of 5 possible

states at any time. Depending on the action, the stage of the drug and the transition probabilities, it can move

to any of 5 states. Note that the states where the drug is successful or the trial (and equivalently drug) has

failed are absorbing states. The state of a successful drug does not change as it is completed. After a trial
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success, if that is the last stage, then the system moves into the drug success state. If it is not the last stage,

then it can be either frozen or advanced which correspond to moving into trial continue or drug frozen states.

A continuing trial can continue, fail or become successful depending on the probabilities. A frozen drug can be

advanced and the system moves into trial continue state or kept frozen.

Figure 2: State transition diagram for drug pipeline management problem

One-step Cost Function: We assume that there is no cost of freezing while the cost of advancing is the

lump sum cost of the corresponding stage, incurred at the beginning of that stage. One step cost of action yt

is denoted by c(yt) and formulated as follows:

c(yt) =
∑
p

(1− 0.025t)(qp,ψpt+1)ypt, t = 1, · · · , T − 1, (2)

that is linearly depreciated with rate 2.5% for each time period (Christian and Cremaschi (2015)).

Value Function: Note that the cost of clinical trial mainly depends on the sample size of the trial that is

computed by the company based on statistical considerations. Once the trial protocol has been approved by the

regulatory agencies, the company recruits the patients which mostly a�ects the duration of the trial. Therefore,

the cost of the trial is not dependent on the trial duration but rather the sample size, i.e. we are assuming a

stochastic recruitment rate. If all clinical trials of drug p are completed successfully at time t (ψpt = 3, fpt = 1),
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then the present value of the pro�t

m′pt = mp − ρp(t−
∑
s

dps) + γpt

occurs. Note that the late launch penalty depends on the total time periods that the project has stayed idle.

Let's represent total pro�t obtained from all projects �nished at time t with Mt(St) =
∑

p|ψpt=3,fpt=1m
′
pt.

The objective of dynamic programming formulation is to minimize the ENPV of the planning period. Let's

represent the objective function as V0(S0) which is also labelled as value function of the initial state S0 in t = 0.

The value function (Bellman equation) can be formulated as:

Vt(St) = max
yt∈At

{
Mt(St)− c(yt) + E[Vt+1(St+1|St,yt)]

}
, ∀St, t = 1, · · · , T − 1, (3)

Note that all possible future states St+1 are generated based on the current state St and action yt. Then, the

expected value of each possible future state is multiplied with the probability of that corresponding state which

depends on both probabilities of trial success and the completion, ζpt(hpt) and φ′pt, in the stochastic duration

case.

The value obtained at the end of the planning horizon consists of the expected pro�ts from frozen and

continuing projects, shown with mopen
p and mcont

p and are formulated as

revcontp = mp − γp

(
T +

3∑
s=ψpT

dps − hpT

)
−

3∑
s=ψp,T+1

qps, ∀p, (4)

revopenp = mp − γp

(
T +

3∑
s=ψpT+1

dps

)
−

3∑
s=ψpT+1

qps, ∀p, (5)

mopen
p = revopenp

3∏
s=ψpT+1

φp,s, ∀p, (6)

mcont
p = revcontp

3∏
s=ψpT

φp,s, ∀p. (7)

The late launch penalties ρp and γp ensure that the pro�ts computed for the open projects always have a

smaller expected revenue than completing them within the planning horizon. Therefore, it is penalized to delay

the projects. Note that Christian and Cremaschi (2015) use the following formulations for open and continuing
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projects:

revcontp = mp − γp
(
T +

3∑
s=ψpT

dps − hpT
)
, ∀p, (8)

revopenp = mp − γp
(
T +

3∑
s=ψpT+1

dps

)
, ∀p, (9)

εp = 0.9

[
mp − γpT −

∑3
s=ψpt

qps

mp − γpT

]
, ∀p, (10)

mopen
p = revopenp εp, ∀p, (11)

mcont
p = revcontp εp, ∀p (12)

that are used when comparing our algorithm with theirs. For both cases, the value at the end of planning

horizon is formulated as

VT (ST ) =
∑

p|fpT=−2

mopen
p +

∑
p|fpT=0

mcont
p .

The motivation behind di�erent revenue formulations is that we consider the probability of failure in the coming

trials explicitly rather than implicitly as in their formulation. Also note that the pro�t obtained in the previous

time steps are then added backwards to the the value at the end of the planning horizon.

4. Solution Method: Approximate Dynamic Programming

The portfolio planning problem outlined in the previous section is computationally expensive to solve due

to the large state space. For example, in a small instance with 3 drugs, and at most 6 time periods for a trial,

the state space may be as large as 903 = 729, 000.

Note that there are only two possible actions for a frozen drug or a drug that successfully completes a trial.

Considering that the probability of a successful trial is small, few drugs require an action at any decision point.

Besides, the resource constraint limits the number of drugs that can be advanced at the same time. Thus, we

use enumeration to �nd the optimal action at a decision point.

Simulation-based ADP is very suitable to solve large stochastic dynamic programming problems (Powell,

2009). To solve the pharmaceutical portfolio planning model, we develop a simulation-based ADP algorithm

with double-pass (Powell, 2009). We apply both a lookup table and basis function approximation. In this section,

we provide the details of the proposed ADP algorithm with the lookup table approach. A linear programming
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based ADP is not applied since the value function (3) is complex (Powell, 2009). We implement a value iteration

based algorithm instead of policy iteration since the problem has a large state space and a comparatively small

action set (Sun and Li, 2013).

ADP is a forward pass algorithm by default, i.e. the algorithm moves forward in time at each step. However,

the costs or revenues realized in the later time periods should be transferred to the previous time periods. With

the default single pass version, this transfer may take many iterations. To overcome this problem, a double pass

is suggested (Powell, 2007) which employs an additional backward pass updating the value function estimations

by moving backwards in time in the trajectory. Note that most of the revenues are collected towards the end of

the planning horizon (including for un�nished projects). Thus, we prefer a double pass, rather than a single-pass

approach, to update the state values at each iteration. In the double-pass approach, at the end of an iteration,

the value of each state in the chain is propagated backward from the last state through to the initial one.

In order to increase the number of explored states, a random feasible action is selected with probability Γ.

Otherwise, the action is selected randomly among the optimum actions computed that have the same optimal

value. However, this strategy may result in suboptimal policies and decreases the exploitation (Powell, 2009).

Therefore, we only apply it for the �rst half of the iterations, i.e. for n = 1, · · · , N/2, where n and N denote

the iteration counter and the maximum number of iterations set by the modeller, respectively.

An initial state S0, as well as the probability distributions for trial outcomes are given as the inputs to the

algorithm. As we run the algorithm, each visited state and its approximate value are inserted into a (lookup)

table. At each iteration of the algorithm, we simulate a possible scenario over the entire planning horizon. The

decisions implemented in each scenario are computed based on the Bellman equation (3) and the estimated

values of the states computed in the previous iterations. Next, the algorithm employs a backward pass, i.e.

following the scenario back in time and updating the values of the earlier states. Algorithm 1 shows the pseudo-

code of the ADP algorithm with value iteration, lookup table and double pass. The algorithm is divided into

four main steps. After initialization, the algorithm enters a loop consisting of carrying over the values computed

in the previous iteration, and then executing a forward and backward pass. During the forward pass, it simulates

a scenario and chooses actions based on Bellman's equation or randomly based on some probability in the �rst

half of the run. During the backward pass, it updates the state value estimates based on the information gained

during the forward pass. Once the maximum number of iterations has been reached, it returns the computed

values and states, i.e. the lookup table.

The initial state, with all drug candidates frozen, is the same in each iteration, and its value (S0
1) is initialised

as zero. Based on the probability distributions of trial outcomes, at each iteration n and time t, the outcomes of
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completed trials, and thus the drug status vector fnt , are generated. If n ≤ N/2 and a generated random number

ω ∈ [0, 1] is smaller than Γ, then an action ynt ∈ A is chosen randomly among feasible actions. Otherwise, it �nds

the optimum action ynt ∈ A as well as the state value, represented with vnt (Snt ), by using the Bellman equation

(3) and the approximate values stored in the lookup table. If the value of a state required in the calculation

of the selected action has not been visited by the algorithm before, then it is estimated as the summation of

the ENPVs of the continuing projects which is a lower bound. The ENPV of a continuing project is computed

by multiplying the success probabilities of the remaining clinical trials of the project with its discounted pro�t.

Snt+1 can be computed based on the selected action ynt , and the state Snt . In other words, for the ongoing

projects in Snt and the advanced drugs ynt , a new drug status vector fnt+1 is generated based on the success

probabilities. The other state variables are also updated as explained in Section 3. The value stored in the

lookup table for state Snt is denoted by V
n
t (Snt ) for n = 1, · · · , N and t = 1, · · · , T .

In each iteration n = 1, · · · , N , after all states in the sample path have been visited, the algorithm goes

backward in time and recursively re�ects the values of the future states (in the sample path) into vnt for

t = T −1, · · · , 1. If a state Snt is visited for the �rst time by the algorithm, then its computed value vnt is directly

added to the lookup table, i.e. V
n
t (Snt ) = vnt (Snt ). Otherwise, V

n
t (Snt ) is computed by summing vnt (Snt ) and the

value of the state most recently stored in the lookup table, V
n−1
t (Snt ), after weighting them by a smoothing

parameter, αn: V
n
t (Snt ) = αnV

n−1
t (Snt ) + (1−αn)vnt (Snt ). Since the state values are expected to approach their

exact values through iterations, αn is formulated as a linearly increasing function of n: αn = a + bαn where a

and b are parameters. The linear form is selected because it is simple and also converges eventually (Powell,

2007). Finally, the values stored in the lookup table for all states visited until iteration n are carried over to

the next iteration; V
n+1
t (Skt ) = V

n
t (Skt ) for k = 1, · · · , n and t = 1, · · · , T .
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Pseudo-code of the ADP algorithm

Initialization: Set maximum number of iterations N , Γ and n = 1. Initialize the value of the initial state

V
0
1(S

k
1) as 0 for k = 1, · · · , n− 1, n = 1, · · · , N .

for n = 1, 2, · · · , N , do

Carry over: For k = 1, · · · , n and t = 1, · · · , T , set V n
t (Skt ) = V

n−1
t (Skt ).

Forward Pass:

for t = 1, 2, · · · , T − 1, do
− Generate fnt based on Snt−1.

− Generate a random number ω and,

if n ≤ N/2 and ω ≤ Γ then

Randomly select ynt among the feasible action set A, and compute vnt (Snt ) by using (3).

else

− Find the action ynt and vnt (Snt ) by solving (3) based on the state values stored in the lookup table.

− If a state value does not exist in the lookup table, then its value is assumed to be the sum of ENPVs
of all frozen and continuing projects.

end if

− Update state variables based on the action ynt and Snt : S
n
t+1 = St+1(S

n
t ,y

n
t ).

end for

Backward Pass:

for t = T − 1, · · · , 1 do

− Compute vnt (Snt ) = vnt+1(S
n
t+1)− c(ynt ), where c(ynt ) is de�ned as in (2).

if state (Snt ) exists in the lookup table, then

− Update V
n
t (Snt ) = (αn−1)V

n−1
t (Snt ) + (1− αn−1)vnt (Snt ),

else

− Set V
n
t (Snt ) = vnt (Snt ).

end if

end for

end for

Return all value function approximations (V
N
t , i.e. lookup table) for t = 1, · · · , T .

A high level description of the algorithm can be seen in Figure 3.

4.1. Extension to Base Formulation

The portfolio planning model presented in Section 3 allows us to compare the ADP algorithm with other

solution methods proposed in the literature. However, this formulation still lacks important aspects of the

problem such as emergence of new drug candidates or stochastic trial durations. To incorporate the emergence

of new drug candidates into the ADP algorithm, at each time period a new drug is added to the list like a frozen
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Figure 3: High level �owchart of the ADP algorithm
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drug: fpt = −2, ψpt = 0, hpt = 0 with a small probability, 0.1, based on expert opinion. Note that since at most

one drug can be added at each time period, the number of new drugs is �nite. Therefore, the drug list can be

initialized with maximum number of possible drugs in the portfolio during the planning horizon, whereas only

really existing drugs are considered.

Another possible extension is to include drug dependencies. Pharmaceutical companies can target one disease

with several drug candidates. In this case, the technical or �nancial attributes of these candidates would be

a�ected by the failure or success of other similar candidates (Blau et al., 2004). If one of the drugs in a similar

group of drugs fails (succeeds) in a clinical stage, then the probability of failure (success) for the other drugs in

the group increases. Also, we assume that if a drug in a group launches successfully, the expected revenues of

the other drug candidates in the same group decrease. A scenario with drug dependencies is investigated in the

computational experiments.

Other possible extensions considered are variable resource requirements during a trial and speeding the trials

by putting more resources. The �rst extension requires to update the formulation of feasible actions 1. The

other extension requires to double the action space by de�ning the resource levels of each continued trial as

decision variables. The applicability of ADP on these extensions is presented in the computational experiments

for a small instance.

4.2. Basis Functions and Value Function Approximation

The lookup table ADP does not guarantee to provide a value for each possible state, even though it covers

most of the state space. Thus, an alternative approach based on basis functions is also implemented which

ensures to provide a value function approximation for all possible states. In this approach, the state values are

approximated by a basis function instead of reading them from a lookup table. Usually, the basis functions are

selected as a linear combination of the state variables and based on trial-and-error (Powell, 2007). To �nd a good

basis function, we apply regression on the approximate state values computed by the lookup table approach.

After trial and error, the best �t for approximate state values is achieved by:

V (St) = w1

∑
p

θpt + w2

(( ∑
p|fpt 6=−1,2

1

)∑
p

(mp/P )

)
, (13)
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where,

θpt =


2ψptmp, if fpt = −2||1,

0.5ψptmp elseif fpt = 0,

0, otherwise,

and w1 and w2 are the weights of the corresponding basis functions. The second summation in (13) computes

the number of projects that are not completed yet. The values for these weights are updated as the algorithm

runs for each particular instance, i.e. they are dependent on the particular instance. The approximate state

values obtained by the proposed basis function converge to the ones computed by the lookup table approach.

This indicates that this structure can be used to �nd an approximate policy (Powell, 2007). The basis function

structure suggests that the expected pro�t of a drug has a positive e�ect on advancing that drug. Also, it is

preferred to advance the drug that has completed more phases. Our experiments with di�erent instances showed

that the R-square levels and coe�cients do not di�er substantially for di�erent instances of the problem.

5. Computational Experiments

The computational experiments consist of three parts. The �rst part simply asserts the stability of the policy

derived by ADP. The second part examines the performance of ADP under a variety of problem settings. Because

we are not aware of any other published approach that is capable of handling the complexities considered, we

compare the results to a myopic heuristic often used in industry based on our discussions with industry partners.

For these experiments, we use test instances based on a dataset that is partially collected from industry (BIO

et al., 2016) and shown in Table 8 in the Appendix. Trial durations for Phase 2 & 3 are assumed to take

{x̄ − 1, x̄, x̄ + 1} with equal probabilities, where x̄ is given in Table 8 under the trial duration column. The

durations of Phase 1 are assumed to be deterministic. Maximum available capacities are 15, 6 and 3 for 20,

10 and 5-drug instances, respectively. The �nal part compares the performance of ADP with a state-of-the-art

solution method from the literature on simpli�ed problem instances with deterministic trial durations. We

assume that decisions are taken every 3 months and there are 14 time periods.

5.1. The Stability of the Derived ADP Policy

The policy resulting from an ADP run depends on the scenarios generated during the run. Therefore, a

di�erent ADP policy may be obtained at every time the algorithm is run. We expect that the policies obtained

from di�erent runs would be similar to each other. To validate this assumption, we generate 30 ADP policies
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(from 30 runs) by using the same set-up (1000 iterations). Then, we apply these policies on 1000 randomly

generated pathways and obtain the ENPVs corresponding to each policy for a 5-drug instance.

To investigate the source of variation in ADP runs, we conduct an ANOVA analysis on the ENPV values

obtained by di�erent ADP runs. The p-values, shown in Table 2, suggest that the variance is caused by in-

sample simulation variation, while the variation due to di�erent ADP policies is not signi�cant (the second row).

The following results will thus be based on a single policy.

Table 2: ANOVA results for source of variation

Source of Variation F-value P-value F crit

Scenario 6.501 5.4E-275 1.113

Policy 0.538 0.847 1.881

Note that the stability of the ADP algorithm is independent of the particular instance due to this charac-

teristic being inherent to the nature of the algorithm.

5.2. Performance Comparison of ADP Algorithm with a Myopic Approach

In this section, we use the drug pipeline management model with uncertain durations. As there is no

algorithm in the literature to solve the full model de�ned in Section 3, we resort to a greedy (myopic) approach

that is also applied by pharmaceutical companies in practice (based on expert opinion). In this greedy approach,

the available projects in the pipeline are ordered according to decreasing ratio of expected revenue/resource

requirements over all stages ahead. Then, starting from the top of this list, the projects are advanced until there

are not enough resources left to advance another project.

In this section, we compare the performance of such a greedy approach and our ADP algorithm considering

the uncertainties in trial duration and outcome. We obtain an ADP policy (a lookup table) by running ADP

algorithm for 1000 iterations and apply the myopic approach and the ADP policy on 1000 scenarios. The average

ENPVs and standard errors reported throughout this section are obtained from applying these two algorithms

on these scenarios. Note that when a state does not exist in the lookup table of the ADP policy, we use the

basis function approximation to �nd the optimum action (cf. Section 4.2). The average ENPVs obtained by

ADP and myopic approaches, along with standard errors and % improvement of ADP over myopic in terms of

ENPV are presented in Table 3 for 3 di�erent instances.

Table 3: Average, ± standard error and % improvement of ENPVs obtained by myopic and ADP policies

20-drug 10-drug 5-drug

ADP 601 ± 10.17
13%

300 ± 7.13
21%

77 ± 4.78
30%

Myopic 528 ± 3.26 247 ± 3.24 59 ± 2.52
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The ADP algorithm results in around 13, 21 and 30% larger ENPV than the myopic approach for 20, 10

and 5-drug instances, respectively. These results indicate that as the portfolio size is smaller, the advantage of

ADP increases.

Variable Resource Requirements during a Trial: In this extension, we assume that the resource require-

ments are not �xed throughout a clinical trial but vary over time. The formulation that computes the

feasible action space, (1), is extended to consider the new requirements. In this case, rips is replaced with

rit
′

p,s, where t
′ represents the time passed in the current trial of drug p (i.e. for t′ > dp,ψpt , r

it′
p,s = 0), and

the rest of formulation (1) becomes:

At =

{
yt

∣∣∣∣Rimax − ∑
p|fpt=0

r
i,t′+hpt
p,ψpt

≥
∑
p

ypt

(
rit
′

p,ψpt+1

)
, i = 1, 2, t′ = 1, · · · , T − t, ypt = 0 ∀ p|fpt = 0,−1, 2,

}
,

which checks whether the action is still feasible for the upcoming periods. Since the resource requirements

may change each time period, actions that were not feasible in the previous time period may become

feasible later. Therefore, in the following period, the algorithm needs to check again whether the frozen

drugs can be advanced, if there are any. This leads to a longer computation time.

To examine the algorithm's performance in this extended model, we solve the 5-drug case of Christian

and Cremaschi (2015) (Table 7) assuming that the resource requirements increase by one unit from their

original levels in the 3rd and 4th time periods of a trial and decreases by one unit in the 5th and 6th time

periods. In this case, we have to increase the maximum available resource level of 2nd resource type to 4,

otherwise none of the drugs could be completed. The ENPV changes to 295 ± 5.47, whereas the ENPV

of the original model, solved with the increased maximum resource as the extended one, is 303 ± 5.6,

showing no signi�cant di�erence. The computation time (50 seconds), as well as the policy obtained, do

not show a signi�cant di�erence to the original model. The myopic policy provides a signi�cantly smaller

ENPV in both cases, as shown in Figure 4.

Choosing Resource Requirements to Speed up Trials: In practice, it is often possible to speed up a trial

by allocating additional resources. This case requires to expand the action space, as the resource level for

each advanced trial becomes a decision variable. For example, a trial can be executed with more resource

use and shorter duration in addition to the default resource use and duration. In this case, there would be 2

resource categories available. Assuming that Xps resource categories are available for stage s of drug p, the

resource category for drug p in period t is de�ned as xpt ∈ {0, 1, · · · , Xp,ψpt+1}, as the additional decision

variable, where 0 corresponds to not advancing the drug. An integer variable, x′pt ∈ {0, 1, · · · , Xp,ψpt},
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Figure 4: ENPVs obtained by ADP and myopic approach in di�erent model extensions

is added to the state space indicating the resource category used for the execution of the current trial of

drug p. The resource levels and trial durations corresponding to each resource category are also de�ned

as additional parameters: djps and r
j
ps, where j ∈ {1, · · · , Xp,s}, which replace dps and rps in the original

model.

Since the action space is doubled, the computation time of the algorithm is expected to rise. To examine

its performance, we solve this extended model for the 5-drug case of Christian and Cremaschi (2015),

assuming one more resource category for Phase 2 and Phase 3 trials of each drug (the duration of Phase

1 trials are short anyway), in addition to the original levels. The additional resource category reduces

the (original) duration of a trial by two periods with a one unit increase in the resource use. Due to

the increased resource use in Phase 3 trials, we again need to set the maximum available resource to 4.

To compare the result of this extension, we solve the original model again with the increased maximum

available resource. As shown in Figure 4, the ENPV increases to 366 ± 9.4, which is signi�cantly larger

than the original model, while the computation time increases to 192 seconds. The ADP policy usually

speeds up Phase 3 trial while this option is used much less frequently in Phase 2 trials. The myopic policy

still provides a signi�cantly smaller ENPV compared to the ADP.

Capacity Tightness: The resource capacity may a�ect the performance of the solution algorithms. To inves-

tigate the impact of capacity, we solve the 20-drug instance with 10 (low) and 20 (high) units of capacity.

In addition, to emphasize the relevance of resource restriction, the probability of a new drug appearing
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during a time period is set to 0.2 in all runs. When there are new drugs appearing, the capacity usage

becomes important as the resource requirements increase.

Figure 5 shows the ENPVs and their standard errors obtained by the ADP and myopic algorithms in the

standard (base), high and low capacity cases along with the percentage di�erence between the ENPVs

obtained by two methods. The results show that ENPV obtained by ADP is higher than that of the

myopic approach by 14% and 18% in high and low capacity cases, respectively, for the standard (base)

portfolio. This indicates that ADP performs even better relative to the myopic approach when the capacity

is tighter.

Portfolio Compositions: A pharmaceutical pipeline may target di�erent therapeutic areas such as oncology or

hypertension. Due to large patient populations of some therapeutic areas, corresponding drug candidates

can have comparatively larger resource requirements and expected revenues. On the other hand, strati�ed

medicines may have comparatively less resource requirements and revenues. These di�erent pipeline

compositions may a�ect the performances of the solution methods. In the current test, we apply ADP

and myopic algorithms for two di�erent types of portfolios both with 20 drugs. The �rst one (labelled

as `diverse portfolio') includes at least 6 comparatively large projects while the rest are composed from

medium and small size projects. In the second portfolio (labelled as `harmonized portfolio'), the projects

have similar (medium level) resource requirements and expected revenues.
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Figure 5: ENPVs obtained by ADP and myopic approach in di�erent available resource and portfolio compositions
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Table 4: ENPVs obtained by ADP and myopic approaches and % improvement of ADP over myopic in di�erent decision timing
strategies

ADP Myopic

Flexible (3 months) 601 ± 19
20%

528 ± 17.8
22%

Fixed (6 months) 500± 16.74 412 ± 14.6

Figure 5 shows the average ENPV ± its standard error for di�erent portfolios and capacity levels. The

results indicate that improvement of ADP over the myopic approach is higher as the portfolio gets more

diverse. We also observe that the capacity change has a more signi�cant impact on the harmonized

portfolio.

Flexible vs. Fixed Decision Intervals: So far, we assumed that the decision-maker takes an action as soon

as a trial has been completed. An alternative assumption is that the decisions are made at �xed time

intervals such as every 6 months. However, this strategy may cause drugs to be released later than they

could, which results in less pro�t. We implement both strategies (�exible with 3 months and �xed with 6

months intervals) and show ENPVs obtained by ADP and myopic policies for the 20-drug case (standard

portfolio with 15 units of capacity) in Table 4. In other words, the �exible approach allows to make

decisions once in 3 month which is much shorter than that in the �xed interval setting.

By allowing for �exible decision intervals, ENPVs increase by 20% and 22% for ADP and myopic ap-

proaches, respectively. It should be noted that �exible decision timings may be burdensome and not very

practical for senior management in the real world. However, due to its signi�cant e�ect on ENPV, it should

be considered. Finally, a smaller time period such as 3 months is not computationally more expensive, as

no decision is made in some time periods.

Drug Dependencies: We investigate the e�ect of drug dependencies on the performance of solution approaches

and assume that the drug candidates are divided into several groups. If the �rst one of the drugs in a

group fails (succeeds) in a clinical stage, the probability of failure (success) for the other drugs in the

group increases by 50% for the same stage. Also, once the �rst drug in a group launched, the expected

revenues of the other drug candidates in the same group drop by 50%. The increase/decrease rates are

chosen based on expert opinion.

We divide the drugs into the following groups: {1, 2}, {3, 4, 5}, {6, 7, 8, 9, 10}, {11, 12, 13, 14, 15,

16}, and {17, 18, 19, 20}. To investigate the e�ects of two types of dependencies (success probability and

revenues) separately, we present the ENPVs for three cases: (i) without any dependencies, (ii) with success

probability dependencies only, and (iii) with both success and revenue dependencies together. Table 5
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shows the average and standard error of ENPVs obtained by ADP and myopic approaches as well as the

percentage improvement between those averages for three cases.

Table 5: E�ect of success probability and revenue dependencies on ENPVs obtained by ADP and myopic approaches

No dependency ADP 601 ± 19
13%

Myopic 528 ± 16.8

Probability dependency ADP 560 ± 36
13 %

Myopic 492± 28

Both dependencies ADP 505 ± 41.2
17 %

Myopic 431 ± 29.7

When there is only the success probability dependency, ENPVs obtained by myopic and ADP policies

drop by around 7%. The pro�ts drop by around 19% for ADP policy and 22% for the myopic policy when

both dependencies are present. The results indicate that ADP can handle drug dependencies better than

the myopic approach.

5.3. Performance Comparison of the ADP Algorithm with Other Approaches from Literature

The main motivation behind the experiments of this section is to show that the proposed ADP algorithm

can be used to solve larger problems than the methods proposed in the literature, and still within acceptable

computation times. For this purpose, we select Christian and Cremaschi (2015) as the benchmark study. It is

a recent paper focusing on pharmaceutical pipeline management and also with the biggest instance (10 drugs)

solved so far, therefore considered as state-of-the-art. We used the same modelling assumptions and dataset

as Christian and Cremaschi (2015) which is replicated in Table 7 in the Appendix for 10 drugs. For 3 and

5-drug instances, we used the information in this table for the �rst 3 and 5 drugs, respectively. The 20-drug

instance comprises of two copies of 10-drug instance shown in Table 7. Similarly, the 40-drug instance comprises

of the four copies of the 10-drug instance. To investigate the e�ect of the number of iterations, we run the

ADP algorithm for 200 and 1000 iterations for each instance. The exact solutions reported in Christian and

Cremaschi (2015), are shown in Table 6 for di�erent numbers of drugs. They have used CPLEX to �nd the exact

solutions of the dynamic model. The table also presents the computation times of the (Knapsack) algorithm

proposed therein and obtained on our computers using the code kindly provided by the authors. Note that the

40 and 20-drug instances are not solved in Christian and Cremaschi (2015), probably due to the computational

intractability.

We also report the ENPV values in terms of mean ± standard error obtained by ADP algorithm over 20

separate tests with 1000 scenarios in each run. The results indicate that the ADP algorithm results in reasonable
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Table 6: Computational performance of the ADP algorithm and the benchmark solution method for di�erent number of iterations
and instances

Instance Sol. Method No. of iterations Solver time (sec.) ENPV Optimal ENPV

3-drug
ADP

200 1.27 116 ± 0.75

118.91000 19 118.31 ± 0.75
C&C (2015) - <1 118.9

5-drug
ADP

200 3.66 208 ± 1.3
208.31000 43.87 207.63 ± 1.3

C&C (2015) - 1 204.3

10-drug
ADP

200 29.9 372 ± 2.25
-1000 526 441 ± 2.25

C&C (2015) - 1296 406

20-drug ADP
200 109 809 ± 5.73
1000 2254 911 ± 6.37 -

40-drug ADP
200 3.5 hrs 1866 ± 13.49
1000 20 hrs 2186 ± 15.45 -

computation times across all instances and higher ENPV's than the Knapsack algorithm for instances except the

3-drug instance where the di�erence is not statistically signi�cant in 1000 iterations. Although the computation

time is 20 hours for the 40-drug instance, consider that this policy is generated for more than a 5-year planning

horizon and it may be reduced by using faster computers and a di�erent programming language. Also note that

Knapsack algorithm has been coded in Python whereas the ADP algorithm is coded in Matlab. Therefore, the

comparison of computation times is only indicative. All computational experiments are carried out on a PC

with Windows 10 Enterprise operating system, CPU 4GHz Intel Core i7 and 32GB of RAM.

Finally, we also tested the algorithm proposed in Choi et al. (2004) on the 5-drug case. This algorithm needs

heuristics to determine the reachable states. Because our problem setting is somewhat di�erent from theirs, we

added our myopic heuristic to their set of heuristics. Still, the algorithm only reached an ENPV of 191.15 (8%

from optimum) and required signi�cantly longer running times with 1000 iterations for heuristics.

6. Conclusion

E�ective drug pipeline management is crucial for the performance of a pharmaceutical company. However,

it is a complex task due to substantial uncertainties and the dynamic nature of the problem. In this paper, we

present a new solution approach to the pipeline management problem as well as model some unexplored features

such as uncertain trial durations and expansion of the pipeline. With the proposed ADP solution approach, we

are able to solve problems of size larger than what has been solved in the literature before, within reasonable

computational times. ADP provides comparable performance to the state-of-art methods for smaller simple
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instances.

We compare the performances of ADP and a myopic heuristic on more complex problems involving uncertain

trial durations, new drugs appearing, and dependencies between drugs. Our computational experiments show

that ADP provides at least 10% increase in ENPV compared to the myopic heuristic. The relative advantage

of ADP increases as the portfolio size gets smaller. We also investigate the impact of several technical factors

such as the level of capacity, di�erent portfolio structures, timing of decisions and drug dependencies on the

performance of ADP. These experiments reveal that ADP provides a fairly robust performance against changes

in the environmental factors in terms of its advantage over the myopic heuristic.

Future studies can consider more complexities regarding the problem such as the outsourcing the execution

of trials as an additional decision. Another possible extension is considering a parallel companion diagnostic

development process along with the drug development. A successful companion diagnostic development could

decrease the cost and duration of the trials.
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7. Appendix

Table 7: Data obtained from (Christian and Cremaschi, 2015) for comparison purposes

Duration Probability
Trial cost Res. 1 Res. 2

Revenue γ ρ
($) (max=4) (max=3)

($)
P1 P2 P3 P1 P2 P3 P1 P2 P3 P1 P2 P3 P1 P2 P3

1 2 2 6 0.3 0.5 0.8 10 90 220 1 1 2 1 2 3 3100 22 19.2
2 2 4 4 0.4 0.6 0.8 10 80 200 1 2 2 1 1 3 3250 28 19.6
3 2 2 6 0.3 0.6 0.9 10 90 180 1 1 2 1 1 3 3300 26 20
4 2 4 4 0.4 0.6 0.8 10 100 170 1 1 2 1 2 3 3000 24 19.4
5 2 4 6 0.35 0.5 0.9 10 70 210 1 1 2 1 1 3 3150 24 19.6
6 2 4 6 0.45 0.45 0.8 10 85 195 1 2 2 2 1 3 3050 25 19
7 2 2 6 0.45 0.55 0.85 10 95 180 1 1 2 1 2 3 3200 27 19.7
8 2 2 6 0.4 0.6 0.75 20 70 210 1 1 2 1 2 3 3100 22 19.6
9 2 4 4 0.35 0.55 0.8 10 80 195 1 2 2 1 1 3 3200 24 19.4
10 2 2 6 0.25 0.6 0.8 20 80 200 1 1 2 1 1 3 3350 25 19.2

Note: The 20-drug instance is a combination of two 10-drug instance data together.
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Table 8: Hypothetical data used for simulation experiments (standard portfolio)

Duration Probability Trial cost Resource
Revenue γ ρDrugs P1 P2 P3 P1 P2 P3 P1 P2 P3 P1 P2 P3

1 2 2 4 0.62 0.3 0.6 10 100 220 1 1 2 2870 22 19.2
2 1 2 3 0.7 0.3 0.7 10 50 150 0.5 1 2 1200 28 19.6
3 2 4 6 0.6 0.3 0.5 10 130 270 1 2 3 3800 26 20
4 2 4 4 0.6 0.3 0.5 10 70 130 1 2 3 1600 24 19.4
5 2 2 6 0.7 0.3 0.7 10 100 200 1 2 3 2860 24 19.6
6 2 2 4 0.65 0.28 0.5 10 100 220 1 1 2 2870 25 19
7 1 2 3 0.6 0.32 0.6 10 80 200 1 2 2 2500 27 19.7
8 2 2 4 0.6 0.31 0.7 10 70 210 1 1 2 1500 22 19.6
9 1 2 3 0.62 0.32 0.5 10 70 210 1 2 3 2720 24 19.4
10 2 4 6 0.7 0.35 0.5 10 100 220 1 2 3 2000 25 19.2
11 2 4 4 0.6 0.3 0.6 10 50 150 1 1 2 2870 22 19.2
12 2 2 6 0.6 0.3 0.7 10 130 270 1 2 2 2500 28 19.2
13 2 2 4 0.7 0.3 0.5 10 70 210 1 1 2 2000 26 20
14 1 2 3 0.65 0.3 0.5 10 100 220 1 2 3 2720 24 19.4
15 2 2 4 0.6 0.3 0.6 10 50 150 1 2 3 2860 24 19.6
16 1 2 3 0.6 0.3 0.6 10 70 180 1 2 2 2700 25 19
17 2 4 6 0.6 0.3 0.6 10 130 270 1 2 2 2780 27 19.7
18 2 4 4 0.65 0.3 0.6 10 100 270 1 2.5 5 8500 22 19.6
19 2 2 6 0.65 0.3 0.6 10 100 170 1 2.5 5 8500 24 19.4
20 2 2 4 0.65 0.3 0.6 10 70 210 1 2.5 5 8500 25 19.2
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