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GLOSSARY OF SYMBOLS AND ABBREVIATIONS USED

The following symbols and abbreviations appear within the text; their order of 

presentation approximates to their order of appearance. In those cases where 

one symbol has been given more than one meaning, I have noted the 

homography.

EX

3

&

v

(3x)

(x)

ffx)

Olx)

O

❖

oc

oc

B

function taking a sign to its extension

if....then....; (or more properly, materially implies)

not

and

and/or (non exclusive disjunction)

if and only if; (or more properly, the sign for material

equivalence)

is identical to

existential quantifier; meaning 'For some ...' 

universal quantifier; meaning *For all ...' 

substitutional existential quantifier; meaning 'For at 

least one substitution for V  in the following..., the 

resultant substitution - instance is true' 

substitutional universal quantifier; meaning 'For any 

substitution for 'x' in the following..., the resultant 

substitution - instance is true' 

it is necessary that 

it is possible that

is ontologically committed to the existence of 

is ontologically committed to the nonexistence of 

2 place predicate true of couples of a person and a 

theory; meaning 'believes to be true'
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E

Taut

Hyp

CP

01

=1

Sub

0  Sub

UE

UI

EG

sentence forming operator on predicates or definate 

singular terms; meaning 'has at least one thing

satisfying__' or 'There is something___ denotes'

sign used in rules of inference; meaning 'From___  it is

permissable to derive___ '

entails

tautological inference; rule invoked when any piece of 

reasoning proceeds by the propositional calculus 

hypothesis; the premiss of a formal argument 

conditional proof: a rule of inference that enables the 

conclusion Ah BO C to be drawn from A,B h C 

O introduction: a rule of inference that derives OA from 

h A

= introduction: a rule of inference that allows the 

introduction of a = a at any stage in a formal argument 

substitution rule: a rule of inference that allows the 

replacement of a by b throughout any formula as long as 

a = b and a is not in the scope of a modal operator 

O substitution rule: a rule of inference that allows the 

replacement of a by b throughout any formula as long as 

O a = b

universal elimination; a rule of inference that allows 

any closed term to replace a universally quantified 

variable

universal introduction: a rule of inference that allows 

for the inference |-Fa therefore (x)Fx 

existential generalisation: a rule of inference that 

allows for the inference Fa therefore (3x) Fx
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EE

t J

C

0

u

< > 

?*z

A

C

P

#

N

M

F

CL

r nr 

/*>

<

>

>

existential elimination: a rule of inference that allows 

for the inference (3x ) Gx, given (3 x) Fx and for any 

arbitrary a, if Fa then Ga

braces for a set abstract: £x:fox J is the set of all foxes,

2,4,6^ is the set containing just the elements 2,4,6

the Greek letter epsilon; meaning 'is a member of'

is a subset of

the intersection of

the union of

braces indicating an ordered n-tuple

has exactly as many members as

the empty set, or £x: -x = xj

is a proper subset of

function taking a set to its powerset

function taking a set to its cardinal number

the set of natural numbers

aleph zero: the cardinal number of the set of natural 

numbers or^N 

cardinal addition

(i) function taking a set to the set of its factors

(ii) sign for a formal framework

function for taking a set to the set of its ultimate 

factors
/

quasi-quotes

concatenation

(i) is a mereological proper part of

(ii) is before

is greater than or equal to 

is greater than
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<

F

h

ir -

f l

in AP'i_ A meaning 'the formula A is deducible from the 

set A of wffs, according to the logic/theory L'. In fF’i_ A' 

meaning 'A is a theorem of L'

in 'J }= A' meaning \] is a model of A'. In ' f=A' meaning 

'A is logically valid'

in 'Afc— S' meaning 'S is depravedly deducible from the setA.

In r£— S', meaning 'S is a depraved theorem'

in 'i|£= S' meaning '(Jr is a depraved model of S'. In '£=S'

meaning 'S is depravedly valid'

the inverse of the (1 - 1 ) function t

is wholly before
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INTRODUCTION

The Ontological Question 'What exists?' dates back over two thousand five 

hundred years to the dawn of Western philosophy, and attempts to answer it 

define the province of ontology. The history of the Western philosophical 

tradition itself has been one of the differentiation and separation of the 

various sciences from the primordial stuff of ancient philosophy. Physics was 

first to break away from the tutelage of philosophy and established its 

independence in the seventeenth century. The other sciences followed suit 

fairly rapidly, with perhaps psychology being the last to separate.

The results for modern philosophy - of this breakup of what was once a great 

empire over human reason - have been mixed. An inevitable result has been 

that questions considered in ancient times to belong to philosophy have fallen 

within the ambit of other disciplines. So speculations about the material 

composition and genesis of the universe that interested Thales, Heraclitus and 

Leucippus, are continued by contemporary cosmologists in well equipped 

research laboratories, and not by philosophers. However ontology, unlike 

cosmology, has not broken away from its parent discipline and the Ontological 

Question as to what exists is still argued by philosophers today.

That ontology has failed to make the separation that cosmology has, is a 

reflection on the weakness of the methodology for settling ontological 

arguments. Unlike their great Rationalist predecessors, most modern 

philosophers do not believe that logic alone is sufficient to provide an answer 

as to what is. But neither do observation or experiment, in any direct way, 

seem to help us in deciding, for example, whether sets or intentions should be 

admitted to exist or not. In consequence, the status of ontology as an area of 

serious study has to depend on the devising of a methodology within which the 

Ontological Question can be tackled. The pursuit of such a methodology is the 

concern of metaontology and is also the concern of this thesis.



The determination of good answers to fundamental questions in ontology 

depends in part on the state of art in the empirical sciences. Ontology is 

therefore an empirical discipline itself, albeit a high-level one. Metaontology, 

though open to and influenced by ideas developed in science, becomes heavily 

involved in areas central to the interests of modern philosophers. What gives a 

sign meaning? What is existence? What is truth or logic? These are all 

questions relevant to metaontology. One advantage of pursuing these 

questions within metaontology is that the change in context can lead to 

insights that were denied in pursuing the same questions along conventional 

lines. Consequently much of what follows will hopefully be of interest even to 

philosophers whose main interests are not in ontology.
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SUMMARY OF CONTENTS

Chapter 1: deals with the logical properties of ontological commitment. 
The conditions of ontological commitment and the relations between the 
ontological commitments of a person and the theories he believes are 
examined within a series of formal logics, (sections 1.1 - 1.2). Second part 
deals with the criteria of ontological commitment (section 1.3). Chapter ends 
with a brief look at formalisation (section 1.4).

Chapter 2: is an historical examination of the formal tradition in ontology 
through the work of Russell, Carnap, Goodman, Quine and Davidson.

Chapter 3: is a six-point exegesis of an original methodology for tackling 
ontological questions. The central idea is that formalisation is a means of 
testing ontological hypotheses rather than developing them. The chapter 
concludes with an examination of problems arising from this methodology and 
some reflections on falsificationism as a scientific methodology.

Chapter 4; is concerned with the conditions under which a sign acquires 
sense. The focus is on the problem of constructing feasible first-order 
languages and the discussion ranges over certain epistemological problems 
relevant to ontology.

Appendix I; examines the role and proper form of a criterion of identity.

Appendix II: examines the ontological consequences and limitations of 
accepting substitutional quantification.

Chapter 5; examines the repercussions of accepting that many theories do 
not define their domain of discourse (ontological elasticity). Ontological 
elasticity is shown to be definable neither proof-theoretically nor model- 
theoretically. The chapter argues that accepting ontological elasticity 
requires a radical evaluation of traditional accounts of logic, existence, truth 
and categories of being.

Chapter 6: reviews certain species of ontological reduction. The chapter 
ends with a critical review of Quine's throughts on ontological reduction.

Appendix III: an illustrative example of reduction through Russell's attempt to 
eliminate unreduced instants of time.

Chapter 7: examines the nature of logics and their relations to ontology and 
natural languages. Three different views on logic are distinguished as to 
whether there is a 'correct' logic; and the chapter concludes with a discussion 
on the tenability of these positions.
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CHAPTER ONE

Ontological Commitment

1.1 The Logical Properties of Ontological Commitment

Ontological commitment is a feature of both theories and people who hold 

theories. The ontological commitments of a theory are completely 

independent of whoever happens to believe (or disbelieve) that theory. The 

ontological commitments of a person are completely determined by the 

theories he happens to believe.

Most philosophers would accept the foregoing statements as true: but they do 

invite a number of questions. To be specific:-

(1) What is meant by the use of 'theory'?

(2) Is ontological commitment a relation between a theory/person and 

something else, or not? If it is, what are the relata?

(3) What is it for a theory to be ontologically committed to the existence of 

an entity or sort of entity?

(4) What is it for a person to be ontologically committed to the existence of 

an entity or kind of entity?

Before proceeding to examine these questions, a word of caution. Like many 

terms of art in philosophy, the phrase 'ontological commitment' is bounded by 

uncertainty in meaning. It is therefore unwise to assume that each of the 

above questions must have one determinately correct answer waiting to be 

paired off with it. Answers are sometimes recommended by pragmatic 

considerations such as clarity or simplicity of usage and amount almost to 

prescriptions or conventions for sharpening up our analytical tools. In other 

areas, intuition and common usage have more to say. Effective analysis often 

requires a judicious balance of prescription and description - so it is here.
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1.11 A Conventional Definition of 'Theory'

In ordinary speech a theory is held to be a collection of generalisations,

deductively linked, concerned with explaining some pattern of phenomona.

This is an undeniably vague definition; but then 'theory' is a vague word.

Nothing is lost, and much is gained in the way of clarity, if the convention is

adopted that 'theory' is to be taken to apply to any non-empty set of

declarative sentences, or to a declarative sentence itself? I should say that

'theory' as used in this stipulative sense, differs in use from the mathematical

logicians' use of 'theory' to mean merely a set of wffs. Such sets of
«

uninterpreted wffs I call uninterpreted theories, or following Quine [113], 

theory forms. Theory forms, like fake diamonds, are not to be confused with 

the real article.

1,12 Referentiality, Extensionality and Ontological Commitment

Conventional wisdom holds that the correct answer to the second question of 

the preceding page (Is ontological commitment a relation between a 

theory/person and something else, or not?') is 'not'. The consensus is that 

ontological commitment is both an intentional and intensional concept; a view 

which is really a comment on the logical grammar of 'ontological 

commitment'. A few preliminary definitions are in order.

Let EX be 1 - place function which takes as arguments either (a) denoting 

terms, (b) function expressions, (c) predicates, (d) declarative sentences. Let<t> 

be any argument to EX, then EX(O) is defined as followss-

EX (0 ) = the denotation of 0, if 0 is a term.

EX(<t>) = the function 0  denotes, if <t> is a function expression.

EX(<t>) = the set of all those things of which 0  is true, if 0  is a predicate.
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EX(<t>) = 1 if <t> is a true declarative sentence.

EX(<t>) = 0 if <t> is a false declarative sentence.

A segment of a declarative sentence S is any sequence of signs that obtain

concurrently in 5, (thus any declarative sentence is a segment of itself). S is

extensional iff for every segment 6 of S which is an argument to EX, given

EX(5) = EX(?) and S’ is the result of replacing one or more occurrences of 6 in

S by C, then S =  S'. S is intensional iff S is not extensional.

'Intentional' (apart from confusing with 'intensional') is so battered a coin of
2

philosophical currency that I shall not use it. Here in its place, is a newly 

minted word, 'referential'. I say that a declarative sentence S is referential 

just when:-

(1) S contains a denoting term.

(2) S contains no non-denoting term.

S is antireferential when (2) is not satisfied; and non-referentiaf when (1) 

and/or (2) is not satisfied.

The claim that ontological commitment is intensional is conveniently equated 

with the claim that for the following sentence - frame:- >

x is ontologically committed to y;

there are substitutions of definite singular terms for 'x' and 'y' which create 

intensional substitution instances. The claim that ontological commitment is 

intentional and is therefore not a relation is here treated as the claim that 

'ontological commitment' is antireferential; that is, there is at least one 

substitution instance of the above sentence - frame which is (a) true (b) 

antireferential (c) substitutes a denoting term for 'x'.

3



Illustrative instances are not hard to find. Thus, the following sentence is 

true.

'Centaurs exist' is ontologically committed to centaurs.

But although EX 'centaurs' = EX 'unicorns', the following is not true.

'Centaurs exist' is ontologically committed to unicorns.

Again although 'Pegasus' is a non-denoting term, but "Pegasus exists" is not,
%

the following is true.

'Pegasus exists' is ontologically committed to Pegasus.

These two examples prove that 'ontological commitment' is definitely both 

intensional and antireferential. However the force of these conclusions can be 

blunted by what I call Frege's option.

Frege's option was used by Frege [47] to explain the failure of salva veritate in 

intensional sentences. His explanation of this failure was that expressions 

placed in intensional contexts did not refer to their usual extension, but 

instead referred to their sense. It is possible to insist that this is what happens 

to substituends for 'x' and 'y' in the sentence - frame above. The argument 

then develops that ontological commitment is really a relation after alls a 

relation between the entity referred to by the substitution for 'x' and the 

indirect referent of the substitution for 'y'.

Any philosopher who opts for Frege's option acquires an obligation to explain 

what he takes to be the indirect reference of substitutions for 'y'. There are 

various ways of discharging this obligation. Here I will consider four. Each of 

them is unsuccessful for one or more of the following reasons.
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(a) The entities appealed to as direct referents are ontologically dubious in 

that they have neither adequate identity conditions, nor is their 

existence certain.

(b) Absurdities ensue.

(c) The suggestion is contrived, or raises anomalies that abandoning Frege's 

option would avoid.

By far the easiest course is to accept that the intensionality and anti- 

referentiality of 'ontological commitment' shows that ontological commitment 

is not a relation.
«

The First Suggestion; construe the indirect referent as a possible entity 

This is what Jubien [71] [72] does. Thus 'Pegasus' in "Pegasus exists' is 

ontologically committed to Pegasus' would denote a possible winged horse. 

Criticism (a) applies here.

The Second Suggestion: construe the indirect referent as a universal 

The idea is to see "Centaurs exist.' is ontologically committed to centaurs' and 

"Pegasus exists' is ontologically committed to Pegasus' as announcing a 

relation between "Centaurs exist.' and xCcentaur x) and 'Pegasus exists' and

k (x = Pegasus) respectively. Again criticism (a) applies. (Necessary
\

coinstantiation is not a good basis for the identity of universals. The 

universals ¿(greatest prime x) and x(3-sided quadrilateral x) are assumed 

distinct even though they are necessarily coinstantiated.)

The Third Suggestion: construe the indirect referent as a set.

This will not do because of (b). According to this suggestion; the following 

sentence:-

5



'Centaurs exist.' is ontologically committed to centaurs

announces a relation R between 'Centaurs exist.' and£x: centaur xj. However 

if R ('Centaurs exist.', [x: centaur x|); then given £x: centaur x|=|x: unicorn x j  

it follows that R ('centaurs exist; £x: unicorn x } ). According to the third 

suggestion this is what is stated by:-

'Centaurs exist.' is ontologically committed to unicorns

which is false: therefore so is this suggestion.4
«

The Fourth Suggestion: construe the indirect referent as an open sentence.

A sentence like "Centaurs exist.' is ontologically committed to centaurs' is 

thought of as announcing a relation of R between 'Centaurs exist.' and 'centaur 

x'. Here, R ('Centaurs exist.' 'centaur x') iff it follows from 'Centaurs exist.' 

being true that there is at least one thing that satisfies the open sentence. 

This suggestion fits in with the intensional properties of ontological 

commitment since if it follows from the truth of S that 'centaur x' is satisfied, 

it need not follow from S that 'unicorn x' is satisfied. The suggestion is weak 

principally because it appears contrived and has anomalies of its own. For 

instance, there are an infinity of appropriate open sentences to choose as 

denotata ('centaur 'centaur X2'...) and to argue for one as the denotata 

above the rest seems impossible. Perhaps the suggestion is really a convention 

for eliminating the embarrassingly antireferential nature of ontological 

commitment: in which case the appropriate open sentence can be arbitrarily 

selected from the appropriate range. But anomalies still arise which 

undermine the value of this convention. If claims about ontological 

commitment are really encapsulations about relations between sentences and 

open sentences of the home language, then translation in the ordinary sense

6



becomes impossible. Thus "Chairs exist.' is ontologically committed to chairs' 

announces a relation between 'Chairs exist.' and (say) 'chair x'. Translated into 

French "Chairs exist.' is ontologically committed to chairs' becomes "Chairs 

exist.' est compromettre la existence des chaises' which (according to theory) 

announces a relation between a French open sentence and an English sentence; 

a claim that is not equivalent to the English version?

1.1.3 The conditions of ontological commitment

When is a theory t ontologically committed to an entity a/sort K? One answer 

is: t is so committed iff it is impossible that t is true but a/Ks does/do not 

exist. Using the accepted equivalence 0 (p  & -q )=  O (pO q) 

this answer is equivalent to:-

A theory t is ontologically committed to an entity a/sort K iff it is necessary 

that if t is true then a/ks exist.

Formalising this answer is not easy. Writing 'oc' as short for 'is ontologically 

committed to', first-order modal logic suggests 

(xXt) (t oc x s  O (true t3 (3 y )  x = y)

(k)(t) (t oc k =  O (true t o (3 x )  kx)

But this will not do.

If ontological commitment is genuinely antireferential, then it is illegitimate 

to employ cbjectual quantifiers binding variables where nondenoting terms 

may stand. For instance *it is legitimate to argue:-

'Pegasus exists' is ontologically committed to Pegasus 

(3 x) x is ontologically committed to Pegasus;

but not to argue

7



’Pegasus exists' is ontologically committed to Pegasus

(3x) 'Pegasus exists' is ontologically committed to x.

In the latter case, there is no value for 'x' for which the conclusion is true. 

Substitutional quantification is one way of escaping this difficulty. Following 

Kripke [74] I write the universal substitutional quantifier as 'IT and the 

existential substitutional quantifier as '£ '. With substitutional quantification, 

as with objectual quantification, a quantified sentence has a truth-value only 

when the bound variables are allocated a range. In the case of the objectual 

quantifier, the range is some non-empty set. For a substitutional quantifier 

the range is some non-empty substitution set of meaningful signs. Let this 

substitution set be S: then the truth-conditions for substitutional quantifiers 

are given as follows:-

'(3x)Fx' is true iff there is some s e S and 'Fs' is true 

'(Vx)Fx' is true iff for any s c S, 'Fs' is true.

In order to formalise the previous definition of ontological commitment, 

many-sorted substitutional quantification is required. Let S j = the set of 

terms denoting theories; let = the set of general nouns and Sx = the set of 

definite singular terms. S j is the substitution set for variables 'T, Ti, T2» 

T3,...'; Sk  is the substitution set for variables 'K, Ki, K2, K3... /  and Sx is the 

substitution set for variables 'X, X i, X2, X3, ....’ Formalised substitutionally 

the definition of ontological commitment becomes:-

(HTXIIK) T o c K H O  (true T =5 (3 x) Kx)

(IITXITX) T o c X f O  (true T => (3x) X  = x)

Read quasi-informally, these formulae amount to the following.

8



'For any substitution of a theory-denoting term for the letter 'T', and for any 

substitution of a general noun for the letter 'K' in the formula 'T oc K = O 

(true Td (3 x) Kx)', the resulting substitution instance is true'

'For any substitution of a theory-denoting term for the letter 'T', and for any 

substitution of a definite singular term for the letter 'X' in the formula 'T oc X 

S O (True T o  (3x)x =X)', the resulting substitution instance is true.'

The revised formalisation does deal neatly with the problem of anti- 

referentiality: but it runs into two problems of its own.

First, the formalisation mixes substitutional and objectual quantifiers. This is 

a course frought with peril for the unwary. For example, the formula 

'(IIF)((3x) Fx)' is a significant one: it reads 'Any substitution instance of 

•Gx) Fx' is true'. Reverse the order of the quantifiers and we get '( 3 x)((IIF) 

Fx)'; and this is nonsense. Read directly, it reads 'For some x, any substitution 

of Vx' is true. The first occurrence of 'x' fails to bind the second because the 

second occurrence is part of the quotational name of a formula. (On a similar 

topic see Quine [117]). Consequently it is always wrong to interpose a 

substitutional quantifier between an objectual quantifier and the variables that 

the objectual quantifier is intended to bind.

This restriction raises a lot of difficulties concerning the inference patterns of
k

logics which employ mixed quantification. For instance in second-order logic 

'(3 x)((3F) Fx)' ('There is something which has some property') is equivalent to 

'£3F)((3x) Fx)' ('There is some property which something has'). But in a mixed 

quantificational logic '(3x)((lF ) Fx)' and '(ZFX(3x) Fx)' cannot be treated as 

equivalent since one formula breaks the rule of interposition and the other 

does not. Since there is no current research, to my knowledge, into the 

limitations of mixed quantification, the practice of mixing quantifiers is best 

left alone.
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In deporting existential objectual quantification from our formalisation, the 

need is created for a replacement. Let 'E' be a sentence-forming operator on 

names of predicates or names of definite singular terms. Where K is any 

predicate, 'EK' is to be read 'there is one thing that satisfies K'. Where X is 

any definite singular term, 'EX' is to be read 'there is something X denotes'. 

The quantifier '3  ' can then be conveniently dispensed with, and the new 

formalisation of ontological commitment reads as follows.

(nT)(TIK) T ocK h O (true T 15 EK)

(irr)CHX) T oc X = 0  (true T D EX)
%

This device does not, however, serve to avoid the next problem which is rather 

better known than the problem of mixed quantification: this is the problem of 

quantifying into modal contexts (see Quine [117] again for the classic 

statement of this problem).

Let two pieces of paper be dropped in an urn. One is inscribed 'Unicorns exist', 

the other 'Unicorns do not exist'. One piece is drawn at random from the urn; 

it is inscribed 'Unicorns exist'. Thus we have the identity "Unicorns exist' = 

the theory drawn from the urn'. From the formula, '(IITXIIK) T oc K 2 .0  (true 

T Z> EK)', it can be inferred that:

the theory drawn from the urn oc unicorns

S O  (true (the theory drawn from the urn) 3  E unicorns)

Plainly 'Unicorns exist' oc unicorns and since 'Unicorns exist' = the theory 

drawn from the urn, then the theory drawn from the urn oc unicorns. It then 

follows that:-

O (true (the theory drawn from the urn)3E unicorns)

10



But is this final sentence true? Some philosophers (qv. Smullyan [134], Hughes 

and Cresswell [69]) would say it was). The theory selected from the urn is 

'Unicorns exist' and it is necessary that if that theory is true then unicorns 

exist. But some philosophers, like Quine, who have more conventionalistic 

tendencies, might disagree. It is a matter of contingent fact, some might 

argue, that the theory drawn from the urn is 'Unicorns exist'. It does not 

follow merely from the truth of the theory drawn from the urn that unicorns 

exist, unless one adds the contingent identity claim that 'Unicorns exist' = the 

theory drawn from the urn.

One way of cutting through this wrangle is to reformulate, once again, the 

definitions of ontological commitment, as follows:-

(IITXIIK) T o c K  = ((XTi) Ti = T & O (true Ti D EK));

(IITXnX) T oc X = ((XTi) Ti = T & O (true T i D EX));

The topmost formula, roughly translated, reads:-

'For any substitution of a theory-denoting term for 'T' and for any substitution
!/

of a general noun for 'K' in the following formula:- 'T oc K = for some 

substitution of 'T i' in 'Ti = T & O (true T^O EK)', the result is true' 

the result is true.' ,

Applied to the urn case, what is finally derived is not 'O (true (the theory 

drawn from the urn) 3  E^nicorns1)'but:-

fieri) Ti = the theory drawn from the urn &. O (true T iO  E’unicorns).

This formula reads as:-

11



'For some substitution of 'Tj/ in:- 'T]_ = the theory drawn from the urn & O 

(true T iO  E unicorns)', the resulting substitution-instance is true.'

This is in fact the case, since "Unicorns exist" is such a substitution.

1.2 Calculi of Ontological Commitment

The analysis of the concept of ontological commitment proceeds one stage

further with the construction of calculi whose sole purpose is to exhibit the
«

logic of ontological commitment. The calculi that will be examined are all 

extentions of a single calculus Q shortly presented. Q is a substitutional modal 

calculus with many-sorted variables with an enriched vocabulary including 

'true' 'false' and 'E'. The exotic nature of Q is simply a reflection of the 

minimum apparatus needed to deal with the intensional and antireferential 'oc' 

and the intensional 'O'.

The Calculus Q

The Alphabet of Q: consists of (i) four kinds of individual constant; t j, t2, t j ,

t 4 , ....... . ki, k2, k3, k4, ....; ai, a2, a3, .......... p i, p2, P3, P4, ....... ; (ii) four

kinds of variable; T i, T2, T3, T4, ...... ; K i, K2, K3, K4, ........; X j, X2, X3,

X4, .......... ; P i, P2f P jf P4>.......... . (iii) the substitutional quantifiers 'IT and ' ! '

(iv) the logical constants; -, v, =, O, O, B, oc, oc, true, false, (,), =, E.

Rules of Formation for Q

An atomic formula of Q is any of the following (nothing else is an. atomic 

formula of Q). For any i, j > 1 where i and j are whole numbers (i) Bpjtj (ii) 

tjoc kj (iii) tjoe kj (iv) pjoc kj (v) pjoc kj (vi) t\ = tj (vii) p\ = pj (viii) true tj (ix)



false tj (x) Elq (xi) Eaj (xii) kiaj.

Any atomic formula is a wff of Q. Let w  ̂ and W2 be wffs of Q: -w^ is a wff 

of Q, (w]_ v W2) is a wff of Q, (w  ̂ & W2) is a wff of Q, (wi W2) is a wff of Q, 

(wi W2) is a wff of Q, wi is a wff of Q, O wj is a wff of Q.

Let c be any individual constant and let v be any variable of Q: v and c are of 

the same type iff (0 if c = tj then v = Tj (ii) if c = kj then v = Kj (iii) if c = 

ajthen v = Xj (iv) if c = p\ then v = Pj.

If Fc is any wff of Q containing n (n > 1) occurrences of c, then (ITv) Fv

and (Iv) Fv are wffs of Q where Fv results from Fc by the replacement of m (1

< m < n) occurrences of c in Fc by v and v is not bound in Fc and v and c are of
*

the same sort.

Nothing else is a wff of Q.

Informal Reading of Q

Although Q can be studied as a formal system, its point and philosophical 

interest derive from the way its symbols are read. The informal readings of 

the symbols of Q are as follows.

Alphabet Reading

t j, t2> t3, t4, .....  theory-denoting terms

ki, k2, k3, k4, .....  general nouns

aj_, a2> a3» a4>.....  definite singular terms

Pi» P2> P3> P4>.....  person-denoting terms

Z. ’There is some true substitution for'

TT 'Any substitution for ... is a true

substitution for'

T i, T2, T3, T4, .....  substitutionally bound variables whose

substitution set is t i, t2, t3, t4, ...

K l, K2» K3, K4, .....  substitutionally bound variables whose
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Pi» P2» P3> p4>

A i, A2, A3, A4,

v

&

D

O

B

oc

oc

E

true

false

substitution set is k]_, k2, k3, k4, ... 

substitutionally bound variables whose 

substitution set is pi, P2, P3, P4» ••• 

substitutionally bound variables whose 

substitution set is aj, a2, 83, 84, . . .  

not

and/or

and

If then 

if and only if
«

It is necessary that 

It is possible that

.....believes .... to be true

..... is ontologically committed to ...

......  is committed to the non-existence

of ...

operator on mentioned predicates and

singular terms showing they are

satisfied or denote

true

false

Axioms of Q: any substitution instance of the following axiom schemata is an 

axiom of Q.

A l. OwJ=-^- wi 

A2. Ow^Dwi

A3. 0(w i0 w2 )3 (0  wiDO W2)

A4. true tj v false tj 

A5. - (true tj & false tj)

14



Rules of Derivation in Q: X— *Y is to be read as 'From X derive Y'

OI (O Introduction): 

Taut (Tautology):

CP (Conditional Proof):

=1 (= Introduction): 

Sub (Substitution):

O Sub (O Substitution):

Where v and c is a variable and 

UE (Universal Elimination):

EG (Existential Generalisation) 

UI (Universal Introduction):

EE (Existential Elimination):

I- v/\—

Where A is any set of wf f s of Q;

A.A tautologically implies w i—>wi«

In particular where A = A ,

------>wj directly.

A , w j h w j— »A h w j3 w2- 

In particular where A =A ,

— >w ^3 W2 directly.

Where c is any individual constant,
%

— ► c = c directly.

Where Cj and cj are individual constants 

and Fc ., is any wff containing Cj; Fc .,

Cj= Cj—-^*FCj, where *FCj is the result 

of replacing cj in Fc . by cj whenever cj 

is not in the scope of a modal operator. 

FCj, O (cj = cj)—>FC., where Fc . is the 

result of replacing one or more 

occurences of cj in Fc . by Cj. 

a constant of the same sort:- 

(IIv) Fv —*FC 

Fc —*C£v) Fv 

h Fc —* (ITv) Fv

Where c does not occur in any element 

of A or in w j:-

A, Fc F w j- ^A F CLv) Fv D w^

The calculi examined are tagged with decimal numbers according to their 

deductive strengths: higher numbers indicate stronger systems.



The Calculus of Ql: results from adding to Q, two axiom schemata, A6 and

A7.

A6 (nTiXnKjXTjOc Kj = (31Tk)(T|< = Tj & O (true TkO  EKj)

A6 (IITiXlIKjXTi55 Kj = (£TkXT|< = T5 & O (true Tk3  - EKj)

A6 is the definition of ontological commitment offered earlier and the 

rationale of A7 is obvious given the reading of 'oc'. Some important theorems 

of Ql are:-

• ■
Theorem 1 Kq i  (nT]XnK])(Tioc Ki & true T i)3  EKi

1. t jo c  ki & true ti Hyp

2. tioc 1, Taut

3. t^oc kx3  (ZT2XT2 = t i  & 0  (true T2 3  EKi) A6, Taut, UE

4. (IT 2)T2 = t i & 0  (true T2 3  Eki) 2,3 Taut

5. t2 = t i & O (true t2^  Eki) Hyp

6. O (true t2 D Eki) 5 Taut

7. true t2 D Eki 6, A2 Taut

8. true t i 1 Taut

9. t2 = t i 5 Taut

10. true t2 8,9 Sub

11. Eki 7,10 Taut

12. ((I T2)T2 = t i  & O (true T2 D  EkX)) Eki 4,5,11 EE

13. Eki 4,12 Taut

14. (tioc ki & true ti )D  Eki 1,13 CP

15. (IITiXnKiXTloc Ki & true T i)D  EKi 14 UI

Theorem 2 Fq i  (IITiXlIKiXT]oc Ki & true T i)3  - EKi

As theorem 1 using A7 instead of A6.



Theorem 3 Hq i  (nTi)(lIK]XTioc Kl & T joc Ki)D false Ti

1. tjoc  l<i S c tide ki Hyp

2. (t]oc ki & true t i )D  Eki Theorem 1, UE

3. (tioc ki S c true t i )D - Eki Theorem 2, UE

4. - ((t]oc kj & true t i ) & (tioc 'k i & true t j  )) 2,3 Taut

5. - true ti 1,4 Taut

6. true t i v false ti A4

7. false ti 5,6 Taut

8. (tioc ki S c ti5c k\ )D  false ti 1,7 CP

9. (nTiXnKiXTioc Ki & Tioc K i)D  false Ti 8 UI

Theorems 4 to 7 each depend on the Paradoxes of Strict Implication:

1. w i3  (w2 D w i) Taut

2. 0 ( w iD (w2 D w i)) 1, 01

3. O w p O  (w2 D w i) 2, A3

1. - w iD  (wi D w2) Taut

2. 0(-w i O  (wi D W2)) 1, OI

3. 0 - w iD 0 ( w jD w2) 2, A3

We admit the Paradoxes as Derived Rules.

DR1 O wi D  O (w2 O  wi)

DR2 O - W]_ O  O (wi D W2)

Theorem 4 F-'q i  (IITiXnKi)O (E K i)3 T joc Ki

Hyp 

= I

1. O Eki

2. t i = t i



3. O (true t j p  Ekj.) 1, DR 1

4. t i  = t i  & O (true txO  Eki) 2,3 Taut

5. (XTx) Ti = t i  & 0  (true TxO Ekx) 4 EG

6. ((ZTx) Tx = t & O (true T x^  Ekx))3 txoc kx A6, UE, Taut

7. txoc kx 5,6 Taut

8. O EkxO txoc kx 1,8 CP

9. (IITxXlIKxXO (EKx) OTxoc Kx 8 UI

Theorem 5 F q i  (IITiXnKiXO - EKi)l> Tioc Ki

As theorem 4 using A7 instead of A6.

Theorem 6 f- q i  (ÌtTxXlIKxXO false T i)D T ioc  Ki

1. 0  false tx Hyp

2. false txO - true tx A5, Taut

3. Oifalse tx3 - true tx ) 2, 01

4. O false tx D 0  - true tx 3, A2

5. 0  - true tx 1,4 Taut

6. 0  (true tx O Ekx) 5 DR2

7. ti = tx = I

8. ti = tx & 0  (true txD  Ekx) 6,7 Taut

9. (XTx) Tx = tx & O (true TxO Ekx) 8 EG

10. ((XTx) Tx = tx & O (true T x^E kx))3  txoc kx A6, UE, Taut

11. txoc kx 9,10 Taut

12. 0  false tx^  txoc kx 1,11 CP

13. (IITxXlIKxXO false Tx)DTxoc Kx 12 UI

Theorem 7 1-qx (nTxXlTKxXO false Tx )D  Txoc K i 

As theorem 6 using A7 instead of A6.
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Theorems 4 to 7 embody what I call 'the Paradoxes of Ontological 

Commitment'. Theorem 4 claims, approximately, that every theory is 

committed to the existence of every necessary entity. Theorem 5 claims that 

every theory is committed to the non-existence of every impossible entity. 

Theorem 6 claims that every impossible theory is committed to the existence 

of anything and theorem 7 says that every impossible theory is committed to 

the non-existence of anything.

Some of the bizarre consequences of these theorems are best brought out by 

example. By theorem 4, if (say) numbers exist necessarily then 'Numbers do 

not exist' is ontologically committed to numbers. By theorem 5 'Square 

triangles exist' is ontologically committed to the non-existence of square 

triangles. By theorem 6 '0 = 1' is ontologically committed to unicorns, but, by 

theorem 7, at the same time denies their existence.

The Calculus Q2: arises from Q1 by the addition of A8 and A9.

A8 CnTjXnTjXnKkXO (true T* D true Tp) 3  (Tjoc Kk D Tjoc K|<)

A9 OlTiXnTjXlIKkXO (true T* O true Tj)) O (Tjoc Kk D  Tjoc Kk )

A8 claims that if T j necessarily implies T j then all ontological commitments 

incurred by Tj_ are incurred by Tj. A9 claims the same for oc.
4

Theorem 8 I-Q2 (HTi)(nT2)(IIK]XO true T]_ & O true T2)D (Tjoc K jS  T]OC

K l)

1. 0  true t j & O true t2 Hyp

2. 0  true ti 1 Taut

3. O true t2 1 T aut

4. O (true t^D true t2 ) 2 DR1

5. 0  (true t2 D true t i ) 3 DR1

1 9



6. O  (tru e  t £ D  tru e  t i  ) p  ( t i o c  k ] .D  t 20c  k i ) A 8 , UE

7 . O  (tru e  t i  ^  tru e  t2  ) O ( t 2o c  k j O  t i o c  k i  ) A 8 , UE

8 . t i o c  k i O  t20C k i 5 ,6  T au t

9 . t20C k i 3  t i o c  k i 4 ,7  T au t

1 0 . t i o c  k i s  t20C k i 8 ,9  T au t

1 1 . ( 0  tru e  t i  &  0  tru e  t2  ) D  ( t i o c  k i =  t 20c  k i ) 1 ,1 0  C P

1 2 . (n T iX lT T iX lIK iX O  tru e  T i  & O  tru e  T 2)

D  ( T i o c  K i  S  T 2 oc K i  ) 11 UI

Theorem 9 Hq 2 (IITiXlITiXlIKiXO true T]_ & O true Ti) D  (Tioc Ki 3  Tioc 

Ki )

As theorem 8 using A9 instead of A8.

Theorems 8 and 9 might be classed as amongst the Paradoxes of Ontological 

Commitment since both rely essentially on one of the Paradoxes of Strict 

Implication. Collectively, theorems 8 and 9 claim that any two necessary 

theories are ontologically committed to the existence of exactly the same 

things and deny the existence of exactly the same things.

Whether theorems 8 and 9 are judged acceptable is partly determined by the 

justice of certain philosophical views on modality and existence. According to

one view of modality that did, (and still does), enjoy much influence, a%

sentence or theory is only necessarily true because of human conventions that 

determine the meaning of that sentence. This position is commonly called 

conventionalism ( a good exposition being Ayer [10] chapter four). 'All 

triangles have three sides' is necessary, according to the conventionalist, 

because human beings have determined that 'triangle' shall mean three sided 

figure. It is impossible however, that the contents of the universe should be 

determined by the way that people use words. Consequently, it is not possible 

to deduce anything from a necessary truth about what exists: a position
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Wittgenstein expressed in the Tractatus.

•Tautologies and contradictions are not pictures of reality'

Wittgenstein [150] (4.462)

Conventionalism fits in well with theorems 8 and 9; all necessary truths have 

the same commitments, i.e. none at all.

A rather older view of modality, endorsed by figures such as Leibnitz [80] and 

St. Anselm [3] does not see all existence claims as contingent. The older 

school prefers to see some of the properties that attach themselves to objects 

as attaching themselves necessarily to that object. This view is commonly 

termed essentialism. Those sentences which report on the existence of objects 

which necessarily exist are themselves necessarily true. An essentialist who, 

for example, took both numbers and universals as necessary would not wish to 

equate the ontological commitments of 'Numbers exist' with that of 

'Universals exist'.

The Calculus Q3; results from adding A10 and A ll  to Q2

A10 (nPjXnKj) Pjoc Kj = (XTi) BPjTfc & Tkoc Kj 

A l l  (IIPjXnKj) PiOC Kj =(XTi)BPiTk & Tk5?K j
i

A10 is an answer to a question in the opening page of this chapter: 'What is it 

for a person to be ontologically committed to a sort of entity?'. The answer 

A10 provides is that a person is so committed just when he believes a theory 

which is so committed.

Theorem 10 I- Q3 (IIPi )(HT]XHT2)(IIK]X(0 (true T ]^  true T2))

& (T2oc Ki  & BP]T 1 ) ) 0  P ioc K 1
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1. (O (true t^ 3  true t2)) & (t20c kx & Bpxtx)

2. O (true tjD  true t2 ) D (t20C kxO tioc  kx )

3. txoc kj

4. Bpxti & t^oc kx

5. (ZTx) BpxTx & Tx oc kx

6. ((ZTx) BpxTx & Tx oc kx) pxoc kx

7. px°c kx

8. ((O (true txD true t2)) & (t2oc kx & Bpxtx))

Hyp

A8, UE

4 EG

1,2 Taut

1,3 Taut

A10, UE, Taut

5,6 Taut

O  PX°ckx

9. (nPxXnTxXnT2XlIKxX(0 (true T x3  true T2))

1,7 CP

&(T2ocKx <?cBPxTx))OPlocKx 8 UI

Theorem 11 Kq 3 (nPxXnTxXnTxXnKxX(0 (true Tx^ true TX))

& (Txoc Kx & BPxTx ))O Px°c Kx 

As theorem 10 using A9 and A ll instead of A8 and A10.

Theorem 10 makes it possible for a person to have ontological commitments he 

does not recognise himself. A person can assent to a theory which strictly 

implies the existence of a kind K, and nevertheless fail to acknowledge his 

ontological commitment because he fails to see the implication.

The Calculus Q4: results from Q3 by the addition of A12.

A12 (nPjXnKj) Pioc Kj D - Pioc Kj

A12 claims that if a person is committed to the existence of a kind K, he is 

not committed to the non-existence of Ks. A12 is a contentious.axiom. 

Immediate is theorem 12.



Theorem 12 h Q4 (IIPjXIIKi ) - (Pioc Ki & Pioc K j )

1. Pioc - pioc k̂ A12, UE

2. - (pjoc kx & pioc ki ) 1 Taut

3. (ÜPiXlIKi) - (Pioc Ki & Piöc Ki ) 2 UI

But within Q4 there are theorems which definitely merit rejection; for

example theorem 13.

Theorem 13 Fq4 (IIPiXlITi) - (O (false Tj) & BP^T  ̂ )

1. 0(false ti) & Bpiti

2. 0(false ti) O tioc  ki

3. 0(false t i ) 3  tioc ki

4. tioc ki

5. tiöc ki

6. Bpiti & tioc ki

7. Bpiti & tioc  ki

8. (iT i)B piTi & Ti oc ki

9. (XTi)BpiTi & Ti oc ki

10. ((ZTi)BpiTi & Ti oc k i)D p ioc  ki

11. ((ZTi)BpiTi & Ti oc k i )3 p io c  ki

12. Pioc ki

13. Pioc ki

14. Pioc kiD - pioc ki

15. -Pioc ki

16. Pioc ki & - pioc ki

17. (O false ti & B piti)D  (pioc ki & - pioc ki)

18 -(O false t i & Bpiti)

19. (nPiXnTi) - (0  (false Ti) & BPiTi)

Hyp

Theorem 6, UE

Theorem 7, UE

1,2 Taut

1.3 Taut

1,4 Taut

1,5 Taut

6 EG

7 EG

A10, UE, Taut

A ll, UE, Taut

8,10 Taut

9,11 Taut

A12, UE

12,14 Taut

13,15 Taut

1,16 CP

17 Taut

18 UI



Theorem 13 claims nobody believes a theory which is necessarily false! The 

immediate thought is that unpleasant consequences can be avoided by 

banishing A12 and staying within Q3. This immediate thought is squashed by 

theorems 14 and 15, which are theorems of Q3.

Theorem 14 h Q3 (ITPiXlITiXnKiXBPiTi & O (false T i))3  Pioc

1. Bpiti & O (false ti) Hyp

2. CXfalse ti)D  tjoc  ki Theorem 6, UE

3. t]oc  ki 1,2 Taut

4. Bpiti & t]OC ki 1,3 Taut

5. (lT]X3p]Ti & Ti oc ki 4 EG

6. .^(ZTi)BpjTi & Ti oc k^)D pioc ki A10, UE, Taut

7. pioc ki 5,6 Taut

8. (Bpiti & 0  false tj)D  pioc kj 1,7 CP

9. (HPiXnTiXnKxXBPxTi & 0  (false TX))D P10c Kx 8 UI

Theorem 15 t- Q3 (IIPiXnTiXIlKiXBPiTi & O (false Ti))D  P joc Ki

As theorem' 14 using A ll  instead of A10 and theorem 7 instead of theorem 6. 

Theorem 14 declares that anybody who accepts a theory which is necessarily 

false is ontologically committed to everything. Thus the Greek 

mathematicians who believed that an angle could be trisected using only a 

compass and straightedge (which was proved impossible in the 19th century by 

Wantzel) were committed, by theorem 14, to the existence of talking stones, 

cubic pyramids, flying saucers (or teapots for that matter) and any other 

phantasm imagination can suggest.



1.21 Calculi which lack the Paradoxes of Ontological Commitment

For believers in the claim that strict implication is to be distinguished from 

entailment, the Paradoxes of Ontological Commitment are a sure sign that 

something has gone wrong as early as Ql. Since the derivations of the 

implausible theorems 13, 14 and 15 depend on the Paradoxes of Ontological 

Commitment, these later difficulties will then be thought of as advanced 

symptoms of a disease which crept in at Ql. One option is to block off the 

Paradoxes of Ontological Commitment at the start.

The simplest way to do so is to insist on a distinction between strict
*

implication and entailment; then to follow up the distinction by defining the 

conditions of ontological commitment in terms of entailment. Using '=*' for 

'entails', the revised definition of ontological commitment reads:-

A*6 (TITiXlIKj) Tjoc Kj 3 (n T k) Tk = Ti & (true Tk«J  EKi)

A*7 (TUjXlTKj) Tjoc Kj S (IITk) Tk = Tj & (true Tk=* -EKi)

In order to cope with the logic of the new connective Q must be enriched. 

Anderson and Belnap's [12] System E is a likely choice for encapsulating the 

logic of entailment for those who wish to demarcate entailment from strict 

implication. The system Q* is the result of adding to Q:-

(1) the connective «4’ along with the appropriate accommodation in the rules 

of formation; namely, if wi and W2 are wffs, so is wi*sj W2*

(2) The rule of inference: wji=% W2---- > D(wi D  W2) H E : (^Elimination))

(3) Certain axioms dealing with *=̂  ie. System E.

El ((wj*^ wi)**w2)=»6 W2

E2 ((w ]^  W2)*3 ((w2«^ W3)e§ (w] ^  W3))
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E3 (wi*^(wi=>^W2))n̂ (wi?=9W2)

E4 (wx 2c W2)“ 9 wx

E5 (wx 2c W2)^ W2

E6 ((w i«^ W2) & (w i-^w 3))-^(w ]/^(w 2 & W3))

E7 ( O w j i O  W2)*^0 (wx & W2)

E8 wx*^ (wx v W2)

E9 w i’- i  (w2 v wx)

E10 ((wx ~9 W3) & (w2 w3))-a> ((wx v w2)-& W3)

E ll ((wx 2c (w2 v W3))^ ((wx 2c W2) v W3)

E12 (wx-^  - wx)«eä - wx 

E13 (wx«9 - W2)®> (̂w2’=9 - wx)

E14 - - wx—i wx

In system E neither 'O wxO (w2—*wx)' nor 'O - wx^>(wx=iw2), are derivable. 

Thus the Paradoxes of Ontological Commitment are not forthcoming when 

A*6 and A*7 are added to Q* to form Q *l. By replacing '0 ( . . .3  ...)' by 

5=̂  throughout A8 to A12, one generates a whole series of calculi parallel 

to Q1 to Q4.

i.e. Q* = Q + O^E) + System E 

Q*X = Q* + A*6 + A*7

A*8 (üTiXlTTjXTIKkXtrue Ti*$true T j)3 (T joc K k oT joc  Kk ))

A*9 (ITT¡XnTjXlIKkXtrue Ti=dtrue T p 3  (Tjoi Kko  Tjoc Kk ))

<3*2 = Q*1 + A*8 + A*9

Q*3 = Q*2 + A10 + A ll  .

0*4 = Q*3 + A12
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Q*1 to Q*3 are free from the Paradoxes of Ontological Commitment and from 

theorems 13, 14 and 15. Q*4 is dubious, however, since in Q*4, it is a theorem 

that nobody believes a theory which entails there are K p  and a theory which 

entails there are not K p.

Theorem 16 b <3*4 (nPi)(nTi)(IIT2Xm<i) - ((B P ^ i & BP]T2 ) «5= (T p c  Ki & 

T20C Ki))

1. (B ppi & Bpp2) & ( t p c  kj & t20 c ki ) Hyp

2. B pp i & t]OC ki ITaut

3. Bpp2 & t20c kj 1 Taut

4. (ZTi) B pp i <5c Tioc ki 2 EG

5. (XTi) BpiT2 & T20C ki 3 EG

6. ((IT j) BP2T1 & T joc k j)D  pjoc kj A10, UE, Taut

7. ((ZTi) BpiTi & Tioc k i )3  pioc ki A ll , UE, Taut

8. p p c  k\ 4,6 Taut

9. P20C ki 5,7 Taut

10. p p c  k jD  - piöc ki A12, UE

11. -  p p c  ki 8,10 Taut

12. Piöc k  ̂ & -pioc ki 8,11 Taut

13. ((Bpiti& Bpit2) & ( t p c  ki & t20C kj)) 1,12 CP

14.

Z) (piöc kj & -pioc ki )

- ((Bpiti & Bpit2) & (tioc kx & t20C ki )) 13 Taut

15. (nPi)(nTiXirT2)aiKi) - ((bpxTi  & bpxT2 ) 

& (T 10c Ki & T20c Kij) 14 UI

The weakness of the Q* calculi lies in the theory of entailment on which they 

are all founded; namely System E. In System E, two axioms are inconspicuosly 

absent. These are the axioms of disjunctive syllogism.
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((wj v v/2) & - v/^)=^W2 

C(wi v W2) & - W2)=  ̂wi

These axioms cannot be added to system E without engendering 'Paradoxes of 

Entailment' exactly parallel to those of Strict Implication (see Anderson and 

Belnap [12]). Many logicians feel that rejecting the axioms of disjunctive 

syllogism is a step more drastic and questionable than identifying strict 

implication and entailment. The axioms of disjunctive syllogism are ones that 

Stoic logicians said even dogs in the street recognise: when chasing their prey 

to a point where the road forks, they will sniff along one fork, and if they 

catch no scent there, they will chase along the other without sniffing.

1.22 Other Solutions

Other solutions to the absurdities of theorems 13, 14 and 15 retain the 

Paradoxes of Ontological Commitment, but modify the later axioms. The 

modifications center principally on A10 and A ll ; which are those axioms 

which relate the ontological commitments of a person to the ontological 

commitments of the theories he happens to believe. A10, for instance, claims 

that a person is committed to a kind K if, and only if, he believes a theory 

which is ontologically committed to Ks. However, the Paradoxes of 

Ontological Commitment assure us that any necessary falsehood is committed 

to the existence (and the nonexistence) of anything. So we deduce that any 

person unfortunate enough to accept a necessary falsehood is committed for 

and against the existence of anything.

A fairly obvious thought is that if the ontological commitments of a person 

were only extracted from the consistent parts of his belief-set then these 

difficulties would be avoided. This thought can be taken up in various ways. 

For instance, BIO and B ll can replace A10 and A ll .
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BIO (nPj)(m<j) Pjoc K j=  (ZTk) BPjTk & (Tkoc Kj ¿ ❖ tru e  Ti<)

B ll (ITPi)CnKj) P,oc Kj =  (ZTk) BPjTk & (Tkoc Kj & ❖  true Tk)

The extra condition Otrue Tx' prevents the derivation of theorems 13 and 14. 

R1 is the result of adding BIO and B ll to Q2, and R2 is the result of adding 

A12 to R l.

i.e. R l = Q2 + BIO + B ll 

R2 = R l + A12

«

But R2 is not itself free from absurdity for it is a theorem of R2 that nobody 

believes two contingent theories with contrary commitments.

Theorem 17 F-R2 (nPi)(nTi)(IIT2XnKi) - (((Tjoc Ki  & T20C Kj )

& (BPiTj & BP1T2)) & (❖  true T j & ❖ true T2))

1. ((tioc ki & t20C ki) & (Bpitj & Bp]t2))

& (❖  true t i & ❖ true t2)

2. Bpitx & (tioc kx &^true tx )

3. Bpxt2 & (t20C kx ¿«❖ true t2 )

4. (ITx)BpxTx & (Txoc kx & ❖ true Tx)

5. (ZTx)BpxT2 & (T20C kx & ❖ true T2)

6. ((ZTx)BpxTx &(Txoc kx & ❖  true Tx))3px°c kx

7. ((ZTx)BpxT2 & (Txoc kx & ❖  true T2))0 pxoc kx

8. pxoc kx

9. px°c kx

10. pxoc kxD - pxoc kx

11. - pxoc kx

12. pxoc kx & -  pxoc kx

Hyp 

1 Taut

1 Taut

2 EG

3 EG

BIO, UE, Taut 

B ll, UE, Taut

4.6 Taut

5.7 Taut 

A12, UE

8.10 Taut

9.11 Taut
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13. (((tioc k i  & t20C k \  ) & (B p it i & B p it2))

& (❖  true t i & Otrue t2 ))D  (pjoc ki & - pioc ki ) 1, 12 CP

14. - (((tioc ki & t2oc ki) & (Bpiti & Bpit2))

& (O true t i & ❖ true t2 )) 13 Taut

15. (nP1XnT1XnT2XlIK1) - (((Tioc Ki & T2oc Ki)

& (BPiTi & BP1T2)) & ( ❖  true Ti & ❖ true T2)) 14 UI

An alternative to BIO and B ll is CIO and C ll .

CIO OlPiXlTKj) Pjoc Kj =((ZTkXBPiTk & Tkoc Kj) & - dTiXBPiTi & Tjoc Kj))
_ «

C ll  OlPiXlIKj) PjOC K j* ((Z T kXBPiTk & Tkoc Kj) & - (LT^BPjTi & Tjoc Kj))

SI results from adding CIO and C ll  to Q2. In SI, axiom A12 is not 

independent but may be proved as a theorem.

Theorem 18 F- s i  (IIPlXlIKi)Pioc K iD  - P ioc K i

1. Pioc ki Hyp

2. pioc k iD  ((ZTiXBpiTi & Tioc k )

& - (ZT2)(BpiT2 & T20C ki)) CIO, UE

3. (£Ti)(BpTi & Tioc k ) & -(ET2XBP1T2 & T20C Ki) 1,2 Taut

4. - &T2XBP1T2 & T20C Ki) 3 Taut

5. pioc ki

D (&T2XBpiT2 & T20C k ) & - (UTiXBpiTi & Tioc k i )) C ll , UE

6.  -  pioc ki 4,5 Taut

7. pioc kiD -  pioc ki 1,6 CP

8. (n P iX lIK i)P ocK iD -P  o cK i 7 UI -



However SI, though deductively strong, goes too far. In SI it can be proved 

that anybody who believes a theory which is necessarily false, is ontologically 

committed to nothing!

Theorem 19 I- S1 (nP1)tnT1)(nKi)(BP1Ti & O false T i)3  - Pioc Ki

1. Bp].ti & 0  false t j Hyp

2. O false t j !?  tjoc  kx Theorem 7, UE

3. pioc kx

D  ((£T]XBP1Ti  & T10c ki) & - (ZptepxTi & Ji~c k^) CIO, UE, Taut

4. Bpitx & tioc kx 1,2 Taut

5. (ST)BpxTi & Txòc kx 4 El

6. -  pxoc kx 3,5 Taut

7. (Bpxtx & 0  false tx)D - Pioc kx 1,6 CP

8. (nPxXHTx)CHKxXBPxTx & O false Tx)D - Pxoc Kx 7 UI

The relations between the various calculi are illustrated in diagram I.

Which 'ontic logic' best captures the logical properties of ontological commit

ment? The issues and problems are surprisingly similar to those surrounding 

modal logics: in modal logic too, we have a plethora of non-equivalent formal 

systems each competing for recognition. In such cases our intuitions seem too 

flimsy to discriminate in favour of one unique system. Perhaps there is no 

'right' modal logic and no right ontic logic either.

The case, cannot, at any rate, be settled for any one system by an 

investigation of 'ordinary use'. The phrase 'ontological commitment' is a term 

of art amongst professional philosophers and a head count of philosophers 

would establish very little. However we can argue for the selection of a 

calculus on pragmatic grounds. These grounds are that a calculus should be as 

deductively strong as is consistent with it being free from absurdity. The
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calculus selected can then serve to legislate for the logical properties of 

ontological commitment, even where our intuitions leave off. From this 

perspective, R1 looks the likeliest choice for the logic of ontological 

commitment.

1.3 Criteria of Ontological Commitment

A criterion need not be a definition, and conversely, a definition need not be a 

criterion. Before embarking on an examination of criteria of ontological 

commitment, it is useful to have a clear idea of the distinction between the 

two.

A definition of a property P states what it is for an object to have P or to be a 

P. Thus a definition is required to have the form 'For any x, x is P if and only 

if ....’ and not only to be true but also to be necessarily true. A definition is 

also required to be non-circular (a formally difficult condition to define) which 

requires that the definiens and the definiendum contain different expressions. 

In philosophy, the concept of circularity is widened to embrace 'dictionary 

definitions’ 'x knows that p if and only if x is cognisant of p' would be counted 

as circular by most philosophers even though it would be good enough for the 

basis of a dictionary entry.

’Criterion' is a slippery word as those involved in the exegesis of Wittgenstein's 

later philosophy know. In ordinary speech a criterion for the prescence of a 

property P is a feature or procedure for basing reasonable judgements on the 

prescence or absence of P. Thus a reading of a temperature above 98.4°F 

(37°C) on a human being would be a criterion that the human being was ill. 

But the criterion of having a high temperature, though normally a sufficient 

condition of being ill, is not a necessary condition of being ill, since there are 

certain diseases (e.g. cancer, multiple sclerosis) which are not associated with 

high body temperature. A. criterion need not be infallible. A yellow sky in the
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evening is a criterion of stormy weather to come and yet it is not an infallible 

criterion.

The most important feature of a criterion is that being a standard by which to 

make judgements it must be epistemically useful. The concept of epistemic

usefulness can be defined as follows. A criterion C for the detection of a

property P is epistemically useful to an agent A if and only if the possession of

C by A improves the capacity of A to recognise the prescence of property P.

Criteria can also be roughly divided (with certain borderline cases) into

procedural criteria and nonprocedural criteria. A procedural criterion is a

criterion which requires knowledge and execution of a procedure in order for
«

that criterion to be applied. For example, the Marsh test for arsenic and the 

electrolysis test for distilled water require knowledge of some of the 

procedures of analytical chemistry to be applied successfully. Other criteria 

do not require to be prefaced by a procedure: e.g. forecasting the weather by 

looking at the clouds.

Definitions in contrast, though they may be procedural, need not be 

epistemically useful. An example of an epistemically useless definition is 

Tarski's Semantic definition of truth as satisfaction by all sequences. This 

definition of truth is not circular in any formal sense, but it does not improve 

our ability to distinguish the true from the false; to settle for instance, the 

Bacon/Shakespeare controversy or any unsolved problem in science or 

mathematics. Nor is there any reason why a definition of truth should 

improve our capabilities of distinguishing the true from the false. In summary, 

then, the leading features distinguishing criteria and definitions are these.



Criteria Definitions

Gives often sufficient conditions, 

but may not be necessary.

Gives necessary and sufficient 

conditions.

Possibly fallible; more desirable 

the less fallible it is.

Infallible; necessarily true 

in all cases.

Epistemically useful: improves 

our capacity to detect the 

requisite properties.

Non-circular; but may not be 

epistemically useful.

Procedural in many cases.

Moving from reflection on criteria in general to criteria for ontological 

commitment in particular, most current studies on criteria of ontological 

commitment are either written or inspired by the work of Quine. Quine's 

statements of his criterion are not always equivalent to each other or 

satisfactory in themselves. To gain a foretaste and a general impression of 

Quine's work in this area, here is one criterion of ontological commitment that 

Quine offers.

'In general, entities of a given sort are assumed by a theory if and only if some 

of them must be counted among the values of the variables in order that the 

statements affirmed in the theory be true.'

Quine [108] (103)

The technical phrase 'values of the variables' shows that Quine's criterion is 

one that requires a certain technical knowledge to appreciate. In fact, Quine's 

criterion is a procedural one, at least in part, and the useful application of



Quine's criterion presupposes an ability to institute a procedure Quine calls 

paraphrase or regimentation, but which most philosophers call formalisation. 

The exact nature of this procedure and the constraints under which it should 

be carried out is an arguing point for many philosophers. What is said here is 

only in the way of preparation for a more detailed discussion in chapters 2 and 

3, and as an opportunity for signposting the reader to some relevant but 

scattered material throughout this text.

The consensus opinion amongst those analytical philosophers who favour 

formalisation as a philosophical tool is as follows. The best means of 

determining an answer to the ontological question as to what exists is to select 

those theories that expert opinion judges to be true, and determine to what 

those theories are ontologically committed. If those theories are expressed in 

a natural language however, frequently their ontological commitments are not 

immediately apparent. Most formally inclined philosophers blame this on the 

fact that natural languages do not provide an adequate syntactical mark of 

ontological commitment (see 2.2 on the distinction between grammatical and 

logical form). Their solution is to rephrase or formalise the theories in 

question into a formal language; (generally a first-order language based on the 

predicate calculus, but see 6.2 and chapter 7 for the consequences and 

principles involved in the choice of an appropriate notation). What is the 

relation between the original natural language theories and the formal theories 

which are the product of formalisation? Here formal philosophers divide. 

Some insist that formalisation is a meaning-preserving procedure and hence 

that formalisation is like translation (see 2.2, 2.6). Some formalists believe a 

theory has one and only one proper formalisation and this is the logical form of 

the theory in question (see 2.2 and 2.6 again); but other philosophers insist that 

there are a number of competing but equally viable formalisations of certain 

natural language theories (see chapter 5). Having completed the process of

formalisation, one looks for theorems of the form (3x)(_____ ) to determine

what the ontological commitments are.
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1.3.1 Quine’s Criteria

Statements of a criterion of ontological commitment are scattered throughout 

much of Quine's work and the best way of coming to grips with them is to 

examine them one by one on their own terms. This is how, in fact, we shall 

proceed.

Formulation 1

'We are convicted of a particular ontological presupposition if, and only if, the 

alleged presuppositum has to be reckoned among the entities over which our 

variables range in order to render one of our affirmations true.'

Quine [116] (13)

'To show some given object is required in a theory what we have to show is no 

more or less than that object is required for the truth of the theory to be 

among the values over which the variables range'

Quine [109] (93)

These two versions of Quine's criterion are similar enough to deserve grouping 

together under one formulation. Nevertheless there is one subtle difference 

worth noticing. The first quoted version presents a criterion of ontological 

commitment for persons and the second, for theories. Since Quine does not 

devote any space to examining the relations between the ontological commit

ments of persons and of theories, it is likely this sort of difference would not 

engage his attention. Actually, of course, there is a substantive philosophical 

issue at stake here, as we saw in 1.2., about the exact nature of the relations 

between the ontological commitments of theories and the people who believe 

them.
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Formulation 1 fails principally because it treats ontological commitment as 

referential; which it is not. 'Dracula exists' is ontologically committed to 

Dracula, but Dracula is not an object to be counted amongst the values of the 

domain of the theory, since Dracula does not exist as an object at all.

These versions also fail to apply to cases of ontological commitments to sorts 

of things. The theory '@x) table x' is ontologically committed to tables. But it 

is false to say that, of any particular object, that that object is required to be 

counted within the range of the variable 'x' in order for the theory to be true. 

(See Chihara [26]).

Formulation 1 fails of ontological commitments to individual items which do 

not exist and also of commitments to sorts of item which do exist. 

Formulation 1 also fails of ontological commitments to individual items which 

do exist. Thus '(3x)x = Richard Nixon' is obviously ontologically committed to 

the existence of Richard Nixon. Formulation 1 captures this much, since 

Richard Nixon has to be counted within the range of the variable 'x' in order 

for the theory to be true; on this score formulation 1 is successful. However, 

Richard Nixon = 37th President of the United States, and if Richard Nixon has 

to be included amongst the values of 'x' for '(3x)x = Richard Nixon' to be true, 

so has the 37th President of the United States. But '(3x)x = Richard Nixon' is 

not ontologically committed to the existence of the 37th President of the 

United States. (See Gottlieb [54]). Formulation 1 fails to acknowledge the 

antireferential and intensional nature of ontological commitment.

Formulation 2

'In general, entities of a given sort are assumed by a theory if and only if some 

of them must be counted amongst the values of the variables in order that the 

statements affirmed in the theory be true'.

Quine [108] (103)
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This criterion represents something of an improvement over the previous 

characterisation. It handles 'C3x)table x' rather better; for although it is true 

that no particular table has to be counted amongst the values of 'x' in order for 

the theory to be true nevertheless some table must be counted in for '(3x)table

x' to be true. However Cartwright [25] has isolated some mistakes in this 

formulation too.

If formulation 2 is formalised in first-order notation then the result is 

something as follows; where 'T' and 'D' range over theories and domains 

respectively and 'x' over the universe set.

(T) T is ontologically =  (D) (D satisfies T CD(3x)Kx & x c D 

committed to Ks

Cartwright points out that if no D satisfies T (as in 'Unicorns exist'), then T 

will be committed to any sort K. The right-hand side of the above equivalence 

can be altered to avoid this difficulty, thus:-

(T) T is ontologically— (3D) D satisfies T & (D')(D' satisfies T 

committed to Ks CD (3x) Kx & x £ D*

But problems still arise. In the above case, since -C3D)D satisfies 'Unicorns 

exist', 'Unicorns exist' will have no ontological commitments at all.

The only course would seem to be to abandon first order notation and interpret 

Quine's 'must be' in formulation 2 as requiring the prescence of the modal 

operator 'O' or something like it. Such an interpretation would be contrary to 

Quine's avowed preference for first-order notation and his abhorrence for 

modal logic. Cartwright reaches similar conclusions, and his version of a 

criterion of ontological commitment will be examined in the next section.



Formulation 3

'To show that a given theory assumes a given object or objects of a given class, 

we have to show that the theory would be false if that object did not exist, or 

if that class were empty; hence that the theory requires that object, or 

members of that class, in order for it to be true.'

Quine [109] (93)

This formulation makes essential use of the counterfactual conditional, an 

idiom which remains stubbornly beyond the scope of first-order notation and 

which has resisted philosophical analysis (see Campbell [17], Goodman [52]). 

The material conditional is obviously too weak to do the job here, since:-

(T) T is ontologically= (T is true O (3x) Kx) 

committed to Ks

entails every false theory is committed to everything and any theory is 

committed to anything that exists.

But even accepting Quine's use of the counterfactual conditional, the 

'criterion' stated above is at best a necessary rather than a sufficient condition 

of ontological commitment. For example, it is reasonable to believe that the 

following sentence is true.

Had Leonardo da Vinci never existed then it would have been the case that the 

painting of the Mona Lisa does not exist.

This sentence is equivalent to:-
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Had Leonardo da Vinci never existed then it would have been that 'the painting 

of the Mona Lisa exists' is false.

By formulation 3 it follows that 'The painting of the Mona Lisa exists' is 

ontologically committed to Leonardo da Vinci. But this is false. We have to 

distinguish between a theory requiring the existence of an entity because, as a 

matter of contingent fact, had that entity not existed the theory would not 

have been true; and the truth of that theory necessitating the existence of an 

entity. It is this latter concept that formulation 4 fails to capture.

Formulation 3

'We commit ourselves to an ontology containing numbers when we say that 

there are prime numbers larger than a million; we commit ourselves to an 

ontology containing centaurs when we say that there are centaurs; and we 

commit ourselves to an ontology containing Pegasus when we say Pegasus is.'

Quine [116] (8)

'We can very easily involve ourselves in ontological commitments by saying, 

for example, that there is something (bound variable) which red houses and 

sunsets have in common; or that there is something which is a prime number 

larger than a million. But this is, essentially, the only way we can involve 

ourselves in ontological commitments.'

Quine [116] (12)

Chihara [27] accurately remarks that explicitly stating that a sort K exists is a 

sufficient condition of ontological commitment but not a necessary one. To 

state 'numbers exist' is, amongst other things, to commit oneself to abstract 

objects even if one has not explicitly stated there are such objects.



Recognition of this point seems to demand some recognition of the role of 

analytic truths and analytic implication: concepts Quine [108] would choose 

not to employ, (but possibly not Quine [120]).

Apart from this point, it is doubtful if formulation 5 is a criterion of 

ontological commitment. It is surely evident that we commit ourselves to 

centaurs if we say there are such: so evident, in fact, that it is hard to see 

how a statement of this fact could improve our abilities to uncover ontological 

commitments.

Formulation 6

'If a theory implies '(3x)(x is a dog)' it will not tolerate an empty universe; still 

the theory might be fulfilled by a universe that contained collies to the 

exclusion of spaniels and also vice-versa. So there is more to be said of a 

theory, ontologically, than just saying what objects, if any, the theory 

requires; we can also ask what various universes would be severally sufficient. 

The specific objects required; if any, are the objects common to all those 

universes.'

Quine [112] (96)

The significance of this passage turns upon the interpretation given to 

'universe'.

Under one interpretation, 'universe' means set, domain or universe of 

discourse. Formalised, the criterion is:-

(T)(T is ontologicallyS £x:Kx } c n [D : D satisfies T  ̂

committed to Ks
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But consider '(3x) dog x'jthis theory is satisfied by D when D = £x: collie dog x 

and when D =£x: spaniel x̂ . But since £x: collie dog x^ fl £x: spaniel x^ = A , 

then on this interpretation, '(3x) dog x' has no ontological commitments.

Under the other interpretation, 'universe' means possible world. But Quine has 

explicitly rejected the use of possible worlds and possible entities (I think 

rightly) for the reasons that their identity criteria are in doubt, and they are 

even more obscure than the modal idioms they are supposed to elucidate; (see 

Quine [116] and Quine [119] (245)).

1.32 Some Other Suggestions

Some of the philosophers who have noted the formal deficiencies of Quine's 

criteria have suggested their own rerradies. Alonzo Church [29] offers the 

formulation:-

the assertion of (3 x)MX- carries ontological commitment to entities x such that 

M; ■*

where the letter 'x' may be replaced by any variable, 'M' by any open sentence 

containing only that variable, be.' by the name of the variable replacing 'x' and 

'M! by the name of the variable replacing 'M'. Chihara [27] remarks that this is 

only a sufficient condition of ontological commitment, since the theory '(3 x) 

number x' is committed to entities such that number x all right, but it is also 

committed to abstract objects too. In general, we have to look beyond the 

overtly existential pronouncements of a theory to see all of its commitments. 

Gottlieb's [57] criterion suffers from some of the same problems. Gottlieb's

criterion is:-



'T is ontologically committed to a/Fs iff T logically implies '(3x)(x = a)'/'(3 

x)Fx' and '(3x)' is understood objectually.'

But logical implication, as it is generally understood, does not hold betwen '&<) 

number x' and '(3 x) abstract object x'. So again Gottlieb's criterion is only 

sufficient. Scheffler and Chomsky [130] suggest:

assumption if and only if it yields a
i.

—  9

«

where ____________ ' can be filled by any general expression. This criterion is

unsatisfactory mainly because of the vagueness of 'yields' (strictly implies, 

logically implies, entails?).

Cartwright is most successful; he offers:-

'An elementary theory, T, presupposes objects of a kind K if and only if there 

is in T an open sentence having o^as its sole free variable such that (i) 

is a theorem of T; (ii) it follows from the semantical rules of T that for every 

x, jZ( is true of x only if x is a member of K.

Cartwright [24]

i

Quine would baulk at the concept of 'semantic rules' (see Quine [105] for his 

criticisms of Carnap's use of the same concept). Aside from this, Cartwright's 

version seems both true and necessary and sufficient. But is it epistemically 

useful enough to be a good criterion of ontological commitment? This is open 

to debate. In a sense all that Cartwright tells us is that a first-order theory is 

ontologically committed to Ks iff (3x)Kx can be deduced from that theory. 

Surely this was clear all along and that all that Cartwright has achieved is a 

measure of detail in respect of "deduce"? There is some justice in this

'A theory T makes a _________

statement of the form '(3x)x is a



objection, but the fact is that any criterion of ontological commitment for 

first-order theories will be truistic. This arises because first-order theories 

are ontologically perspicuous anyway (which is why formalists in ontology have 

advocated formalisation). We should not have to be told that '(3x) dog x' shows 

an ontological commitment to dogs; our knowledge of the symbolism told us 

this much. So it is not clear that Cartwright's criterion will be epistemically 

useful to anybody whose grasp of logic is sufficient to enable him to 

understand it.

Is Cartwright's formulation epistemically useless after all? Where this is so or 

not depends not on the criterion itself, but on the procedure that prefaces its 

application: that is, formalisation. If Cartwright's version is supplemented by 

a good account of how to phrase natural language theories in the formal idiom 

then it will be epistemically useful, otherwise it will not. This means that the 

focus of attention slips away from the nature of ontological commitment, onto 

the nature of formalisation.

1.4 Formalisation; an initial survey

At a very abstract level, formalisation is a procedure which establishes a 

function from some set of natural language theories onto some set of formal 

theories. Obviously not just any function will do, the function must satisfy 

certain constraints. What are those constraints?

In his admirably lucid section on metaontology, Campbell [19] confronts this 

question. Commenting on the relations between a natural language theory and 

a canonical (formal) one, Campbell remarks:-

The two must be reality equivalents.....  That is the very claim about the

world legitimately encapsulated in the natural sentence must be reproduced in 

the canonical one. The notion of reality equivalence is an intuitive one which



resists systematic treatment. Yet so far as I can see, we cannot do without 

it.'

Campbell [19] (160)

What Campbell means by 'reality equivalents' is, as he admits here, obscure.

One natural way of interpreting Campbell's notion of reality equivalence is

that if two theories are reality equivalents then at least they must share the

same ontological commitments. If theory A claims the existence of composite

numbers and theory B does not, then surely A and B cannot be reality

equivalents. So we might require that formalisation preserve ontological
«

commitment; and this ushers in a very serious problem: the Paradox of 

Formalisation.

Grant that preservation of ontological commitment is a necessary condition of 

formalisation; then if we formalise a natural language theory A by a formal 

language theory B, we shall only be justified in accepting this formalisation if 

it is authoratatively established that A and B have the same ontological 

commitments. The ontological commitments of B ought to be clear, for it is 

the clarity of formal notation that is the raison d'etre of formalisation. But 

what of A? If the ontological commitments of A are obscure to us, we will not 

know if A has the same ontological commitments as B or not. Ergo, it will not 

be possible to determine if the formalisation is good or not. On the other 

hand, if the ontological commitments of B are clear, why bother formalising B 

anyhow? The Paradox of Formalisation concludes this reasoning by saying that 

formalisation either cannot be successfully practised (where we cannot 

determine the ontological commitments of the natural language theory, how 

can we tell if those commitments have been preserved?) or it is totally 

redundant where it can be practised (for if we already know the ontological 

commitments of the natural language theory, when we already have all that 

formalisation can give us).



The Paradox of Formalisation can either be treated as a knock-down

refutation of the formal tradition in ontology, or as a mistake arising from 

false presuppositions about how formalisation works. Which turns out to be 

the case will only be determined by looking at formalisation in depth. This 

will be the concern of the next two chapters.
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'in adopting this convention I assume that a declarative sentence is, at least in 

some cases, true or false. There is a sizeable and rather unrewarding 

literature on the nature of truth-bearers (see Strawson [139], White [146] and 

Frege [48] for examples). Certain authors prefer not to identify truth-bearers

with declarative sentences, but choose propositions, statements, or thoughts

instead. Much of the resulting argument has been fairly futile, and to my

mind, at least some these supposedly rival identifications could be made to

serve the same useful services. The advantages of choosing declarative

sentences as truth-bearers are those of ontological economy and clarity of

identity conditions. Related material to this convention is scattered
«

throughout the text. See 6.3 for an examination of the concept of a 

declarative sentence and 5.2 for an aside on the truth-bearer argument.

2
For a good history of the use of 'intentional* and the vagueness attached to it, 

see Chisholm [27]. Chisholm's article persuaded me to abandon the word 

altogether.

3See Gottlieb [54] for an exposition and criticism of Jubien. Section 4.4 and 

appendix II of this work contains material on the importance of identity 

criteria in ontology.

4See Scheffler and Chomsky [130], Parsons [95], and Jubien [70] for criticisms 

of similar strategies to this suggestion.

5See Church [29] for a similar criticism of Carnap [21]
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CHAPTER TWO

Ontology in the Formal Tradition

2.1 The tradition itself

The formal tradition in modern philosophy originated from the work of Gottlob 

Frege, and emphasises the importance of the formal logic Frege invented, in 

the investigation of many philosophical problems. Frege’s pioneering research 

into formal logic arose from two goals that dominated his lifetime's work. 

One goal was to devise a notation sufficient to express all mathematical 

reasoning, within which it could be effectively established whether any given 

sequence of formulae constituted a proof. The second was to lay down an 

axiom set from which, using only stipulative definitions and the rules of 

deduction laid down for his notation, all truths of pure mathematics could be 

derived.1 Frege's own attempt to provide such an axiomatisation in 

Grundqesetze der Arithmetik failed at the pres ence of Russell's Paradox (see 

Hatcher [65]). The long term prospects of realising the axiomatisation of 

mathematics were destroyed, six years after Frege died, by Godel's 

Incompleteness theorem of 1931. But the logical system that Frege created 

lived on to exert a very great influence on twentieth century philosophy.

Frege was principally a mathematician who went into philosophy only insofar 

as it helped him to understand mathematics. It was Russell, operating as a 

sort of intellectual Prometheus between mathematics and philosophy, who 

took Frege's new logic, improved its notation and suggested its philosophical 

application. So Russell opened his Lowell Lectures in 1914, on the eve of a 

war that was to give birth to the twentieth century, with the promise of a new 

philosophy that, in scientific rigour and boldness, promised to match that 

century itself.
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'The following lectures are an attempt to show, by means of examples, the 

nature, capacity, and limitations of the logical-analytic method in philosophy. 

This method, of which the first complete example is to be found in the 

writings of Frege, has gradually, in the course of actual research, increasingly 

forced itself upon me as something perfectly definite, capable of embodiment 

in maxims, and adequate, in all branches of philosophy, to yield whatever 

objective scientific knowledge it is possible to attain.'

Russell [123] (7)

Russell was not always as clear about the logical-analytic method in 

philosophy as he implies here. But Russell was the intellectual father of much 

of the formal tradition in philosophy, and particularly in ontology, Russell 

marks the best starting point for research.

In this chapter, five major figures of the formal tradition in philosophy are 

examined: Russell, Carnap, Goodman, Quine and Davidson. There is a common 

conviction to be found in all these philosophers as to the value of 

formalisation. Each of them is convinced of the value of formal logic to 

philosophy, and in particular, of its ability to clarify ontological problems. 

Three questions are, worth bearing in mind during the subsequent examination 

of the thought of these five men; they are as follows

(1) Why formalise?

(2) What makes a good formalisation?

(3) How does formalisation help determine an answer to the Ontological 

Question, 'What exists?'?

Answers to these three questions reveal profound differences between our five 

authorities. We cannot do better than begin with the first of them.



2.2 Russell and Logical Atomism

The philosophy of logical atomism is founded on the representationalist theory 

of meaning. This theory is that the words of a language depend for their 

meaning on things for which they stand. These things are the meanings of the 

words in question. Simple as this theory seems, much of the development of 

logical atomism is a record of an attempt to formulate representationalism in 

a way that would save it from criticism; the Tractatus Loqico - Philosophicus 

being the apogee of sophistication in that development.

In 1902, while writing the Principles of Mathematics, Russell accepted 

representationalism as the archtypal form for any theory of meaning.

’Words all have meaning, in the sense that they are symbols which stand for 

something other than themselves.'

Russell [121] (51)

The entities which words stood for Russell called 'terms'. At the time of 

writing, Russell took a term to be any object of thought, existing or not.

'A man, a moment, a number, a class, a relation, a chimaera, or anything else 

that can be mentioned is sure to be a term: and to deny that such and such a 

thing is a term must always be false.'

Russell [121] (51)

Russell's theory of terms enabled an explanation of how nondenoting 

descriptions, like his later - famous 'the present King of France', could be 

meaningful even when there was no denotatum. The explanation was that the 

meaning of such a description was a subsistent, though nonexistent term, the 

present King of France.



In 1905, Russell abandoned this position with the vigour of a reformed 

alcoholic: there were no such things as nonexistent terms subsisting only for 

the sake of being married off to nondenoting descriptions. In his most 

influential article, 'On Denoting', Russell clarified the change in his views.

'The evidence for the above theory is derived from the difficulties which seem 

unavoidable if we regard denoting phrases as standing for genuine constituents 

of the propositions in whose verbal expressions they occur. Of the possible 

theories which admit such constituents the simplest is that of Meinong. This 

theory regards any grammatically correct denoting phrase as standing for an 

object. Thus 'the present King of France', 'the round square', etc., are 

supposed to be genuine objects ...... the chief objection is that such objects,

admittedly, are apt to infringe the law of contradiction. It is contended, for 

example, that the existent present King of France exists, and also does not 

exist; that the round square is round, and also not round etc. But this is 

intolerable; and if any theory can be found to avoid this result, it is surely to 

be preferred.’

Russell [122]

Russell's solution, his Theory of Definite Descriptions, was essentially a 

modification of his earlier representationalism. His position emerges more 

clearly in The Philosophy of Logical Atomism nearly 15 years after 'On 

Denoting’.

Russell had, by 1920, come to hold that for two classes of symbols 

representationalism did not apply, that is, symbols in these classes could have 

meaning and yet stand for nothing. In the first class were the logical 

connectives, 'not', 'or', 'and' and so forth, whose meaning, Russell believed, was 

entirely explained by the contribution they made to the truth-conditions of the 

molecular sentences they helped to form. In the second class were incomplete

51



symbols, of which 'the present King of France' was one. Incomplete symbols, 

Russell believed, were essentially abbreviations or shorthands for collections 

of symbols in which incomplete symbols did not appear. Thus 'The present 

King of France' appears as an incomplete symbol in 'The present King of 

France exists' because there is a procedure for eliminating 'the present King of 

France', in the context of a sentence, in favour of symbols whose meaning was 

what they stood for. When this eliminative procedure is carried out, what 

emerges is this:-

'The propositional function 'x is the present King of France' is (i) true for at 

least one value of V  (ii) true for at most one value of 'x.'

Russell [125]

There is no suggestion in the above quotation that the sentence is crediting to 

a subsistent present King of France, the property of existing. Existence 

claims turn into assertions about the properties of propositional functions. 

Russell drew a number of significant conclusions from his method of dealing 

with definite descriptions. For our purposes, his four most important 

conclusions relate to the distinction between grammatical and logical form, 

the importance of analysis, and the need to recognise logical fictions.

The phrases 'grammatical form' and 'logical form' appear quite seldom in 

Russell's work considering the effect that the distinction has had and the 

current popularity of the latter phrase in Oxonian circles. The distinction 

between grammatical and logical form is really the old philosophical 

distinction between appearance and reality, here transferred onto language. 

The sentences 'I am bald' and 'The present King of France is bald' are 

grammatically very similar, both begin with a definite singular term, continue 

with a copula, and end in the same predicate. Both sentences have a very 

similar grammatical form. But according to Russell's ideas these two



sentences work in very different ways. The personal pronoun in the first 

sentence is a logical name; it serves to pick out a particular, the speaker, and 

that particular is the meaning of the word. By contrast 'the present King of 

France' picks out nothing: it is an incomplete symbol which is a shorthand for 

a string of symbols which are not incomplete. The sentences 'I am bald' and 

The present King of France is bald' have similar grammatical forms but 

different logical forms.

Russell never gave a precise definition of 'grammatical form' and I think one

comes closest to a satisfactory definition through the resources of generative

grammar; a subject that was not developed until nearly 40 years after
«

Russell's lectures of 1918. (See Grinder and Elgin [52] or Lyons [86] for an 

introductory exposition of generative grammar). Generative grammar is 

concerned with the determination of the formation rules for the sentences of 

various natural languages. Integral to generative grammar is the concept of 

constituent structure, in which the grammatical structure of a sentence, (in 

terms of its composition into words, phrases and clauses) is represented. 

Constituent structure is often represented by means of a tree -structure or 

phrase - marker like this one:-

s



Represented as a derivation from a phrase structure grammar, the above 

phrase-marker would appear like this:-

1 S

2 NP VP

3 DET N VP

4 DET N V NP

5 DET N V DET N

6 The N V DET N

7 The girl V DET N

8 The girl saw DET N

9 The girl saw the N

10 The girl saw the boy

Call one of the entries 1 to 10, a constituent level of the sentence 'The girl 

saw the boy'; and the number tagging a constituent level a constituent index of 

that level. Two sentences have the same grammatical form to the degree that 

their constituent levels are identical down to a given constituent index i. The 

higher the value of i in relation to the highest (or deepest) constituent level 

attainable, the more similar the grammatical forms of the two sentences. 

This definition of 'grammatical form' makes the phrase scalar in application 

rather than non-quantative, but that, I believe, is how the facts stand anyway. 

Although 'I am bald' and 'The present King of France is bald' have similar 

grammatical forms they have different logical form. (A better example is 

Quine's 'I did it for my wife's brother' and 'I did it for my wife's sake', both 

sentences are very similar in grammatical form, but different in logical form. 

There is not an entity my wife's sake to be ranked along with her brother).

Russell believed that in a perfect language such misleading locutions as 'The 

present King of France' and 'my wife's sake' would not appear. In a perfect



language, logical form and grammatical form would coincide, and the way that 

the sentence appeared on paper would reflect the state of affairs that it was 

about. Russell identified the perfect language as a first-order language.

'In a logically perfect language, there will be one word and no more for every

simple object, and everything that is not simple will be expressed by a

combination of words, by a combination derived, of course, from the words for

the simple things that enter in, one word for each simple component. A

language of that sort will be completely analytic, and will show at a glance the

logical structure of the facts asserted or denied. The language which is set
«

forth in Principia Mathematica is intended to be a language of that sort.'

Russell [125]

Many traditional philosophical problems arose, Russell argued, because 

philosophers took the grammatical form of a sentence as a good guide to its 

logical form. So Russell circa 1900 had been misled by grammar into thinking 

that the phrase 'The present King of France' works as a name, picking out an 

object, because, like a logically proper name, it appears in the subject 

position. This misconception had generated a baroque ontology of terms. In a 

logically perfect language, in which every sentence appears in its true colours, 

mistakes like these would not be made.

'I think the importance o f ..............  grammar is very much greater than it is

generally thought to be. I think that practically all traditional metaphysics is 

filled with mistakes due to bad grammar, and that almost all the traditional 

problems of metaphysics and the traditional results - supposed results - of 

metaphysics are due to a failure to make the kind of distinctions in what we 

may call philosophical grammar [logical form] with which we have been 

concerned.' Russell [125] (269)
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Even over 40 years later, in 1959 Russell's opinions on this matter had not 

changed. In reply to Strawson's ordinary-language 'On Referring', Russell 

wrote:-

'I.....  am persuaded that common speech is full of vagueness and inaccuracy,

and that any attempt to be precise requires modification of common speech as

regards vocabulary and as regards syntax............. In philosophy, it is syntax,

even more than vocabulary, that needs to be corrected.'

Russell [128] (241 - 242)

«
The cure for the traditional mistakes of traditional philosophy lay through 

analysis and the exposure of logical fictions.

The present King of France is a logical fiction. Natural language makes it 

appear that the present King of France js in some fashion; whereas in a 

perfect language the phrase 'the present King of France' would disappear in 

the manner suggested by Russell's Theory of Definite Descriptions. To say 

that X was a logical fiction meant for Russell that when talk of X was 

analysed into the symbolism of a perfect language, no mention of X would 

appear. As Russell progressed in his philosophical career, he uncovered a 

surprisingly diverse number of logical fictions apart from the present King of 

France; numbers, classes, and even material objects and egos were to become 

logical fictions. Numbers were logical fictions because number-talk could be 

analysed into class-talk, and classes were logical fictions because talk of 

classes could be analysed in terms of propositional functions.

The use of the word 'analysis' in this context raises fairly obvious parallels 

with the physical sciences; particularly chemistry. In chemical analysis, the 

chemist begins with a chemical whose formula and molecular structure are 

unknown and he obtains knowledge of them by analysis: his goal is simply to 

describe accurately what he has got in his sample. The imputation of the



phrase ’logical analysis' is that the philosopher engaged in logical analysis is 

only concerned with making clear what is already contained in an assertion, 

and is not concerned in adding or subtracting from what is there, or judging 

whether that assertion is true. Wittgenstein interpreted analysis in this way 

and summed up the doctrine in the Tractatus Logico - Philosophicus.

'Philosophy aims at the logical clarification of thoughts.

Philosophy is not a body of doctrine but an activity.

A philosophical work consists essentially of elucidations.

Philosophy does not result in 'philosophical propositions', but rather in the 

clarification of propositions.

Without philosophy thoughts are, as it were, cloudy and indistinct: its task is 

to make them clear and give them sharp boundaries.'

Wittgenstein [144] (4 - 112)

On this view, analysis was concerned with the explication of the meanings of 

signs. Since this activity required not special knowledge bar the familiarity 

with language that an old fashioned liberal education affords, analysis was 

heartily endorsed by many Oxbridge philosophers. By taking analysis to be the 

concern of philosophy, the philosophical establishment at Oxford were able to 

find refuge for themselves in a century in which, as Russell correctly 

predicted, those innocent of science would be pushed to the wall. In due 

course the activity of analysis was to be watered down even further in the 

shape of ordinary language philosophy.

Gilbert Ryle's 'Systematically Misleading Expressions', written in 1931 is a 

classical statement of analysis viewed through the foggy and grey-tinted 

lenses of the classically grounded philosopher interpreting analysis according 

to his own lights. Ryle's article will be used to illustrate Ryle's approach to 

analysis, what he thought it could achieve for philosophy, and also why it does
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Ryle opens up his article with an observation that Russell made; namely, that 

there are sentences in common use whose grammar is apt to be seriously 

misleading to philosophers. Lewis Carroll provides a delightful example in 

Alice through the Looking-Glass.

'I see nobody on the road' said Alice.

'I only wish J[ had such eyes’ the King remarked in a fretful tone. 'To be able to 

see Nobody! And at that distance too! Why, it's as much as Î  can do to see 

real people, by this light!'

Lewis Carroll [23]

Needless to say, the White King misunderstands the use of 'nobody', which 

unlike, say 'Robinson' is not used to designate an entity. We might explain this 

to the King by saying that when Alice said that she saw nobody on the road, 

she meant that it was not the case that there was somebody she saw on the 

road. In Ryle's opinion, as in Russell's, mistakes occur in philosophy because of 

philosophers being confused like the White King about the use of words which 

are philosophically misleading. The cure (and the activity) of philosophy 

consists in replacing sentences which mislead by sentences which do not. So 

'Carniverous cows do not exist' means what is meant by the less misleading 'No 

cows are carniverous' and does not refer to a group of subsistent carniverous 

cows. 'Unpunctuality is reprehensible' is less misleadingly recast as 'Whoever 

is unpunctual merits reproof.'

The preceding two examples are Ryle's. It is when Ryle turns the focus of 

inquiry on more interesting and also more problematic examples that his 

method unravels. For example, Ryle considers the sentence 'The idea of 

taking a holiday has just occured to me' as less misleadingly recast as 'I have 

just been thinking that I might take a holiday'. Since Ryle adopts a 

behaviourist stance and rejects the existence of mental entities, it is easy to



see why Ryle prefers the latter sentence. But it is also true to say that Ryle

is right in saying that the second sentence is less misleading than the first only

if he is right in supposing that there are no mental entities, especially ideas!

This means, in effect, that in the most interesting and strongly contested

ontological questions do not admit of resolution by Ryle's technique. Ryle,

ontologically speaking, stocks the deck from the outset by condemning as

systematically misleading all expressions which impute the existence of

entities outside of his ontology. Methodologically, as far as ontology goes,
2Ryle's version of analysis is circular.

Russell, in contrast to Ryle and his Oxford contemporaries, was more
«

influenced by mathematics and the sciences than by the supposed forms of 

correct speech. Thus Russell's version of analysis is considerably less 

gentlemanly and respectful to ordinary use, than that developed by Ryle and 

others; it is also much more interesting. To distinguish Russell's version of 

analysis from Ryle's, I shall refer to Russell's version as 'revisionary analysis', 

of which these were the main features:-

(1) The purpose of revisionary analysis is to minimise our ontological 

commitments and to substitute logical fictions for assumed entities.

(2) The only entities which should be assumed are those entities which are 

given to us in experience.

(3) Revisionary analysis (unlike descriptive analysis) does not attempt to 

preserve meaning, but only structure.

I shall explain these points in order.

Russell was the end of a line of great philosophers, beginning with Descartes, 

who saw epistemology as the most important area of philosophy. The question 

of the scope of human knowledge occupied Russell throughout his career. Like 

Descartes, Russell believed that both scientists and ordinary people were



prone to accept a great many assertions that could not be defended in 

philosophy. In many cases, what made these assertions philosophically 

doubtful was that they assumed the existence of entities whose existence was 

rationally undemonstrable. These entities Russell called 'metaphysical'. Part 

of the job of the philosopher was to reframe those assertions in such a way as 

to give them the best chance of being true: and this meant getting rid of 

metaphysical entities from the common ontology. The end result of the 

philosophers' labour would be the elimination of a large number of different 

metaphysical entities in favour of a small number of assumed entities: 

entities of what may be called the minimum domain, (the smallest domain of 

entities necessary to support our assertions). This is how Russell interpreted 

Ockham's Razor.

'Suppose, e.g., that you have constructed your physics with a certain number of 

entities and a certain number of premises, suppose you discover that by a little 

ingenuity you can dispense with half of those entities and half of those 

premises, you have clearly diminished the risk of error, because if you had 

before 10 entities and 10 premises, then the 5 you have now would be all right, 

but it is not true conversely that if the 5 you have now are all right, the 10 

must have been. Therefore you diminish the risk of error with every 

diminution of entities and premises.'

Russell [125]

Revisionary analysis was the procedure whereby metaphysical entities were 

eliminated from our ontology. The technique of revisionary analysis was to 

substitute logical fictions for metaphysical entities, or as Russell puts it:-

'Wherever possible, substitute logical constructions for inferred entities ...'

Russell [125] (146 - 147)



What this meant was that assertions that reported on the existence of 

metaphysical entities were reinterpreted so as to refer to logical fictions. As 

you remember, to say X was a logical fiction was to say that in a perfect 

language (like that in PM) all statements about X could be analysed into a 

symbolism in which no mention of X appeared. The entities which were 

mentioned in the perfect language when analysis had reached an end, wold be 

the elements of the minimum domain. So the program of revisionary analysis 

had two parts (i) a substitution of logical fictions for metaphysical entities as 

the objects of reference for ’ordinary language sentences (ii) the elimination 

of logical fictions in favour of entities of the minimum domain.
«

By 1920 Russell believed that the entities of the minimum domain should be 

sense-data. In this respect Russell was very much the British empiricist, for 

he held that the elements of experience were sense-data and experience was 

the only basis for knowledge in respect to what exists. Russell was by no 

means always constant as to what the entities of the minimum domain were. 

For example in The Problems of Philosophy (1914), universals and selves were 

assumed entities. Roughly speaking, as Russell got older, his budget of 

minimum entities became smaller, (see Quine [115] for a statement of 

Russell's ontological development)

Russell believed that revisionary analysis would often carry one away from the 

meaning of the analysandum. A case in point is Whitehead's analysis of 'point' 

and 'straight line' in The Concept of Nature (an analysis Russell admired and 

often referred to). Whitehead analyses talk of points and instants of time in 

terms of abstractive sets of regions of space-time. There is no reason to 

suppose, and it would be implausible to suggest, that Whitehead was engaged in 

an analysis of the meaning or ordinary usage of 'point' or 'straight line'. In 'The 

Philosophy of Logical Atomism', Russell confesses that meaning may not be all 

that pertinent to the procedure of revisionary analysis.



'I think that the notion of meaning is always more or less psychological, and 

that it is not possible to get a pure logical theory of meaning, nor therefore of 

symbolism.' Russell [125] (40)

What restrictions do bind revisionary analysis if preservation of meaning is not 

one of them? Russell answers many pages later.

'.........I think that any valid kind of interpretation ought to leave the detail

unchanged, though it may give a new meaning to fundamental ideas. In 

practice, this means that structure must be preserved. And a test of this is 

that all the propositions of science should remain, although new meanings may 

be found for their terms.' Russell [125] (161)

What Russell meant by 'structure' emerges by example from his earlier 

writings. In order to interpret sentences within the process of revisionary 

analysis, but also at the same time, to preserve their structure, one had to find 

some way of assigning extensions to the elements of those sentences which 

would preserve the truth of those deemed true, and the falsehood of those
3

deemed false.

A good example is the Frege - Russell definition of cardinal number. In Frege 

and in Russell, a cardinal number is an equivalence class of similar classes. 

The cardinal number series, 0C, l c , 2C, 3C................is defined as follows.

0c ={x:x*rAj 

l c =[x: x « {0 c]$

2C =£x: x « { o c , l cJJ 

3C ={x: x teJoc , l c ,2c |̂
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Cardinal addition [+] is defined thus; where m and n are cardinal numbers, 

m [+] n = x: (3y)(3z)(ye m & ze n & yOz =A & x*y U z)

From the definition, together with other definitions and axioms, [+] can be 

proved to be commutative and associative. Indeed if we assign [+] as the

extension of V  and fix EX('O'), .... so that EX('O') = 0C, EX('l') = l c ,.....then we

can recover many of the basic truths of arithmetic, including Peano's axioms. 

The extensions attached to the elements of the language of arithmetic may 

not be familiar. For Russell this did not matter. The important thing was that 

in interpreting arithmetic in this manner it was possible to preserve what was 

valuable in arithmetic (what mathematicians accepted as true) and, at the 

same time, to disperse with an ontology of unreduced natural numbers. It was 

never important to preserve the meanings attendant on arithmetical 

sentences. Whatwas important was that, syntactically, the same sentences 

should be counted in as true, after revisionary analysis, as had been counted in 

before. Any meaning-shift that transpired during this process was irrelevant. 

The philosophical heritage that Russell bequeathed to twentieth century 

philosophy was a rich one. He was, as William James wrote of Charles Sanders 

Peirce, 'a goldmine of ideas for the coming generation'. All of the succeeding 

figures in this chapter owe a lot to Russell; but not all of his ideas were of 

equal value. His belief that every sentence had a unique logical form was a 

weak element. Indeed, Russell in his Introduction to the Philosophy of 

Mathematics, was already aware of the existence of competing, but equally 

satisfactory, set-theoretical formalisations of arithmetic. His decision to base 

his ontology on sense-data was also mistaken in retrospect (see 4.4). Butfor 

the realisation of the potential of symbolic logic to philosophy, he was ahead 

of the mass of his generation. In seeing that it was structure and not meaning 

that was important in formalisation; he was not only ahead of his own time,



but writing over sixty years ago, still ahead of philosophical logic at Oxford 

today.

2.3 Carnap

An early work in the formal tradition was Carnap's Per Loqische Aufbau der 

Welt, published in 1928, and translated and published in English as The Logical 

Structure of the World in 1967. Carnap's work is philosophically notable 

because it was the first sustained attempt to carry out the Russellian project 

of exhibiting a system by which all statements of fact could be analysed into 

reports about sense-data. That this project is fundamentally misguided does 

not detract from the value of the methodological remarks that Carnap has to 

make in that book. The fact that Carnap conveniently separates out his 

metaontological remarks in the first half of the book (pi - 105), from his 

exposition of his sense-datum ontology in the second, only makes the task of 

assessment much easier. Consequently in what I have to say I will concentrate 

almost entirely on Carnap's metaontology.

Carnap pursued ontology through the creation of a constructional system. In 

order to understand Carnap's metaontology, the elements of a constructional 

system have to be grasped.

One of these elements is that a constructional system contains an array of 

constructional definitions written in a constructional language. It is clear 

from Carnap's remarks that he envisaged the constructional language as 

modelled closely on the sort of language one finds in Principia Mathematica 

i.e. a first-order language. Constructional definitions were essentially rules 

which allowed certain symbols to be defined in terms of others and were 

formulated in a way appropriate to the symbols concerned. Carnap offers as 

an example the constructional definition ''x is a prime number' is coextensive 

with 'x is a natural number whose only divisors are 1 and x itself"
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(alternatively '(x) prime number x = (y )  divisor of (x = y v y = 1))'. The

statement can be thought of as a rule enabling us to eliminate all occurrences 

of the propositional function 'x is a prime number' in favour of 'divisor of', 

'natural number' and '1'.

The purpose of this system of constructional definitions was to exhibit a 

method whereby the elements of the constructional could be reduced to a few 

fundamental expressions which Carnap called basic concepts or undefined 

concepts. Any defined concept could be eliminated in context by recourse to 

the constructional definitions. The purpose of this process was to show that 

the only objects with which the constructional language was concerned were 

the objects which fell under the extension of the basic concepts. Carnap 

called these objects, 'basic objects' (= Russell's simples, the elements of his 

minimum domain). The objects which were the apparent subjects of the 

defined concepts, Carnap called logical complexes (= Russell's logical fictions 

or logical constructions). A constructional system can be thought of as a 

logical machine for demonstating the reducibility of a manifold of apparent 

objects, the logical complexes, to a few, the basic objects.

The second element of a constructional system is that it is also a means for 

achieving a unified science. The idea was that in a constructional system, 

axioms written in the constructional language could be formulated, from which 

the important truths of various branches of the sciences could be deduced. 

Carnap envisaged a constructional system as an axiomatised theory, in the 

manner of Principia Mathematics, from which the laws of science would be 

theorems.

'A theory is axiomatised when all statements of the theory are arranged in the 

form of a deductive system whose basis is formed by the fundamental 

concepts. So far, much more attention has been paid to the first task, namely, 

the deduction of statements from axioms, that to the methodology of the
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systematic construction of concepts. The latter is to be our present concern 

and is to be applied to the conceptual system of unified science. Only if we 

succeed in producing such a unified system of all concepts will it be possible to 

overcome the separation of unified science into unrelated special sciences.'

Carnap [18]

Carnap thought that, in order for a constructional system to be satisfactory, 

the constructional definitions had to satisfy a requirement: this requirement I 

call (since Carnap gives it no name) extensional adequacy. What is extensional 

adequacy?

To this question, Carnap gave two answers which he thought were equivalent, 

but in fact which are not. I shall tag them 'Answer A' and 'Answer B'.

Answer A

Carnap's first answer was that in order for a constructional definition to be 

extensionally adequate it had to relate definiens and definiendum which were 

extensionally coextensive. The point of this requirement was that such a 

definition would, in the context of a first-order language, allow from the 

systematic replacement salva veritate of the definiendum, wherever it 

occurred, by the definiens. In this way constructional definitions would allow 

statements which dealt with logical complexes to be broken down so as to 

preserve truth-value, into basic statements that dealt with basic objects. 

Goodman [53] has offered a number of criticisms of Carnap's answer (A). I 

shall not repeat them here. By far the most telling of all criticisms of 

extensional adequacy, as a criterion of the correctness of any constructional 

definition, comes from the reduction of arithmetic to set theory.

In the section on Russell, we saw one set-theoretical interpretation of natural 

numbers in terms of equivalence sets of similar sets. It is also quite feasible



to use ordinal instead of cardinal numbers to do the same job. Ordinal 

numbers are definable thus4: let ON be the property of being an ordinal 

number; then ON is defined:-

(x) ON x =(CON x & TRANS x).

CON and TRANS are thus defined:-

(x) CON x =  (CyXzXCy t x & z t x & - y  = z ) D ( z t y  v y t z ) )

(x) TRANS xS=(y)(y ex D  y cx )

This definition defines the following series of sets as ordinal numbers, the 

series itself being well-ordered by e. —

a-Ia)-K a}Ma MH*}})'

The numerals 'O', '1', '2', '3'......... can be interpreted so as to denote the

elements of this series. Moreover if the account is supplemented by sufficient 

set-theoretical machinery, then it is possible, by means of the above 

identification, to derive the Peano axioms. One can create a constructional 

system X for arithmetic based on cardinal numbers and one Y based on ordinal 

numbers and either will satisfy arithmetic. But in the context of Carnap's 

answer (A) at least one of X and Y must be wrong. In system X, based on 

cardinal (CARD) numbers, the definition of natural number (NUM) is:-

(x) CARD x =  NUM x.

In system Y, the definition is:



(x) ON x =  NUM X.

If both definitions are true then (x) CARD x =  ON x . But plainly cardinal and 

ordinal numbers are not the same. Therefore, by Carnap's criterion: at least 

one of X or Y is wrong. Since both systems are perfectly adequate to the 

demands of arithmetic, Carnap's answer (A) cannot be right.

Answer B

In his commentary on Carnap in The Encyclopaedia of Philosophy, Norman M. 

Martin gives an interpretation of extensional adequacy somewhat different 

from answer (A).

'A concept x is said to be reducible to a set of concepts Y if every sentence

containing x can be transformed into sentences concerning concepts belonging

to Y (with preservation of truth-value). This transformation is carried out by

means of a rule, or constitutional [= constructional] definition. Although such

a rule is formally a definition, it need not be a definition in the sense of a

purely verbal transformation; that is, it need not be the case that the objects

indicated by the definition [definiens?] are the same objects as those indicated 
6

by the definiendum.'

Martin [89] (Vol II. 26)

Martin's interpretation is somewhat more than slightly misleading because 

Carnap did believe that coextensiveness was the principle condition required 

to guarantee the adequacy of constructional definitions. Nevertheless Carnap 

did offer a functional definition of extensional adequacy very similar to, if not 

identical with, Martin's. Unlike Martin, Carnap was unaware that he was 

offering a substantially different account of reducibility and the adequacy of



constructional definitions than in (A). Consequently there is little 

development of answer (B) in the Aufbau. Carnap's comments are limited to a 

short passage.

'The purpose of construction theory is to order the objects of all sciences into

a system according to their reducibility to one another...... In view of this task,

it is advisable to express the criterion [of extensional adequacy] in still 

another form so that we no longer speak of propositional functions and their 

logical relations, but of states of affairs and their factual relations.... We now 

arrive at a factual criterion of reducibility which is wanting in logical 

strictness, but allows easier application to the empirical findings of the 

individual sciences. It is the following: we call an object a ''reducible to the

objects b,c,....... " if, for any state of affairs whatever relative to the objects

a,b,c..., a necessary and sufficient condition can be indicated which depends 

only upon objects b,c...'

Carnap [18] (79 - 80).

Carnap follows this up with an argument to the effect that his 'factual 

criterion' is equivalent to answer (A). In fact it is not. A first-order language 

L can have a number of isomorphic models with distinct domains. If I and J 

are isomorphic models of L and we have a specification of the isomorphism 

between I and J, then we can systematically 'translate' L-sentences about 

objects in the domain of I, under the interpretation I, into sentences about 

objects in the domain of J under interpretation J . Whatever object can be 

described under I , necessary and sufficient conditions for that object being 

involved in a given state of affairs in I, can be stated in terms of J . The 

language of arithmetic £o,',+,x} has a number of isomorphic models and we 

have seen that it can be legitimately interpreted to the domain of cardinal or 

ordinal numbers.
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Had Carnap pursued answer (B) he would have avoided several difficulties and 

reached a number of conclusions about structional systems that would have 

fitted in well with his later thought. First, he would have avoided the most 

telling objection to answer (A): namely that from cardinal and ordinal 

numbers. Secondly, he would have been compelled to recognise that there 

could be rival constructional systems, each adequate at yielding as theorems, 

the fundamental laws of science, but each based on a different set of basic 

objects. This recognition would have fitted in well with many of the things 

that Carnap had to say in 'Empiricism, Semantics and Ontology'. To 

understand how Carnap arrived at his position in that article, it is necessary to 

explain something of Carnap's metaphilosophy.

Carnap, like his contemporary logical positivists, drew a distinction between 

genuine statements and pseudo-statements. A genuine sentence could be of 

three kinds: (i) a statement of logic or mathematics, these were deducible 

from stipulative definitions and the rules for manipulating signs; (ii) 

statements of the empirical sciences; these were distinguished by the fact that 

observation sentences could be deduced from them or in conjunction with 

other observation sentences, new observation sentences could be deduced (iii) 

statements of logical syntax, which were essentially statements about 

statements and were the concern of philosophy. Pseudo-statements were 

found in traditional metaphysics and were distinguished by, (a) the fact that, 

like the statements of empirical science, they purported to be statements 

about the nature of the world, but (b), unlike statements of empirical science, 

no observations could be made which would determine their truth or falsity.

A language framework (also a linguistic framework) was similar in many ways 

to Carnap's earlier constructional system. A language-system was essentially 

a formal theory written in a formal language. L - rules (or as we would say 

now, deduction rules) permitted the derivation of one formal sentence from a

set of sentences and mathematical truths were those that could be deduced



from stipulative definitions laid down. L - truths were just those truths which 

were the combined sum of the logical and the mathematical truths. P - rules 

were, like L - rules, rules of transformation for moving from a set of 

sentences to a new sentence. Unlike L - rules, P - rules were not though ot as 

specifically 'logical' in character, but were thought as embodying inferences 

based on physical laws such as Newton's principles of mechanics, Maxwells's 

equations of electromagnetics and the like.

It is fairly obvious that if a language - system could be made to incorporate 

the findings of human beings, that all specifically mathematical or scientific 

questions that could be answered in terms of present-day knowledge, could be 

answered by addressing oneself to the theorems of the system. Where does 

that leave philosophy? Carnap believed that whereas the statements of logic, 

mathematics and the empirical sciences were to be found within the system, 

philosophy was concerned with statements about the system; or as he puts in 

Philosophy and Logical Syntax, philosophy is about logical syntax.

It was Carnap's opinion that in taking philosophy to be concerned with logical 

syntax, philosophers could learn to avoid the sterile debates and pseudo

statements of traditional metaphysics. Any genuine set of philosophical 

questions and answers could be reformulated in terms of questions and answers 

about the logical syntax of a language-system. So for instance, a question 

about the nature of wisdom, could be reformulated as a syntax question about 

the L - rules and semantic postulates concerning the word 'wise'. This brings 

us to Carnap's distinction between the material and the formal modes of 

speech.

A sentence was in the material mode of speech when, syntactically, it looked 

as if it was a sentence concerned with extra-linguistic reality; but in content 

it was really concerned with language. Carnap [19] gives as an example the 

sentence 'That A is older than B, and B is older than A is an impossible state of 

affairs', which is written in the formal mode as "A is older than B and B is



older than A' Is contradictory*. This latter sentence was in the formal mode 

because syntactically it presented itself as a question about language. Carnap 

believed all philosophical activity should take place in the formal mode.

The consequences of applying Carnap's metaphilosophy to metaontology are 

interesting ones.

Ontological questions like 'Do numbers exist?' and 'What are numbers?' are 

questions addressed in the material mode of speech. Properly reformulated is 

the formal mode of sppech they have to be referred to one or another 

language-system. When this is done pseudo-problems in ontology disappear. 

Carnap illustrates:-

'To take a case in point, in the different systems of modern arithmetic dealt 

with logically, numbers are given different status. For instance in the system 

of Whitehead and Russell numbers are treated as classes of classes, while in 

the systems of Peano and of Hilbert they are taken as primitive objects. 

Suppose that two philosophers get into a dispute, one of them asserting: 

'Numbers are classes of classes', and the other: 'No, numbers are primitive 

objects, independent elements'. They may philosophise without end about the 

question what numbers really are, but in this way they will never come to an 

agreement. Now let them both translate their theses into one formal mode. 

Then the first philosopher makes the assertion: 'Numerical expressions are 

class-expressions of the second-order', and the other says: 'Numerical 

expressions are not class-expressions, but elementary expressions'.

In this form, however, the two sentences are not yet quite complete. They are 

syntactical sentences concerning certain linguistic expressions. But a 

syntactical sentence must refer to one or several specific language-systems; it 

is incomplete unless it contains such a reference. If the language-system of 

Peano is called L_i and that of Russell l_2, the two sentences may be completed
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as follows: 'In l_i numerical expressions are elementary expressions,' and: 'In 

l_2 numerical expressions are class expressions of the second order'. Now 

these assertions are compatible with each other and both are true; the 

controversy has ceased to exist.' Carnap [19]

These conclusions reach their fruition in 'Empiricism, Semantics and Ontology' 

where Carnap distinguished between external and internal questions in 

ontology.

External questions are questions like 'Are there numbers', 'Are there minds' 

which unrelativised to any language-framework are pseudo-questions. If these 

questions are relativised to a language-framework then they are sensible. A 

question like 'Are there (really) space-time points' is an external question. A 

question like 'Does this language-framework presuppose space-time points' is 

significant and an internal question. Within a language-framework the distinct 

categories of entity presupposed are marked out by the use of variables which 

range over entities of that type.

(The use of variables to mark out the distinct categories of things presupposed 

in a language-framework created a misunderstanding by Quine [109]. Quine 

wrongly mistook the internal-external distinction to mark out a distinction 

between questions of the form 'Are there Xs?'; where Xs were a proper subset 

of the range of some variables of a language-framework; and questions of the 

form 'Are there Ys?', where Ys were the range of certain variables of that 

language-framework. Quine then goes on to criticise Carnap, arguing that 

merely by adjusting the range of variables, external questions can become 

internal and conversely. It should be clear that Quine has misinterpreted 

Carnap. (See Ayer [11] for an indictment of Quine's misunderstanding)). 

Carnap's distinction between internal and external questions has been rejected 

on the grounds that it depends on the acceptance of something very much like 

the Verification Principle (Cornman [31], Goldstick [51]). Certainly there are 

passages in 'Empiricism, Semantics and Ontology' which have a strong 

positivistic flavour, like this one.
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'Suppose that one philosopher says: 'I believe that there are numbers as real 

entities. This gives me the right to use the linguistic forms of the numerical 

frameworks and to make semantical statements about numbers as designata of 

numerals'. His nominalistic opponent replies: 'You are wrong, there are no 

numbers. The numerals may still be used as meaningful expressions.. But they 

are not names, there are no entities designated by them ....' .. I cannot think 

of any possible evidence that would be regarded as relevant by both 

philosophers, and therefore, if actually found, would decide the controversy or 

at least make one thesis more probable than another.... Therefore I feel 

compelled to regard the external question as a pseudo-question, until both 

parties to the controversy offer a common interpretation of the question as a 

cognitive question, this would involve an indication of possible evidence 

regarded as relevant by both sides.'

Carnap [20] (219).

Under one interpretation, a very natural one, the argument is:

All declarative sentences which are neither verifiable or falsifiable are 

meaningless.

All declarative sentences which make ontological commitments to numbers 

etc., are neither verifiable or falsifiable.

All declarative sentences which make ontological commitments to numbers 

etc., are meaningless.

The criticism then is that the major premises of this syllogism is nothing 

better than a version of the discredited Verification Principle. Actually, this 

interpretation does little credit even to the consistency of Carnap's position!

If the conclusion of the syllogism is true then many of the sentences within the 

linguistic framework themselves are meaningless: namely, those that record
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their commitment to numbers, propositions and the like. A much fairer 

interpretation of Carnap runs, oratio dicta, somewhat as follows.

'Traditional ontology has produced a series of controversies about the 

existence of numbers, propositions and the like which have been sterile 

because no methodology has existed for their resolution. It is doubtful 

whether expressions like 'real' and 'exists' have any application to the items of 

the ontologist; for there appear to be no rules to settle their application. 

Whatever good can be found in ontology can only be found by agreeing to adopt 

a common methodology for the practice of ontology. This is to be found in my 

linguistic framework and in the systematic translation to the formal mode 6f 

speech.'

The conclusion of Carnap's thinking that external questions are pseudo

questions which do not answer to rational discussion, seems contrary to Quine's 

view of ontological questions. Quine views all existence questions as logically, 

on a par, and questions about the existence of numbers or propositions differ 

only in their degree of generality from questions about the existence of King 

Arthur's crown or of subatomic particles like quarks.

'Our theory of nature grades off from the most concrete fact to speculations 

about the curvature of space-time, or the continuous creation of hydrogen 

atoms in an expanding universe; and our evidence grades off correspondingly, 

from specific observation to broadly systematic considerations. Existential 

quantifications of the philosophical sort belong to the same inclusive theory 

and are situated way out at the end, farthest from observable fact.'

Quine [12] (98)



In fact Carnap and Quine are not as divergent in their views as conventional 

wisdom believes, nor, perhaps, as either Carnap or Quine believe. In 

'Empiricism, Semantics, and Ontology' Carnap admits an important fact: that 

certain language-frameworks are better than others and hence we can have 

rational reason to prefer one language-framework to another.

'To accept the thing [= physical object] world means nothing more than to 

accept a certain form of language.... The decision of accepting the thing 

language, although not itself a cognitive nature, will nevertheless usually be 

influenced by theoretical knowledge, just like any other deliberate decision 

concerning the acceptance of linguistic or other rules.... The efficiency, 

fruitfulness, and simplicity of the use of the thing language may be among the 

decisive factors.

Carnap [20] (208)

'A question like 'Are there (really) space-time points' is ambiguos...., it may be 

meant in the following sense: 'Are our experiences such that that the use of 

the linguistic forms in question will be expedient and fruitful?' This is a 

theoretical question of a factual empirical nature.'

Carnap [22] (213)

The acceptance or rejection of abstract linguistic forms, just as the 

acceptance or rejection of any other linguistic forms in any branch of science, 

will finally be decided by their efficiency as instruments, the ratio of the 

results achieved to the amount and complexity of the efforts required.'

Carnap [22] (221)
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Carnap's pragmatic criteria, efficiency, results, expedience, simplicity, 

fruitfulness which he regards as desiderata in selecting a linguistic framework 

are the same criteria that Quine invokes as desiderata in selecting an 

ontology.

'Our acceptance of an ontology is, I think, similar in principle to our 

acceptance of a scientific theory, say a system of physics: we adopt, at least 

insofar as we are reasonable, the simplest conceptual scheme into which the 

disordered fragments of raw experience can be fitted and arranged.'

Quine [116] (16)

If there is some linguistic framework L, and L is distinguished by its 

fruitfulness, economy etc and L presupposes the existence of a kind K, and, 

further, this presupposition is essential to L retaining its pragmatically 

desirable features then surely this is evidence that Ks do in fact exist. If so 

then the statement 'Ks exist' and the question 'Do Ks exist’ is not pseudo

statement and a pseudo-question respectively. Each is amenable to rational 

discussion in relation to objective features of language-frameworks; and 

Carnap's hard distinction between external and internal questions vanishes.

2 A  Goodman

Nelson Goodman's contributions towards a nominalist ontology in The 

Structure o f Appearance and (with Quine) in 'Steps towards a Constructive 

Nominalism' have been important and original. His important metaontological 

contributions though are more limited, and occur principally in the first 

chapter of The Structure of Appearance. Essentially, Goodman's metaontology 

is much the same as Carnap's in the Aufbau, except that Goodman differs from 

Carnap in arguing that coextension between definiens and definiendum in a 

constructional definition is not a necessary condition of the definition being 

adequate; though it is, according to Goodman, a sufficient one.
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Goodman argues that coextension is not what to look for between definiendum 

and definiens but extensional isomorphism is. What Goodman has to say about 

extensional isomorphism is largely contained in the following long passage.

'If we now look more closely at the very divergent definitions of a given

concept that were equally legitimate, we find that they possess in common one

feature that every illegitimate definition lacks; namely, that in each

legitimate definition, the extension of the definiens is isomorphic to the

extension of the definiendum. The necessary and sufficient condition for the

accuracy of a constructional definition seems to be that the definiens be
*

extensionally isomorphic to the definiendum. More generally, the set of all 

the definientia of a system must be extensionally isomorphic to the set of all 

the definienda. I shall explain first and illustrate the kind of isomorphism I 

mean and then consider whether this criterion is satisfactory.

We may think of the extensions of the definienda and definientia in question as 

relations - that is, classes of couples, classes of triples, and classes of longer 

sequences of any uniform length. While sequences may in turn be construed as 

classes, it is simpler to disregard this for our immediate purposes. A class of 

individuals or other one-place sequences may be considered as a monadic 

relation. By the components of a sequence I shall mean the elements that 

occupy entire places in the sequence. Thus the sequence

«a,b>,c>,<d,e>

is a couple: its components are <<a,b>,c> and <d,e>, not the couple <a,b> or 

any single individuals. On the other hand, if we progressively dissolve each 

component that is a sequence into its components any every component that is 

a class into its members, and continue this until we reach elements that have 

no further members, we have what I call the ultimate factors of the sequence.



Here they are a and b and c and d and e. The ultimate factors of a relation or 

other class are reached in a similar fashion. For our purposes in the present 

chapter, a sequence is not considered to be identified, as by the Wiener- 

Kuratowski definition, with a class. An ultimate factor is always either an 

individual or the null class.

A relation R is isomorphic to a relation S in the sense here intended if and only 

if R can be obtained by consistently replacing the ultimate factors in S. 

Consistent replacement requires only that each not-null ultimate factor be 

replaced by one and only one not-null element; that different not-null 

elements; and that the null class be always replaced by itself. Since the 

replacing elements need not be ultimate factors (eg. h,k might replace t) this 

sort of isomorphism is not symmetric; for if R is isomorphic to S, still there 

may be no way of replacing the ultimate factors in R so as to obtain S. 

Nevertheless, if R can be obtained by consistently replacing the ultimate 

factors in S by certain elements of R, it will also be true that S can be 

obtained by replacing those elements in R by the correlated ultimate factors 

of S. It is often more convenient to work in this direction in establishing that 

R is isomorphic to S, but it should be noted that this does not establish the 

isomorphism of S to R. Every relation is, or course, isomorphic to itself. Also 

any class having the same number of members as a given class of individuals is 

isomorphic to it, but a class is not necessarily isomorphic to every class having 

the same number of members or ultimate factors.'

Goodman [53] (13 - 14)

There are some peculiarities and mistakes in this passage. For example 

Goodman writes of the ordered pair <h,k> as 'h,k' rather than the usual '<h,k>'. 

I shall follow the usual practice. His reference to the Wiener-Kuratowski 

definition of ordered pair is wrong since Wiener and Kuratowski offered 

different definitions of ordered pairs. Kuratowski's definition; viz:-



<a,b> = fa  ,[a,b]j

would serve Goodman's purposes well since the ultimate factors of <a,b> are a

would obviously not suit Goodman's purposes, since the ultimate factors of 

£a are a,b and A. It is useful, in the interests of formal clarity, to do

what Goodman did not: which is to formalise the above account. Unlike 

Goodman I shall identify ordered pairs with sets in the manner of Kuratowski. 

Where A is any set, a factor of A is given by the following equivalence:-

(x) factor (x ,A )=(x c A v (3y) (factor (y,A) & x c y))

This definition is not circular; its content is reproduced by the following 

inductive definition.

For any x, and for any y:-

(1) If x e A, x is a factor of A

(2) If y is a factor of A, and x e y, then x is a factor of A.

(3) If x is not a factor of A by (1) and (2), then x is not a factor of A.

F (A) is the set of factors of A. The set (¿£A) of ultimate factors of A is given 

by the identity:

¿¿(A ) = [x: - set x v x =A}flF(A)

Where A and B are any sets, A is extensionaily isomorphic to B if any only if 

there is an extensional isomorphism e defined from B to A. Where e is a

and b and likewise with (Wiener's definition, <a,b> =
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function which satisfies the following conditions:-

(i) The domain of e is F(B).

(ii) Where x and y are ultimate factors of B:-

x = A=e(x) = A

-(x = y>D -(e(x) = e(y))

(iii) Where z is any non-ultimate factor of B:-

e(z) = [x: (3 y) y e z &. e(y) = x j  

£x: (By) y e B & e(y) = xj = A

In sum Goodman's account of extensional isomorphism is as follows:-

A constructional definition of the form <|>= ¿fiji is O.K. 

if, and only if ^

vji is extensionally isomorphic to <|» 

that is, if and only if

EX(<|>) is extensionally isomorphic to EX(<|>) 

that is, if and only if

there is an extensional isomorphism defined from EX($) to EX(<|>)

Goodman's extensional isomorphism criterion produces some strange results. 

For instance, Goodman states extensional isomorphism is not necessarily 

symmetrical. Consequently it would be possible for a constructional definition 

of the form $ =cjf*!• to be O.K. by Goodman's criterion but not one of the form 

• From a logical point of view, the order of the definia presented in a 

definition should not influence the adequacy of the definition, since, logically, 

. . . . .  both are equivalent.

Another weakness of Goodman's account is that in identifying the adequacy of 

a system in terms of the adequacy of all of its constructional definitions,



insufficient emphasis is placed on the role of the theorems of the system. So, 

let C i be a constructional system which takes as its set of definienda, the 

arithmetical expressions of basic arithmetic. Suppose C j offers constructional 

definitions of those expressions in a way that identifies the natural number 

series with cardinal numbers and the relations and operations over this series 

with relations and operations over the set of cardinal numbers. Each 

definition of C j should be O.K. by Goodman's criterion. Suppose C2 offers an 

alternative constructional system using the same set of definienda but basing 

the reduction of natural numbers on ordinal numbers. C2 might be O.K. too. 

It is obvious that if, (in the Goodmanian sense) C i and C2 are O.K. as 

constructional systems so should any C3 where C3 S C 1 U C2. But plainly a 

constructional system that identified natural numbers with cardinal numbers, 

but used the definitions of arithmetical operations and relations appropriate to 

a system based on ordinal numbers would be totally inadequate. Within such a 

system it would be impossible to recover the basic truths of arithmetic as 

theorems of the system.

A final failing of Goodman's criterion is one that it shares with Quine's 

criterion of ontological reduction (see chapter six). Extensional isomorphism 

demands that we admit the objects of the definiendum into our ontology as 

unreduced objects. Consider an ontologist who defines natural numbers in 

terms of cardinal numbers. He cannot claim to have shown, on this basis, that 

we can dispense with an ontology containing unreduced objects; for to assume 

there are no unreduced natural numbers is to assume £x: natural number 

xj= A and hence that there is not extensional isomorphism from the set of 

natural numbers to the set of cardinal numbers and that his definition is not 

O.K.. His only alternative then is to admit the existence of natural numbers 

as a natural consequence of the adequacy of his definition. But since the point 

of the exercise was to show the redundancy of natural numbers, this seems 

self-defeating. The final course - admitting both natural numbers and cardinal
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numbers but identifying the two - runs into the same essential difficulties that 

Carnap's definition (A) of extensional adequacy did: namely, there are equally 

satisfactory nonequivalent definitions of the same arithmetical concepts.

2.5 Quine

As one of the greatest living formalists, Quine's work in metaontology has 

been as important as Russell's. At the cost of a certain inevitable

artificiality, Quine's contribution to metaontology can be divided into three 

areas.

(1) The statements of his criterion of ontological commitment. These were 

reviewed in chapter one.

(2) Quine's remarks on formalisation and the truth of ontological hypotheses. 

These are the subject of this section.

(3) His views on ontological relativity and ontological reduction. These are

dealt with in 6.5. *

Quine's initial position to ordinary language sentences is precisely the same as 

Russell's: they are grammatically misleading and ontologically unperspicuos.

'The trouble is that there is no simple correlation between the outward forms 

of ordinary affirmations and existences implied. Thus, granted that the 

construction exemplified by 'Agnes has fleas' can often be accorded the

forthrightly...... existential sense intended by '( 3x) Fx & Gx', there remain

abundant cases like 'Tabby eats mice' and 'Ernest hunts lions' that cannot. 

Reflective persons unswayed by wishful thinking now and again have cause to 

wonder what, if anything they are talking about.'

Quine [119] (242)
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Quine's solution is broadly the same as Russell's: the solution to this tangle is 

to rephrase our existing theories into an ontologically more perspicous 

notation. Quine believes this notation will be a first-order language and the 

process of rephrasing which I have called 'formalisation', Quine calls 

'regimentation' or 'paraphrase'.

At the end of the previous chapter, it became clear that the constraints which 

bind the enterprise of formalisation are of crucial importance in 

metaontology. Without any guide as to what constitutes a good formalisation 

there seemed to be no point to any of Quine's criteria of ontological 

commitment, and with the wrong guides, problems like the Paradox of 

Formalisation arose. It would be reasonable to expect that Quine would 

expend much effort on clarifying the nature of formalisation and the relations 

between natural and formal language theories. But although Quine does offer 

some examples of formalisation with respect to belief sentences, his remarks 

on the criteria for good formalisation are brief and not altogether helpful. 

What he does say is limited to the quotation below.

•[Preservation of meaning is not] to be claimed for the paraphrase. Synonymy, 

for sentences generally, is not a notion that we can readily make adequate

sense of....... and even if it were it would be out of place in these cases. If we

paraphrase to resolve ambiguity, what we seek is not a synonymous sentence 

but one that is more informative by dint of resisting some alternative 

interpretations. Typically, indeed, the paraphrasing of a sentence S of 

ordinary language into logical symbols will issue in substantial divergences. 

Often the result S' will be less ambiguos than S, often it will have truth values

under circumstances under which S has none.....and often it will even provide

explicit references where S uses indicator words....[The] relation [of S'] to S is 

just that the particular business that the speaker was on that occasion trying 

to get on with, with help of S among other things, can be managed well enough



to suit him by using S' instead of S. We can even let him modify his purposes 

under the shift, if he pleases'. Quine [119] (159 - 160)

Quine's remarks hardly provide a shopping list of positive features any 

formalisation should satisfy: instead we are given a few features that 

formalisation does not have to satisfy and then left to muddle through as best 

as we can.

Quine's cavalier attitude to the problems of formalisation does have a 

justification which is internal to his metaontology. Quine believes not only 

that ordinary language is grammatically confused but that it is so confused as 

to merit its complete rejection in the processes of ontology. Ontology can 

only be seriously practised within first-order notation or something like it. 

From Quine's point of view, the interest in the ontology of a speaker only 

begins when that speaker expreses himself in a formal language; so it really 

does not matter what criteria the speaker uses to formalise his ordinary 

discourse. From this perspective, Quine's sketchy picture of how formalisation 

should proceed is not a symptom of carelessness, but of professional and 

conscious disinterest. This is how Quine puts his case:-

'Futile caviling over ontic implications gives way to an invitation to 

reformulate one's point in the canonical notation. We cannot paraphrase our 

opponent's sentences into canonical sentences for him and convict him of the 

consequences, for there is no synonymy; rather we must ask him what 

canonical sentences he is willing to offer, consonantly with his own 

inadequately expressed purposes. If he declines to play this game, the 

argument terminates. To decline to explain oneself in terms of quantification, 

or in terms of those special idioms of ordinary language by which 

quantification is directly explained, is simply to decline to declare one's 

refential intent'

Quine [119] (242 - 3)
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Quine's deliberate abandonment of a systematic theory of formalisation has 

two immediate dividends and one long term loss. The most immediate 

dividend is a saving of work. The next most immediate dividend is that Quine 

really sidesteps the Paradox of Formalisation. The Paradox of Formalisation 

depends on the assumption that formalisation should preserve ontological 

commitment. Quine makes hardly any assumptions about how formalisation 

should proceed, and certainly does not make that one.

Now for the long-term loss. However interesting the byways of metaontology 

the prime purpose of the subject is to uncover a methodology of ontology 

which is capable of rationally determining our ontological beliefs. This 

requires of a good metaontology that it provide a means for rationally 

distributing truth-values to ontological sentences. Writing one's ontological 

prejudices in canonical notation does not help in itself to determine if these 

prejudices have any foundation or not. What is needed (and from Quine) is a 

method by which we can judge the results of our formalisation to see if the 

ontological commitments there recorded are well-founded or not. This is 

where Quine incurs his long-term loss and this is what Quine has to say.

'Now how are we to adjudicate between rival ontologies? Certainly the answer 

is not provided by the semantical formula 'To be is to be the value of a 

variable'; this formula serves rather, conversely, in testing the conformity of 

a given remark or doctrine to a prior ontological standard. We look to bound 

variables in connection with ontology not in order to know what there is, but in 

order to know what a given remark or doctrine, ours or someone else's says 

there is ... .

Our acceptance of an ontology is, I think, similar in principle to our 

acceptance of a scientific theory, say a system of physics: we adopt, at least 

insofar as we are reasonable, the simplest conceptual scheme into which the 

disordered fragments of raw experience can be fitted and arranged. Our



ontology is determined once we have fixed upon the overall conceptual scheme 

which is to accommodate science in the broadest sense; and the 

considerations which determine a reasonable construction of any part of that 

conceptual scheme, for example, the biological or physical part, are not 

different in kind from the considerations which determine a reasonable 

construction of the whole.'

Quine [116] (15-17)

'Existence statements differ in no way, epistemologically, from theoretical 

sentences generally. They are parts of an inclusive theory whose overall claim 

to acceptance resides in the systematic simplicity, or something like that, 

with which the whole theory accommodates our observations. I am sorry that I 

have nothing new to say by way of illuminating this vague matter of the 

acceptability of theories.'

Quine [114] (95)

Quine is right in saying that his criteria of acceptability are vague: but his 

admission leaves him exposed to Carnap's attack on ontology. If the criteria 

are as loose and as vague as even Quine admits they are, is this not good 

evidence to show Carnap is right in saying that traditional ontological 

questions are pseudo-questions without good means of settling them?

These is a core of a Quinean response in both the quoted passages above. It is 

this. The criteria for evaluating the acceptability of scientific theories are no 

less vague than the criteria for assessing ontologies: in fact they are the 

same. So if ontology is to be rejected because those criteria are too vague, so 

should science. The reply is effective because very few philosophers would be 

heroic enough to reject Western science. But is the comparison between 

science and ontology a good one? Principally, are ontological questions on a 

par with scientific ones as Quine says they are?
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In one very important sense, ontological theories (as Quine presents them) and 

scientific theories seem to differ, and Quine's comparison between the two 

suffers from the Fallacy of Division. (The Fallacy of Division holds that what 

is true of the whole must be true of all its parts. Thus the argument 'I am 

made of my molecules; my molecules are not alive, therefore I am not alive' 

commits the Fallacy of Division). Quine is right in thinking that the criteria 

which govern the acceptability of scientific theories in general are vague. But 

when we come down to specific scientific theories the picture is very 

different. Very often it happens that scientists are well aware of the exact 

observations and results that would discredit or confirm a theory and the 

criteria of acceptability are not at all vague. This is true even of the more 

architectonic pieces of science like Relativity Theory which in its generality 

and abstractness should approach ontological theories more closely than most 

portions of science. It is only when we draw together all scientific theories 

and ask what acceptability for all cases amounts to, that the philosophical 

platitudes ('simplicity', 'accommodates our observations') plod in. (Compare 

answers to 'What is the point of brushing your teeth?' and 'What is the point of 

anything?').

But ontology has not been comparable to science in this respect: ontologists 

have not agreed on the sorts of evidence relevant to a given ontological 

hypothesis and the history of ontology is not one of precise hypothesis and 

experiment. This was of course what Carnap's complaint about ontology was 

really about; that ontologists lacked criteria for resolving their own disputes. 

Quine's failure to define clearly what makes an ontological hypothesis 

acceptable, derives in part from his abandonment of any theory of 

formalisation. Had Quine produced such a theory he could have characterised 

a good ontological hypothesis thus:- a good ontological hypothesis is 

committed to a kind K if and only if Ks are quantified over in a theory Tc , 

where Tc is a canonical theory which is the proper formalisation of a true
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theory Tn. As it is, Quine's counsel to show 'tolerance and an experimental 

spirit' to ontologies is rather redundant. In the absence of a clear idea of what 

experiments to perform, tolerance of a flaccid kind seems our only option.

2.6 Davidson

Davidson is unique amongst the five formalists considered in this chapter in 

placing his theory of formalisation squarely in the theory of meaning. (Indeed, 

to a large extent, Davidson's theory of meaning is his theory of formalisation.) 

According to Davidson, an acceptable theory of meaning M for a language L 

provides for each sentence s of L, a true statement as to what s means. Since 

to understand M and to know M is true is to know the meaning of every 

sentence of L; and to know the meaning of every sentence of L is to be a 

master of L; we can also characterise an adequate theory of meaning for a 

language L as something that when understood, and known to be true, will 

make us masters of L. This is how Davidson puts its-

•........someone who knows the theory can interpret the utterances to which the

theory applies' Davidson [37] (315)

A second feature of an adequate theory of meaning M for a language L is 

related to the fact that languages are learnable. If natural languages were 

such that every sentence that had never been heard by a speaker was not 

understandable to him, and had to be learnt as an unfamiliar word is learnt, 

then languages would be humanly unlearnable. This point, Davidson conceeds, 

depends on a number of empirical assumptions:-

'....for example, that we do not at some point suddenly acquire an ability to 

intuit the meanings of sentences on no rule at all; that each new item of
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vocabulary takes some finite time to be learned; that man is mortal.'

Davidson [34] (388)

Nevertheless the point is true.

The question then arises as to how finite intelligences operating in a finite 

lifespan can learn to use natural languages. The answer Davidson gives (and he 

is surely right) is that we learn to understand sentences by understanding the 

words in them and how their mode of combination helps determine the 

meaning of the sentences of which they are a part.

'When we can regard the meaning of each sentence as a function of a finite 

number of features of the sentence, we have an insight not only into what 

there is to be learned; we also understand how an infinite aptitude can be 

encompassed by finite accomplishments.'

Davidson [34] (387)

Davidson links this view with an important constraint on a theory of meaning.

'..... a satisfactory theory of meaning must give an account of how the

meanings of sentences depend the meanings of words. Unless such an account 

can be supplied for a particular language, it is argued, there would be no 

explaining the fact that we can learn the language: no explaining the fact 

that, on mastering a finite vocabulary and a finitely stated set of rules, we are 

prepared to produce and to understand any of a potential infinity of sentences.'

Davidson [37] (304)

A theory of meaning M for a language L should tell us how the meanings of L 

sentences are a function of the meaning and arrangement of L words. 

Obviously, if M is merely an infinite set of assertions of the form 'S means
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that p', where S is a structural name of an L sentence and p is some sentence, 

then M will not be an adequate theory of meaning for L. M will not explore 

the structure of L sentences nor the meanings of L words. This possibility can 

be avoided if M is required to be finite. In this case, M would consist of a 

finite number of assertions concerning the rules of meaning for L from which 

it would be possible to deduce the meaning of each L sentence. Davidson's 

idea was that any finite theory of meaning would be forced to explore the 

semantic structure of L sentences, to stay finite.

This left Davidson with the problem of the exact form in which a theory of 

meaning is to be couched and how it is to be tested. One way of 'generating' 

an infinite number of assertions from a finite number is by constructing an 

axiomatic system in which there are a finite number of axioms but an infinite 

number of theorems to be deduced. Perhaps what is needed is an axiomatic 

system, containing a finite number of axioms, from which theorems of the 

form 'S means that p' can be deduced.

But the phrase 'means that' is philosophically obscure. So Davidson suggested 

'S means that p' be dispensed with and replaced by 'S is T =  p', where T is some 

as yet unknown predicate. Davidson's idea was that if the right restrictions 

were placed on T and on M itself, that from ["m S is T =  p, we would be able to 

infer that S means that p.

Davidson further suggested that 'true' replace ’T'. Theorems of M thus include 

sentences of the form 'S is true =  p'. An example of such a theory for English 

might be:-

'Snow is white' is true=snow is white.

Students of Tarski's theory of truth will recognise the above sentence as a 

substitution - instance of Tarski's T-schema 'S is tru e= p '. Tarski showed, for 

any first-order language, how to construct an axiomatised theory that would



provide, for each sentence of the first-order (object) language in question, a 

theorem of the form 'S is true^p'. S was the metalanguage name of an object 

language sentence and p was a metalanguage sentence. Tarski allowed the 

derivation of an infinite number of such theorems from a finite number of 

axioms which stated satisfaction conditions of the object language variables. 

Davidson seized on Tarski’s means of generating equivalences of the form 'S is 

tru e= p ' as a way of generating the same equivalences within his theory of 

meaning. Tarski had a way of deducing an infinite number of these 

equivalences from a finite number of axioms which went into the structure of 

the object language sentences. This was the sort of thing that Davidson 

thought a theory of meaning should do. So why not equate a Tarski-style 

theory of truth for a language L with a Davidsonian theory of meaning for 

language L? Davidson did.

'We have such theories, I suggest, in theories of truth of the kind Tarski first 

showed how to give.'

Davidson [37] (318)

A Tarski-style theory of truth for a language L was the proper form for a 

theory of meaning M for L. Suppose that L was English. Davidson envisaged 

that a more-or-less formal portion of English (let us call it Formal English) 

would receive a Tarskian explication of the truth-conditions of its sentences. 

So in such a theory we might have as a theorem:-

'(3x) dog x* is true =  (3x) dog x.

Davidson believed a feature of this Formal English is that, although it would 

not include every English sentence, anything that could be stated in English 

could be stated in Formal English. Since Davidson expresses a clear
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preference for using first-order languages, this amounts to the belief that

what can be stated in any natural language can be reproduced in a first-order

language. Here one must interject an element of doubt about the whole

Davidsonian program. It is by no means evident that any formal language yet

constructed can match the subtleties and expressive capacities of a natural

language as rich in nuances of meaning as English. Strawson for instance, puts

up fairly convincing arguments to show how the meanings of logical constants

differ from the accepted readings given to them. I doubt if '3 ' means what is

meant by 'if...then' and I doubt that 'if...then' has only one meaning in use. (See

Austin [6] for an analysis of the different meanings of 'if'). Such features of
•

English as tone seem neglected on Davidson's truth-conditions theory of 

meaning. It is ironic that Tarski, from whom Davidson draws so much 

inspiration, should have precisely these doubts.

'Whoever wishes, in spite of all difficulties, to pursue the semantics of 

colloquial language with the help of exact methods will be driven first to 

undertake the thankless task of a reform of this language... It may however be 

doubted whether the language of everyday life, after having been 'rationalised' 

in this way, would still preserve its naturalness and whether it would not 

rather take on the characteristic features of the formalised languages.'

Tarski [141] (267)

Whatever the hopes for the Davidsonian program in the long term, Davidson 

himself is optimistic. Once a Tarskian truth-theory for Formal English has 

been given we can extend this theory to the whole of English by associating 

the Formal English sentence with all those English sentences which mean the 

same. Davidson believed Chomsky's work in transformational grammar offers 

help in this task: for transformational grammar is largely concerned with 

transforming the output of certain PS-grammars into sentences each of which
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are identical in meaning. This close parallel between this aspect of Davidson's 

work on the theory of meaning and Chomsky's ideas has led Harman [62] [63] to 

identify Chomsky's deep structure with Davidson's logical form7. So, returning 

to our previous T-sentence, '(3x) dog x' is true— (3 x) dog x'; transformational 

rules would associate '(3 x) dog x' with various synonymous sentences in 

Informal English. The structure of a Davidsonian theory of meaning is 

illustrated in diagram 2.1.

When does such a theory of meaning M give a proper representation of the 

meaning of L sentences? Once again Davidson borrowed off Tarski. Tarski 

held any good theory of truth for a language L should have as a consequence 

ail substitution-instances of the schema 'S is tru e~ p ' where s is the structural 

name of p. This was Tarski's material adequacy condition on any theory of 

truth. Following a policy of taking truth for granted and defining for meaning, 

Davidson adapted Tarski's material adequacy condition. Davidson argued that 

M gave a good account of the meanings of L sentences just when all theorems 

of M which were of the form 'S is true= p' were true.

Davidson summed up,

'It is enough to demonstrate that a theory gf truth [= a theory of meaning in 

Davidson's view] is empirically correct, then, to verify that the T-sentences 

are true ....' Davidson [37] (321)

This requirement is Davidson's convention T. (It should be said that Davidson 

undoubtedly envisages that if 'S is true s  p' is a T-sentence of M, and S is 

asociated by transformational rules with S', then 'S' is true= p' is also to be 

counted as a T-sentence of M).

How do Davidson's theories about meaning relate to the metaontological 

questions with which we are concerned? Simply, many philosophers consider 

that Davidson has provided a methodology for correlating each sentence of a
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Diagram 2.1

INFORMAL SENTENCES OF L
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natural language L with the logical form of that sentence. The logical form of 

any L sentence is thought of as a meaning-preserving formal equivalent of that 

sentence. Because any sentence and its Davidsonian logical form are 

ontologically equivalent, the logical form of an L sentence reproduces with 

canonical clarity the ontological commitments of that L sentence. In 

determining the ontological commitments of all true L sentences, by 

examination of their individual logical forms, the ontologist detemines what 

there is.

I shall not explore Davidson's theory of meaning any further than this! The 

important issues have already been defined by what has been written so far.

It is generally recognised that Davidson's convention T is insufficient as a 

guarantee that a theory of meaning M for a language L is a good theory of 

meaning for L. Platts summarises why this is.

'First, given a truth theory which serves up only true biconditionals, we can 

construct quite automatically any number of other truth-theories which also 

serve up only true biconditionals, yet which pair quite different metalanguage 

sentences with each object-language sentence. For example, we can construct 

a theory that yields on the RHS of each T-sentence the conjunction of that 

served up by the previous theory with a truth, say, 'Snow is white'. A 

moment's reflection shows that 'p' and 'p & snow is white' will agree in truth- 

value; so if the original truth-theory satisfied...[convention T]..., so will this 

new one.... The second objection is more evidently substantial... A theory of 

meaning, we have maintained throughout, must connect with speakers' under

standing of their language. One concrete instance of this is that we should not 

credit them with an understanding they do not have. Now consider at 

backward community who have a term for 'water', but lacking a developed 

science, know nothing of its structure. Taking any sentence of theirs in which 

the term for water is used, we shall obtain a true T-sentence if on the RHS we
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replace 'water' by 'h^O'; for 'water' and 'H2O' are extensionally equivalent. 

But to use the H2O sentence on the RHS is mistaken since it credits the native 

speakers with an understanding, a knowledge, they lack. '9

Platts [100] (65 - 66)

Criticisms like these have led Davies [41] to distinguish between a theory of 

truth for a language, which satisfies convention T, and a theory of meaning for 

a language which satisfies convention T and other criteria too. It is the 'other 

criteria' that prove the problem to the development of Davidson's work. 

McDowell [91] suggests that a good theory of meaning for a language L should 

represent L speakers as rational in their beliefs. But this is much too vague to 

pass muster.

These difficulties in Davidson's work are well known to those current with the 

literature. What does not attract interest, but what is also just as important, 

is whether the theory of meaning is the best framework within which to 

develop a theory of formalisation. The gulf between the old-style formalists 

such as Russell, Carnap, Goodman and Quine and the host of philosophical 

logicians at Oxford and elsewhere who practice formalisation in the wake of 

Davidson, could hardly be greater on this point. Yet it barely passes mention 

in the current literature. All of the formalists considered prior to Davidson 

did not consider preservation o f meaning to be a requirement of formalisation. 

The reason why this was, is that these philosophers, being grounded in 

mathematics and science in a way that their successors at Oxford are not, 

were aware that some of the most impressive formalisations, most particularly 

of mathematics, had shown no concern with meaning at all. The goal had 

always been to preserve what Russell loosely called the 'structure' of the 

original theories.

We have already seen two examples of structure-preserving formalisations of 

arithmetic in terms of cardinal and ordinal numbers. There are others. A case
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in point is Dedekind's and Cantor's rival constructions of the real numbers.

Dedekind defined a real number as a section or cut of the rationals. Peano and

Russell followed suit. Cantor however defined a real number as an

equivalence class of Cauchy sequences. Dedekind's and Cantor's approaches

are interestingly different since they use diverse set-theoretical constructions.

Neither Cantor nor Dedekind were interested in whether their approaches

captured the 'meaning' or the 'logical form' of sentences which mentioned real

numbers. Nor have the mathematicians who followed them been inclined to

sterile wrangling over the question of the logical form of real number

sentences. The question never arose. All that was important was whether
%

these set-theoretical sentences mirrored the sorts of arithmetical properties 

of real numbers that mathematicians were interested in keeping. Both 

Dedekind and Cantor, in their different ways, were successful in accomplishing 

this task.

The issues here are plain enough to see for those with the ability to learn: 

meaning is not where the action is in formalisation. But there are ways in 

which Davidsonian disciples can try to wriggle off the hook. One way of 

evading the issues is to invoke the Quinean thesis of the Indeterminacy of 

Translation. The defence is as follows. Davidson accepts the Indeterminacy 

thesis and he accepts that there can be diverse theories of meaning for one 

object language, each such theory being fully satisfactory in itself. Why not 

regard Cantor's and Dedekind's rival treatments of real numbers as evidence 

for an Indeterminacy present in arithmetic?

There are two reasons why this reply will not do. The first is that if the 

Indeterminacy of Translation is taken into the Davidson theory of meaning, 

then the doctrine that each sentence has one and only one logical form has to 

go. Different, but equally satisfactory theories of meaning for an object 

language may (and will in some cases) assign competing formal sentences to 

the same object language sentence. But second, and more importantly, it is
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most implausible to view Dedekind's or Cantor's work with real numbers as 

being competing views on the proper interpretation of the meaning of real 

number sentences. At the time of their foundational work, mathematicians, as 

a linguistic community, were either mostly either ignorant of, uninterested in, 

or suspicious of the infant discipline of set theory. There is not the slightest 

reason to credit these men with utterances that presumed a deeper technical 

embrace of set theory than that they possessed.

Despite garbled attempts like Evans [43] to illuminate the concept of logical 

form, not a great deal of success has been achieved. The attempt to elucidate 

the logical forms of various natural language sentences has resembled Lewis 

Carroll's Hunting of the Snark. Not only is the beast mythical, but there is a 

lack of agreement amongst the participants about what they are supposed to 

be looking for. At Oxford the new parlour game of 'find the logical form' has 

replaced their previous preoccupation with the trivialities of ordinary use. 

The deficiencies of this approach are best illustrated by example. The field in 

contributors is a rich one. I will choose, at random, Kaplan's [73] treatment of 

propositional attitudes: his work illustrates the pitfalls as well as any other. 

Kaplan formalises 'There is someone Holmes believes to be the murderer' as :-

(3y)(3*<) [R(#<,y,Holmes) & Holmes B£<= the murderer"1] 

where

R = 'the name.........represents.......... to......'

6< = a variable ranging over names.

B = '...............believes........is true.

If it is true that Kaplan's formalisation does capture the logical form of 'There 

is someone Holmes believes to be the murderer' then the formal sentence 

above and the sentence of which it is the logical form ought to mean the same. 

In other words:
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'There is someone Holmes believes to be the murderer' means the same as 

'(3y)(3*)[R(i4y,Holmes) & Holmes B*k = the murderer*]1.

Is this true? To what authority can one appeal to establish its truth or falsity? 

Unreinforced intuition has nothing to say here. I cannot draw upon my 

resources as a competent speaker of English to settle the matter. Nor can the 

above statement be thought of as a report on the usage of words. If Kaplan 

had argued that the French word 'vin' means what the English word 'wine' 

means then it would become possible to draw some empirical content from his 

assertion. But plainly Kaplan is not reporting on a correlation in verbal 

behaviour between two language communities. Is he reporting on an identity 

of meaning between the sentence 'There is someone Holmes believes to be the 

murderer' as used by the ordinary English speaker and the formal sentence 

'(3yX3oO[R(<*,y,Holmes) & Holmes B*** = the murderer'*]' as used by Kaplan? If 

so, then what Kaplan has to say in his article belongs in his autobiography and 

not in a journal of philosophy.

In the final analysis, claims like Kaplan's to have isolated the logical form of 

various sentences often amount to pseudo-statements. We can only usefully 

claim an identity of meaning between one word or one sentence with another 

when there is one or more language communities in which those words or 

sentences have a use. Claims to the effect that word A and word B are 

synonymous are elliptical for predictions about the way those words are used 

in the communities in which they are understood. Statements about the 

logical form of various sentences do not cash in in terms of' linguistic 

observations of usage. We cannot hope to capture what ordinary people mean 

when they use belief-sentences, in the idiom of formal logic. Since the 

ordinary mpn knows no formal logic there is no possibility of comparing the 

usage of a complex logical sentence with a formally unstructured natural one. 

Nor can any philosopher predict how, if he learnt formal logic, the ordinary



man would choose to use formal language sentences. Research Into logical 

form, in this context, is largely a waste of paper.

2.7 Summary

This chapter opened with three questions.

(1) Why formalise?

(2) What makes a good formalisation?

(3) How does formalisation help determine an answer to the Ontological 

Question, 'What exists?'?

The table opposite summarises the contents of this chapter by comparing the 

responses of each of the five philosophers studied to the three questions above.
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1 Frege made an exception in the case of geometry, which he regarded as a 

collection of synthetic apriori statements about the nature of space,, after the 

manner of Kant.

2 David Lewis [83] provides a very good unsolicited example of the weakness of 

Ryle’s analytical technique as applied to ontology. Lewis treats There are 

many ways things could have been besides the way they actually are' as a 

systematically misleading way of saying There are possible worlds different 

from the actual world'. Ryle would probably assert that it was the latter 

sentence which was systematically misleading. Who is right can only be 

settled by determining whether there are possible worlds.

3See appendix III for a worked example of this sort of technique as applied by 

Russell.

4In intuitive set theory, an ordinal number is also defined as an equivalence set 

of well-ordered sets under order isomorphism. See Hatcher [65] (146-148). 

The above is the definition in Z-F set theory.

5See Benecerraf [13].

*My emphasis.

7See especially the footnotes at the end of Harman [63] for an example of how 

transformational grammar is supposed to operate on formal sentences.

8There is more to Davidson that is stated here. For those interested in the 

more:- Davidson [37] is most important. There are discussions of Davidson's
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ideas on meaning in Harrison [64], Platts [99], Platts [100], Davies [41] and in 

Evans and Me Dowell's collection Essays on Semantics.

9 See Foster [45] and Putnam [107] for the originals of these criticisms.
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CHAPTER THREE

Model Worlds and Formal Frameworks

3.1 On Justification in General

Faced with any theory or statement the most challenging and important 

question we can ask of its proponent is 'Can you justify that?' In a very few 

pages the reader will be faced with my exposition of how ontology should be 

practised and it is natural that the same question should occur to him. Since 

the ideas introduced in this chapter are fundamental and their consequences 

continue until the very end of this work, it may not go amiss to say a few 

words on the subject of justification in general and how the justification of a 

theory or statement can proceed. In particular I want to distinguish between 

retrospective justification and consequential justification.

Retrospective justification is commonly found in mathematics, and less 

successfully in the great metaphysical systems of the seventeenth century 

rationalists. The technique of retrospective justification is to justify an 

assertion A, by deriving A by logic alone from a set of assumptions Bn

where Bi,.... Bn are statements whose truth is held to be beyond doubt. The 

theorems of Euclid were long held to be paradigms of the retrospective 

justification of many substantial statements about the nature of space. The 

Euclidean paradigm has had such a grip on the imagination of philosophers 

that, even today, the demand for justification sends philosophers racing to 

assemble the materials for a textbook logical argument.

Retrospective justification is sometimes successful, and it reaches its metier 

in mathematics where from stipulative definitions and simple axioms it is 

possible to derive an extraordinary fertility of substantive theorems. Outside 

mathematics, and particularly in philosophy, retrospective justification is 

notably less successful. It is rarely possible to derive an interesting and
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substantial proposition from a set of assumptions which are little better than 

truisms unless one is notably fortunate in picking on just the right propositions. 

Frequently such attempts turn out to depend on importing a number of 

suppressed premises, which later critics take delight and sustenance in 

pointing out. But there is another alternative to trying to build brick houses 

out of straw bales and this is consequential justification.

Consequential justification takes its beginning from the recognition that a
1

theory is a tool to solve a problem. What justifies the employment of any tool 

in preference to another is that it performs in its allotted task better than any 

other. Likewise what justifies our selecting a theory is very often the fact 

that that theory is an effective problem-solver: more effective than any 

alternative we have to hand. A theory is consequentially justified when we 

justify it by pointing out its success in resolving tangles, straightening out 

obscurities, and explaining phenomena that we had little place for previously. 

Consequential justification differs from retrospective justification in that we 

do not reason to the theory but from the theory to its consequences which 

either vindicate the theory's effectiveness or show it is ineffective. The 

thinking behind the consequential justification was embodied succinctly nearly 

two thousand years ago:- 'By their fruits ye shall know them' (Matthew VII, 20) 

It is by the fruits of this chapter that what is said therein stands or falls. 

Since it will require several chapters to develop those ideas and gather the 

fruits in, the best advice that I can offer to the prospective reader is to read 

carefully and sympathetically; bearing in mind that with consequential 

justification, reasons rarely come first.

3.2 The Elements of a New Metaontoloqy

I shall begin by laying down six of the most important elements of the 

metaontology here put forward and then discuss them in order.
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(1) Ontology is concerned with the devising and testing of ontological 

hypotheses. Formalisation does not end by extracting an ontology from 

natural language theories. Rather, an ontological hypothesis is where to begin 

and formalisation is an attempt to see if that hypothesis is tenable.

(2) There is no methodology for the formation of ontological hypotheses. 

Ontological hypotheses are chosen on the basis of their intuitive 

attractiveness.

(3) The proper object of formalisation is the entirety of organised human 

knowledge: that which we call ’science'. Since science is largely empirical, 

so, indirectly, is ontology.

(4) In formalisation, it is not necessary to preserve either the sense or the 

ontological commitments of the sentences under formalisation.

(5) In order to talk significantly about the putative entities of an ontology, a 

characterising language is required in order to express that talk. The 

expressions of this language must make sense, and therefore it must be 

possible to divine when a sentence of that language counts as true relative to 

the ontology it presupposes.

(6) Formalisation is achieved in the construction of formal frameworks. A 

formal framework is an axiomatic machine for correlating natural language 

sentences with formal language sentences. Since this is its sole purpose, 

construction of a formal framework need and should not presuppose any 

ontology. Formal frameworks merely talk about signs, that is, they are 

written in the formal mode.
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An ontological hypothesis is, in essence, an attempt to partition the universe 

set. Such a hypothesis has the form:-

(x)(K]x v .... v Knx); and for any i,j where -(i = j) and 1 < i < n, 1 < j < n, (yXKjy 3  

- Kjy); and Oz)K jz & ...... & (3.z)Knz.

The disjoint sorts K]_,...Kn that purport to exhaust the range of things that are, 

are sometimes dignified by the title of categories, and the scheme of 

categories chosen to partition what is, is also what individuates an ontology. 

An ontology is never founded on a logical truth. 'Only material objects exist', 

'Everything is either a mental object or a physical object' are ontological 

hypotheses determining ontologies. 'Everything is either a shoebox or not a 

shoebox' is not an ontological hypothesis since it is an instance of the valid 

theorem (x)Kx v -Kx. To proceed then, with the six main points of our 

hypothetical metaontology.

(1) 'Ontology is concerned with the devising and testing of ontological 

hypotheses. Formalisation does not end by extracting an ontology from 

natural language theories. Rather, an ontological hypothesis is where to 

begin.'

Many philosophical logicians have not taken the attitude expressed 

immediately above. The conventional view of formal ontology is that the 

ontologist, beginning with a corpus of natural language sentences deemed true, 

determines the shape of his ontology, by determining what he has to 

existentially quantify over in formalising those sentences. Formalisation then 

becomes a 'black box', receiving on an input, natural language sentences, and 

giving as an output, formal language sentences.

1 0 8



This current model of formalisation that has impressed itself on so many of 

the best minds, has certain points of affinity with Francis Bacon's early model 

of scientific procedure, as set forth in his Novum Qrqanum. Stripped of much 

important detail, Bacon's scientific methodology was essentially a black box 

that received as inputs, observation-statements, and gave as an output the 

laws of nature. The contents of this black box were largely inductive 

principles. The philosophical problem that attaches to Bacon's approach is the 

Problem of Induction. The problem that attaches to the conventional model of 

formalisation is the Paradox of Formalisation. Both problems are too 

substantial to be ignored.

In place of the conventional model is the hypothetical model I present here. 

The ontologist does not approach his task devoid of ontological prejudices. He 

begins with a clear idea of what he takes to exist, in the form of an 

ontological hypothesis. Formalisation is a procedure for testing such a

hypothesis. In outline, this method is reminiscent of Popper's hypothetico- 

deductive method sufficient to deserve the parallels drawn out in diagram 3.

(2) 'There is no methodology for the formation of ontological hypothesis. 

Ontological hypotheses are chosen on the basis of their intuitive 

attractiveness.'

This point speaks for itself. There may be psychological reasons why one 

philosopher prefers to formulate an ontological hypothesis based on 

materialism, whereas another asserts dualism. But it is not part of 

metaontology to descriminate for or against any one ontology, or to suggest 

what steps a philosopher should take in the formalisation of an ontological 

hypothesis. Any hypothesis is welcome so long as it is properly put and subject 

to test.
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Diagram 3
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(3) 'The proper object of formalisation is the entirety of organised human 

knowledge: that which we call 'science'. Since science is largely empirical, 

so, indirectly, is ontology.'

A scientific hypothesis gains in stature just insofar as it survives more 

searching and critical tests. A familiar occurrence in the history of science is 

one where a hypothesis, deemed true of all domains, applies only when the 

variables of that hypothesis are restricted to range over a limited domain. 

Consequently scientists are careful to test a hypothesis under as wide a range 

of conditions as they can muster. (Thus in Galilean mechanics, an object is 

deemed to have a uniform acceleration in a gravitational field. In Newtonian 

mechanics an object has increasing acceleration inversely to the distance of 

the object from the centre of the field. If the variables of both theories are 

restricted to objects in free fall close to the surface of the earth, both 

theories work almost equally well. Only in relation to bodies in free fall and 

celestial bodies in space, does Galilean mechanics go significantly astray).

The ontologist sets out to vindicate his ontological hypothesis by showing it 

can handle the widest range of successful theories that can be mustered. 

Suppose an ontologist successfully formalises a theory T: who knows - if he 

extended T in some way, either by adding to the assertions of T, or by 

enriching the vocabulary of T, perhaps the new theory T' so formed would 

prove resistant to the sort of formalisation carried out on T. Extrapolating 

this reasoning to its conclusion must force the admission that it is the entirety 

of science that is the object of formalisation. This point leads to two 

parenthetical remarks.

The first is that, in setting himself the task of formalising human science, the 

ontologist is free to choose the language that science is expressed in, as long 

as the language suffices to express our consensus theories. Therefore it is not

1 1 1



necessarily required that the ontologist attempt to formalise every sentence 

of a natural language, but only as much as is strictly required for scientific 

research. For instance, the ontologist may shun attributives like 'large' on the 

grounds that they may be better replaced by statements of measure.

Demonstratives might be deported on the grounds that they are a formal 

nuisance and are only expedient in conversation. The definite article 'the' can 

be tightened up so as to imply uniqueness, and so on. Whether a kind of 

vocabulary is essential to science depends on whether its work can be carried 

out as well or better, by some other stretch of vocabulary, in terms of 

precision, clarity of meaning and information-content.

Given that the ontologist is ultimately engaged in the formalisation of science, 

then the results of ontology are inevitably going to share the same 

uncertainties that many of the sciences do. Science is inherently incomplete 

and provisional, subject to increment and amendment from second thought and 

experiment; and so, necessarily, ontology becomes the same. An ontology 

capable of accommodating mid-nineteenth century physics may be inadequate 

when faced with the physics of the late twentieth century. Though 

fundamental changes in our ontology are slow to transpire, and often depend 

on drastic changes in our scientific outlook, ontology remains an empirical 

subject whose results depend on the state of current science. It is the 

generality and foundational nature of ontological hypotheses, rather than their 

alleged apriori character, that makes them of interest to philosophers.

(4) 'In formalisation, it is not necessary to preserve either the sense or the 

ontological commitments of the sentences under formalisation.

An ontological hypothesis is a hypothesis which is not logically true stating 

that only certain specified disjoint things exist. According to anybody who 

accepts such a hypothesis, however provisionally, whenever a person makes a



true assertion about the universe he inhabits, he is referring to a configuration 

of objects recognised by the hypothesis. To maintain otherwise is to reject the 

hypothesis as false. But if an ontologist affirms such a hypothesis, then he is 

required to develop it. In particular, for each sentence S of a language L 

sufficient to express human science, it is required that the ontologist state 

what objects S purports to refer to. Most importantly, where S is true, we 

require some statement as to what objects of the hypothesis itself S refers to 

and in what configuration they are found. (Thus if S = 'The orbit of the moon 

is approximate to an ellipse' and the hypothesis is that only material objects 

exist, then we require that S be construed purely as a reference to material 

objects).

Preservation of sense is not a necessary condition of successful formalisation, 

and consequently, formalisation has nothing to do with the construction of a 

theory of meaning in Davidson's terms. To see this, we need only mark the 

Fregean distinction between sense and reference. Thus even though Reynolds 

= Russia's leading spy and the Blue Club = New York's most exclusive club, it 

does not follow that 'Reynolds is a member of the Blue Club' and 'Russia's 

leading spy is a member of New York's most exclusive club' have the same 

sense. It is not a necessary condition of two sentences concerned with the 

same objects that they have the same sense. So if an ontologist tries to 

vindicate an ontological hypothesis by transcribing L sentences into a formal 

language, preservation of sense is not a constraint on his exercise.

Preserving sense is not a requirement on formalisation. More surprisingly, 

neither is preserving ontological commitment.

For example, suppose that we accepted the ontology of physicalism. What 

physicalism amounts to is arguable, but let it be defined here as the doctrine 

that (i) the only entities that exist are those required by physics, (ii) and that 

all events (including actions of living organisms) that can be explained at all 

can be explained from the laws of physics. A small step towards clarifying the
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physicalist hypothesis would be to recast it as following. There is a formal 

language Lp, which can be identified as the language of physics; (to be 

thorough about this, we should have to give some effective means of 

determining the elements of Lp). The physicalist hypothesis entails that every 

true assertion can be formalised using only logical variables drawn from Lp.

The physicalist then is faced with the problem of formalising natural language 

sentences which use a vocabulary removed from Lp. For instance, 'Jones is in 

pain' may be a true assertion but neither 'Jones' nor 'in pain' may be elements 

of Lp. The physicalist may respond by redescribing Jones as, say, a cluster of 

space-time points forming a mereological whole. 'Jones' being in pain might 

be identified with a physical event, say excitation of the medulla oblongata. 

Thus let '(1 x) Fx' be taken to denote the mereological whole that is Jones 

scattered through space-time and let 'G' be a predicate true of an event when 

it is a pain-process occurring in the body. Using Goodman's [53] '<' as short for 

'is a proper part of', letting 'e' range over events, 'Jones is in pain' might 

emerge as:-

'(3e) G(e) & e < (ix ) Fx.'

'Jones is in pain' and the above formal sentence do not agree in sense; that is 

beside the point sofar as formalisation is concerned. Nor do they agree in 

respect of their ontological commitments. 'Jones is in pain' is committed to 

Jones and somebody who is in pain. There is no imputation of space-time 

coordinates, meredogical wholes, physical pain-processes etc., in this innocent 

statement; nor could the existence of such items be deduced from Jones being 

in pain. The physicalist will claim this does not matter. He will claim that, as 

a matter of fact, Jones is really just a cluster of space-time coordinates, pain 

is just a physical process and whether these facts are registered in 'Jones is in 

pain' is irrelevant.
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The physicalist is right to stand his ground. As observed in chapter one, 

ontological commitment is an intensional relation, and there is no 

inconsistency between two sentences reporting on precisely the same features 

of the universe but differing in their ontological commitments. Simply, the 

ontological commitments of a sentence are a function of its sense; and 

preserving sense is not the issue in formalisation.

This leads to an important consequential justification of our new 

metaontology. The Paradox of Formalisation that loomed so threateningly at 

the end of chapter one, is felled at its initial premiss. It ws essential to the 

formation of the Paradox, as stated, that it be assumed that in formalisation, 

ontological commitments be preserved. No such assumption is made in our 

new metaontology and in fact one would expect in most substantive 

formalisations the assumption would be false.

(5) 'In order to talk significantly about the putative entities of an ontology, a 

characterising language is required to express that talk. The expressions of 

that language must make sense; and therefore it must be possible to divine 

when a sentence of that language counts as true relative to the ontology it 

presupposes.1

This point requires rather more explanation than the preceding points. The 

issues involved are vital, but also somewhat more involved; I shall begin by 

example.

Voodoo (or voudon as the devotees prefer to call it) is a religion that resulted 

the combination of native African religions with Catholicism, by the slaves 

shipped to Haiti during the seventeenth century to work on the sugar 

plantations. As with many religions, Voodoo has evolved its own language and 

its own ontology. Amongst the entities recognised by the hounqans (priests) 

and mambos (priestesses) of Voodoo, are the loa or pagan deities. In the
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Voodoo ceremony, a snake representing the loa is caged on an altar in a circle. 

The mambo seats herself on the box and is then 'penetrated* by the snake; 'she 

writhes, her whole body is convulsed and the oracle speaks from her mouth' 

according to the French observer, Moreau de Saint-Mery.

From the point of view of an observer of such a ceremony, coming to terms 

with the ontology and ceremony of Voodoo, there are two different 

perspectives from which he can view this ceremony. He can take the 

viewpoint of the hounqans or the mambos themselves and assent to sentences 

like 'The loa has taken possession of the mambo1 or equivalently 'It is true that 

the loa has taken possession of the mambo1. To use the language of voodoo 

disquotationaliy in the manner is to commit oneself to the ontology of voodoo. 

Alternatively the observer can be more circumspect. He can rather choose to 

say; 'Amongst Voodoo worshippers, in this situation, it is usual to say 'The loa 

has taken possession of the mambo''. Such a statement can be consistently 

qualified by 'But of course it is all nonsense, there are no loa'. In making his 

initial remark, the observer is not referring to loa, but to the customs, 

practices and language of Voodoo. His remark leaves it open to him to decide 

if he wants to accept the voodoo ontology or not. To use the language of 

Voodoo quotationally, or as I shall say in future, in the formal mode is to 

separate oneself from the beliefs of Voodoo and to place oneself outside its 

ontology.

To take another example, consider set theory. Set theory has its own ontology 

of abstract objects and its own language. To participate in the practice of set 

theory and to use its language is to commit oneself to the ontology that the 

language of set theory characterises. An ontologist cannot say 'There is only 

one empty set' or 'There are a denumerable number of finite ordinals' and then 

add 'But of course, really, there are no such things' without contradiction. On 

the other hand he can learn to say 'Amongst those who accept set theory and 

its practices, it is true to say 'There is only one empty set' and 'There are a
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denumerable number of finite ordinals" and then add 'But of course, really,

there are no such things' without contradiction.

In order to master the art of understanding when a judgement counts as true 

relative to an ontology presupposed, it is only necessary to learn the language 

used to characterise that ontology. For those skeptical of this ontology, this 

process of learning is akin to a game or a piece of anthropological study. The 

anthropologist who studies Voodoo worship has to master the sense of the 

special language of Voodoo in order to see when a judgement is deemed true 

relative to the native ontology. An anthropologist who studies colonies of 

university logicians can come to learn enough set theory to predict what will 

count as true in the characterising language of set-theory.

The point of learning to judge of truth in a characterising language comes out 

directly in formalisation. For instance, suppose an ontologist A is asked to 

formalise the sentence ■

'There are as many electrons as protons in every uncharged atom'.

A responds to the challenge by producing:-

'(x)( uncharged x & atom x ) y: electron y & y < xj y: proton y & y < x '̂

This says that for any uncharged atom x, that the cardinalitiy of the set of all 

electrons that are parts of x is identical to the cardinality of the set of all 

protons that are part of x.

The natural language sentence 'There are as many protons as electrons in 

every uncharged atom' may not agree in sense with the above formal sentence; 

but that is not the point. Presumably though, A will wish to claim that both 

sentences are true in virtue of the very same state of affairs, and hence that 

they are at least materially equivalent. Now scientists inform us that there
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are as many electrons as protons in every uncharged atom; so the natural 

language sentence can be taken as true. But is the formal language sentence 

true? There is obviously a clear ontological commitment to sets in that 

formalisation, and if sets do not exist then the formal sentence is false. 

Therefore in order to be justified in asserting that the formal sentence is true, 

A should first be justified In asserting sets exist. But this is just the kind of 

justification that the procedures of ontology are supposed to provide.

The point of this example is not to raise the question of set theory's 

ontological qualifications. The point is that if a necessary condition of 

successful formalisation is that material equivalence be maintained between 

the formalising sentence and the natural language sentence formalised, 

inevitably the ontologist will be propelled into making some truth-value 

assessment of the formal language sentences. But these same formal language 

sentences are often ontologically biased in favour of certain ontologies. It 

then becomes impossible to make large scale decisions about their truth-value 

without first deciding for or against the ontologies they characterise. But 

such prejudged decisions mean, in effect, that the issues on which 

formalisation is supposed to pronounce, have already been pronounced upon.

The way out of this problem is to insist that the ontologist vindicate his 

ontology, by showing that he can systematically parse, not truths into truths 

and falsehoods into falsehoods; but instead truths as they are generally deemed 

within science into sentences which are true relative to his ontology (or true, 

in his characterising language). To put the matter most succinctly, the 

ontologist displays the merit of his ontological hypothesis by showing that 

whatever truth we want to claim of the world as it is, can be rewritten as a 

truth about the world as the ontologist conceives it to be.

There are two incremental points to make here. The first is that since an 

understanding of the sense of a characterising language is essential to grasping 

what counts as true in that characterising language, the study of how the
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elements of characterising languages can have sense is of great 

metaontological interest. Metaontology intersects with the primary goal of 

semantics in its interest in what gives a sign meaning. For the semanticist, 

the justification for this interest is that this is what semantics is about. For 

the metaontologist, the justification is that in studying the sense-conditions of 

formal language (the conditions under which their elements have sense) we 

learn what conditions a formal language has to satisfy in order for judgements 

about truth relative to an ontology (that characterising language), to apply. In 

the next chapter, the sense-conditions of first-order languages will be explored 

in depth.

The second point to make is about that fragment of some natural language 

used to express our science. The same remarks that were made about the 

language of Voodoo and set theory apply to this language too. Science, with 

its talk of vectors, chain-reactions, fields, drives and psychoses is shot through 

with as many apparent ontological commitments as set theory or Voodoo. It 

would be quite feasible to adopt an independant attitude to the language of 

science and talk of truth relative to the ontology it characterises. The facts 

are however, that I and whoever is likely to be reading this work, are both 

involved directly or indirectly with the community of beliefs and practices 

that constitute Western science. We do not use the language of scientific 

theorising in the formal mode, as observers of our own linguistic science. We 

use the language of science disquotationally as participants, experts or 

amateur, contributors or passive recipients, in the body of doctrine within 

which we have been raised. Whether this body of doctrine and practice is in 

any way superior to that of Voodoo is a question that would take us far beyond 

the confines of this essay into an examination of what Wittgenstein would call 

Forms of Life. Feyerabend [44] has intimated that as far as he is concerned 

the credentials of Voodoo are as good as those of science: neither has any 

rational foundation. I for one disagree, and though I recognise a difference in
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sense between 'true relative to the ontological presuppositions of modern

science' and 'true', in practice they will be taken here to be materially 

equivalent. To follow this course is to accept, however provisionally, what 

experts in their various fields take to be true. This is the price of employing 

the language of science disquotationally: that one accepts whatever ontology 

modern science requires.

(6) 'Formalisation is achieved in the construction of formal frameworks. A 

formal framework is an axiomatic machine for correlating natural language 

sentences with formal language sentences. Since this is its sole purpose, 

construction of a formal framework need and should not presuppose the 

correctness of any ontology. Formal frameworks merely talk about signs, that 

is, they are written in the formal mode.'

The task of the ontologist is to systematically associate each sentence of the 

(natural) language of science with a formal sentence of his chosen formal 

language. This chosen formal sentence is designed to represent what the 

natural language sentence is concerned with; but in an ontologically more 

perspicuos manner. Let us follow the practice of calling the formal sentence 

Sf that is placed to formalise the natural language sentence Sf, a formal image 

of Sn, and Sn an informal image of Sf. A formal framework is that which is 

designed to associate formal and informal images together.

There are a denumerable number of sentences in any natural language and it is 

to be expected that the language of science will be no less rich in this respect. 

The association of formal and informal images cannot proceed by enumeration 

alone, since such a procedure would be endless. But the means of associating 

sentences of denumerably rich languages together is essentially simple, if, as 

Tarski and Davidson have shown, an axiomatic approach is followed. From a 

finite number of axioms, an infinite number of theorems can be deduced. In
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order that a formal image be associated with an informal image, both would 

have to be brought together in a theorem. So let F be a formal framework, Sf 

is a formal image of Sn just when there is a theorem:-

*■ F (sn...... sf)

where '.......... ' indicates our ignorance, for the moment, of what the proper

form of such theorem might be.

Let Sn = 'There are as many protons as electrons in every uncharged atom' and 

let Sf = '(x)( uncharged x & atom x )I5/|y: proton y & y < » }  = 4 y : electron y

& y < x One possible candidate for completing '..... ' might be ' '. Thus there

would be:-

I- p There are as many protons as electrons in every uncharged atom 

S  (*)( uncharged x & atom x )D ^ ^ y : proton y & y < x̂  = electron y

¿c y < x̂

But this is not a convenient form for theorems of F to take. It cannot be 

determined if the above theorem is true without determining whether Sf is 

true. What is wanted is that Sn be true relative to the ontology of science iff 

Sp be true relative to our chosen ontology. But a very simple device will put 

this right. Encase both Sn and Sf in quotes, turning them into structural 

names. Append 'true in the ontology of science' to the structural name of Sn 

(or just 'trues' for short) and 'true in our ontology O' (or 'true0') to the 

structural name of Sf. Finally join the sentences thus generated by an 

equivalence sign to generate the archtypal form of a theorem of F:-

hp 'Sp is trues= 'S f ' is true0.
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It can then be determined whether this sort of equivalence is true, 

independently of what ontology we are prepared to accept.

The easiest way to show how an axiomatised theory can give theorems of this 

form is to construct such an axiomatised theory and then to draw attention to 

the salient features. This is how I will proceed.

3.2.1 A Fragment of a Formal Framework

The axiomatic theory shortly to be presented is not a formal framework in the 

truest sense. The range of sentences formalised falls far short of that 

required to express our science. Nevertheless it is sufficiently representative 

of what a formal framework would look like for it to be useful in illustrating 

the issues at stake.

Initially, a portion of natural language is required to be formalised. I call the 

language under formalisation the target language. Here, l_t is the target 

language. In sum, Lt consists of the following elements:-

(a) a list of English proper names ’Vesuvius, Italy, Leibnitz, Manhatten....’

(b) The copula ’is’

(c) The numerals '0,1,2,3,4,5,6,7,8,9'

(d) The nominalised adjective 'length'; also 'long'

(e) The prepositions 'in' and 'of'

(f) The unit of measure, 'miles'

The vocabulary of Lt permits the formation of sentences like the following:-

’Manhatten is 11 miles long'

'Manhatten is 11 miles in length'

'The length of Manhatten is 11 miles'
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'The length in miles of Manhatten is 11'

The formal language Lf that we shall use to formalise t_t is the canonical 

language of the formal framework. Here Lf is a first order language composed 

as follows:-

(a) The usual list of logical constants from the predicate calculus plus a 

plentiful supply of variables.

(b) Primitive closed terms divided into two classes

(i) the names found in Lt, 'Manhatten, Italy...' etc.

(ii) terms formed by joining a numeral to the word 'miles'; as in ' l l  

miles'.

(c) The 1 - place function-expression 'the length of'.

In addition to Lt and Lf, there is a third language required, Lm. Lm is the 

metalanguage of the formal framework; that is, the language used to talk 

about Lf and Lf. Lm is another first-order language composed as follows:-

(a) The usual list of logical constants from the predicate calculus plus a 

plentiful supply of variables.

(b) Primitive closed terms which are structural names of all the elements of 

Lt and Lf.

(c) The sign for concatanation W ; (this can be treated as a 2-place function 

expression)

(d) The 1-place predicates; 'true Lt' (meaning 'true in the characterising 

language Lt') and 'true Lf' (meaning 'true in the characterising language 

Lf') and'NAME'and'NUM'.

The axioms of the formal framework are as follows. First 11 axioms which 

define what a NUM (numeral) counts as:-
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(1) NUM 'O'

(2) NUM T

(3) NUM '2'

(4) NUM ’3'

(5) NUM '4*

(6) NUM '5'

(7) NUM '6'

(8) NUM '7'

(9) NUM '8'

(10) NUM '9'

(11) (xXy) (NUM x & NUM y) 3  NUM x~y

The second set of axioms defines the extension of 'NAME*. For simplicity, I 

shall use only one axiom;

(12) NAME 'Manhattan*;

although it would be easy to extend the list indefinitely to include other 

NAMES.

In l_t the sentences

'Manhatten is 11 miles long'

'Manhatten is 11 miles in length'

'The length of Manhatten is 11 miles'

'The length of Manhatten in miles is 11'

are treated as equivalent. Axioms (13)-(15) sum this up.

(13) (x)(y) (NAME x & NUM y )3  (trueLt (x^ 'is '^ m iles^ 'in ’̂ 'length')
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r» n  a  o
S ’ true [_ (x 'is' y 'miles' 'long')

r\ rs r\ r* r\
(14) (x)(y) (NAME x & NUM y) 3  (truei_j. (x 'is' y 'miles' 'in' 'length')

^  (true|_t ('The' 'length' 'o f  x 'is'^y ̂ miles')
„ n  n  n  r\ o  n

(15) (xXy) (NAME x & NUM y )o  true^ ('The' 'length' 'of' x 'is' y 'miles')
n  n  o  o  o  o

true[_t ('The' 'length' 'of' x 'in' 'miles' 'is' y)

(16) relates l_t sentences to Lf sentences.

(16) (xXy) (NAME x & NUM y )3  trueLt ('The^'length'^'of'x ̂ is'^y ̂ miles')
n  n  «-><-«

true[_  ̂('the length of' x '=' y 'miles')

From (1) - (16), it emerges as a theorem that:-

trueLt 'Manhatten is 11 miles lon g 'js  true^  ’the length of (Manhatten) = 

11 miles'

Granted Manhatten is 11 miles long, then the equivalence is true if and only if 

'the length of Manhatten = 11 miles' is truef. Whether this will be so or not 

will depend on the ontology presupposed by the canonical language Lf. If this 

ontology includes impure numbers (of which 11 miles, 5 kilos, are examples) 

then it will be true (at least approximately) that 'the length of Manhatten = 11 

miles' is true. If on the other hand, the ontology under examination excludes 

impure numbers but includes natural numbers, then an alternative 

formalisation is called for - and an alternative canonical language.

To illustrate, let L[ and Lm be as before. However Lf is changed, as follows 

Lf now contains.

(i) The usual list of logical constants from the predicate calculus plus a 

plentiful supply of variables.
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(ii) Primitive closed terms divided into two classes.

(a) the proper names of l_t

(b) numerals

(iii) The 1 - place function expression, 'the length in miles of'

The axiomatisation is exactly the same as before except instead of axiom (16) 

we have:-

(16)' (x)(y) (NAME x & NUM y) 3  (true|_. ('The' 'length' 'of' x 'is' y 'miles')
r\ r*

truei_f ('the length in miles of' x '=' y))

From (1) - (16)' it follows as a theorem that

true L[ 'The length of Manhatten is 11 miles' S  true Lf 'the length in miles of 

Manhatten = 11'

This formalisation is suited to an ontology which countenances natural 

numbers.

In passing one obvious feature of formalisation is worth noticing. Though I 

have presented two formalisations, they are both formalisations of one target 

language. Statements of measure can be construed either to an ontology of 

impure numbers or to an ontology of natural numbers. The question of which 

formalisation best captures 'the logical form' of these statements is a spurious 

one that deserves no answer, and indeed has none. The capacity of a theory to 

sustain competing formalisations to different domains is a measure of the 

ontological elasticity of the theory. (Ontological elasticity will be examined 

in chapter 5).

An important feature of a formal framework is that since it is concerned 

merely with correlating sentences, it is purely metalinguistic, or as I shall say,

125



it is written in the formal mode. The extensions of the variables in Lm are

purely concerned with syntactical items. A syntactical item is any fragment 

of a language, a letter, mark, sign, word, phrase, clause, sentence, or series of 

sentences. Where t is any first-order theory, t is in the formal mode if, and 

only if

(1) The range D of the bound variables of t (if any) includes only syntactical 

items

(2) Where v is any logical variable of t:- 

(x) xetf(EX(v))3 x is a syntactical item

i.e. every element of the set of ultimate factors of the extension of v is 

a syntactical item.

The requirement that formal frameworks be written in the formal mode poses 

certain constraints on the way axioms are laid down. For example, suppose 

that it is hypothesised that sets exist and the canonical language Lf contains 

the language of set theory. It may be desirable, in the interests of deriving 

substantive theorems in our formal framework, to include certain axioms of 

set theory. One such axiom is the Power Set Axiom.

(A)(3B)(C)(Ce B 3 C C  A)

Where ’A', ’B' and ’C' range over sets. But expressed in the form above, the 

Power Set Axiom is not in the formal mode. The Power Set Axiom cannot be 

accepted in its usual interpretation without providing at least some argument 

for recognising the existence of sets. Consequently the truth of any formal 

framework containing the Power Set Axiom, cannot be established unless it is 

first established that sets do exist. This is just the sort of circularity that 

must be avoided at all costs. It can be avoided if the Power Set Axiom is 

ontologically neutered by being put in the formal mode, thus:-
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'(A)(3B)(C)(Ce BO C C A )1 is truef

Another constraint that expression in the formal mode produces is that if we 

wish to reason about the canonical language, then the principles of reasoning 

have themselves to be stated. For instance we may wish to infer 'truef '(3x) 

x = 11 miles" (it is true in the ontology Lf characterises that 11 miles exists) 

from 'truef 'the length of Manhatten = 11 miles'. This cannot be done straight

forwardly as in

truef 'the length of Manhatten = 11 miles' 

truef '(3x) x = 11 miles'

Since this has the form of a logically invalid argument Fa h Fb. Instead the 

principles of reasoning appropriate to Lf have to be stated axiomatically. 

Such an axiomatisation will state the permitted syntactical transformations 

used in Lf derivations. To give a fully worked example of such an 

axiomatisation would necessarily involve much space. Instead I shall give a 

partly worked example sufficient to illustrate the technique.

To expand the formal framework state previously so as to handle derivations in 

Lf the language Lm has to be expanded. Let Lm+ be the expansion of Lm, 

defined as follows.

Lm+ contains

0) l-m;

(ii) the 1 - place predicate 'VAR' where EX’VAR’ is the set of bindable 

variables of Lf

(¡ii) the 1 - place predicate 'CLT' where EX'CLT' is the set of closed terms of

Lf;
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(iv) the 1 - place predicate 'STR' where EX'STR' is the set of strings in Lf. A 

string in Lf is a concatanation of n (n > 0) elements of Lf. The blank 

string ' ' is a string in Lf;

(v) the 2 - place predicate 'OCC' where EX'OCC' is the set of ordered pairs 

<a,b> where a is a character and b is a string such that a is occurs in b;

(vi) the 3 - place function expression 'SUB' where EX'SUB' is a function such 

that SUB (a,b,c) is the result of substituting the string a for the string b 

throughout the string c. (e.g. SUB('ket','k','mark') = 'market').

The significance of 'VAR', 'CLT', 'STR', 'OCC', and 'SUB' would be stated 

axiomatically in the way that 'NAME' and 'NUM' were. Supposing this were 

alone, the rule of Existential Generalisation could be stated in Lm+ for Lf

(w)(xXy)(z)(VAR w & CLT x & STR y & STR z )3  (trueLf ( y V z )

(-OCC (wjy’Y 'z ) D truei_f (SUB (w,x, ' ( 3 ẑ ' )' )

In semi-formal English, this axiom states:-

for any variable w, closed term x, and strings y and z; if x^z is true[_ ,̂ then 

so is the result of substituting w for x throughout 'O ' w ')(' y x z ')' where w 

does not occur in y x z.

The constraints in expressing a formalisation in the formal mode may seem 

onerous; but the formal mode is good insurance against building ontological 

presuppositions into a formalisation. Expression in the formal mode also 

allows for an extremely simple criterion of adequacy in formalisation. This is 

that every theorem of a formal framework be true. By an adequate formal 

framework is meant one which satisfies this criterion. An adequate formal 

framework is, amongst other things, a true finitely axiomatised theory written 

in the formal mode.
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Let be any adequate formal framework and let the target language Lj- of 

f  be rich enough to express any scientific assertion we might reasonably wish 

to make. Let r be the set of all and only those sentences of Lt which are true. 

The set A is the set of all those sentences s of Lf where s is a formal image 

under of some element of T. Now let A be expanded to A' by rendering A' 

deductively closed in respect of A. A' will be what I call a model world.

Model worlds are extremely interesting both from an ontological and a 

metaontological point of view. Ontologically they are important because they 

represent the fruition of an ontological point of view or hypothesis. A model 

world purports to describe the contents of the universe; their properties, and 

the laws that regulate them. We can say that a model world is the ideal end of 

the ontologist's efforts: it reflects one way of answering, in depth, the 

question as to what there is. Metaontologically, model worlds are interesting 

because they offer a means of defining that extremely intractable concept, 

existence. In conjunction with ontological elasticity, looking at existence in 

terms of model worlds challenges some classically held opinions about the 

logical structure of the universe (see 5.422).

3.3 Problems and Tentative Theories

According to Popper [105] (164), there is a general structure to the evolution 

of human thinking which is represented by the schema:-

PX----- >-TT------EE----------- >. P2

Pi is an initial problem and TT is a tentative theory, designed to solve Pj. TT 

is then examined and criticised in the process of error exposure EE which 

throws up problem P2; the cycle then repeats itself.
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In this work, the problem P]_ has been to devise some methodology for 

answering the ontological question as to what there is. TT, the tentative 

theory, is the methodology outlined in this chapter.. In this section the focus 

is on EE, the process of criticism and evaluation, and on P2, the .problems 

which are generated as a result of error exposure. I should record here, for 

posterity, a debt to Dr. J.E. Tiles for his help in the process of error exposure. 

Any deficiencies in the tentative theories designed to meet the problems that 

error exposure generates are my responsibility.

The essence of the methodology suggested previously is that formalisation is a 

means of testing ontologies, in a manner analogous to the role that experiment 

and observation play in testing scientific hypotheses. In Popperian 

methodology of science, a scientific hypothesis is said to be corroborated, if 

the observations and experimental results that are made, are the ones that can 

be expected if the hypothesis is true. I say that an ontological hypothesis is 

corroborated just when the ontologist succeeds is systematically parsing our 

most successful theories into a notation of his own choosing, so that these 

theories are mapped to assertions which are true relative to his chosen 

ontology. But does corroboration of an ontological hypothesis entail 

verification of that hypothesis and does failure to corroborate the hypothesis 

entail falsification of that hypothesis? If not, can ontological hypotheses be 

verified or falsified at all? Again, if the answer is 'no', is there any point to 

the pursuit of ontology? There is a compelling argument to the effect that all 

these questions should be answered in the negative. I shall state it and then 

consider what its real significance is. The argument splits into two parts; the 

first establishing that corroboration does not entail verification, and the 

second that lack of corroboration does not entail falsification.

As regards the impossibility of verification, the argument runs as follows. 

Science is subject to change; new theories are suggested to replace old 

theories which have failed to compete as successfully, new observations are
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constantly made, improvements of measurement are recurrent and new ideas 

bring new expressions into the language of science. The ontologist who tries 

to vindicate his hypothesis H has to work within an artificially frozen model of 

science. The ontologist has to isolate a language Ls euphemistically called 

'the language of science' ignoring the influx of new vocabulary that is 

constantly occuring. The ontologist qua ontologist has to accept the current 

valuation of Ls sentences though he must be aware some of these valuations 

will be wrong. If he succeeds in constructing a 'satisfactory' framework then 

he will have had to make a number of presumptions prove to be wrong then his 

carefully constructed framework will be wrong too. Since it is never possible 

to be completely certain of the results of science one can never claim that an 

ontological hypothesis is verified i.e. proved to be true. All one is entitled to 

say is that such a hypothesis is compatible with all that is currently accepted 

in professional scientific circles as true.

As regards the impossibility of falsification, the argument continues: to fail 

to corroborate a hypothesis against current science is not to have that 

hypothesis falsified. First, it may be that the current state of sciences is 

wrong and wrong in some ontologically vital area of research where results 

seem to be inconsistent with the hypothesis. Second, failure to find an 

adequate formalisation enshrining the hypothesis does not entail there is not 

such a formalisation. Perhaps if the search proceeded for a little longer 

eventually the apparent difficulties would be solved. Since ontological 

hypotheses are neither verifiable or falsifiable, the argument winds up, they 

are not scientific hypotheses in the truest sense.

Now though I believe the conclusion of this argument to be unjustified by the 

observations that precede it, it must be admitted that the above criticism does 

raise epistemological questions of the first importance: the principal are 

being whether we are ever justified in ascribing a truth-value to a sentence in 

the absence of absolutely conclusive evidence as regards its truth or falshood.
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It is only right to begin by acknowledging that ontological hypotheses are 

neither verifiable nor falsifiable in the strong sense intended by the critic. I 

take this mean something like this: for any substantive ontological hypothesis 

H, and for any given moment t, we can never say with certainty that evidence 

will not be available after t which will lead to a réévaluation of truth-value 

assessment at t of H. However I also think precisely the same could be said of 

a great many theories of natural science and so if ontology is to be rejected on 

these grounds, it will at least go down in distinguished company.

That unlimited generalisations can always be overturned by unexpected 

observations is the foundation of the Problem of Induction and Popper's 

philosophy. This fact has let most philosophers to recognise that no matter 

how well corroborated a scientific theory is it can never be said to be verified 

and the supercession of Newton's by Einstein's theories of motion is often 

offered as a paradigm case of a well-corroborated theory turning out to be 

false. Falsification is often claimed to be asymmetrical to verification in this 

respect: that an unlimited generalisation can be falsified but not verified. 

Though of course it is true that the truth of any statement of the form (x) Fx 

Zi Gx is disproved by the truth of one of the form Fa & - Ga, it is an 

oversimplification to suppose that the refutation of any scientific theory can 

proceed in so direct a manner without any ancillary assumptions. Such 

ancillary assumptions often include assumptions as to the reliability of the 

scientist's equipment and its accuracy in performing its allotted task. 

Sometimes those assumptions go badly wrong as they did ith Kaufmann in his 

1901-1906 experiments of the relation of the inertial mass of electrons in 

relation to their velocity in terms of the speed of light. Apparently 

Kaufmann's results 'refuted' Einstein's theories on the subject. It was only ten 

years later that it was generally realised that Kaufmann's equipment was 

inadequate. Even the famous eclipse observations made in 1919 to test the 

fruits of Einstein's General Relativity Theory were equivocal. The Sobral data
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gave a displacement of the stars' light of 1.98 seconds with an error of + 12 

seconds while the Principe experiment gave a displacement of 1.61 with an 

error of + 30 seconds! (Einstein's prediction was 1.72 seconds). Nevertheless 

scientists like Eddington were prepared to abandon Newton for Einstein on the 

assumption that the data furnished was sufficient. (See Bernstein [15] (80-83, 

177-119)).

In other cases, the auxiliary assumptions relate not equipment, but to auxiliary 

hypotheses, which have been assumed in the apparent 'refutation'. A case 

instance was Prout's hypothesis of 1815: that the atomic weights of all pure 

chemical elements were whole numbers. The history of chemistry for the next 

100 years was of attempts to test Prout's hypothesis with discouraging results: 

the atomic weights of many elements were not whole numbers. Only in this 

century, with the discovery of isotopes was it realised that it was not possible 

to get a pure sample of any one isotope by purely chemical means. But before 

the existence of stable isotopes was demonstrated in 1912 by Thomson, many 

scientists such as Stas and Maxwell thought Prout's hypothesis had been 

refuted by the persistant lack of success that chemists had in finding pure 

samples by chemical means that had whole atomic weights. (See Lakatos [78] 

(53-54), Crosland [32] (269-279).

One may sum this up by saying that many observation statements are only 

falsifying under certain theoretical assumptions, and because of this fact, 

rejecting a theory on the basis of such observations is often to lay oneself open 

to contrary evidence against one's decision later. Both acceptance and 

rejection of a scientific theory often have to proceed in the knowledge that 

later evidence may prove decisions wrong; therefore acceptance and rejection 

must function independantly of verification and falsification as they have been 

defined here.

Precisely the same conclusion applies to ontology. We cannot reasonably hope 

for either total verification or a quick kill. What we do have the right to
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expect is that it be possible to make reasoned assessments of the truth-values 

of ontological hypotheses as we can do for scientific ones. In this respect our 

right to call an ontological hypothesis 'true' is founded on much the same 

general principles as any scientific hypothesis. If the ontological hypothesis 

successfully handles the data we have already got, then we are justified in 

accepting it as true as long as it continues to be successful.

In respect of calling an ontological hypothesis 'false* the issues are more 

complex. On the basis of what I call 'dogmatic falsification' theories are 

demarcated as scientific or unscientific according to the prescence of a set of 

falsifying basic statements (see Popper [103]). Popper, sometimes following 

dogmatic falsificationism, recognises that there are certain hypotheses which 

must consequently be ranked as unscientific. Indefinite existential statements 

such as 'There are tachyons' become unscientific, because no observation 

sentence is inconsistent with it. Similarly probability statements about the 

distribution of a property in a denumerable or very large population are, 

strictly speaking, unscientific, since no accessable sample can give results 

which are actually inconsistent with that hypothesis.

This is a mistake; fundamentally there are no falsifiable theories at all, and 

the appellations 'scientific' and 'unscientific' apply not to theories but to 

theorising and indirectly to theorists. To illustrate.

The field of paranormal psychology is one which lies, at the present, on the 

borders of respectable science. It is a subject which has always engendered 

fierce argument, and very roughly there have been three attitudes to it

(A) Total Scepticism. All 'paranormal phenomena are the result of concious 

or unconcious deceit or illusion.

(b) Partial Compromise. There are genuinely paranormal phenomena for 

which researchers at present have no explanation. But one day all such 

phenomena will be accommodated in a framework of explanation which
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uses principles which are part of natural science in the same way that 

comets and eclipses were gained for science from occultism.

(c) Total Acceptance. There are genuinely paranormal phenomena which 

can only be explained in the context of a spiritual or religous framework.

Professors X and Y are total sceptics. Over the years of patient research, X 

and Y uncover cases of honest mistake and dishonest fraud, X and Y uncover 

cases which are recalcitrant to interpretation in the light of total scepticism. 

Professor X admits that the total sceptical position looks to be false. 

Professor Y refuses to accept this conclusion and continues to believe, on the 

basis of past experience, that these cases are not cases of bona fide 

paranormal phenomena.

Question: is the hypothesis of total scepticism falsifiable or not?

The answer to this question is that there is no answer. We can say’As 

interpreted by X, it is falsifiable, but as interpreted by Y, probably not'. The 

actual syntactical form of the hypothesis - the fact it takes the shape of an 

unlimited generalisation - does not say how it is to be used. As Popper [104] 

has observed, any theory can be rescued from apparently falsifying evidence, 

if we are prepared to make the appropriate concessions. The natural corollary 

to this is that it is wrong to apply the criterion of falsif¡ability to a theory, but 

only to apply it to an interpretation or use of a theory, by a theorist. 

Methodological falsificationism refuses to play the game of dividing theories 

into falsifiable and nonfalsifiable, scientific and unscientific? Methodological 

falsificationism argues that it is theorists and not theories that are scientific 

or unscientific. Interpreted methodologically, the criterion says that a 

theorist A is scientific in respect of an adopted hypothesis H just when A is 

willing to specify some experimental situation E, such that if result R came 

from E, A would abandon H.
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A consequence of methodological falsificationism is that indefinite existential 

and probability statements are restored to respectability. A probability 

hypothesis H about the distribution of a property P amongst a very large S, 

may not be 'falsifiable' in the strict sense, (i.e. such a hypothesis may be

consistent with any set of observation statements we can reasonably be 

expected to evaluate). Nevertheless H can be used or treated scientifically, if 

it is stated clearly under what conditions H will be abandoned. Such a 

statement would state the minimum size of any sample of S sufficient to 

overturn H, and the minimum deviation from the predicted occurrence of P in 

that sample to overturn H. This minimum sample and minimum deviation need 

not entail the falsity of H.

Methodological falsificationism leads into the subject of epistemology, and, in 

particular, the rational determination of belief. To require that a hypothesis 

be accompanied by a statement of the conditions under which it should be 

abandoned, is not to state how those conditions, in general, are to be arrived 

at. Thus methodological falsificationism shifts interest away from the study 

of truth (and falsehood) conditions to that of assertability (and denial) 

conditions.

I believe that one of the principal problems of epistemology is to determine 

the general methodology whereby assertability and denial conditions are 

determined. Previous epistemology has concerned itself too much with a 

model of inviolate and celestial knowledge based on total evidence and too 

little with the rational determination of belief in the light of partial evidence. 

This is not a work in epistemology and so this is not the place to embark on 

such a grand design as the one suggested for epistemology. However as 

regards ontology, the methodology for arriving at the assertability and denial 

conditions of ontological hypotheses is very much within the ambit of 

meteontology. The ensuing remarks concerning the assertability and denial 

conditions of ontological hypotheses are, however, generalisable to other areas 

of human discovery.
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The model of the evolution of theory formation offered by Popper offers a 

good entry for this discussion. This model was represented by the schema:-

P l-------- >  TT--------- EE---------------P2-

The model is oversimplified in an important respect. In many problem 

situations where a problem Pi is a focus of interest, there is not one and only 

one tentative theory TT put forward but many tentative theories TTi, TT2»

TT3,..........  Each of these theories is subject to evaluation and each can

generate its own particular problems. Consequently, in place of Popper's 

simple linear model of problem and theory generation there is a more complex 

tree structure.

■>EEi
> E E 2

> ee3

>  Pi 

■» P2

- >  P3

In this kind of problem situation it frequently happens that for any TTj and 

TTj, where - (i = j), that TTj and TTj are inconsistent with each other. 

Consequently no competing theory can become established without doing so at 

the expense of its rivals. In other words the assertability and denial conditions 

of TTi, TT2> TT3, .... etc., are logically tied together to this extent:- that for 

any TTj, if TTj is warrantably assertable then for any TTj, TTj is warrantably 

deniable. This fact gives some ingress into the problem of determining under 

what conditions it is correct to (provisionally) deny an ontological hypothesis 

and under what conditions it is correct to affirm it.

Unlike certain hypotheses of empirical science, the denial conditions of an 

ontological hypothesis cannot be identified with a possible result R from a
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crucial experiment E. We cannot perform a laboratory test to detect the 

existence of sets or ideas in the way we might test for the existence of a new 

subatomic particle. Our suspicions that an ontological hypothesis is 

unworkable increase so long as efforts to construct an adequate formal 

framework enshrining it go unrewarded. But it cannot be said that any 

ontological hypothesis H ought to be abandoned, if, after x man-hours of 

effort, no satisfactory formal framework has been found to incorporate H. 

First, any value we fix for x will be more or less arbitrary. Second, there are 

other parameters which determine whether a formal framework of the right 

kind will be discovered e.g. the intelligence of the ontologist, his imagination, 

the degree of his application, the research facilities available to him. These 

parameters are not easily quantifiable, and it does not seem possible to state 

the denial conditions precisely in terms of them.

The solution is to define the denial and acceptability conditions of an 

ontological hypothesis in the context of a program of ontological research. In 

a program of ontological research a number of competing ontological 

hypotheses Hj, H2, H3,... are tested out in answer to the ontological problem 

as to what there is. The subject of formalisation is a natural language, or a 

fragment of such, of which there is a general agreement that that language is 

rich enough to formulate our consensus theories. The ontologist operating, 

from the standpoint of his chosen hypothesis, endeavours to represent the 

consensus theories by formal images which are true relative to his own 

ontology. Our confidence in his hypothesis grows as he shows that he can 

successfully accommodate more and more of our current science without 

overstepping the self-imposed boundaries of his ontology. But willingness to 

accept that hypothesis is constrained by the success of rival ontologists, 

working within the program, to formalise the same target language from the 

standpoint of rival hypotheses. The overall attitude of the rational observer is 

somewhat similar to that of the inscrupulous punter who charges his bets
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depending on which horse is in the lead. The assertability conditions of any

hypothesis are fulfilled just when it is first in encompassing the largest range

of consensus theories. Correspondingly the denial conditions of the trailing

pack are fulfilled as long as the pack continues to trail. To prefer an

ontological hypothesis on its ability to accommodate our currently most

successful theories in the largest number possible, is to reason in much the

same way as the empirical scientist who chooses a theory, on the basis of its

ability to organise and explain the widest range of empirical phenomena.

Denial and assertion, unlike falsification and verification, are essentially

revisable. An ontologist who assents to the recommended methodology
«

commits himself to denying any hypothesis, including his own, so long as it 

continues to be less successful than one which rivals it. But if an ontological 

hypothesis H thus fulfils its denial conditions then this need not mean that H 

should be dropped from the program of ontological research. The ontologist 

may continue to work at developing H; (metaontology issues no prescriptions 

on how to use up leisure time) in the hope that eventually H will assume the 

position of premiere hypothesis. Methodologically, it is advantageous to have 

a research program with many competing hypotheses as possible, so that 

survival of the fittest operates to best effect.
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1 In relation to what follows Popper [105] (106-150, 241-244) is relevant. 

Popper also views a theory as a problem-solving tool and has a number of 

interesting things to say.

* There is a modest but notable exception where metaontology does have an 

ontological verdict to pass: this is that physical objects exist. This conclusion 

puts paid to Idealism however (see 4.4).

* See again Lakatos [78]. I read Lakatos about midway in the evolution of this 

section, and the conclusions of his work were so in accordance with the 

development of my own thinking, that they more or less fused together.
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CHAPTER FOUR

Making Sense: how to construct a formal language

4.1 What this is all about

This chapter is about how to avoid talking nonsense; for the production of 

nonsense is a vice as besetting to philosophers as insincerity is to politicians. 

In both cases the vice is only dangerous if it goes undetected, and I hope that 

anybody who reads this chapter will be able to avoid some shortcomings and 

perhaps detect some new ones in contemporary philosophy.

The principal concern of this chapter is with formal languages, specifically 

first-order languages; the reasons are not hard to find. In formalisation we 

endeavour to systematically replace each sentence of L by a canonical 

sentence which formalises it. The canonical sentence is a sentence of a 

formal language and therefore it should have some sense; it should not be 

merely a collection of ink marks. Now syntactically, of course, there is 

nothing to distinguish a collection of meaningless ink marks, provided they are 

put together to form a grammatical sentence, from a meaningful sentence. 

This fact has been the foundation of much misfortune to philosophy and the 

only corrective I know of is to examine the conditions of sense, and, by 

carefully determining what they are, to avoid the mistakes that philosophers 

have embroiled themselves in. This means that we become involved in the 

study of the sense-conditions (if that is the right word) of first-order 

languages.

In order to study the sense-conditions of first-order languages we have to look 

sideways, occasionally, at natural languages, to discern the general principles 

by which expressions of these languages gain sense. An analogy may help 

clarify.
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Imagine that a man devoted himself to constructing the first heavier-than-air 

aircraft. He would be confronted with a task daunting even to the most 

persevering and heroic intelligence. He would be aware that there would 

likely be many parameters which would influence the airworthiness of any 

craft he built and that he knew hardly any of them. He would be confronted 

with the prospect of repeated bungles and painfully learnt lessons. Human 

intelligence, when confronted with titantic obstacles, naturally and rightly 

looks for a short way round them. One way in which our inventor might seek 

to circumvent some of the labour is by studying naturally occurring 'aircraft': 

that is, birds. By a judicious examination of naturally occurring flighted 

creatures he may learn enough to avoid some, if not all, of his worst bungles. 

He may for instance, reach the conclusion that his aircraft should have two 

slightly curved planes attached to some roughly cylindrical middle with a 

similar, but smaller plane at the back. Similarly In constructing artificial 

languages, it is useful to look at natural languages to see the sort of principles 

which should govern our construction. But a word of warning should intrude 

here. I am not about the dissection of the semantic principles of natural 

languages for their own sake. The kind of close, detailed examination of the 

usage and purpose of ordinary language idioms as is found in, say, Austin's How 

to Do Things with Words is not to be found here. Instead I am interested in the 

broadest and most significant features of natural languages: the ones that 

enable us to communicate at all. I shall deliberately ignore nuances, 

borderline cses, special instances and the like, in order to concentrate on what 

is important, (in a way that Austin might have frowned upon, were he alive 

today). Unlike Austin and some of his Oxford contemporaries who are still 

functioning, I do not place much value on linguistic observations carried out 

with no especial purpose but to make such observations. Philosophers, like 

scientists, should begin with a problem, and what observations about language 

are important are defined in relation to what is needed to solve the problem.
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The preceding sentence is a guide to what the construction of formal 

languages is about. An expression has sense when there is somebody ('is' in the 

timeless sense peculiar to philosophy) who grasps that sense. A language has 

sense (can be employed for communication) when there is a language- 

community who can find an employment for it. To show that a canonical 

language has sense and hence that the canonical sentences have sense, it is 

necessary to show that such a language-community is possible. It is an 

Aristotelean dictum that if a thing is, it is also possible. So the most direct 

way that an ontologist can discharge his obligation of showing that his 

canonical language has sense is to create a language community which 

understands his canonical language. Such a community I call a model language 

community and designate any such arbitrary community by the letter 'M'. The 

ontologist creates a model language community by teaching his canonical 

language.

Faced with such a task, the ontologist may demand that the metaontologist 

supply some effective procedure, or at least some detailed methodology, for 

constructing a model community. The metaontologist should resist his 

demand. There is no effective procedure for constructing such a community; 

nor is the problem of finding the best methodology a philosophical problem. 

There are many ways in which the sense of an expression can be taught, and 

which is best is dependant on the nature of the expression. In some cases the 

sense of an expression may be communicated by associating it with a decision 

procedure that effectively settles its application. Secondary school students 

in science are taught many of their basic concepts in this way, e.g., x is acid 

if and only if x turns litmus paper red. But not all expressions are effectively 

applicable. 'Is a theorem of first-order logic' is not effectively applicable; 

neither is 'is lying' or 'is thinking', nor, most significantly is 'true'. Ostensión is 

another popular device. But this technique is not suitable for 'is a proton', 'is a 

unicorn', 'is a unit set'.
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Effective procedures and ostensión are well-documented means of teaching 

parts of a language. There are others. Some of these belong in the realm of 

science-fiction, but may one day become fact; e.g., hypnotic learning, 

implantation of micro-translators in the brain, grafting speech-centres from 

one brain to another.

The question of how a language might or should be communicated is not a 

question of philosophy, but a question that concerns educationalists, 

psychologists and linguists. Wittgenstein in his classic, Philosophical 

Investigations, recognised and made use of the fact that there is no effective 

procedure for communicating the sense of an expression in order to refute 

representationalist theories of meaning. Whatever ceremony we imagine 

presented to the learner to help him grasp the sense of a word, it is always 

possible, Wittgenstein pointed out, for the learner to fail to grasp the point of 

the ceremony. In such a case the learner will fail to use the word 

appropriately. Once Wittgenstein's point is taken to heart, it is futile to 

search for an effective way of constructing a model community.

There is a task which the ontologist can and should require the metaontologist 

to undertake. The metaontologist should supply an account of the exact 

nature of the understanding that the members of the model community should 

have, in order to be truly said to understand the canonical language. Not how 

this understanding is produced (which is not a philosophical problem) but what 

such understanding amounts to (which is a philosophical problem).

The canonical languages that will be examined in this chapter are first-order 

languages, not only because first-order languages are accorded pride of place 

in logic and formal philosophy, but also because there is philosophical reason 

to do so (see chapter 7). The elements of the sentences of a first-order 

language are divided into logical constants like V , ’d ’, *=' etc., and logical

variables. The senses of the logical constants are unproblematic given their 

extensive use in logic and the widespread knowledge of their semantics. The
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ontologist may reasonably be excused from explaining the senses of 

expressions we already understand. His job is to teach the senses of the 

logical variables to members of M. The metaontologist has to lay down the 

conditions by which it can be assessed whether these variables have come to 

have an agreed sense amongst members of M. The specific question the 

metaontologist addresses himself to is, 'What is it to grasp the sense of a 

variable?' Answers to this specific question vary according to the nature of 

the variable, as will become clear in subsequent sections.

4.2 E variables

Logical variables can be partitioned into predicates, function-expressions and 

names. The simplest way in which any person can display a grasp of the sense 

of a variable is through being able to identify the objects that fall under the 

extension of the variable. Variables whose sense is understood by X only when 

X has the capacity to identify items of their extension, I call 'extensionally 

accessable variables' or 'E variables' for short. The grasp of sense appropriate 

to E variables is the sort of grasp parents try to produce in their children when 

teaching them their earliest words. Unless a child recognises that a car is 

correctly described by 'car' then adults take it that he does not grasp what 

'car' means. This sort of case is so familiar that it tends to produce a 

philosophical blindness to the important aspects of E variables. Consequently 

a step back or two into abstraction is useful in restoring the proper 

perspective.

In order for a variable V in a model language community M to have a sense 

within M, V must be usable in an act of communication or speech-act between 

two members of M. In any act of communication there are at least two 

participants, namely a speaker S and a hearer H. In order for 5 to 

communicate successfully with H via a speech-act which uses V there are 4 

conditions which must be satisfied.



(1) S must attach a sense to V.

(2) H must attach a sense to V.

(3) The senses S and H attach to V must be the same.

(4) H must know (1), (2) and (3).

These conditions are evident after a little thought. If S should remark 'The 

snurd needs repairing' to H, and S attaches no sense to 'snurd' then no act of 

communication has taken place. Even if S does mean something by 'snurd', if 

H attaches no sense to the word, communication has broken down. Supposing 

that S and H do attach a sense to 'snurd', but that the sense each attaches is 

different, the H will misinterpret what S has said. Lastly, even supposing that 

S and H do mean the same by 'snurd', meaning door, unless H knows that S 

means 'door' then H will not be able to infer 'S said that the door need 

repairing'. H will not have the ability to extract the information-content from 

S's phonic act.

'Snurd' in this imaginary case is an E variable since 'snurd' means door and 

doors are easily recognised. The key features of the use of 'snurd' in relation 

to the 4 conditions laid out above are as follows:-

(1) S attaches a sense to 'snurd'

Comment; If this is true it is because S's usage of 'snurd' is regulated to 

particular items (i.e. doors) and it therefore predictable, as opposed to 

random, and unconsidered. A corollary of this is that if S attaches a 

sense to an E variable like 'snurd' then the outside observer can predict 

his usage of 'snurd' and thus acquire the same use of 'snurd' as S. 

Therefore a condition of S attaching a sense to an E variable is that it is 

possible to know what that sense is.

(2) H attaches a sense to 'snurd'.

Comment: As (1) with 'H' replacing 'S'.
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(3) The senses S and H attach to 'snurd' must be the same.

Comment: If (3)' holds it is because S and H will identify the same 

objects as snurds even if screened from one another under laboratory 

conditions. If it is true to say of 'snurd' that it means door, this will be 

because members of M independently identify the same objects, doors, as 

snurds and identify the same objects as non-snurds. Conversely if 'snurd' 

has no uniformity in its application by members of M then it cannot be 

said to have a sense (though it may have a sense for a given speaker). 

Following Harrison [64] (3 - 21) I call the ability of a sign to have a 

meaning independent of any meaning fancy may attribute to it the 

autonomy of that sign. The autonomy of an E variable consists in the 

fact that members of the model community in which that variable has a 

use apply that sign to the same kinds of objects.

(4) H knows (1), (2), (3).

Comment: (4) is satisfied, if it is satisfied at all, because H has the 

ability to observe another's use of the word 'snurd' and to determine 

whether he applies the word to just the same objects H would. This goes 

for S too. Corollary: unless it was possible for H to recognise that S 

took as snurds the same objects as H did, (4) would not be satisfied. Call 

any object for which it is possible to determine that a language-user has 

referred to or Identified that object, a public object. Unless the objects 

of the extension of an E variable were public objects, that E variable 

could not be used in an act of communication; it would be senseless.

Two important conditions of an E variable having sense, then, is that its sense

be autonomous and its extension include public objects. These twin conditions

will figure largely in the discussions that follow.
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E predicates like 'car', 'boy', ’dog' have so far come under examination, but the 

case for E function-expressions is similar. The sense of an E function- 

expression is grasped only by being able to demarcate its extension: what 

counts as an argument to the function it denotes and what value is associated 

with that argument. The 2-place arithmetical function-expression V  is an E 

function-expression. The sense of '+' is understood by anybody who knows how 

to add. Computable functions are in general signified by E function- 

expressions. Anybody who possesses the appropriate specification of 

computable function also has the means to effectively determine the value 

that function gives for any argument.

The later Wittgenstein possessed an advantage over his predecessors, 

especially Frege, in understanding how it was the E function-expressions stood 

for functions. Frege's explanation was that it was the sense of the function- 

expression that determined its reference; where the sense of an expression was 

an abstract object, i.e.

sense

The broken line represents the indirect relation of referring whereby the sign 

is connected to its reference by its sense.
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Frege's model Is deficient in one vital respect that completely nullifies its 

explanatory value. There is no explanation of what binds a sign to its sense (or 

for that matter what binds the sense to the reference). On Fregean grounds 

we can either postulate a third entity to stand between a sign and its sense to 

bind the two together; but this would obviously begin a vicious regress; or we 

can say that the relation between a sign and its sense is ultimate and 

unanalysable. But in the latter case if we take this way out then we might as 

well say that the relations between the sign and its reference is ultimate and 

unanalysable and dispense with the assumption of a third mediating entity 

called a sense.

The later Wittgenstein recognised that for some arithmetical expressions what 

'glued' the expressions to their extension was a human agreement as to what 

fell under the extension of that expression. Commenting on this sort of case, 

Wittgenstein remarked:-

"But are not the steps then not determined by the algebraic formula?' - The 

question contains a mistake.

We use the expression: 'The steps are determined by the formula....' How is it 

used? - We may perhaps refer to the fact that people are taught by their 

education (training) so to use the formula 'y = x2', that they all work out the 

same number of 'y* when they substitute the same number for 'x'. Or we might 

say: 'These people are so trained that they all take the same step at the same 

time when they receive the order 'add 3". We might express this by saying 

that for these people, the order 'add 3' completely determines every step from 

one number to the next'.

Wittgenstein [150] (185)

In natural languages, names are the odd kind out of the three different kind of 

E variable that obtain. First, names do not have a meaning in the way the
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predicates or function-expressions do. There is no synonym for 'George 

Washington’. Nevertheless names do have a sense. Names can be inserted into 

sentence-frames to make sentences and the truth-values of any declarative 

sentence so formed depends on the name used. If Dummett is right in saying 

that an expression has sense when it contributes to the truth-conditions of the 

declarative sentences in which it is used, then names have sense.

Second, in natural languages a name cannot be classed as either an E variable 

or a non-E variable. For example the name Joseph Stalin may have been an E 

variable to contemporary Party members such as Lenin or Trotsky. Either of 

these gentleman might have been able to identify Stalin or have given 

directions for the location of Stalin in a certain office of the Politburo. But 

nobody at this present time grasps the sense of 'Josef Stalin' as an E variable. 

A contemporary of today has to grasp the sense of 'Josef Stalin' through their 

historical knowledge of Stalin. The name 'Josef Stalin' itself is neither an E 

variable nor a non - E variable. Of a name in a natural language we can only 

ask of a given person at a given time, whether he grasps the sense of that 

name as an E variable or not.

What is involved in grasping the sense of a name as an E variable? The 

unproblematic answer is: being able to pick out the nominatum. But this 

answer is too facile. It is better that this question be approached obliquely. 

Imagine that S walks up to a dog, points at it, and says 'Snapper!', and walks 

away. What has S done? Here are some possibilities.

S was marking the dog as dangerous.

S was identifying the breed.

S was trying to get the dog to sit up and beg.

S was trying to get the dog to bark.

S was scolding the dog.

S was naming the dog 'Snapper'.
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The bare description of S's act leaves all of these possibilities open. Whether 

an act of baptism takes place then, depends on more than the circumstantial 

details surrounding the act. Whether S actually named the dog 'Snapper' or not 

depends on the use to which he puts his action and 'Snapper'. Wittgenstein, 

with his ability to cleave through illusion to the essential, saw this too.

'It is quite true that, in giving the ostensive definition, for instance, we often 

point to the object named and say the name.... This is connected with the 

conception of naming as, so to speak, an occult process. Naming appears as a 

queer connexion of a word with an object...'

Wittgenstein [150] (38)

'....naming is something like attaching a label to a thing. One can say that this 

is preparatory for the use of a word. But what is it a preparation for?'

Wittgenstein [150] (26)

If S has really named the dog 'Snapper' then this is a preparation for using the 

name as a subject-term in a series of subject-predicate sentences. We might 

say: the ceremony of naming is only possible in a language which has the 

resources to employ names; and this means employing them in conjunction 

with general expressions. A language that consisted only of names would be 

impossible. Now if we think of what makes an expression a name as not being 

the product of the occult process of naming, but more a function of how it is 

employed in the sentences, then we will be less inclined to thinks that the 

paradigm case of grasping the sense of a name consists of pointing at the 

nominatum and saying the name. Instead the attention will be focussed on the 

use that a person makes of the name in his assertions. The question that 

should be addressed here is: what sort of ability with sentences containing a
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name N do we expect of a person who grasps the sense of N as an E variable 

(that is to say, who has effective access to the nominatum)?

Returning to S for a moment, and supposing that S did name the dog 'Snapper', 

let the previous question be addressed to this situation. S has Snapper in front 

of him, and this means that S is in a privileged position to answer certain 

questions about Snapper. For instance S should be able to tell us whether 

Snapper is large, small or middling, whether his coat is long or short, curly or 

straight, what colour his eyes are, perhaps even the breed if S has any 

knowledge of dogs. S will not be able to speak with such authority on whether 

Snapper's mother is still alive, when Snapper was last taken to the vet and who 

his owner or his 'real' name might be. S will be able to confidently allocate 

truth-values to sentences which make straightforward observational reports 

about Snapper, but sentences which require collateral information S will be 

more spotty on. Reflecting on this position it becomes clear that the 

sentences containing 'Snapper' which S is qualified to pronounce on the truth- 

value of, in virtue of his grasp of 'Snapper' as an E variable, are just those 

sentences which concatanate 'Snapper' to an E predicate. To have effective 

access to Snapper is to be able to settle what E predicates are true of him and 

which are not. To grasp the sense of a name N as an E variable is to be able to 

decide correctly on the truth-values of atomic sentences containing N that 

employ only E variables.

This covers what it is for 'Snapper' to be a name and what it is for S to grasp 

the sense of 'Snapper' as an E variable. But what is it that binds 'Snapper' to 

Snapper and makes 'Snapper' the name of the dog that S named? The answer is 

that it is by reference to the properties of the dog he named that S settles the 

truth-value of sentences that join 'Snapper' to some E predicate. We could 

say: it is what S is prepared to allow as true about sentences of this form that 

individuates the dog he named as the nominatum of 'Snapper'. Consequently if 

S should go on to found a model language community M, in which each member
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grasped the sense of 'Snapper' as an E name, then what would make 'Snapper' 

the name of a particular dog (the one S named) for M would be an agreement 

amongst M members as to what E predicates it was correct to adjoin to 

'Snapper'; and the dog named would be that dog which satisfied all those 

predicates. The ability of 'Snapper' to have sense (within M), that is to have 

autonomy, depends on an independant agreement on when it is truly employed 

in a range of sentences which use only E variables.

E variables may therefore be characterised as variables whose sense is not 

only grasped by identifying their extensions; but also as variables an 

agreement as to what their extensions are is the foundation of their having 

autonomy.

An ontologist who introduces a canonical language C is required to state 

precisely which variables of C he takes as E variables. Having made this 

decision he is then required to show that the members of his model community 

M had a grasp of the sense of these variables appropriate to their status as E 

variables. For instance if $  was a predicate classified as an E predicate we 

would expect members of M to identify the same objects, independantly of one 

another, as falling under 4>-

One difficulty in testing for whether an E variable like <|> is appropriately 

understood by M members is specifying the conditions under which we would 

accept that it is so understood. For example we could specify the 

acceptability conditions as follows,

*0 is validated as an E variable amongst M members if and only if for any 

x,y,z, if x and y are M members, and z is any object, and z is presented to x 

and y independantly, then x agrees z satisfies 0  if and only if y agrees z 

satisfies <t>'
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But this condition is too demanding, for human error and borderline cases will 

create less than perfect agreement. Plainly what is required is a numerical 

measure of agreement that will circumvent recourse to vagaries like 'most' or 

'a substantial majority'. Such numerical standards can be attained with a 

semantic matrix test.

To validate <t> as an E variable amongst M members, two samples are required: 

an object sample and a subject sample. The object sample consists of a 

heterogenous array of objects; the subject sample consists of a section of M. 

Each element of the subject sample is presented, in isolation from other 

elements of the subject sample, with each element of the object sample. For 

each such object, the subject is required to state whether or not the object 

falls under $ . The collected results for all subjects can be displayed in a 

semantic matrix. A specimen of such a matrix is given below.

Subject sample

<1> A B C D E F

a 1 0 0 0 0 0

b 0 1 1 1 1 0

Object Sample c 1 1 1 0 0 0

d 0 1 0 1 1 1

e 0 1 0 1 1 1

f 1 1 1 0 1 0

*1' indicates the subject classified the object as falling under 4>. Thus above, C 

classifed as b as satisfying $ . 'O' indicates that the subject classified the

object as not falling under $  . (Abstention is not aliowed). Thus A classified b 

as not satisfying <fc,

The closer to perfect agreement in the employment of the users of the subject 

sample approach, the more nearly a semantic matrix for has rows which
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consist either entirely of 'l's or entirely of '0's. The more random the us 

the more nearly '0's and ’l's in any row tend to balance each other in n 

This simple fact can be used to construct an effective statistical pro 

which ends in giving a numerical value for the agreement in use of< -̂thl: 

is the index of autonomy of $ , as calculated from a given semantic r 

The index of autonomy is designated by the letter ’ i ' (iota); a su 

indicating the variable in question and a superscript indicating the se 

matrix from which the index is calculated. Thus i| is the index of aul 

calculated for <t> from semantic matrix S. The effective meth 

calculating i| is as follows.

(1) Let ri, T2, r3,...rn be the rows of S. Let ri< be any row where 1 <

Let the number of ’l's in rj< be a|<, and the number of '0's be b|<.

defined as following.

(2) If a  ̂> bfc then xj< = a  ̂- b|<

(3) If b|< > a|< then X|< = b|< - a[<

(4) If a  ̂= bfc then x  ̂= 0

(5) Let t be the number of members of the subject sample and u the 1 

of members of the object sample.

(6) The index is given by the following formula:-

Example: Let S be the semantic matrix illustrated on the previous p 

has rows rj, T2 , tj, T4, r5, rg. We have:-

aj = 1 and b  ̂ = 5 

a2 = 4 and b2 = 2 therefore X2

therefore



a3 = 3 and b3 = 3 therefore x3 = 0

a4 = 4 and b4 = 2 therefore *4 = 2

a5 = 4 and b5 = 2 therefore x5 = 2

a6 = 4 and b6 = 2 therefore x6 = 2

t = 6 and u = 6. Putting these values into the formula

i. = y  ■ I x we derive:
9 t u

sld> = ¿ y a l x = 4 + 2 + 0 + 2 + 2 + 2 =12 = 0.3
t u 6 x 6  3S

The value of for any <|> and for any S is always between and inclusive of 0

and 1. The closer the value to 0, the more random the use of <t>; the closer the

value to 1 the index returns, the more uniform the use of ct>. By setting the
£

minimum acceptable level of to a given value (eg. 0.9), precise conditions 

for the determination of whether the use of <t> shows an acceptable uniformity 

can be laid down. The use of a semantic matrix test is subject to the usual 

abuses and warnings that statistical tests are subject to: the larger and the 

more varied the sampling, the more authoratative the results. Semantic 

matrix tests vary according to the nature of the variable tested in a way that I 

will now describe.

The simplest case is that where the test variable is a 1-place predicate whose 

extension includes only physical objects. Here the test procedure consists 

simply of a presentation of various physical objects with the accompanying 

standing question as to whether each such object satisfies the variable or not. 

Physicalistic predicates of n places, where n>l, demand that the presentations 

consist of n objects, placed in some kind of ordering, with the appropriate 

standing question. Physicalistic function-expressions require a similar 

treatment; if a function-expression of this kind contains n argument places, 

then a presentation will consist of n objects, placed in order, with an n+lth
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object and the standing question will be whether the n objects, so ordered,

constitute an argument to the appropriate function and whether the n+lth

object is a value to that argument. Names denoting physical individuals which

are classified as E-variables receive a slightly different treatment from the

foregoing. The mark of grasping the sense of a name as an E variable is the

capacity to judge the truth-values of atomic sentences containing that name

which use only E -variables. Call an atomic sentence which contains only

E variables an atomic E sentence. Then the test for a name N being an E

variable amongst members of M, is that they should independantly agree on

the truth-values of atomic E-sentences containing N. Objects of the object

sample are atomic E-sentences containing N, and the standing question of each
1

such object is 'Does this sentence count as true?' Assent is registered by '1', 

dissent by 'O'.

Nothing has been said so far about E variables which are taken to include non

physical objects such as numbers; the predicate 'is odd' being an example. 

Such predicates do raise profound metaphysical and epistemological issues 

which will be the subject of discussion for the next three sections. The 

immediate problem is how such a predicate can be tested in a semantic matrix 

since the objects which satisfy it, odd numbers, cannot be presented in the way 

that physical objects can. The solution is to use terms that purport to refer to 

such objects, namely numerals, in place of numbers. Instead of presenting the 

number 2 and asking 'Does this number satsify 'is odd'?' we enquire 'Is the 

atomic sentence '2 is odd' true in the characterising language of arithmetic?' 

Assent is registered by '1', dissent by 'O'. The treatment of non-physicalistic 

variables (or non P variables) is then similar to the treatment of physicalistic 

names (or P names) in that the elements of the object sample are atomic 

E sentences rather than non-linguistic objects. The treatment of other non 

P variables that are also classified as E variables is very similar too.

So far, with adaptations, semantic matrices have proved remarkably flexible in
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providing the means by which the autonomy of E variables can be tested. It is 

time that we begin to grapple with some of the philosophical problems that 

have been submerged in discussion so far. Putting this previous discussion to 

one side for the moment; consider the following case.

S and H are two members of the ontologist's model community M. The 

ontologist endorses an ontology including natural numbers as unreduced 

objects, and in order to characterise his ontology he uses a canonical language 

incorporating many arithmetical expressions. Amongst these expressions is 

the predicate 'is odd' which the ontologist classifies as an E predicate. The 

ontologist claims that S and H, amongst others of M, attach the same sense to 

'is odd' because, if they are asked to write down odd numbers beginning with 1 

until told to stop, they both independently write:-

'1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29 ..... '.

Ignoring the inductive uncertainties of the test, (the fact that either S or H 

can go 'off the rails' if asked to carry on the series past a certain point), does 

the test establish that S and H attach the same sense to 'is odd'? On the 

realist view of mathematics which the ontologist adopts, which distinguishes 

between numbers and numerals, the test is only convincing if S and H denote 

the same numbers by the same numerals. But do they? Is it not possible that 

S and H may have fixed their attention on different numbers using the same 

numerals? In such a case their 'agreement' is merely a verbal one of no 

substance whatsoever (just as a man in England may agree it is 4p.m. and so 

might a man in America and yet agree to different things). This philosophical 

doubt here cannot be dispelled by asking S and H purely arithmetical questions 

like 'Is 5 prime?', 'Does 3 + 7 = 11?', 'What is the square root of 49?'. Even if S 

and H both answer '5 is prime’, '3 + 7 = 11', ' 49 = 7*', these answers only mark 

a genuine agreement if S and H mean the same by 'prime''+' and ' ( )2'. These
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suppositions can be tested by asking S and H questions about the extension of 

'prime, +' and '( )*', but then the answers S and H provide will use numerals; 

therefore any agreement in these answers will depend on whether S and H in 

fact denote the same numbers by the same numerals. Of course this is where 

the doubts began.

The problem that has issued here is the problem of demonstrating that 

numbers are public objects. Only if the extension of an E variable consists 

only of public objects can we say that E variable has sense. To be a public 

object O has to be recoqnisably referred to by two separate speakers by use of 

some individuating apparatus. Unless numbers are public objects, then 

arithmetical sentences will consist only of senseless marks. The vindication of 

realist mathematics as even tenable, depends on demonstrating that numbers 

as abstract objects are public objects.

There is a far older problem for realism in mathematics, which might be 

termed 'the Problem of Epistemic Access'. The problem is most easily put 

forward as a sceptical argument.

Human beings are physical beings, animals equipped to detect limited kinds of 

radiation and limited frequencies of sound, evolutionally prepared to survive in 

a macroscopic physical world. By access to electron microscopes, X-ray 

diffraction photographs, cloud chambers and the like, humans have improved 

their epistemic access to areas of the physical world which are not within the 

reach of their unaided senses. However the possibility of human beings doing 

such things depends on the existence of causal interactions from the 

microscopic and submicroscopic worlds to the domain of perceptual objects 

and events. Without such causal interactions, human beings would be shut off 

from events outside the domain of the perceptual and they would be restricted 

in their knowledge to what is perceivable.

Now the realist mathematician believes in a domain of abstract objects: 

numbers. Being abstract objects, numbers exist neither in space or time.
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Consequently it is impossible that events should take place in the domain of 

numbers, or that there should be causal links between the domain of numbers 

and the perceptual domain. Therefore knowledge of the properties of numbers 

and mathematical knowledge in general is impossible. But this is absurd, since 

plainly we do possess a great deal of arithmetical knowledge about so-called 

'numbers'. Therefore the realist mathematician is wrong.

Both the problem of the publicity of numbers and epistemic access challenge 

the realist mathematician for answers; though the problem of publicity is 

prior. If we cannot even talk of numbers, then how we come to know of them 

hardly arises. The problems have been formulated for realist mathematics; 

but they could be extended to cover many kinds of non-physical ontologies. 

Seeing how these problems can be met in general is an important 

metaontological task.

4.3 First Epistemological Interlude: the Doctrine of the Mind's Eye

One of the oldest answers to these problems is the Doctrine of the Mind's Eye. 

This doctrine maintains that, in addition to their five physical senses, human 

beings have a sixth sense which is purely intellectual and directed towards 

such objects of reflection as numbers and propositions. The adherents of the 

doctrine insist that intellectual perception is responsible for human beings' 

capacity to talk and know about abstract objects.

Sight being the principal sense of human beings, and also the source of much of 

their knowledge, it is not surprising that the Doctrine of the Mind's Eye has 

been a popular answer to the problems just aired. It would have been stranger 

(but perhaps not much stranger) if the doctrine had been that we had the 

capacity to intellectually smell abstract objects!

How old the Doctrine of the Mind's Eye actually is, is partly conjectural. The 

earliest generally accepted authority for the doctrine is Plato. In The
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Republic, Socrates poses the doctrine to Glaucon.

Socrates: '...we say that the particulars are objects of sight but not of 

intelligence, while the Forms are the objects of intelligence but not of sight.' 

Glaucon: 'Certainly'.

Socrates: 'And with what part of ourselves do we see?'

Glaucon: 'With our sight'

Socrates: 'Apply the analogy to the mind. When the mind's eye is fixed on 

objects illuminated by truth and reality, it understands and knows them and its 

possession of intelligence is evident; but when it is fixed on the twilight world 

of change and decay [the physical world] its vision is confused and its opinions 

shifting and it seems to lack intelligence'.

Plato [99] (Stephanus pages 567b - 508d)

Ancient though it is, the Doctrine of the Mind's Eye is by no means defunct. 

Many able mathematicians have held to the doctrine more or less in the form 

that Plato taught it. Elements of the doctrine are to be found in Frege [48] 

and Russell [124], In Frege's system, every significant sentence expresses a 

thought (qedanke) which is the sense of the sentence. This thought is an 

abstract object which is grasped or perceived by anybody who understands that 

sentence. In Russell, the sentence '2 + 2 = 4' deals exclusively with universals 

with which we are acquainted; our apriori knowledge of the truth of this 

sentence is founded on our ability to be directly acquainted with universals. 

G.W. Hardy, speaking in 1940, remarked:-

•For me, and I suppose for most mathematicians, there is another reality, 

which I call 'mathematical reality'; and there is no sort of argument about the 

nature of mathematical reality among either mathematicians or philosophers...
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A man who could give a convincing account of mathematical reality among 

either mathematicians or philosophers would have solved very many of the 

most difficult problems of metaphysics... I believe that mathematical reality 

lies outside us, that our function is to discover or observe it, and that the 

theorems we prove, and which we describe grandiloquently as our ’creations' 

are simply notes of our observations. This view has been held, in one form or 

another by many philosophers of high reputation from Plato onwards.’

Hardy [61]

Kurt Godel, writing in 1964, defended the ancient Doctrine of the Mind's Eye.

'I don't see any reason why we should have less confidence in this kind of 

perception I.e. in mathematical intuition, than in sense perception, which 

induces us to build up physical theories and to expect that future sense 

perceptions will agree with them and, moreover, to believe that a question not 

decidable now has meaning and may be decided in the future. The set- 

theoretical paradoxes are hardly any more troublesome for mathematics than 

deceptions of the senses are for physics.'

Godel [50]

In assessing the claims of these various mathematicians as to how we perceive 

the properties of numbers, a comparison with the facts of physical perception 

is called for.

In humans, sight is the ability to distinguish the size and shape of objects 

without actually touching them. A beginning is made at explaining sight when 

physiology is applied to the phenomena. Physiologists tell us that physical 

objects generally reflect light of certain wavelengths which enter the human 

eye. This light is focussed by the lens in the eye onto the retina. The rods and 

cones in the retina respond to the bombardment of photons of light, by
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transmitting electrical impulses via the optic nerve to the brain. The brain 

then transmits electrical impulses along the efferent nerves to the muscles. 

The muscles then move the body in a way appropriate to the behaviour of a 

sighted organism.

One significant feature of the physiological explanation is that the facts it is 

designed to explain (the behaviour of a sighted person) are significantly 

distinct from the facts used in the explanation itself (the transmission of light 

to the eye; the connection of the brain to the eye by the optic nerve; the 

connection of the brain to the muscles of the body). A certain kind of pseudo

explanation occurs when the 'explanation' is simply a reaffirmation of what has 

to be explained. An 'explanation' of this kind was provided by Moliere's 

medical doctor in his satire Les Malades Imaqinaires. When asked to explain 

why opium makes people sleepy, the doctor replied, to general applause, that a 

virtus dormitiva in opium was responsible. Effectively the doctor had replied 

that opium makes people sleepy because there is something in opium that 

makes people sleepy!

The Doctrine of the Mind's Eye is another pseudo-explanation from the same 

stable. There is no independent physiological account of 'seeing with the 

Mind's Eye' to explain our appreciation of abstract objects, of the kind that 

physiology has provided to explain our appreciation of physical objects. 

'Intellectual perception' has the same explanatory value as 'virtus dormitiva'. 

To say that S knows 5 is prime because S perceives 5 is prime does not advance 

our understanding of mathematical knowledge. In respect of mathematical 

knowledge, the Doctrine of the Mind’s Eye fails to link together the processes 

of proof and calculation, by which we gain mathematical knowledge, with the 

occult faculty of intellectual perception.

For example, Lindemann proved that n was a transcendental number many 

years after transcendental numbers had been defined. Prior to Lindemann 

nobody knew whether transcendental numbers existed or not. How are we to
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explain a century or so of ignorance from the perspective of the Doctrine of 

the Mind's Eye. Why did so many mathematicians fail to see the 

transcendality of tt . Did they fail to look hard enough? What role did 

Lindemann's faculty of intellectual perception play in his discovery?

One way of telling the story is as follows: Lindemann was a brilliant 

mathematician so his intellectual vision for mathematical objects was very 

acute. Lindemann perceived that tt was transcendental in a way that his less 

able colleagues could not. Realising that many mathematicians did not have 

his vision, Lindemann constructed a proof of the transcendental nature of tt , 

based on easily observable characteristics of tt. The proof was a means of 

boosting the intellectual vision of other mathematicians like a telescope may 

improve the powers of the naked eye. The situation is analogous to that where 

a long-sighted man points out a distant object (e.g. a horse) to a near-sighted 

friend and presents him with a telescope to verify what he has seen.

The analogy has a certain gloss. Mathematicians and logicians are familiar 

with first feeling that a given proposition is true and then looking for a proof 

of it. But the gloss is thin and patchy and fails to disguise the elements of 

disanalogy. Consider the physical analogy where the long-sighted man sees 

and identifies a distant horse and says, with the directness and simplicity 

common only to small children and philosophers: 'I know I am looking at a 

horse'. The short-sighted companion queries the claim and is handed the 

telescope. The claim is verified.

Now suppose Lindemann had, without possessing proof, claimed before an 

assembly of his colleagues: 'I know tt is transcendental'. Asked to give a 

proof, Lindemann replies he has no proof and his claim is based on intellectual 

perception. No mathematician would accept a claim like this on such a basis. 

Now further suppose that, at a later meeting, Lindemann turns up with a proof 

of the transcendental nature of. tt. Would this proof verify his earlier claim to 

knowledge at the time that claim was made? No. Unlike the telescope,
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the proof does not verify the earlier claim to knowledge because the proof was 

not in Lindemann's possession when the claim was made. Proof does not verify 

our claims to know through intuition, though it may verify what we intuit. 

Intellectual perception is not a sufficient condition of mathematical

knowledge; neither is it a necessary condition. If the act of intellectually 

perceiving is a private mental act, then it is logically distinguishable from the 

physical acts of calculation and proof. It is therefore quite possible, logically 

speaking, that Lindemann may have lacked the faculty of intellectual

perception, though in all apparent respects he was an extremely competent 

mathematician. In such a case, would Lindemanns proof that n was

transcendental verify his claim to know or not? If we say ’yes' then

intellectual perception is not a necessary condition of mathematical

knowledge. If we say 'no' then we would be saying that a man could be, in all 

respects that we could ever observe, extraordinarily gifted at mathematics 

and yet fail to know the first piece of mathematics! Such a view leads to a 

queer sort of mathematical solipsism; i.e. nobody could have reason to believe 

anybody but himself understood mathematics.

What sort of explanation does the Doctrine of the Mind's Eye afford of the 

publicity of abstract objects and numbers in particular? In miniature, the 

explanation is that when S writes or utters '5', he concentrates his intellectual 

attention on 5 and H does the same. Obviously there is something 

unsatisfactorily mystifying about this concentration of intellectual attention 

on an abstract object. But even if this is put aside, the explanation still fails 

to give numbers the status of public objects. Intellectual perception is a 

private mental act. How then can it be known that S and H focus their 

intellectual perception on the same abstract object when writing or uttering 

'5'? Neither as an analysis, nor as an explanation of our knowledge of abstract 

objects, does the Doctrine of the Mind's Eye succeed in its purpose.
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4.4 Individuating Relations: the Refutation of Idealism

Out of the many philosophical positions that Wittgenstein examined with such 

penetration in the Philosophical Investigations, one of these was the doctrine 

that all mental processes are essentially private, and therefore known directly 

only to the person who has them. A consequence of this view is that 

expressions which describe such mental processes are learnt by each person in 

relation to his own mental processes. Wittgenstein argued that, if this were 

indeed true, then expressions descriptive of mental processes could have no 

sense: they could play no part in an act of communication.

'If I say of myself it is only from my own case that I know what the word 'pain' 

means - must I not say the same of other people too? And how can I 

generalise the one case so irresponsibly?

Now someone tells me that he knows what pain is only from his own case! - 

Suppose everyone had a box with something in it: we call it a 'beetle'. No one 

can look into anyone elses box, and everyone says he knows what a beetle is 

only by looking at his beetle. - Here it would be quite possible for everyone to 

have something different in his box. On might even imagine such a thing 

constantly changing. - But suppose the word 'beetle' had a use in these people's 

language? -If so it would not be used as the name of a thing. The thing in the 

box has no place in the language-game at all; not even as a something: for the 

box might even be empty. - No, one can 'divide through' by the thing in the 

box; it cancels out, whatever it is.'

Wittgenstein [150] (293)

Wittgenstein argued that in order for ascriptions of thought and sensaton to 

oneself to be significant, they had to be correlated to public and observable 

behaviour and actions. These public happenings defined the 'inner process'. It



follows that these behavioural traits could be used to ascribe thought and 

sensations to others. So a condition of sensibly talking about one's own 

thoughts and sensations is that one can, at least in some cases, recognise them 

in others.

'..........if anyone said 'I do not know if what I have got is pain or something

else', we should think something like, he does not know what the English word 

'pain' means; and we should explain it to him. - How? Perhaps by means of 

gestures, or by pricking him with a pin and sayings 'See, that's what pain is!' 

This explanation, like any other, he might understand right, wrong or not at 

all. And he will show which he does by the use of the word, in this as in other 

cases.

If he now said, for example: 'Oh, I know what 'pain' means; what I don't know 

is whether this, that I have now, is pain' - we should merely shake our heads 

and be forced to regard his words as a queer reaction which we have no idea 

what to do with.'

Wittgenstein [150] (288)

Wittgenstein's point is that the sensation of pain is personal to the person who 

has it - nobody can feel m^ pain except me - the concept of being in pain has 

to be defined in relation to observable behaviour and events. So we identify 

pain as that sensation which is produced in normal human beings by injuries of 

various kinds. The sense of the word 'pain' is taught to novices in connection 

with these sorts of scenarios. When we tell a crying infant who has grazed his 

knee that he feels pain and try to console him, we are in effect saying to him 

that he is to recognise as pain whatever sensation is qualitatively similar to 

the sensation he feels in his knee. Because pain is defined in this way, it is 

futile to speculate whether what one feels, having been hurt, is pain. Pain and 

hurt are logically tied together. (Which is why in English we say 'Does it hurt
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(give you pain)? and 'Where (on your body) are you hurt?) The thread of 

Wittgenstein's reasoning can be summed up in a dictum which deserves to be 

engraved on the mind of every ontologist.

Objects and processes that would otherwise be private become public objects 

by being defined through their public relations to public objects and processes.

Applying this dictum to ontology in general, we conclude something like this.

If an ontologist wishes to introduce a kind K into his ontology, and Ks look to

be private objects of which nothing useful can be said, then he requires

another kind Kj, to define Ks, by virtue of their relation to Ks. But if Kis are

similarly placed as Ks; that is, their publicity is in doubt, then Kjs will need

another kind K2 by which their publicity can be guaranteed. If circularity and

infinite regress are both to be avoided then there must be a kind Kn whose

elements are guaranteed to be public. The elements of Kn will fund the

reference to all other entities of the ontologist's ontology. The elements of
2

Kn I call basic objects.

The category of basic objects is nothing more than the category of physical 

(i.e. spatio-temporal) objects. The evidence for identifying physical objects as 

basic is extremely strong. Only physical objects satisfy the following three 

conditions.

(1) There is no reasonable doubt as to the existence of physical objects. 

Traditional philosophical arguments to show that our epistemic access to 

physical objects is problematic are unsound.3

(2) Physical objects are objects which we already perceive and refer to. 

There are no grounds to doubt their publicity.

(3) Since the problem of publicity rose over non-physical objects, it would be 

a petitio to identify as basic anything else but concrete objects.
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Protagonists of the Idealist and Phenomenalist traditions in philosophy will 

disagree with these remarks. According to the phenomenalist tradition, all 

that a human being actually perceives are sense-data (sounds, colours etc) in 

his own private space. Gnce the phenomenalist position is accepted then a

whole range of philosophical problems arise. For example, how can a person 

ever know of the existence of things outside his mind since all he sees is a 

picture show of his perceptions? Locke adopted the representationalist view: 

what the mind sees is a representation, accurate in parts, of what lies beyond. 

Berkeley, the archtype Idealist, rejected Locke’s account and argued that 

there was nothing beyond except other minds; God's in particular. Hume 

declared the whole debate insoluble and advocated backgammon. Kant 

concocted a noumenal world as the beyond, in which space and time did not 

exist. Carnap in the Aufbau tried to merge what lay beyond and what 

appeared before, by analysing reports about what lay beyond as reports about 

experience or possible experience.

All these programs were flawed from their very inception, since the 

assumption on which all were constructed was false. If the only objects with 

which humans are acquainted are private mental percepts then it would be 

impossible ever to say anything of sense about those percepts. If S should 

make the statement 'I am now experiencing a yellowish sense-datum' it would 

be utterly unclear what S meant. S could be talking about anything in his 

private mental box. Even 'yellowish', if taken to be meant by S to refer to his 

private percepts, could have any meaning. In order for remarks about sense- 

data to be more significant than disturbances in the atmosphere, sense-data 

must be defined in relation to public objects. S can say his sense-datum is like 

a yellow dot on a piece of paper, or it is the sort of thing that is caused by 

looking at sodium lamps or sunflowers. But however sense-data are defined, 

remarks about sense-data only make sense because there is a public physical 

world to anchor sense-datum language to. Idealism is therefore false, for if it
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were true, language would not be possible. A minimum ontology must 

recognise the existence of physical objects.

Applying these ideas to the case of numbers is a good way of illustrating the 

concepts involved. Numbers are in danger of being classed as ineffable private 

objects; therefore they require to be defined in relation to public objects.

One way this could be done is by defining numbers in relation to physical 

objects. The choice of physical objects is somewhat important if we are to 

avoid Frege's objections to viewing number as a property of physical objects 

(which was Locke's mistake). We cannot say, for example, that my right hand 

has any number associated with it. For this reason, Frege preferred to say 

number was a property of concepts rather than of objects. Thus the concept 

moons of Venus is numbered by zero, though the moons of Venus themselves, 

since there are none, are not numbered by anything. For more modest 

ontological purposes, open sentences can be used in place of concepts. Thus 

zero numbers the open sentence 'moon of Venus x' and four numbers the open 

sentence 'finger of my right hand x'. Open sentences are to thought of as 

either events (when uttered) or material objects (when written). Either way 

they are physical objects in our sense of the word.

Once numbers are defined as objects linked to open sentences in this manner, 

numbers can be individuated by their relations to open sentences. No two 

numbers number the same open sentences and so we can test whether S 

associates the same numbers with the same numerals that H does by asking 

what numbers S and H take to number various open sentences. For instance, if 

S and H independently agree that the answers to questions liker-

'What numbers the open sentence 'toe of my right foot x',

'What numbers the open sentence 'side of the figure following x';
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is '5', then they attach the same sense to *5'. For the denotation of '5' is 

defined as just that thing which numbers those sorts of open sentences. The 

question 'Yes, they both know that it is right to say '5 is the object which 

numbers these open sentences', but do they really mean the same by '5'?' would 

be, in Wittgenstein's words, 'a queer reaction which we have no idea what to do 

with'.

There are a number of salient features of this case which are philosophically 

of great importance. First, we introduced a domain of public objects by which 

numbers were to be defined; these were open sentences. Then there were the 

numbers themselves whose publicity had to be demonstrated. Finally there 

was the relation of numbering itself which bound the two domains together. 

Technical vocabulary is required here: call the process by which putative 

entities of an ontology are proved public, publification (not to be confused 

with publication); the public objects we invoke to aid publification, discharged 

objects; the objects whose publicity we seek to demonstrate prototype objects; 

and the relation that we introduce to bind the two together, the individuating 

relation. In the specimen publification, open sentences were discharged, 

objects, numbers were prototype objects, and the relation 8 numbers 5 was the 

individuating relation.

The essential features of publification can be laid down in numbered form.

(1) The discharged objects must be public objects.

(2) The individuating relation must individuate the prototype objects. It is
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the foundation of reference to, and identify criteria for, the prototype 

objects.

(3) The individuating relation may be metaphysically nonempirical but it 

must be epistemically empirical.

The discharged objects must be public. We do nothing in the way of publifying 

a kind K of objects if our reference to them is cashed in terms of objects 

whose publicity is just as much in doubt as Ks. So for example, if we tried to 

show that possible worlds are public objects by individuating them in terms of 

their possible contents, the attempt would be a failure. Possible individuals 

are as much in need of publification as possible worlds.

To demand that the discharged objects be public objects is not to demand that 

they be physical objects though of course it they are physical objects they will 

be public. The discharged objects may be prototype objects of a previous 

successful publification. For instance, an ontologist may wish to include 

propositions in his ontology, and also sentence-types. If he publifies sentence- 

types he can use them as discharged objects to publify propositions. 

Propositions might then be publified as entities which sentence-types express. 

It will, however, be true that since physical objects are basic (i.e. public 

without need of being publified), then the chain of dependancy will end in 

them.

The individuating relation must individuate the prototype objects. Suppose it 

did not: thenwe would have the following scenario. A domain D of discharged 

objects, a domain P of prototype objects, and an individuating relation R 

running, say, from the elements of P to those of D. There are at least two 

distinct elements of P which have the same R-relations to every element of D. 

Formally:-

(3 x,y; x e P, y e P)(z; z e D)(-(x = y) & (Rxz =  Ryz))
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In such a case if speakers S and H identified an element of P in terms of its R- 

relations to D elements it would still be an open question whether they were 

referring to the same element or not. For instance, if two distinct numbers 

could number the same open sentences then it would be no evidence that S and 

H were referring to the same number that they associated it with the same 

open sentences. Rejecting this sort of case means rejecting the formula 

above; or, equivalently, accepting its negation:-

(x,y; x e P, y c P)(z; z c DXRxzS R yz)o  x = y

This formula is the schematic form of a criterion of identity, whose 

importance will become clear in the appendix I.

The individuating relation may be metaphysically nonempirical but it must be 

epistemically empirical; this remark has certain Kantian overtones that need 

explanation. Kant at one place in the Critique of Pure Reason remarked that 

space and time are transcendentally ideal but empirically real. Kant meant 

that outside of the human mind, space and time did not exist; that is to say, 

the noumenal world is one where the concepts applicable to spatio-temporal 

objects do not apply. Nevertheless, space and time are empirically real. They 

are forms imposed on the raw stuff of the noumenal world by the faculty of 

intuition, and because the faculty of intuition is the same for everyone, the 

properties of space and time are objective for us and determinable 

independent of our fancy.

A relation is metaphysically unempirical when it includes objects which are 

not objects of experience. We cannot perceive numbers in any way at all, and 

advocates of the Doctrine of the Mind's Eye have achieved little but obscurity 

in supposing that we can. The relation 9 > 5, interpreted over the domain of 

positive numbers is metaphysically unempirical since the elements of its 

domain and range are not objects of experience. The individuating relation
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8 numbers 5 which holds between numbers and open sentences is also

metaphysically unempirical since the elements of its domain are not objects of 

experience.

But although 8 numbers 6 is metaphysically unempirical, it is epistemically 

empirical. For instance, we cannot determine if, say, 5 bears the relation 

8 numbers 5 to 'toe on my right foot x' by empirically inspecting 5 and the open 

sentence in question to see if this is so. The procedure involved is not at all 

like standing two men side by side to see who is taller. Nevertheless if 

8 numbers 6 is to be useful as an individuating relation there must be some way 

of telling when a number bears that relation to an open sentence. This 

requires that we be capable of carrying out some empirical procedure within 

the range of our experience to settle if, for example, 5 and 'toe on my right 

foot x' are respective arguments to 8 numbers 5. This empirical procedure is 

the simple one of counting the toes on my right foot. Consequently though 

8 numbers 6 is metaphysically unempirical, the evidence for its holding 

between two arguments is empirical. Unless 8 numbers5 was epistemically 

empirical, it would not be usable as an individuating relation to test our 

reference to numbers.

Roughly then, there are four important_ aspects of a publification; these are;- 

the prototype objects, the discharged objects, the individuating relation and 

the empirical techniques used to determine when the individuating relation 

holds between a prototype object and a discharged object. The table opposite 

shows some different kinds of prototype and discharged objects and their 

associated individuating relations. Question marks show where, in my opinion, 

there are doubts left unsettled.
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Diagram 4
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word-types token of word-tokens observation of the 

shape of word-tokens.

sense-data causal? stimuli to the 

body?

observation of 

stimuli?

propositions expressed

by

sentences determination of 

meaning of sentences

possible

worlds

? 7 7

facts ? ? ?

spatial points is part of volumes of space? spatial observation

instants is at? events? temporal observation
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4.5 The Introduction of non-P variables

The previous section examined the ways in which we could aspire to make 

sense of terms that purported to refer to non-physical objects without 

recourse to flights of fancy like the Doctrine of the Mind's Eye. In this 

section, the task is to adapt the conclusions of the previous section towards 

specifying the conditions that a non-P-variable has to satisfy in order to be 

introduced into the canonical language. This is an opportune moment to usher 

forward another technical concept, one that, hopefully, will come to seem 

natural and easy to use in context; this is the concept of being well- 

introduced.

Briefly, a variable is well-introduced when it is demonstrated to have sense. 

The whole of this chapter is concerned with the conditions of well-introduction 

for various kinds of logical variable. We have already seen the conditions of 

well-introduction for a specific class of logical variable, namely those 

variables which are both P (physicalistic) variables and E variables. These 

variables are well-introduced when their index of autonomy in a semantic 

matrix test comes up to a designated minimum. How a semantic matrix test is 

performed is a matter of record in 4.2. Performing a semantic matrix test for 

variables which are both non-P variables and E variables is, in many respects, 

similar to semantic matrix tests for P variables which are also E variables. 

The difference is that we are not capable of presenting the objects of the 

variables' extension to the elements of the subject sample; instead we present 

atomic E sentences and enquire after their truth-value relative to the ontology 

characterised. Thus in well-introducing, 'x is prime’, we do not present 2 and 

ask if it is prime; we ask instead the question "Is '2 is prime' true in the 

characterising language of arithmetic?' Agreements in valuations of this kind 

is the hallmark of such variables being well-introduced.
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We observed in 4.2 that the problem with non-P variables lay in showing that 

non-P terms had an agreement in sense between two speakers as to what they 

are supposed to signify. In order for any such agreement to be manifest, the 

objects signified by those terms, the prototype objects, had to be publified. 

Here what we have to do is translate the requirements of the publification of 

prototype objects into the requirements of well-introduction for the non-P 

terms that are supposed to signify them.

Essentially this means a switch from the material to the formal mode of 

speech. In order to avoid the proliferation of unnecessary jargon, I shall carry 

over as far as possible, the technical vocabulary used to characterise 

publification over to well-introduction. Thus instead of publification, I talk of 

well-introduction. Instead of discharged objects, I talk of well-introduced 

terms. Instead of prototype objects, I talk of prototype terms; and instead of 

individuating relations, I talk of individuating predicates.

The extention of a canonical language to include variables which purport to 

range over a kind K of non-P objects begins with a statement, by the 

ontologist, of the E variables he is going to use to characterise Ks. These will 

naturally divide into predicates, function-expressions and names. None of 

these expressions will be as yet well-introduced and the ontologist's second 

task will be to show that the names are well-introduced. In order to do this he 

will draw upon a stock S of well-introduced terms and an individuating 2-place 

predicate p. p will have two Important characteristics.

First, p will be the foundation for the individuation of and reference to, the 

prototype objects. Translated into the formal mode, this means that the 

ontologist assents to a formula which says that no two prototype objects have 

the same p relations to the discharged objects.

Second, p must be epistemically empirical. This means that members of M 

must agree on the truth-value (relative to the assumption of the existence of 

Ks) of atomic sentences formed out of (i) p (ii) a prototype name (¡0 a



member of S. Such agreement is readily quantifiable in a semantic matrix 

test.

Once p is demonstrated to have these characteristics it can be held to be well- 

introduced and the prototype names are well-introduced too. The well- 

introduction of the rest of the vocabulary used to characterise Ks follows 

orthodox lines in the form of semantic matrix tests.

4.6 Second Epistemological Interlude; the Problem of Epistemic Access

The problem of Epistemic Access was that of explaining our knowledge of 

abstract objects given that we are perceptually divorced from them. The 

problem as stated splits naturally into two parts:-

(1) How do we know (if we do) of the existence of abstract objects?

(2) If we do, how do we know (if we do) of what properties they have?

The answer to the first question was provided by Quine: we are compelled to 

recognise the existence of a kind K of abstract objects if we are required to 

quantify over Ks in the formalisation of a true theory. The answer to the 

second question demands a little more thought than recourse to a cut-and- 

dried stock response. Once this answer is provided, the stock response to (1) is 

leavened by a little more freshness.

To begin indirectly on the job of answering (2) it is instructive to start with 

Locke's remarks in Book IV of An Essay Concerning Human Understanding on 

the possibility of knowledge of atoms and their properties.

'If a great, nay, for the greatest part of several bodies in the universe escape 

our notice by their remoteness, there are others that are not less concealed 

from us by their minuteness. These insensible corpuscles being the active
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parts of matter and the great instruments of nature on which depend not only 

all their secondary qualities but also most of their natural operations, our want 

of precise distinct ideas of their primary qualities keeps us in an incurable 

ignorance of what we desire to know about them... Whilst we are destitute of 

senses acute enough to discover the minute particles of bodies and to give us 

ideas of their mechanical affections, we must be content to be ignorant of 

their properties and ways of operation; nor can we be assured about them any 

further than some few trials we are able to reach.... And therefore I am apt 

to doubt that, how far soever human industry may advance useful and 

experimental philosophy in physical things, [knowledge] scientifical will still be 

out of reach...'

Locke [84] (160 - 161)

Locke is expressing a doubt that must be natural to any intelligent 

commentator who is first confronted with the atomic hypothesis: if atoms are 

so minute as to be invisible, how can we come to have knowledge of them? 

Locke thought we could not.

But Locke's prognosis of progress in 'physical things scientifical' turned out to 

be wrong. What overturned Locke's reasoning in the passage above? In the 

first instance, Locke could not have foreseen the development of scientific 

apparatus for the pursuit of atomic physics such as X-ray diffraction, mass 

spectroscopy and particle accelerators that modern technology has provided. 

But in the second (and more important) instance, Locke placed too much 

emphasis on the importance of observation and too little on the importance of 

the hypothetico-deductive method in advancing the progress of science. It is 

true that the scientist cannot directly observe the behaviour and properties of 

atoms; but he can ask himself what properties atoms must have in order to 

explain his macroscopic observations.



A classic instance of such reasoning in action is Rutherford's theory of atomic 

structure, derived from his famous gold foil experiment of 1911 in which 

Rutherford directed a stream of «¿particles at a piece of gold foil (see diagram 

5). Rutherford noticed that whereas most of the particles passed straight

through the foil, there were others which were deflected by as much as 180°. 

In order to explain these observations, Rutherford abandoned the atomic model 

of J.J. Thomson. Thomson believed that solid objects consisted of atoms 

joined together. But this model was incapable of explaining how the 

o< particles had managed to pass through the foil.

Rutherford supposed instead that the atoms of which the foil was composed 

were, in fact, widely spaced, and in consequence most of the o< particles 

passed straight through. The few deflections that occured were explained by 

supposing that the P< particles had collided with the atoms themselves.4 

Rutherford's reasoning is a beautiful example of black box reasoning. A black 

box is a domain of entities which are not directly accessable to human 

investigations or observation. The methodology of black box reasoning is to 

hypothesise what might be in the box and the general properties of the same, 

and to infer what is then to be expected from the black box. In this way the 

scientist tries to recover the macroscopic output of the black box from his 

hypothesis.

The means by which an ontologist comes to attribute properties to abstract 

objects is very similar. Let us take as an example, set theory. Sets are 

abstract objects and they are not observable. An ontologist who postulates 

that there is a domain of sets has created a black box, since there is no 

perceptual access to this domain. The ontologist introduces his hypothesis in 

order to provide an ontology for pure mathematics.

Approaching the subject in this way, the ontologist quickly discovers that in 

order that sets play the explanatory role he has assigned them in mathematical 

reasoning, certain fundamental axioms have to be assumed. For instance, if he

1 81



Taken from Silva & Lochak [132]
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wishes to underpin the mathematical assumption that any countable domain of 

objects can be well-ordered then he will have to assume the Axiom of Choice 

or one of its equivalents5. Like the scientist, the ontologist will try to adopt 

the simplest and most economical axiom set to support mathematical thought. 

The logical structure of this approach is illustrated in diagram 6.

This way of arriving at the axioms of set theory is much the way that 

mathematical logicians chose to develop the subject; that is, they assumed as 

axioms all those formulae which were necessary to establish set theory as the 

foundation for mathematical thought. However this methodology does leave 

open questions behind it; as to the truth of the Generalised Continuum 

Hypothesis, for example.

The Generalised Continuum Hypothesis states that there is no set of a 

cardinality greater than Nn and less than Nn+i  for any positive integer n. A 

consequence of this hypothesis is that there is no set of a cardinality greater 

than the set of natural numbers but less than that of the real numbers, since 

/ n = Nb and R = The consistency of the Generalised Continuum

Hypothesis with ZF was proved in 1939 by Godel, and its independance of ZF 

by Cohen in 1963. The Axiom of Choice is likewise independent of the rest of 

ZF. However, unlike the Axiom of Choice the Generalised Continuum 

Hypothesis is not required as an assumption to fund mathematical reasoning. 

Black box reasoning fails to reach a verdict on the Continuum Hypothesis? 

There are at least two possible conclusions to be drawn from this.

The first conclusion is that the black box which is the world of sets, cannot be 

thoroughly explored by black box reasoning. The conclusion will the be that, 

although the Continuum Hypothesis is either true or false, human reason may 

never be able to determine which. Parenthetically, it should be said that the 

present indecision regarding the Continuum Hypothesis need not last forever. 

Advances in mathematics and, (especially) maths-related disciplines like 

physics may throw the spotlight of application on the purest of mathematics.
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Should it ever transpire that transfinite arithmetic becomes useful in this way, 

it may be that some purpose will be found in assuming the Continuum 

Hypothesis.

A second possible conclusion is that the very failure of black box reasoning to 

pronounce on the Continuum Hypothesis shows something about the black box 

of sets: namely that the Continuum Hypothesis is neither true nor false. The 

idea is that what obtains in a black box is to be identified with what can be in 

principle inferred to obtain in the box. What cannot be inferred is not there to 

be inferred (As Wittgenstein once remarked '..a nothing would serve just as 

well as a something about which nothing could be said'). Such a conclusion 

flies in the face of classical logic, with its insistence on LEM and PB. But we 

shall see in chapter 5, strong philosophical reasons which argue for the 

existence of just such a kind of ontological indeterminacy.

4.7 Non - E variables

Only E variables have been so far considered. Many variables are not E - 

variables. The function-expression 'g', here defined, is not an E variable

n + 1 if there are n consecutive 7s in the decimal expansion

‘ O f  I T

 ̂ n - 1 otherwise.

g is uncomputable. If there are not n consecutive 7s in the expansion of it , 

there is no effective method of determining g(n). Nevertheless, we assume 

that the above definition gives *g’ a sehse. But how 'g' acquires a sense cannot 

be explained by the hypothesis that human beings associate the same values to 

the same arguments to g. This hypothesis is false: we simply cannot compute 

such values as the arguments rise in magnitude.

g (n) =
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Uncomputable functions may generate one kind of non - E variable. There are 

others. The predicate 'x is an atom' is a non - E variable. Human beings 

cannot straightforwardly indicate atoms and it is not expected of a person who 

claims he grasps the sense that he, per impossible, should be required to pick 

out individual atoms.

Atomic theory had its earliest sponsors in Leucippus and Democritus who lived 

in the Golden Age of Greek Civilisation. We can imagine a sophist, Skeptikos, 

confronting Leucippus with the following argument.

'My dear Leucippus; I find your atomic theory and your cosmogony quite 

fascinating:- but I must confess that your use of the word 'atoms' (aTo^o^) 

perplexes me. You admit that atoms are too small to be seen and so you 

cannot point them out to me. How then am I to know what sense you attach to 

this word 'atom'? For all I know, what you have in your mind when you talk of 

atoms may be quite different from what I have in mind. There really can be 

no communication between us on this topic because no meaning can be 

attached to this word 'atom' at all.'

If Leucippus were alert to a reply, then he might offer the following.

'You are right, Skeptikos, in saying that my atoms are too small to be seen. 

You are right in saying I cannot point them out to you. But you are wrong in 

insisting we cannot come to appreciate what they are. What I mean by 'atom' 

is a particle of the shape of a round smooth stone, but unbreakable, and of a 

thousandth part or less of a grain of sand. I am sure that when I have defined 

'atom' for you in this way, that you will appreciate as well as I, what I mean by 

'atom'. You know how to pick out a round, smooth stone and you have seen 

amphorae of wine broken. You have seen moneylenders weighing gold in the 

market and know what a thousandth part by weight looks like. Well then, you
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understood everything you need to know in order to understand what I mean by 

'atom'.'

The strength of this reply hinges on the ability of Leucippus to define 'atom' in 

terms which Skeptikos has to agree he understands.

A similar sort of technique can be used to well-introduce 'g'. Suppose that 

both S and H attach the same sense to 'g'. Whether this is true or not, the 

supposition cannot be tested by asking them to write out the extension of 'g'. 

However, it can be concluded that S and H attach the same sense to 'g' if they 

attach the same sense to the definienda of 'g'; i.e. if S and H mean the same by 

'decimal expansion', 'successive', '+' and so on. In short, the ability to test 

whether a non - E variable like 'g' or 'atom' has the same sense for all speakers 

depends on being able to give some account of what the non - E variable means 

in terms of E variables.

In the context of a canonical language an ontologist who introduces a non - E 

variable § , shows that § is well-introduced if, and only if, he can offer a set of 

constructional definitions which allow for the decomposition of § into E 

variables and logical constants alone. Formally, where S, is any sentence of 

the canonical language containing a non - E variable; D is the set of all 

constructional definitions for the canonical language are all well-introduced 

iff:-

Si -JHd S2S'

where S2 is a canonical sentence that contains no non - E variables.

Example: the ontologist lists 'proton x' as a non - E variable. He lists 

'qualitatively identical x,y', 'cathode plate x’, 'deflected towards x,y, 'numbers 

the mass in kg x,y', 'x > y', 'x < y', 'x', '1.8', '1.6', '10-27»  ̂ag e* variables. Within 

D, his set of constructional definitions, he has the following axioms.
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(x) proton x positive x & (3y)(y < 1.8 x 10-27 & y > 1.6 x 10“27 

particle & numbers the mass in kg. (y,x))

(x) positive x 

particle

(3y)(3z)(cathode plate y & deflected towards (z,y) 

& qualitatively identical (z,x)

These two axioms allow for the decomposition of 'proton x' into variables 

listed as E variables and logical constants. Consequently 'proton x' is well- 

introduced by the principles that allow for the construction of first-order 

languages.

Within the context of a canonical language, every non - E variable listed will 

be formally analysable into E variables with the aid of constructional 

definitions. However in deciding in what way a given non - E variable is to be 

introduced in a canonical language, it is not necessary to believe that there is 

one and only one proper analysis of the variable in question.

As a case in point consider the expression 'hydrogen' (meaning water gas) 

which has had a use in chemistry since the eighteenth century. There are 

many properties which can be used to define 'hydrogen'; e.g. hydrogen is the 

gas evolved at the cathode in the electrolysis of water; hydrogen is the gas 

evolved by the action of dilute mineral acids on iron, zinc or aluminium; 

hydrogen is the element with only one proton in the nucleus of the atom. 

Faced with a multiplicity of ways of fixing the sense of 'hydrogen' there is no 

reason to believe the word has only one correct analysis. The same holds true 

of names introduced as non - E variables: there is no reason to suppose that 

such names can be fixed in sense by only one description. However, in the 

context of a canonical language, uncertainties in meaning like this are 

conventionally eliminated by selecting some one analysis. Having made this 

selection, the analysis then fixes the sense of the sign.
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APPENDIX I

No Entity without Identity

Within ontology it is said that to include some novel sort K of entities as 

amongst the things that exist is to be obliged to provide an identity criterion 

for Ks. This maxim raises two immediate questions which it is the purpose of 

this appendix to answer.

(1) Why do we need identity criteria?

(2) If we do, what form should they take?

The first question is logically prior to the second. If we can see exactly why 

we need identity criteria - what task we need them to perform - then we will 

also know what constitutes a good criterion of identity and how it should be 

formed. Understanding what form any human construction should take 

depends first on understanding its purpose.

Frege is recognised to be the original source of the demand for identity 

criteria, though what he says is limited to a very short passage.

*.....we have already settled that number words are to be understood as

standing for self-subsistent objects. And that is enough to give us a class of 

propositions which must have a sense, namely those that express our 

recognition of a number as the same again. If we are to use a symbol a to 

signify an object, we must have a criterion for deciding in all cases whether b 

is the same as a, even if it is not always in our power to apply this criterion.'

Frege [46] (62)

The argument, as I understand it, is as follows: if we regard 'a' and 'b' as
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denoting individuals then we must regard 'a = b' as true or false and hence 

meaningful. In order to claim 'a = b' is meaningful we have to state the truth- 

conditions of 'a = b'. Such a statement is a criterion of identity.

Frege's argument leaves very little clue as to how such a criterion should be

framed? Would 'a = b 3  (F) F a s  Fb' count as a criterion? If not, why not? As 

Frege's alleged leading interpreter it is natural to turn to Dummett to justify 

and expand Frege's position:-

'If we are to understand an expression as standing for an object, then we must 

be able, in Frege's vivid phrase, 'to recognise the object as the same again' we 

must, that is, know under what conditions some other term will stand for the 

same object. If, for instance, I am told 'This is the River Windrush' and I have 

no idea of how to determine whether it would be right, at some other place or 

time or both, to say once more 'This is the River Windrush' then I know nothing 

about the expression 'the River Windrush' save the bare fact that it was right 

to say 'This is the River Windrush' at that very time and place. I thus do not 

know what object was being named, or, indeed that the expression was being 

employed as a name of an object at all. It could have meant, 'This is beautiful' 

or anything.... To the extent that I am uncertain of how to 'recognise the 

object as the same again', not only can I not be said to know what object it is, 

but I also do not know what is true of it.'

Dummett [42] (73 - 74)

Aside of the historical inaccuracy in interpreting Frege in this manner, what 

Dummett says here is wrong.

For example, suppose I have a box of qualitatively identical ball-bearings. I 

pick one ball-bearing out of the box and baptise it 'Henry'. I return Henry to 

the box and closing the lid shake the box vigourously. Looking at the mass of 

ball-bearings now at the bottom of the box I have no idea which one is Henry.



Not only have I no idea which one is Henry, but I have no idea how to go about 

finding which is Henry. But it does not follow the name 'Henry1 makes no 

sense to me and that I cannot understand what is true of Henry. I know Henry 

is in the box; I know Henry is a ball-bearing; where a,b,c...,n are all the ball

bearings in the box, I know that (a = Henry) v (b = Henry) v (c = Henry)....v (n = 

Henry). (Dummett chooses to ignore an important rider to Frege's demand for 

an identity criterion:- namely it need not always be withn our power to apply 

such a criterion; or even know how it could be applied for every case).

Wiggins in Sameness and Substance also has his own views on why criteria of 

identity are important.

'The real and abiding interest of Frege's demand for the criterion of identity 

seems to me to be this: whenever we suppose that entities of kind f exist we 

are committed to ascribing some point to typical identity questions about 

particular fs; and, in so far as identity is a puzzling or problematic relation, 

the first concern of the philosopher of any subject matter must be to enhance 

our powers of finding the elucidation.... for its disputed identity questions.'

Wiggins [148] (53 - 54)

Much of the vagueness that attached to Frege's original exposition is preserved 

by Wiggins. Wiggins does not make clear why identity questions are so 

significant bar saying that we are committed to ascribing some point (what 

point?) to typical identity qustions. If Wiggins had made clear what this point 

was then his case would have been considerably advanced. Perhaps the 

suspicion of a justification lies in his remark that identity is or can be a 

puzzling relation. Now if 'puzzling' is intended to mean confusing, paradoxical 

or obscure to men in general then I do not think what Wiggins says is true. If I 

said 'Caesar was the Roman general who with his army crossed the Rubicon in 

55 B.C.' then this statement is neither puzzling, paradoxical or obscure to
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anybody who grasps plain English. On the other hand if Wiggins means 

puzzling to those with special interests in philosophy then he may be right. 

But then, we are entitled to some explanation of what the puzzle or the 

problem might be, and this is something Wiggins does not provide. Though it 

would be possible to multiply the instances of philosophers who have thought 

that criteria of identity are good things to have, without knowing why, such 

multiplication would not advance our understanding.

Understanding why criteria of identity are necessary starts with realising that 

a kind K of entity is always introduced into an ontology under a sortal 

expression. A sortal expression is an expression of which we can ask how many 

things there are which fall under that expression. 'Table', 'natural number', 

'star', 'human beings presently (i.e. at 3.20 p.m. on the 11th July 1984) alive' 

are all sortal expressions. In each case we can sensibly ask 'how many?':- how 

many tables are there?; How many natural numbers? How many stars? How 

many living human beings? In each case the objects that fall under these 

expressions are rightfully deemed as entities if we accept they exist. In fact 

we can say that the properties which are essential to an entity qua entity are 

those inferrable from its falling under a sortal expression.

When a kind K of putative entities is introduced into an ontology the first 

requirement is to show that Ks have even the right to be considered as entities 

which could exist; that is to say, we are required to show that, where ^  is the 

expression used to denote Ks, that if anything falls under ^  then it is an 

entity of some sort. Thus if we suppose possible worlds to exist we need to 

show that, if they did exist, they would be entities of some kind. To be an 

entity is to either fall under, or be capable of falling under, a sortal 

expression. Therefore the obligation to show that Ks could ever be entities is 

discharged when i|n, is shown to be a sortal expression.

A sortal expression is one to which we can sensibly attach a 'How many?’ 

question. This means it is sensible to suppose that there are a distinct number



of things, individuated one from another, which fall under the sortal expression 

and are therfore countable, if not by ourselves then perhaps by a being of 

greater powers e.g. God.

There are at least 3 distinct abilities presupposed in counting a collection of 

entities of kind K. If I wish to count the collection of all Ks then, first, I must 

know when I am counting in a K rather than a non-K. I must be able to 

discriminate Ks from non-Ks. Second, I must know when I am assigning a 

number to one K or more than one K. I have to assign the number 1 to one K, 

2 to another, 3 to a third and so on. I must not get confused as to where one K 

begins and another leaves off. I must be able to distinguish one K from 

another. Third, and last, I must never count the same K twice. If I came to a

K that I have counted in, I must not count it in again. I must be able to
\

recognise the same K I met before. Even if we cannot, for practical reasons, 

actually count the numbers of entities that fall under a sortal expression, still 

we can only make sense of the idea that there is a definite number to that 

collection by analogical extention of our own counting abilities. These 

abilities presuppose possession of criteria of demarcation (distinguishing Ks 

from non-Ks), also of differentiation (distinguishing one K from another) and 

finally of persistance (seeing when one K is numerically the same as a K 

encountered previously). Thus if we succeed in associating with +|< criteria of 

demarcation, differentiation and persistance then we will have shown ÿk 

collects a countable collection and hence that i|»k is a sortal expression. This 

is what is also needed to show that Ks could even be entities.

We have established a connection between the concepts entity, sortal 

expression, and criteria of demarcation, differentiation and persistance. We 

can add to the family, sets and quantification.

In set theory it is commonly assumed that every set has a definite cardinality 

(in ZF this is demonstrable from the Axiom for Cardinal Numbers; (see Suppes 

[140] (111)) and it is also common to denote sets by a set-abstract of the form
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'{v: FVJ' where Fv is an open sentence. The set denoted is the set of all and 

only those things collected by Fv. Now unless Fv were a sortal expression, the 

collection that Fv collected would not be countable and '{v: Fvj' would not 

have any definite cardinality. Consequently it is a condition on the 

employment of set abstracts that only sortal expression be used within the 

braces

The connection of sortal expressions to set theory leaks over into 

quantification in two ways. First, we can easily pass over from set-theory into 

the schema 'C3 v)Fv =5 (3 v^) £-£/: FVJ\ The restrictions on the sortal nature

of Fv are then transmitted into quantification. But, second, the relation 

between quantification and sortal predicates lies in the semantics for first- 

order languages themselves. In order to turn an uninterpreted first-order 

formula into something that constitutes a declarative sentence, the formula 

requires an interpretation. Thus we attach a domain D as a range of the bound 

variables, an element of D to each individual constant of the formula, an n-ary 

function on D to each n-place function letter and a subset of Dn to each n- 

place predicate letter. The truth-conditions of the resulting sentence are 

easily determinable given a grasp of the sense of the logical constants used. 

Essentially, any sentence which can be generated from a first-order formula 

can be generated in this way. Even if we should rather choose to replace the 

predicate-letters by predicates, the individual constants by denoting names 

and the function letters by function expressions, still we are only doing, in an 

indirect way, what is done in assigning an interpretation to the logical 

variables themselves. The only difference is that the symbols we supplant the 

logical variables of the formula with, carry with them their attendant 

interpretations. But unless these interpretations were of the appropriate kind, 

what would result would be not a declarative sentence but nonsense. To 

demand a predicate i|i carry with it the appropriate interpretation to allow it 

to substitute for a predicate letter is to demand it carry a set as its extension.
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But since every set has a cardinality, it follows that if i|i is appropriate, it 

must be a sortal term. Only sortal predicates may be attached to objectually 

bound variables.

(This raises obvious problems if the task is to formalise sentences containing 

mass predicates. Our reasoning forbids us to formalise 'Water exists' as 'Ox) 

water x'. In order to handle mass predicates with objectual quantifiers, the 

mass predicates must be converted into sortal predicates. This conversion 

involves the use of what Griffin [57] calls a SAN (sortalising auxiliary noun). A 

SAN is a sequence of signs that constitutes a sortal forming operator on mass 

expressions.

e.g. SAN Mass Expression

is a molecule of hydrogen

is the fusion of all water

Once a mass predicate has been sortalised, then the resulting complex sortal 

predicate can be formalised in the standard manner. So 'Water exists' might 

appear as '(3x) x is a molecule of water.')

To sum up then, criteria of demarcation, differentiation (identity) and 

persistence are what needed to show an expression is a sortal expression. 

Sortal expressions themselves play a significant part in ontology in at least 

three ways; (i) to demonstrate that an expression is a sortal expession is to 

demonstrate that whatever falls under that expression is an entity, (ii) to 

demonstrate that an expression is a sortal expression is to show it can be used 

in set-theoretical reasoning; (iii) to demonstrate that an expression is a sortal 

expression is to legitimise the procedure of quantification. To fail to provide 

the appropriate criteria and yet to make full use of the machinery of set 

theory and quantification is 'symbol pushing* of the lowest kind. Readers of 

the current literature on possible world semantics will know who to number 

amongst the guilty.
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For an ontologist who has already guaranteed that his canonical variables are 

well-introduced by the standards of chapter 4, the requirement to produce the 

appropriate criteria of demarcation, identity and persistance will have been 

largely fulfilled. To take each in turn:-

Criteria of Demarcation

To demonstrate that a variable v has a high index of autonomy is to show that 

there must be some criterion for demarcating what falls under v and what does 

not. If there was not such a criterion, then members of M would be lost as 

when to classify objects under v and when not. Criteria of demarcation are 

thus subsumed by semantic matrix tests.

Criteria of Identity (Differentiation)

The gap between a criterion of identity and one of differentiation is a 

marginal one that can be bridged in a few logical steps. Given a criterion of 

differentiation for Ks of the form:-

(x,y; Kx, Ky) -(x = y ) = ................;

elementary logical reasoning allows us to construct a criterion of identity of 

the form:-

(x,y; Kx, Ky) x = y = ................;

and conversely. The process of purification referred to in chapter 4, 

required, amongst other things, an individuating relation. It was pointed out 

that one of the most significant aspects of an individuating relation R for a 

class of prototype objects K was that it permitted the individuation of 

elements of K by their R-relations to elements of the domain D of discharged 

objects. In formal terms:

196



(x,y; Kx, Ky) (z; Dz) (R xz=R yz) O x = y.

The converse of this formula; i.e:-

(x,y; Kx, Ky) (z; Dz) x = y 3  (Rxz =  Ryz);

is of course logically true. Putting the two together gives a criterion of 

identity

(x,y; Kx, Ky) x = y =■ (z; Dz) Rxz =  Ryz.

Criteria of Persistance

To give a criterion of persistance for a kind K is to give some indication of 

what it is any K-element x at a time t to be identical with a K-element y at a 

time t + 1. This involves saying what the essential properties of x are i.e. 

those properties x cannot cease to have without ceasing to exist.

Criteria of persistance are indirectly subsumed under the principles of well- 

introduction; but the importance of such criteria vary enormously according to 

the nature of the objects introduced. In the case of abstract objects, criteria 

of persistance are trivially obtained from criteria of identity. For instance a 

number n]_, is identical to a number n2 iff nj, and n2 number the same open 

sentences: this is true irrespective of temporal considerations. In the case of 

non-abstract objects (e.g. sense data) criteria of persistence are more 

significant. 'How long may a sense-datum persist?' and 'What are the 

conditions of its persistance?' are questions that demand a criterion of 

persistance for sense-data. Criteria of persistance may be conventional in 

such cases.
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APPENDIX II

Substitutional Quantification and Ontology

There is a feeling amongst many philosophical logicians that there is 

something underhand about substitutional quantification. It is felt that by 

employing substitutional quantifiers we abjure our responsibilities to talk 

about the world and end up talking about language instead. Some worried 

authorities see in substitutional quantification, the downfall of ontology itself. 

Whenever an ontologist looks in danger of committing himself, he need only 

escape into substitutional quantification until the danger is past. This is the 

way Quine sees it.

'Where substitutional quantification serves, ontology lacks point.'

Quine [ ] ( )

Perhaps such a consequence is in itself an acceptable reason for not using 

substitutional quantification. But other less acceptable reasons are sometimes 

given. Quine, for instance, claims there are an indenumerably large number of 

objects (the real numbers between 0 and 1, the elements of the power set of 

the natural numbers) and there is at best only a denumerable number of names. 

Since there will be some (nameless) objects whose existence cannot be 

registered by substitutional quantification, substitutional quantification can 

never replace objectual quantification. Fortunate indeed that Cantor took an 

interest in infinity, otherwise philosophers would be faced with a universe 

containing only names! Henkin [66] (390-397), however, presented a notation 

for naming real numbers which allowed for infinite decimal expansions as 

names for real numbers.

Substitutional quantification has even been defined away! The argument is as 

follows: the substituends for substitutionally bound variables are names. A
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name is something that can be replaced by an existentially and objectually 

bound variable. Therefore any true name is something to which the Law of 

Existential Generalisation applies and so it must denote substitutional 

existential generalisation implies objectual existential quantification, since

substitutional existential quantification claims a name is fit to replace the 

free variable(s) in the relevant open sentence to create a truth. But reject the 

authoritarian restriction on the use of 'name' and the argument collapses. 

Contrived arguments against substitutional quantification do little to dispel 

the fear that substitutional quantification is inimical to the serious study of 

ontology. Understanding the ontological limitations of substitutional 

quantification first depends on understanding substitutional quantification 

itself. When this understanding is achieved, the threat of substitutional 

quantification to ontology is seen to be bogus.

With substitutional quantification as with objectual quantification, a 

quantified wff has a truth-value only when the wff has a range attached to its 

bound variables as well as interpretations for all its non-logical constants. In 

the case of an objectual quantifier, the range is some non-empty set. For a 

substitutional quantifier the range is some substitution set of meaningful signs. 

So write the objectual existential quantifier '3 '  and the objectual universal 

quantifier 'V': let D be the range of the bound variables and let 'F' be some 

dummy predicate, then:-

'(3x)Fx' is true iff there is some element d, where d E D and Fd 

•(Vx)Fx' is true iff for any element d, if d fcD then Fd.

Let and * XT' be the substitutional existential and universal quantifiers 

respectively. Let S be the substitution set assigned to the substitutionally 

bound variables, then:-
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'(Zx)Fx' is true iff there is some element s, where s c S and 'F '^s is true

'CJTjOFx' is true iff for any element s, if s e S then 'F' s is true.

From now on I adopt the convention of referring to the elements of a 

substitution set as substituends. The result of replacing all the variables in an 

open sentence by substituends is a substitution instance.

In first-order substitutional quantification only definite singular terms are 

substituends. In second-order substitutional quantification the substitutional 

quantifiers also bind variables which stand where predicates may stand. In 

regard to first-order substitutional quantification there are two different kinds 

of case. The substitution set may include only denoting singular terms or it 

may not. Call the first kind 'denoting substitutional quantification' and the 

second 'vacuous substitutional quantification'. So we end up with the 

classification illustrated below

Substitutional

Quantification

Second Order First Order

Substitution set includes predicates; Substitution set includes only 

singular terms; substitutionally 

bound variables only occur where 

terms may stand.

substitutionally bound variables can

occur where predicates may stand.

Denoting Vacuous

Substitution set includes only denoting Substitution set includes at least

terms. one vacuous term.
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Denoting substitutional quantification presents no ontological threat; it is

unequivocally a medium where ontological commitments occur. Say that '.....

is a winged horse1 can be completed by a denoting singular term to create a 

truth and you have said as good as 'There are winged horses'. Second order

substitutional quantification might pose a threat to those who see an ontology 

of universals in sentences like 'Everything has at least one property' and would 

prefer to see this as grounds for quantifying over universals as in 

•(VxXOFXFx))' rather than '(TTxXZF X F x))'. But here we touch on a specific 

issue and it is not clear the case for universals is strong enough to bar the 

employment of second-order substitutional quantification.

Back to generalities. Where the feathers fly is over vacuous substitutional 

quantification, for there ontological issues look as if they could be avoided. It 

is said we need only employ vacuous substitutional quantification throughout a 

canonical language to shirk all ontological commitments. This is true in a 

superficial way. Given '(Ix)Fx' and a substitution set that includes at least one 

vacuous term, no conclusion can be drawn as to the existence or non-existence 

of Fs. The stage seems set for some sinister ontological evasion.

But before anything happens the ontologist must say what substitution set is 

allotted to the substitutionally bound variables. In addition, the ontologist has 

an obligation to give an explanation of the senses of the substituends. This 

explanation will explain the truth-conditions of any substitution-instance in 

which a substitutuend plays a part. Such an explanation must be provided for 

each and every substituend, whether that substituend is a denoting or a 

vacuous term.

In the case of denoting terms this is no problem. The result of substituting a 

denoting term t j  for 'x' in 'Fx' is true just when the object t j  denotes satisfies 

F. This schematic account provides not only an account of the sense of t j 

(how it contributes to the truth-conditions of sentences it occurs in), it also
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provides the beginning of semantic descent away from talk of truth to talk 

about the world.

No similar account is available for vacuous terms. Where <}> is any predicate of 

our canonical language, we explain nothing by saying that the result of

substituting a vacuous term tv for 'x' in «t^x' is true iff ^ ; v is true. What we 

need is an account of what it is for ^ ^ t v to be true. This account should 

allow us to complete

4»^ tv is true ==............

without mention of truth.

To move from the general to the specific: if we introduce the name 'Pegasus' 

into our substitution set, we have to explain why we count 'Pegasus is a winged 

horse' as true but 'Pegasus is a small red cube' as false. Such an account 

should hopefully be generalisable to provide an explanation of the truth- 

conditions of 'Pegasus-sentences' as a whole. A formalised explanation of this 

kind would begin 'For the given predicate 0 ,0 ^ *  'Pegasus' is true if and only

if..... ' and then provide a completion which would enable us to eliminate 'true'

as a semantic primitive.

Vacuous names in ordinary speech provide the basis for a good example o f’such 

an explanation. Vacuous names are of two kinds. There are names of 

mythology and names of fiction. Names of mythology are vacuous names 

which originated from a community which believed they denoted. Names of 

fiction are names that originated from a person or persons who recognised that 

they were vacuous. 'Zeus' is an example of a mythological name; 'Sherlock 

Holmes' of a fictitous one. In each case the truth-conditions for atomic 

sentences containing these names are similar. For mythological names 

(outside of sentences like 'Zeus was believed to be a god by the Ancient 

Greeks'), the truth-conditions are dictated by what classical authors and others
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have written. 'Zeus was the husband of Hera' is true because of what classical 

authors have recorded of the ancient Greek religion. 'Sherlock Holmes lived at 

22b Baker Street' is true because of what Sir Arthur Conan Doyle wrote. 

These observations could be generalised for a wide class S of predicates.

i.e. For any memberi|> of S

'Zeus' is true iff H» 'Zeus’ is entailed by the contents of The Greek Myths 

Vol I - II by Robert Graves

/'" N
'Sherlock Holmes' is true iff 1)1 'Sherlock Holmes' is entailed by the

written works of Sir Arthur Conan Doyle.

Consider an actual case where vacuous substitutional quantification is used to 

try to avoid ontological issues: substitutional set theory. Suppose an 

ontologist wished to quantify using set-theoretic terminology, but at the same 

time to avoid a commitment to sets. Instead of writing a formula of the kind:-

C3XXGYXX C Y))j

where 'X' and 'Y' range over sets; he writes:- 

(ZXXCEYXX C Y)).

But he is nonetheless obliged to say what substitution set S of singular terms is 

allotted to 'X' and 'Y' in the formula immediately above. Presumably the 

ontologist will define S to be the totality of all set-abstracts, with certain 

restrictions, perhaps, to prevent the inclusion of set-abstracts which may have 

paradoxical consequences (e.g. '[X: X^Xj', which is the foundation of Russell's 

Paradox). Having done so, the ontologist is then faced with the task of
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explaining the senses of the substituends. Such an explanation should provide 

us with an explanation of the truth-conditions of any atomic sentence which is 

also a substitution-instance; i.e. an atomic sentence derived by removing all 

the binding variables from a substitutionally quantified wff and replacing any 

free variables so obtained by elements from S.

If the ontologist is successfully to continue his program of practising set 

theory but avoiding sets, his explanation of the truth-conditions of these 

atomic sentences cannot refer back to sets. This means that a homophonic 

explanation of the truth-conditions of these atomic sentences is ruled out 

immediately. The ontologist cannot, for example, complete:-

' 'AC£x: x = x j ' is true i f f ...............,'

without admitting the existence of the empty set and the universe set.

Dr. J.E. Tiles has suggested in correspondence to me, a non-homophonic 

explanation of these atomic sentences. Tiles' suggestion is to anchor the 

predicate 'is true' by 'is provable in ZF', he points out that ZF set theory is 

written in a formal language which determines whether a given expression is a 

well-formed singular term (wfst). When these terms are used to close open 

sentences expressed in the language of ZF, one can tell in a finite number of 

steps whether any finite sentence of wffs constitutes a proof of the sequence 

thus formed. Tiles then interprets the truth-conditions of the substitutionally 

quantified formulae thus.

'(Ex) 4>x' is true iff for some wfst, t, i|/t is provable in ZF 

'(TTx) »|»x' is true iff for any wfst, t, +t is provable in ZF

by
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Where this suggestion falters, I believe, is in application to set-theoretical 

sentences outside the scope of ZF. Consider the set-theoretical assertion that 

the power-set of the set of all philosophers has a least two elements:-

QxXHyXx^y & x e p [ z: philosopher zj & y e p£z: philosopher zj)

A Platonistic and entirely natural interpretation of the above formula takes it 

to report on the existence of at least two abstract objects, sets, (e.g. {QuineJ, 

^Peircej) which are both members of P^z: philosopher zj. Exchanging 'J' for '3 ' 

allows the ontological commitments to be postponed; but at the cost of 

specifying a substitution-set and giving an account of the truth-conditions of 

the substitution instances. Following Tiles, we might give as the substitution 

set, the set of all wfsts and substitute 'provability in ZF' for 'true'. But then 

the formula:-

(IxXZyXx^ y & x c p£z: philosopher zj & y e p|z: philosopher zj)

turns out to be false. The language of ZF does not permit us to construct 

wfsts which will substitute for the bound variables in this formula to create a 

truth. Even if we increase the stock of wfsts to allow for, e.g. ' Quine ' and ' 

Peirce the formula will still be false; for it is not provable in ZF that ^Quine j  

f i  ^Piercej&^Duinej e p|z: philosopher zj & jpeirceje p £z: philosopher zj. The 

price of relativising the truth-conditions of the sentences of substitutional set 

theory to one of the standard axiomatised set theories, is that we find no place 

for substitutional assertions outside of these axiomatisations. Only from the 

view of the purest of pure mathematicians, could a set theory which offered 

no scope for application outside of mathematics seem a tenable option.

What began as a simple and expedient way of practising set-theory without 

sets, turns into a major operation. Whatever device the substitutional set

2.05



theorist finally seizes on to anchor the truth-conditions of his substitution- 

instances, it is clear he has a formidable task in front of him. He must:-

(a) explain the truth-conditions of the substitution instances. The concept 

'true' as applied to these instances must not remain a semantic primitive.

(b) Do (a) without appealing to the existence of sets and y e t ...

(c) ...succeed in preserving the truth-values not only of those set-theoretical 

assertions that receive valuations in pure mathematics, but also preserve 

the truth-value of those which are the result of applying the set-theory 

to the physical world.

If the substitutional set theorist succeeds in (a), (b) and (c) I expect that he 

will have accomplished something very like an ontological reduction of sets 

and not just an ontological evasion.

The point can be generalised. Introduction of vacuous substitutional 

quantification introduces an obligation to explain the senses of the vacuous 

terms used. This obligation is discharged when the concept of a sentence 

which contains any such vacuous name being true is shown not to be 

semantically primitive. The ontologist has to explain this concept by 

reference to the world alone. This is the point when deferred ontological 

responsibilities come home to roost. Substitutional quantification is not an 

easy way out: it is hard work.
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’ Actually, to be ontologically neutral the question should rather be 'Does this 

sentence count as true-in-the-characterising language?' In the case of 

physical objects however, the ontological evidence for their existence seems 

so overwhelming that it seems futile to maintain the distinction between 'true' 

and 'true in any ontology of physical objects'. See 4.4 for a defence of the 

existence of physical objects and an attack on Idealism.

2 Compare Strawson [136] (13)

3To run through those arguments would take more space than can be spared 

here, though I do not wish to give the impression that the issues are too trite 

to worth mention. Russell [124], and Price [106] are good sources of these 

arguments. Austin [4] conducts a very able attack on them.

4Rutherford's hypothesis had been anticipated in 1901 by Jean Perrin, who 

supposed the atom to be a miniature Solar System in which electrons revolved 

round a positive nucleus. See Silva and Lochak [132] (82).

5 See Suppes [140] for a statement of the Axiom of Choice and its equivalents. 

Makinson [86] contains a brief survey of the important axioms of set theory.'

*See Suppes [140],

7 For a good review of how mass predicates have been handled see Pelletier 

[97]. Some of Pelletier's conclusions are suspect, however, since he presumes 

formalisation preserves meaning.
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CHAPTER FIVE

Ontological Elasticity

Ontological elasticity is the property that a theory displays when the domain 

of discourse of that theory can be identified with different domains. 

Competing, but equally satisfactory recursive reductions of a single 

axiomatised theory (such as the axioms for number theory), offer the best 

known and most spectacular examples of ontological elasticity. The 

phenomenon can, however, be extended to natural language theories through 

the graces of formal frameworks. In chapter three, we saw a limited instance 

of ontological elasticity in respect of sentences of measure. This elasticity 

was proven by alternative formalisations of sentences of measure: one which 

represented these sentences as concerned with impure numbers, the other 

which represented them as concerned with pure numbers.

The usefulness of ontological elasticity to the working ontologist is that it 

enables him to refute unwanted charges of ontological commitment. For 

instance, faced with the charge that he is committed to impure numbers in 

accepting statements of measure, the ontologist can appeal to a formalisation 

which makes no use of an ontology of impure numbers. Ontological elasticity 

is as fundamental to ontology as energy is to physics or valency to chemistry. 

But like many such philosophically significant concepts, the proper analysis of 

ontological elasticity is frought with problems, to which we now turn.

5.1 The Analysis of Ontological Elasticity

I wish to consider the question 'What is it for a theory to be ontologically 

elastic?' and the answers that will be considered fall roughly into three broad

209



groups: (a) answers which attempt to define ontological elasticity in proof- 

theoretic or syntactic terms; (b) answers which attempt to define ontological 

elasticity in model-theoretic terms; (c) answers which define ontological 

elasticity in intensional terms. Of each sort of answer, only the last group 

has, I believe, any chance of real success. At the same time, recognising 

ontological elasticity as intensional has the depressing consequence that our 

philosophical understanding of ontological elasticity must wait on the 

elucidation of disputed concepts in the theory of meaning.

Since formal frameworks are the modus operandi of ontology, it is both natural 

and legitimate to try to exploit them in defining ontological elasticity. An 

initial attempt to bring such a definition to fruit is this one. A theory T 

(where T can be written in either formal or natural language) is ontologically 

elastic just when, if T is incorporated into a target language, there is more 

than one extensionally adequate formal framework capable of accommodating 

the language in which T is expressed.

The definition raises two problems. The first arises out of the syntactic 

nature of the definition offered. Formal frameworks are a species of first- 

order theory, and like all first-order theories, are individuated according to the 

formulae deducible from them. Trivial syntactical changes in the choice of 

signs used to express a chosen ontology will, strictly speaking, generate a new 

formal framework just as much as a more fundamental change in ontology 

itself will. This weakness besets another definition of ontological elasticity in 

respect of formal theories; that is, the definition that a first-order theory is 

ontologically elastic if and only if it is recursively reducible to more than one 

other theory. Syntax, uninformed with any commentary about the meanings 

of the signs used, simply fails to separate the noise from the pure signal.

A second, rather deeper problem, lies in the nature of formal frameworks 

themselves. That different formalisations of the same target language
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obtain, even supposing that these formalisations are not merely syntactical 

variants, does not entail that a given target language theory T is itself 

ontologically elastic. To reason thus would be to reason as a mechanic who 

erroneously infers that since the engine is faulty and the ignition is part of the 

engine, then the ignition is faulty as well. The ability to construct 

significantly distinct formal frameworks show that ontological elasticity is at 

work somewhere, but does not help to localise it.

A thought is that perhaps the solution to this lack of localisation is to be more 

modest in the choice of a medium of formalisation, or else to try to construct 

some test whereby, like diligent mechanics, we can try to trace the 

ontological elasticity can be traced down to some one component in the 

machinary of a formal framework. As for the first alternative we might try to 

determine the ontological elasticity of a piece of theory by constructing a 

mini-framework whose target language was only just rich enough to express it. 

The presence of many non-trivially different mini-frameworks with a common 

target language would prove the elasticity of our piece of theory. But this 

modest way of formalising is inaccurate in principle. It simply does not follow 

from being able successfully to formalise a piece of theory that that 

formalisation will be sustained when it is incorporated into the wider 

perspective. A good formalisation of pure mathematics should also be 

extendable to sentences of applied mathematics and from thence to the 

sciences in general. There are simply no self-contained language-games to be 

found short of that language-game within which all our moves can be made. 

Mini-frameworks can reveal an illusory range of possible trails that peter out 

when viewed from a height of a formal framework.

Can formal frameworks themselves be used to localise the elasticity? It may, 

perhaps seem that they can. Merely by contrasting different formal 

frameworks and seeing where they differ (i.e. to what target language 

sentences they assign different formal sentences to) surely one could see
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where the elasticity fell? But sadly, this test is inaccurate too, for any theory 

can be rendered ontologically elastic in this way. Thus let F be an 

extensionally adequate formal framework to which T is a target language 

theory; to construct a new extensionally adequate framework F , increment 

each sentence used to formalise any true sentence S of T by p, where p is true 

in the canonical language of F, or -p if S is false. T will now be formalised 

differently whatever value for T. Only by binding formal frameworks by 

tighter intensional conditions like synonymy, can such evasions be ruled out. 

But to introduce these restrictions is to subvert the very purpose of formal 

frameworks themselves: formalisation need not preserve meaning. Perhaps 

the fault is not so much in the formal frameworks' failing to localise 

accurately ontological commitment, but in the fact that the very idea of 

localising ontological elasticity may be fundamentally misconceived.

The ontological elasticity which is credited to arithmetic is sometimes put 

down to the plenitude of its non-standard models. Is ontological elasticity, 

then, merely a matter of a theory having more than one model? This would be 

conveniently simple if it were true. But it would also have alarming 

consequences if it did obtain, for then ontological elasticity would be 

commonplace in practically every consistent theory. Ontological elasticity on 

this scale would discharge practically every theory of its ontological 

commitments, since for whatever model we found to convict a theory of 

certain ontological commitments, there would be another close by to pardon 

it.

Consequences like this have been seen in the Lowenheim - Skolem theorem by 

various philosophers and mathematical logicians. This theorem states that 

every consistent theory has a model with a denumerable domain. This theorem 

is the basis of Skolem's Paradox. The paradox is that there seem to exist 

consistent first-order theories which claim the existence of indenumerable 

sets. (Cantor's proof of the indenumerability of P(N), the power set of the
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natural numbers, being one example); but nevertheless the Lowenheim -Skolem 

theorem proves that these theories have models which do not require the 

existence of indenumerable domains.1

Skolem's Paradox is not a paradox in the true sense of the word: it is not 

centred (unlike Russell's Paradox) on a statement which is true if and only if it 

is false. The natural question is to ask why 'Skolem's Paradox' is felt to be a 

paradox at all.

I believe that one reason for this is that mathematical logicians have tended to

harbour a suppressed premiss by which ontological commitment is defined

model-theoretically. If this premiss is brought to the surface, and expanded, it

runs somewhat as follows. If every model J = <D,i> of a first-order theory T is

such that (3x)Kx & x e D, then T must be treated as ontologically committed 
*

to Ks. Conversely if there is a model K = <D',i'>, where -(3x)Kx & x c D*, and 

K is a model of T, then T is not ontologically committed to Ks. This reasoning 

issues in a definition of ontological commitment somewhat as follows:-

for any theory T and sort K, and where n > 1;

T oc K iff (D)(i) <D,i> is a model of T 3  [(3x)(Kx & xc D) v (3x)Kx & x C Dn)]
/ *

Now, formally, it might appear as if there is a genuine contradiction to be 

derived from Skolem's Paradox, because (a) we want to claim that there are 

consistent theories with commitments to indenumerable domains (b) that 

nonetheless any consistent first-order theory has a model in a denumerable 

domain, and also (c) that a theory has commitments of the kind mentioned in 

(b) just when every model of that theory contains an indenumerable domain. 

There are several things wrong with this line of thinking, not the least of 

which is the model-theoretic definition of ontological commitment given 

above. But to begin modestly, it is perhaps useful to note that the phrase 

'model contains a denumerable domain' is ambiguos: and the ambiguity centres 

about the use of 'contains' which can mean, in context, either one of
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two things, (a) It can mean (and is generally used to mean) that where 3 = 

<D,i>,^D =Afo5 (b) can mean that where 3 = <D,i>, (3x) x e D dc^^x = Af£,. It 

may be that if T is consistent, then there is some model of T with a 

denumerable domain in sense (a): which is what the Lowenheim - Skolem 

theorem asserts. But this is quite consistent with every model of T being 

'indenumerable' either in the sense that the domain of that model has an 

indenumerable number of elements or else in the sense that some element of 

the domain of that model is indenumerable. In such a case T will be 

ontologically committed to the existence of an indenumerable item, even by 

the model-theoretic definition of ontological commitment given previously. 

One way of restoring Skolem's paradox is to invoke a stronger form of the 

Lowenheim - Skolem theorem. A stronger theorem states that every 

consistent first-order theory has a model in the domain of natural numbers. 

Treating natural numbers as unreduced (i.e. non-set theoretical) objects it 

follows that for any consistent first-order theory there is a model which does 

not contain an indenumerable set either in sense (a) or (b) of ’contain'. This 

restores Skolem's Paradox.

It also brings in a lot more: specifically the spectre of Pythaqoreanism - the 

view that only numbers exist. If other things than numbers exist, then there 

must be some true first-order theory T which is ontologically committed to 

non-numbers. Let us suppose there is some such theory T, where T is 

committed to something which is neither a number or a set containing numbers 

0(3 x) mountain x' would be such a theory). From the definition of ontological 

commitment given, we derive

'(3x) mountain x 'o c  mountains iff

(D)(i) <D,i> is a model of '(3x) mountain x'

[(3x)(mountain x & xe D) v (3x)(mountain x & x C Dn)]
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Plainly since mountains are not sets, - (3 x) mountain x & x C Dn for all D? 

Therefore it follows from the above that:-

'(3x) mountain x' oc mountains iff (D)(i) <D,i> is a model of '(3x) mountain x'

3  (3x)(mountain x & x e D).

But by the strong Lowenheim - Skolem theorem, (3D)(3i) <D,i> is a model of 

'(3x) mountain x' & (x)x c D D  natural number x. Since mountains are not 

natural numbers, there is a model of '(3x) mountain x' which shows it not to be 

committed to mountains!

There is an atmosphere of absurdity about this conclusion which surely must 

show that the model-theoretic definition of ontological commitment given 

previously is wrong. Indeed it is wrong; for it can be formally proved from the 

definition as given that no consistent theory is committed to something which 

does not exist! The proof is as follows:-

1. T oc K Hyp

2. - (3x) Kx Hyp

3. T o cK s(D )(i)  <D,i> is a model of T Hyp

[(3x)(Kx & x c D) v (3xXKx & x t Dn)]

4. T is consistent^ (3D)(3 i) <D,i> is a model of T Hyp

(Completeness Theorem)

5. T is consistent Hyp

6. 0D)(3i) <D,i> is a model of T 4,5 Taut

7. (D)(i) <D,i> is a model of T 1,3 Taut

:D [(3x)(Kx & x e D) v (3x)(Kx & x e Dn)]

By 6, for some D and i

8. <D,i> is a model of T

9. <D,i> is a model of T3  [(3x)(Kx & x e D) 7 UI

v (3x)(Kx & x C Dn^

10. (3x)(Kx & x c D) v (3x)(Kx & x C Dn) 8,9 Taut



From 10 it follows by elementary first-order reasoning that:-

11. (3x)Kx

12. ( 3x)Kx & - (3x)Kx 2,11 Taut

therefore by reductio ad absurdum

13. - (T is consistent)

The conclusion of this argument rests on T oc K, - ( 3x) Kx, the definition of 

ontological commitment given, and the Completeness Theorem for first-order 

logic. Since the first two assumptions are true by hypothesis and the last is a 

well-established theorem of mathematical logic, the culprit must be the 

definition of ontological commitment given. Ontological commitment is not a 

model-theoretic concept.

Granted this, then the ability to prove the existence of non-standard models of 

a theory does not reflect on the ontological commitments of that theory. Nor 

does the existence of non-standard models prove that theory to be 

ontologically elastic: more is needed. What that more is, can be seen by 

reflecting on the strong Lowenheim - Skolem theorem and why it fails to 

reduce our ontology to a Pythagorean ontology.

For let T be any true (and hence consistent) first-order theory written in a 

language L. Suppose T carries prima facie ontological commitments to 

entities of a non-Pythagorean nature. In order to reduce T, by our standards 

of a recursive reduction, to the terms of a non-Pythagorean ontology, a 

recursive function would have to be given from the domain of L sentences into 

the domain of !_1 sentences, where L l is some arithmetical language. 

Moreover this recursive function would not only have to map T into a body of 

arithmetical truths: we should also be certain that T was an exhaustive
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description of the entities of its own domain of discourse. The strong

Lowenheim - Skolem theorem falls a long way short of supplying the materials

for such a project. The theorem itself guarantees only the existence of an

arithmetical model for each consistent theory: it supposes no effective means
2

for finding that model.

If model-theoretic and proof-theoretic accounts of ontological elasticity do 

not work, then the prospects for a formally rigourous account of the concept 

look dim indeed. A return to the idiom of formal frameworks is needed.

As observed formal frameworks do not successfully localise ontological 

elasticity. Perhaps the lesson to be learnt from this is that ontological 

commitment is, sui generis, to be counted as a holistic concept, applying to 

nothing less than the totality of human science. If so, then perhaps formal 

frameworks do offer some ingress into the concept of ontological elasticity, if 

the enquiry is conducted at the highest level of generality. At this level 

ontological elasticity can be seen in the presence of alternative model worlds; 

each capable of representing the results of the empirical sciences.

Formally, a model world is a deductively closed set of formulae generated 

from the set of all formulae, any of which is a formal image of some true 

target language sentence. Philosophically a model world is a representation of 

the contents of the universe and the principles that describe their behaviour, 

as developed from an initial ontological hypothesis. Ontological elasticity 

reveals itself when there is a model world |i and a model world ji , where, for 

some kind K, quantifies over Ks but \i does not.

The use of 'quantification over' serves to hide an intensionality implicit in this 

account. Quantification over Ks cannot be identified proof-theoretically, with 

'( 3 x) Kx' being a theorem or an element of the theory. For example, 

quantification over numbers does not require '( 3x) number x' as a theorem. 

Any synonym such as '(3x) nombre x' will do. Nor does the variable 'number' or 

any synonym actually have to appear in a theory, for that theory to be

217



committed to numbers. '( 3x) x = 3’ and '( 3x) prime x' both quantify over 

numbers without specifically mentioning numbers. Quantification over Ks can 

only be explained by a theory entailing (3x) Kx and entailment is an intensional 

concept belonging to the theory of meaning. In this respect, ontological

commitment and ontological elasticity are much alike. The possibility of 

giving a formally precise, extensional definition of either concept depends on 

the how well philosophers of language succeed in absorbing the theory of 

meaning into the theory of reference.

This is a depressing conclusion for some; but it is not altogether unsurprising. 

Frequently it turns out that the most important and central concepts in a 

subject turn out to be resistant to formal definition. It is altogether perverse 

to reject these types of concepts merely because they resist systematic 

treatment, for their employment and examination can be extremely rewarding. 

Similarly, with ontological elasticity, the importance of this concept is too 

great for it to be bypassed without further ado.

In what follows, the concept of ontological elasticity is taken for granted, and 

the consequences of accepting the phenomenon of ontological elasticity are 

examined. Three such areas of consequence are here examined; they are as 

follows.

(i) The relation of ontological elasticity to philosophical taxonomy:- that 

area of philosophy which enquires after the proper classification of 

fundamental kinds of object.

(ii) The relation of ontological elasticity to the concept of existence. In 

particular, the consequences for classical logic of the influence of 

ontological elasticity on our ideas of what the universe must be like.

(iii) The relation of ontological elasticity to the concept of truth. In 

particular, the consequences for the Correspondence Theory of Truth and 

the Principle of Bivalence.
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5.2 Ontological Elasticity and Philosophical Taxonomy

One of the most popular forms of philosophical interrogation after questions 

beginning 'What is' are questions beginning 'What are'. What completes the 

first kind of question is a nominalised adjective; (e.g. 'What is truth?', 'What is 

justice?', 'What is goodness?', 'What is beauty?') What completes the second is 

some sortal term; (e.g. 'What are numbers?', 'What are truths (or falsehoods)?', 

'What are thoughts?').

Questions of the second kind are the concern of what can be called 

philosophical taxonomy, which attempts to provide some species and general 

classification of the fundamental kinds of being.

Frege's The Foundations of Arithmetic is a classic work of philosophical 

taxonomy. At the introduction of his book, Frege defines the topic of enquiry 

as the nature of numbers.

'When we ask ourselves what the number one is, or what the symbol '1' means, 

we get as a rule the answer 'Why a thing'. And if we go on to point out that 

the proposition

'the number one is a thing'

is not a definition because it has the definite article on one side and the 

indefinite article on the other.... then we shall likely be invited to select 

something for ourselves - anything we please - to call one ....

Questions like these catch even mathematicians for that matter, or most of 

them, unprepared with any satisfactory answer. Yet is it not a scandal that 

our science should be so unclear about the first and foremost among its 

objects, and one which is apparently so simple? Small hope, then, that we 

shall be able to say what number is.'

Frege [4] (i - ii)
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Debates in philosophical taxonomy have continued up to contemporary times. 

Strawson and Austin, in a Tweedledum - Tweedledee sort of fashion, argued 

over the nature of facts for fifteen years. Questions of philosophical 

taxonomy are capable of maintaining long-standing disagreements - a fact that 

suggests such questions may have been wrongly posed in a first place.

A question of philosophical taxonomy is generally posed in the material mode 

of speech: that is, it is posed as a question about the status of a particular 

kind of object under some genus. It is not a question that presents itself in any 

essential way as connected to language: that is, it is usually not posed as a 

question in the formal mode. On the face of it, a question like ’What are the 

facts?’ is no more concerned with language than the questions ’What are 

aardvarks?' or 'What are Drysophila?'. In fact, appearances here are truly 

deceptive and because taxonomic questions in philosophy are usually wrongly 

posed in the material mode, the result is fruitless wrangling.

A question of philosophical taxonomy like 'What are numbers?' is better 

rephrased as 'What are we talking about (if anything) when we practice 

arithmetic, algebra or number theory?'. At first glance, changing the style of 

questioning brings the desired solutions no closer. Perhaps. But the change in 

style does serve to bring out certain presuppositions of interrogation in the 

material mode.

The first of these presuppositions is concerned with the way that Ks are 

identified in questions of the form 'What are Ks?'. If an interrogator should 

enquire 'What are numbers?', we are entitled to respond 'What do you mean by 

'numbers'?' If he should respond that he has no idea what he means by 

'numbers' then we can reply that if he attaches no sense to 'numbers' in his 

question then how can we be expected to give a sensible answer? On the other 

hand, if he should respond by giving a precise account of what he means by 

'number' then we can reply that he has already answered his own question, so 

why is he bothering us? To the harassed questioner there is only one way of
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phrasing his question so as to get it across. He can define numbers as the 

elements of the domain of discourse of a particular style of language, for 

example, of arithmetic, and then enquire as to the status of numbers. In this 

way he avoids the dilemma of either admitting he does not understand his own

question or else admitting he already has the answer. Treating questions of 

philosophical taxonomy in this manner means that important domains of items 

are defined relative to certain kinds of discourse. Numbers are the elements 

of the domain of discourse of arithmetic, facts are the elements of the domain 

of discourse of ordinary language sentences that mention the word 'fact' or 

some synonym. These are discourse-relative definitions. Here is the principal 

difference between questions of philosophical taxonomy and questions of say, 

biological taxonomy. If I enquire 'What are penguins?' then it is always open to 

me or another to define penguins ostensively. This means that the concept of 

being a penguin need not been defined in a discourse-relative fashion.

Defining numbers, facts, thoughts etc discourse-relatively throws up the 

second presupposition. To define numbers as the elements of the domain of 

arithmetic is to presuppose the truth of a uniqueness claim: namely there is 

one and only one domain of elements to which arithmetic can be interpreted. 

This presupposition is, of course, false. Therefore the questions 'What are 

numbers?' and its cash-value equivalent 'What is the domain of discourse of 

arithmetic?' are both ill-conceived: they both commit the Fallacy of Many 

Questions . Frege's opening questions of the Foundations were improperly 

formulated. In order to reset Frege's enquiry along modern lines we should 

have to ask 'How may arithmetic be formalised?'; and the answer comes back 

'In various ways: such as that of Zermelo, Von Neumann .... and, of course, 

Frege himself.'

What this all amounts to is that questions of philosophical taxonomy cannot be 

properly asked in the material mode in the presence of ontological elasticity. 

To pose a question of philosophical taxonomy in the material mode, we should
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be justifiably certain that our discourse-relative definition does not falsely 

presuppose a lack of ontological elasticity. Alternatively, a simpler and 

altogether better solution would be to abandon the material mode altogether? 

This departure from tradition would be a major conceptual revolution in the 

way human beings have so far pursued their research of the universe and the 

long-term consequences of adopting this method of enquiry would have to be 

pursued by the experts in their various fields. What I have to say, therefore, is 

general in the extreme and is somewhat akin to the authority with which 

amateur meteorologists deliver long-range weather forecasts by gazing at the 

clouds.

The most immediate, and I think, merciful effects of rephrasing all questions 

of philosophical taxonomy in the formal mode (i.e. of asking 'How may K-talk 

be formalised?' rather than 'What are Ks?') is an end to sterile and 

interminable arguments about the nature of Ks. A case in point is the debate 

on the nature of truth-bearers: truth bearers have been identified variously 

with propositions, statements, ordered n-tuples of word-tokens, sets of 

possible worlds, equivalence sets of synonymous declarative sentences etc... It 

is quite possible, given time and acumen, that at least some of these 

suggestions could be made to work in the context of formalisation. Asking 

'How may talk of what is true or false be formalised?' helps to dispel the idea 

that there is only one uniquely right answer to the question. Asking 'What are 

truth-bearers?' merely entrenches the discussion in a muddy (and roughly 

circular) rut in which the disputants reason that since truth-bearers are 

determinate somethings of some kind, at most only one answer to the question 

can be right.

Of all the natural sciences, modern physics offers perhaps the greatest scope 

for formalisation and ontological elasticity. The progression of physics has 

been, for over a hundred years, towards the study of systems which are more 

and more remote from human experience or even human imagination,
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probability waves and electromagnetic fields being two examples. Despite the

enormous increase in sophistication of the new physics over what little theory

prevailed in ancient times, the philosophical tenor of the modern research
/phsicist's enquiries is still transmitted from the mental outlook that 

characterised the Pre-Socratics. This outlook insists that the physical 

universe is determinate in the way it is constructed, and hence that, of any 

two representations of one and the same part, at most only one will be right. 

Thus the modern physicist would still approach a question about the internal 

architecture of atoms with the same presupposition of investigating a 

determinate something that motivated the early Greek cosmologists in their 

speculations about the nature of matter. But if atoms and electrons are 

defined in a discourse-relative fashion, that is to say, as the elements of the 

domain of discourse of our most currently successful atomic theories, then it 

is at least conceptually possible that such theories might enjoy different 

representations as to the elements of their domains. In such a case, physicists 

might well ponder whether it is not as mistaken to ask after the nature and 

identity of atoms as it was for mathematicians like Frege to ask after the 

nature and identity of numbers. Since (both) Russell and Whitehead each 

succeeded in finding different domains to represent all that men wished to say 

about instants of time, the possibility of ontological elasticity in modern 

physics seems worth bearing in mind.

5.3 Ontological Elasticity and Existence

'To be is to be required to be by some true theory' is about the shortest 

account of existence short of total triviality that is is possible to attain. The 

reply comes in different flavours, 'To be is to be required to be existentially 

quantified over in the formalisation of some true theory' is another: but only a 

variant of the first. It is, at first sight, the most innocuous of all accounts of
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existence; but joined to the doctrine of ontological elasticity, together they 

rebound with some considerable force into some classical ideas about how the 

universe must be.

The doctrine of ontological elasticity states that for at least one theory T (and 

probably for many), T can be formalised in various different ways, each 

equally valid, but each requiring assent to the existence of (and quantification 

over) the elements of a different domain. In such a case, T is ontologically 

elastic and there is no sense in enquiring after i the elements of the domain of 

T. Thus suppose that T can be formalised so as to be concerned with K^s, K£S 

or K3S but nothing else. It makes no sense to ask which domain T is concerned 

even though it would be right to say in the absence of all of Kj_, K2 or K3 , T 

would be false. Accepting the truth of T compels, by the definition of 

existence given previously, the recognition of the existence of all that T 

requires to be true. But we cannot say that because T is true, that the 

universe must contain K^s, or it must contain K2S, or it must contain K3S for 

T can be legitimately asserted in the absence of any one (or indeed two) of 

them.

But here is the nub. If we can accept that a single true theory can display 

ontological elasticity, then it must also be accepted that this ontological 

elasticity will be maintained even if this theory is incorporated into a wider 

corpus of truths. Taking this reasoning to its logical conclusion it follows that 

different formalisations will be possible even of a completed science in which 

nothing more remains to be discovered. By our definition of existence, what 

exists will be what is required to exist by this completed science and nothing 

else. But given this completed science is ontoloqically elastic, the objects 

that are to be counted into the universe will .be as under-determined as the 

objects which are to be counted into 'the' domain of objects with which such a 

completed science is concerned. In fact, the two kinds of underdeterminacy 

are really the same.
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It is important to grasp that this underdeterminacy is not a underdeterminacy 

in human knowledge, but an underdeterminacy as to the things that are. The 

radical conclusion is not that it may well be that human beings can never 

arrive at a determinate knowledge of just what is, but rather that because 

what is is not determined, there is no such determinate knowledge to be had.

A metaontology of this kind reflects on many philosophical arguments of 

lasting duration. For example, the differences between the opinions of 

Platonists in the philosophy of language who insist that we should recognise 

the existence of universals and those of their nominalist opponents who say 

philosophers should stay clear of such commitments, may, in the end, be a 

reflection of differing ways of legitimately interpreting the domains of 

discourse of various natural language sentences. There may be no answer to 

the question 'Who is right?' and no side to choose. One casualty of this 

thinking is classical logic with its insistance on the exclusive rightness of 

either a statement or its denial.

The conclusions of the foregoing argument can be conveniently restated in the 

jargon of chapter three. In that chapter, a model world was introduced as a 

set of formulae each of which was a formal image of some true object 

sentence of science. Philosophically, a model world is a detailed 

representation of the way the world stands which is compatible with scientific 

truth defined relative to the object language. Ontological elasticity requires 

that different model worlds can be constructed to fit all the evidence. What 

exists will be what is common to all those model worlds so that Ks exist if and 

only if each model world quantifies over Ks and Ks do not exist, if and only if 

no model world quantifies over Ks. Where model worlds disagree, there lies 

uncovered the ontological underdeterminacy.

As observed, classical logic kicks hard against this sort of definition. Classical 

logic insists that each kind either exists or it does not, and nothing in between. 

So much the worse for classical logic is one reply; and the next question must
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be what logic is most appropriate to the doctrine of ontological under- 

determinacy.

Given the large range of deviant logics currently extant* I can see no easy 

answer to this problem. The questionis, to my mind, not so much the formal 

one of whether a logic can be found to accommodate philosophical intuition, 

but whether philosophical intuition can be sharpened and justified so as to 

select just one logic. There are various logics for example, Heyting's and 

Johansson's intuitionist propositional calculi, and Lukasiewiez' and Kleene's 3- 

valued calculi, which lack LEM and are compatible with ontological under- 

determinacy in that respect.

A promising line of pursuit seems to me to originate from a Hintikka [61] 

model set approach, and ancestrally from Carnap's [22] use of state- 

descriptions. The idea of Carnap's approach is to specify sets of formulae 

(state-descriptions), each set sharing a common language L, and each bound in 

conformance with certain rules of membership. Intuitively each such state- 

description represents a possible world and the formulae common to all such 

state-descriptions are the formulae recognised as valid. Borrowing this 

technique from Carnap, what would be required would be a domain of sets 

representing model worlds, each set having a membership bound in 

conformance with certain rules.

Of a range of such systems investigated in the course of this research one 

seems to me of sufficient interest to be mentioned. This system I call 'System 

4' (because is was the fourth of ten different systems investigated). In System 

4, model worlds are represented by sets of formulae written in a language L. 

Each element of every set is either (a) an atomic formula or (b) the negation 

of an atomic formula. Each such set is consistent; i.e. where p is any formula 

and S any such set, if p c S then - p S. However completeness is not a 

requirement and so p /  S and - p y f S is permissible. Each such set is 

expanded to a conforming set by means of the following rules. Where is any
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conforming set generated in this way, and p and q any formulae of L; if p e p 

then - p e p  and:-

(i) - - p e p  iff p c p

(ii) p v q e p iff p e p or q e p

(iii) p & q e p  iff p e p  and q e p

(iv) p p q c  p iff p /  p or q e p

(v) - (p v q) c p iff - p e p and - q e p

(vi) - (p & q) e p iff - p e p or - q e p

(vii) - ( p a q ) c  p iff p e p and - q e p

The set of conforming sets is just the set of sets generated in this manner. A 

formula is valid if and only if it is an element of every conforming set and a 

rule of inference is validity - preserving if and only if it derives only valid 

formulae from valid formulae.

It turns out that System 4 characterises a logic in which modus ponens is 

validity preserving. It also turns out that the Deduction Theorem is provable 

of this logic since modus ponens is admitted and so are the formulae:-

(p 3 (q a p ))i

(p 3  (q r)) 3  (Cp D q ) o ( p o  r)).

By a proof by Herbrand (see Mendelson [90] (32)), any logic admitting these 

two formulae, plus modus ponens, has the Deduction Theorem true of it. 

Unlike intuitionist logics, the Law of Double Negation is admitted. But like 

intuitionist logics, LEM is not a valid formula since it will fail to hold of 

conforming sets generated from incomplete sets. Since the Law of Double 

Negation is reckoned to be instrumental in the generation of LEM, how exactly 

does System 4 retain DN and reject LEM?
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The answer is that there is an important classical principle that is not retained 

under System 4: that of reductio ad absurdum or indirect proof. Neither of 

the following formulae:-

((p 3  - q) & (p 3  q) )3  - p 

(p Z3 (q & - q)) 3  - p

turns out to be valid. I would conjecture that if either of these formulae were 

added to the valid formulae of System 4 and modus ponens, the resulting 

theorems would be wholly classical. If so, then there is an interesting parallel 

with Heyting's propositional calculus. Heyting's calculus turns out to collapse 

into the classical propositional calculus with the addition of — p 3  p as an 

axiom.

5.4 Ontological Elasticity and Truth

It is part of the conventional wisdom attached to set theory that ordered pairs 

are mathematically reducible to sets. Weiner suggested one way: treat <x,y> 

as [x ,^ ,y ]j. Kuratowski suggested another: treat <x,y> as £x Both

these fulfill the identity criteria for ordered pairs

(i) <x,y> = <w,z> iff x = w and y = z

As far as mathematics goes, both Wiener's and Kuratowski's approaches are 

successful. Quine puts the case for the mathematical status quo, ^

commenting:-

’Which is right? All are; all fulfil (i), and conflict with one another only out 

amongst the don't cares. Any air of paradox comes only of supposing that 

there is a unique right analysis - a mistake that is encouraged by the practice,

2 28



otherwise convenient, of using the term 'ordered pair' for each version. On 

this and other points, the nature of explication as illustrated by the ordered 

pair may be made wholly evident by retelling the story of Wiener, Kuratowski 

and the ordered pair in a modified terminology. In the beginning there was the 

notion of the ordered pair, defective and perplexing but serviceable. Then 

men found that whatever good had been accomplished by talking of the 

ordered pair <x,y> could be acomplished instead by talking of the class £x >[y>Aĵ

- or, for that matter, of £x >̂x>yĴ

Quine [119] (260)

The point of epistemological interest is the 'don't cares'. The facts of logical 

life are that Wiener's and Kuratowski's competing formalisations demand 

incompatible valuations of certain set theoretical sentences. For instance the 

sentence 1 [x>yj c x̂>ŷ ' *s recognised as true under the formalisation of 

Kuratowski since it is equivalent to '^ »y j c jx ,^<,y|j'. But under Wiener's 

formalisation '£x,yj € <x>y>' emerges as '|x,y^e x̂ which is false. If we

accept that '£x,yje <x»y>' *s determinately true or false for each x and for each 

y, then we must also accept that either Wiener or Kuratowski is wrong: and 

that is contrary to the council of mathematical tolerance preached by Quine. 

By modus tollens, accepting the tolerant attitude means rejecting the 

determinacy of truth-values of sentences like ’^XjyJc <x,y>\

The rejection of the view that every well-formed declarative sentence is 

either true or false, is, as I understand it, a rejection of the Principle of 

Bivalence, and this is what is recognition of ontological elasticity demands. 

The Principle of Bivalence is historically, but not inevitably, associated with 

Correspondence theories of truth. A Correspondence theorist, archetypically, 

believes there is a completely determinate collection of states of affairs or 

facts. There is also a range of truth-bearers, sometimes presented as 

propositions, which either correspond or do not correspond to the facts. If a
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proposition corresponds to the facts, it is true: if not, false. The 

epistemological problem is that theories of truth which follow this general 

pattern (theories handed to us by such imposing authorities as Aristotle, 

Russell, the early Wittgenstein, and Tarski) leave no room for ontological

elasticity or its philosophical consequences. Ontological elasticity teaches us 

not to think of the world as a collection of facts with determinate relations to 

what we surmise. On the contrary, ontological elasticity enjoins that we 

accept that there are domains in which it is drastically underdetermined just 

what exactly the properties of the elements of these domains are. Ontological 

elasticity teaches us that certain questions about the nature of various kinds 

are radically misplaced and that in certain areas the very existence of certain 

would be objects may be left unsettled. For ontological elasticity to be 

accommodated, the Correspondence picture of the world as a collection of 

given facts has to go in favour of something more flexible. We are forced to 

recognise that if statements about Kgs are legitimately formalised as 

statements about K^s, or K2S, then liberality must be used as regards the 

valuation of sentences that attribute to Kgs, properties reserved for K]S, or 

which attribute to Kgs, properties reserved for K2S. Just as ontological 

elasticity demands its own logic, so it also demands its own theory of truth. 

The detailed exegesis of such a theory of truth belongs by right to a 

substantial work in epistemology. This is not such a work and so what follows 

is not a detailed exegesis, but rather the elements for the construction of such 

an exegesis.

Within any language there is a solid core of sentences which are either 

determinately true or else determinately false. The domain of such sentences 

has been the domain of classical logic and within this domain the canons of 

classical logic hold good. Such declarative sentences I call core sentences. 

Outside the solid core is a domain of fringe sentences. Fringe sentences are 

characterised by their resistance to any conceivable means of allocating them
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a truth-value and constitute the 'don't cares' of Quine's quoted comment. 

Examples of such fringe sentences include '^1,2  ̂£, <1,2>', 'the cardinality of a 

point is N0', and possibly 'My thoughts are in my brain'. In formalisation an 

ontologist is expected to take note of the truth-values of core-sentences, for

these are the sentences which place constraints of his formalisation. The 

fringe sentence are the 'don't cares' which can be played fast and loose with: 

these sentences lack truth-value, but can be conventionally given a truth-value 

if the formalisation requires it. So we get a diagrammatic picture like this:-

FRINGESENTENCES

CORE SENTENCES

The fringe-core distinction raises two questions:-

(1) What, more precisely, places a sentence in the fringe rather 

than the core?

(2) Can a sentence move from one to the other?

I shall take these questions in turn.

In a sense, the first question has received something of an answer in saying 

that a fringe sentence is a sentence that reveals no significant consequence



whatever its valuation. But the answer can, I think, be pressed a little further 

and I shall try to do so.

The pursuit of truth or knowledge, can be thought of in terms of a model in 

which sentences are processed through what can be called an epistemic filter. 

An epistemic filter embodies our principal modes of epistemic inquiry: that is 

to say, our important ways of assessing the truth or likely truth, falsehood or 

likely falsehood, of various declarative sentences. The elements of our 

cultural epistemic filter range from the simplest decision-effective procedures 

(like deciding the truth of a sentence of elementary arithmetic) to the most 

abstract methodologies such as the Popperian scheme for the pursuit of 

science. Epistemic filters are not fixed in nature; that is to say an epistemic 

filter is a growth system rather than a pre-wired system incapable of change. 

Some parts (e.g. logic and mathematics) of an epistemic filter do, by reason of 

their recurrent usefulness in many cases, acquire the status of being fixed and 

unassailable necessary truths. But in general, the cultural epistemic filter 

changes and evolves from generation to generation. This is simply because an 

epistemic filter is being constantly modified by its own output. To make the 

point simply, as an epistemic filter is used to separate out truths from 

falsehoods, so certain declarative sentences that become thus well-established 

and become part of the epistemic filter itself. Thus Newton's equation for 

gravitational attraction F = G minr^/d2, where F is the gravitational force, 

m i and m2 the masses of the bodies, d the distance between the bodies and G 

the gravitational constant, was once the object of investigation to the 

epistemic filter of seventeenth-century physics. Subject to its corroboration, 

it became in due course, part of the epistemic filter of physics itself and was 

used to evaluate reports on the masses of the planets.

In describing an epistemic filter as a growth system rather than a prewired 

system, it does not follow that epistemic filters do not tend, as most growth 

systems do, to a stable state where growth ceases or becomes slowed to a
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minimum and the system becomes in all essential respects a fixed-wire 

system.

An example of such a growth system would be that of a computer programmed 

to play chess, but also programmed to change its programme as its experience 

of the game grew. Such a computer would never play the same losing game 

twice. Over a period of time the computer would lose fewer and fewer games 

and consequently modifications to its programme would grow less too. The 

stable state to which the computer would gravitate would be one where it 

played the best possible move in any chess situation. In this way the concept 

of 'the best chess move' could be defined as the move the computer would 

make in its ideal stable state. Though the rate of the computer towards its 

stable state would be, to an extent unpredictable, depending in part on the 

quality of the opposition, the stable state would itself be determinate.

In a similar fashion an epistemic filter would move towards a stable state and 

the concept of truth could be defined in relation to such a stable state: a 

sentence is true if and only if it is classified as such when input to a stable- 

state epistemic filter and false when it is classified as such by the same filter. 

Sentences left unclassified would be fringe sentences. Apart from the use of 

the terminology of cybernetics, the spirit of this account of truth was 

captured by Peirce in his definition of truth: The opinion which is fated to be 

ultimately agreed to by all who investigate is what we mean by the truth...’

Are fringe sentences incapable of changing their status or can they become 

core sentences? The answer to this question is that they can become core 

sentences because of the human passion for interfering with their own 

epistemic filters and altering the course of their development. Acts of 

intellectual deus ex machina frequently result in incorporating whole tracts of 

fringe sentences into the core and the epistemic filter, so enriched, then 

begins to progress towards a stable state which it would have not attained had 

it been left alone. These acts of deus ex machina are conventions which fix
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the truth-values of certain crucial fringe sentences, on the promise of thus 

evolving a new area of research and eliminating doubt or fog over fundamental 

issues.

Cantor's foundational work on infinity was an example of such a deus ex 

machina intervention in the epistemic filter of nineteenth century 

mathematics. Prior to Cantor's work, most discussion of the concept of 

infinity took place within philosophy and the concept of infinity resisted 

incorporation into mathematics. For this reason, statements about infinity 

(e.g. 'All infinite collections have the same number of items') were fringe 

sentences relegated to philosophers. Had the procedures and conceptual 

equipment of the mathematician circa 1850 been allowed to develop, no means 

of evaluating these sentences would have emerged.

Cantor's achievements lay in altering the epistemic filter of mathematics in 

such a way as to reclaim fringe sentences relegated to philosophy, for 

mathematics. In order to do so, Cantor had to propose certain conventions for 

the valuation of fringe sentences concerned with infinite collections. 

Principally Cantor chose to adopt a definition of infinity (that a set is infinite 

iff it is equivalent to a proper subset of itself) which reversed the classical 

conception that the whole is always greater than a proper part. By use of such 

conventions for fixing the values of fringe sentences concerned with infinity 

Cantor created the study of transfinite cardinal arithmetic in which hitherto 

fringe sentences became core sentences capable of proof or disproof. A 

similar example, though less enthusiastically endorsed than Cantor's work, was 

Whitehead's [147] ontological reduction of points and instants of time to set- 

theoretical constructions of events. Accepting the benefits of Whitehead's 

approach involves admitting to the domain of the core sentences, sentences 

reporting on the cardinality of space-time points that previously would have 

had no valuation. In this way, truth can evolve with the evolution of human
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1 See Grandy [56] for a proof. The strong Lowenheim - Skolem theorem was 

first proved by Bemays.

2 See section 6 on recursive reduction. Gottlieb [55] has pointed out that even 

if human intellect was so powerful as to be able to specify some arithmetical 

model on the presentation of a consistent theory, this would still not establish 

Pythagoreanism. Thus suppose T to be a true first-order theory written in L, 

whose domain of discourse was non-arithmetical. By the strong Lowenheim - 

Skolem theorem there is an arithmetical model <D,i> of T where D = N, the 

set of natural numbers. Suppose we could isolate this model. We might be 

able to specify a language L' with the following properties. Where v is any 

element of L and i(v) the interpretation of v under i, there would be a variable 

v' of L' where the extension of v' = i(v). By replacing each such variable v in T 

by v' of L', a true arithmetical theory T' would be created, i.e. one whose 

variables ranged only over numbers. T would be reduced to T'.

However it does not follow that if L' is an arithmetical language whose 

variables range only over numbers, that every theory formulated in L' is 

Pythagorean (i.e. committed only to numbers). For suppose that the predicate 

'x is greater than the number of members of the House of Representatives' is 

an element of L'. '(3 x) x is greater than the number of members of the House 

of Representatives' is both a theory of L' and a theory whose ontological 

commitments are not totally Pythagorean. Arithmetical languages need not 

generate arithmetical ontologies.

3 See Austin [1] [8] and Stawson [138],
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CHAPTER SIX

Ontological Reductions

Ontological reduction is both a generic and a dialectical procedure: generic, 

in that there is not simply one kind of procedure called 'ontological reduction' 

to be examined; dialectical, in that the procedure of ontological reduction is 

often executed within a human exchange. Dialectical procedures (such as 

demonstration or giving evidence) cannot be analysed outside contexts where 

on human being reasons with another.

Having said that ontological reduction is a generic concept, it is then natural 

to enquire what binds the various species of ontological reduction together and 

brings them together under one rubric or heading. It would be easy - and 

somewhat disappointing - to hide behind the ink-cloud of Family Resemblance 

and deny this question significance. Here, at any rate, it is not necessary to 

do so. What binds the various species of reduction together is not how they are 

performed but why. It may arise that a person wishes to demonstrate of a 

subject (possibly himself) that the discredit of a particular ontological 

commitment attributed to that subject can be avoided in some manner. 

Ontological reduction is simply a name given to any philosophically interesting 

procedure that can bring this about.

In this chapter, four kinds of ontological reduction will be examined; recursive 

reduction, reduction by logic-shift, reduction by limitation of the target 

language, and identity reduction. There is no claim to completeness in this 

list; they are merely those reductions that strike me as most pervasive or 

philosophically interesting. Anybody who can add to the list is welcome to do 

so. It should be noted that one species of reduction has already been dealt 

with: that which takes advantage of ontological elasticity by reformalising to
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avoid an unwanted existential quantification. I shall not cover this ground 

again. Finally the chapter will end in an examination of the development of 

Quine's views on ontological reduction.

6.1 Recursive Reduction

Recursive reduction originated in mathematics where the technique was used 

ancestrally in Riemann's relative consistency proof of Riemannian to 

Euclidean geometry. (Indeed, there are several striking similarities between a 

recursive reduction and a relative consistency proof). Although derived from 

mathematics, recursive reduction is applicable to other areas of human 

research. Appendix III at the end of this chapter contains a detailed expansion 

of a recursive reduction of instants of time by Russell, and is worth consulting 

by anybody interested in seeing the technique in action.

The procedure of recursive reduction is irreducibly dialectical. Consequently 

the procedure will be illustrated between two imaginary parties, Yodelstein 

and Zollicoffer, arguing over the existence of a species K of entity, which for 

the sake of generality, shall be left unspecified. The position - pre-recursive 

reduction - is that Yodelstein is committed to the existence of Ks, but is 

willing to abandon his commitment to Ks should anything better offer. 

Zollicoffer is determinedly opposed to recognising the existence of Ks and 

hopes to persuade Yodelstein to his position. The game is set.

The first move is Yodelstein's. Yodelstein isolates a formal language L|<, 

which can be assumed to be first order. Lj< is selected on the basis that 

Yodelstein believes that anything significant that he wishes to assert of Ks can 

be asserted in this language.
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The second move is also Vodelstein's: the isolation of a set T|< of axioms 

written in the language L|<. Yodelstein takes the elements of T|< to be true 

and ideally will also be complete. However completeness being a property 

laid up more in heaven than found in terrestrial theories, it will not matter 

that T|< is incomplete. It is important, however, that Yodelstein be happy to 

identify the seminal truths about Ks with the theorems of T|<, and hence that, 

in respect of the important verities about Ks, Yodelstein should agree Tj< is 

'complete'.

The first two moves define Yodelstein's position, and from thereon in, most of 

the moves are made by Zollicoffer. Zollicoffer has to specify a domain of Os, 

within which Ks are not included and Zollicoffer has to get Yodelstein 

agreement that there is such a domain. Without Yodelstein's agreement on 

this, the game terminates without Zollicoffer arriving at a winning position. 

Having secured Yodelstein's agreement, Zollicoffer then procures a formal 

language Lj, (whose variables range only over the items of J) which Zollicoffer 

considers is rich enough to say what he wishes of the elements of J. 

Zollicoffer produces a theory Tj written in the language Lj; and Zollicoffer 

must persuade Yodelstein that Tj is true. Again without Yodelstein agreeing, 

Zollicoffer fails to arrive at a winning position.

If he has got this far, Zollicoffer is in a position to make his crucial winning- 

move - the application of a recursive reduction. What Zollicoffer endeavours 

to do is to produce a computable or recursive function r, where r takes as its 

domain the set of sentences and has as its range a subdomain of the domain 

of Lj sentences. Zollicoffer attempts to prove, on the assumptions granted to 

him by Yodelstein, that r preserves truth-values; i.e. s 5  r(s) for all s of L|<. If 

Zollicoffer suceeds in doing this, then- he has provided Yodelstein with what 

Yodelstein must agree is a mechanical truth-preserving means of translating 

(and hence eliminating) all talk about Ks in favour of talk about Js. He has 

effectively shown that Yodelstein no longer has any good reason to cling to an 

ontology of unreduced Ks.
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How may Zollicoffer constructively prove the existence of such a recursive 

function? In fact, granted the assumptions provided by Yodelstein, Zollicoffer 

proves his point if he proves the following:-

f-Tjr(s)

I- T k- s 3  Tj " r(s)

The reasoning is quite simple. Let s be any sentence of Lk. Now suppose v(s) 

= 1; on the assumption granted by Yodelstein the idea of truth-in-Lk can be 

conveniently approximated to derivability from Tk. So Zollicoffer has been 

given licence to treat v(s) = 1 and F j^s interchangably; let him do so. Since 

Yodelstein has allowed that Tj is true, by mapping s to a theorem r(s) of Tj, 

Zollicoffer shows that, according to Yodelstein's own thinking, whenever v(s) = 

1, r preserves truth-value.

Now suppose v(s) = 0; by the same assumptions as before Zollicoffer is entitled 

to treat this as equivalent to F jk - s, and since Tj is assumed true, if s is 

mapped to r(s) where F j .  - r(s), then again Yodelstein must agree r preserves 

truth-value. Game to Zollicoffer.

There are a few points to note about this little scenario. Yodelstein can have 

a reply if he wishes. He can, for instance, change his mind about Tk and 

enlarge its repertoire of home truths about Ks, even if such an indulgence 

smacks of gamesmanship. Zollicoffer, for his part, is restricted by the rules of 

the game; especially by the fact that r must be a recursive function. The 

reasons for the emphasis on recursiveness is that Yodelstein cannot eschew his 

commitment to Ks unless he is provided, whenever he is tempted to quantify 

over Ks, with an effective means of avoiding this quantification. To be told 

that talk of Ks is dispensable, but to have no means to hand to dispense with it 

is no use to Yodelstein. There are two corollaries to this demand for 

recursiveness.

239



Corollary one is that since r is recursive, Zollicoffer must define r purely 

syntactically, without reference to any semantic concepts like truth or 

meaning, r must be defined purely in relation to the order and appearance of 

the signs used in the sentences of L|< and Lj*

Corollary one contains its own justification for the requirement that r be 

recursive. For imagine that r need not be recursive; then we could easily find 

a truth-preserving non-recursive function r*; where s is any sentence of L^, r* 

is defined as follows:-

r*(s) = f  '(x)x = x' if v(s) = 1 

^  '-(x)x = x' if v(s) = 0

In this way the ontology of every theory could be dispensed with altogether. 

Recursiveness blocks out this option. However, where truth in !_;< is decidable» 

then a function such as r* can be defined recursively. It follows that the 

ontology of any decidable theory is dispensable.

Corollary two is that if the domain of r (the set of sentences) is 

denumerable, then r cannot be specified by enumeration. Thus defining, f or 

the sake of illustration, a recursive function in terms of Turing computability, 

to define r by enumeration for each element of would require a program of 

infinite length, and programs of this kind (as well as being humanly impossible 

to write) are defined as inadmissable for Turing machines. In such a case f  

must be defined from the elements of L|< itself, and r(s) is defined for each § 

by the components from which s is constructed.

In closing, it is worth remarking on the close parallels between a recursive 

reduction and a relative consistency proof. The techniques are basically the 

same. In both cases the means is a procedure which maps one theory into & 

subtheory of another theory. In fact, the recursive reduction of Tj to T  ̂ is alt 

the same time a relative consistency proof of Tj to T|<. The difference
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between a recursive reduction and a relative consistency proof lies mostly in 

the different purposes for which the same technique is adopted.

6.2 Reduction by Logic Shift

Haack [59] defines an extended logic as a logic which includes as a proper part 

both the symbolism and axioms/rules of inference of either the classical 

propositional or predicate calculi. Where the study of extended logics 

intersects with metaontology, is when an ontologist shifts to the use of an 

extended logic to avoid a quantification that he finds distasteful. To 

illustrate.

The sentence 'Tom moved' is a simple action sentence. If asked to formalise 

'Tom moved' then the atomic sentence:-

moved (Tom)

is close at hand. Complexities begin with the introduction of adverbs. 

Suppose the task is to formalise not 'Tom moved' but 'Tom moved swiftly'. 

Plodding along the lines of previous thought we suggest:-

moved swiftly (Tom)

as a good formalisation.

Davidson [38] disagrees. Davidson criticises formalisations like this one on 

two counts.

First, the proposal, if generalised as a way of treating adverbial sentences and 

placed in the context of a Davidsonian theory of meaning, stands in danger of 

violating the constraint of finite axiomatisation. The string of modifying 

adjectives and adverbs can be extended indefinitely, thus:-
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Tom moved swiftly....

Tom moved swiftly and with stealth....

Tom moved swiftly and with stealth towards the pantry....

Tom moved swiftly and with stealth towards the pantry on all 

fours.........................

If each of these sentences is formalised as an atomic sentence then the 

predicates 'moved', 'moved swiftly', 'moved swiftly and with stealth', 'moved 

swiftly and with stealth towards the pantry', 'moved swiftly and with stealth 

towards the pantry on all fours' become semantic primitives each of which 

requires its own satisfaction conditions to be axiomatised. Since there is no 

guarantee that an infinite number of such predicates cannot be formed, then 

there is no guarantee that an infinite number of axioms will not be required.1 

Second, the species of formalisation advocated fails to legislate for inferences 

like:-

Tom moved ....

Tom moved swiftly

Tom moved;

which becomes formalised as the logically invalid:-

moved swiftly (Tom)

moved (Tom)

of the form Fa I- Ga.
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Both these disadvantages are avoided on Davidson's proposal. This proposal 

would formalise 'Tom moved swiftly' as:-

'(3e) movement (e) & swift (e) & of (e, Tom)'

Here complex adverbial constructions are teased apart into predicates true of 

events (or ordered n-tuples containing events). The threat of using infinite 

axioms is avoided. As a bonus, if 'Tom moved' is formalised as:-

'(3e) movement (e) & of (e, Tom)'

then the inference from 'Tom moved swiftly' to 'Tom moved' becomes 

represented by the logically valid argument:-

(3e) movement (e) & swift (e) & of (e, Tom)

(3e) movement (e) & of (e, Tom)

Davidson reasonably identifies the values for which these sentences are true as 

being events. Consequently Davidson recognises an ontological commitment 

to events in adverbial sentences.

Romane Clark [30] is not happy about admitting the existence of events. He 

complains that Davidson fails to supply identity criteria for events. Clark 

follows a course of formalising adverbial sentences unlike Davidson's. Clark's 

approach, he believes 'reflects the grammar of our native language' as regards 

adverbial sentences. Clark's idea is to see 'swiftly' in 'Tom moved swiftly' not 

as predicating of an event, but as attaching to and modifying the sense of 

'moved'. 'Moved' becomes what Clark calls 'a core predicate' and 'swiftly' a 

predicate modifier. So 'Tom moved swiftly' is formalised in Clark's predicate 

modifier logic as:-
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’swiftly (moved (Tom))’

In a logic of predicate modifiers there is a primitive rule of inference that 

allows predicate modifiers to be peeled off from the outside of formulae. 

Formally, where M is any predicate modifier, any concatanation of n (n > 0) 

predicate modifiers ending with an m-place (m > 1) predicate, and tj,..., tm 

are terms; then all inferences of the following schema are allowed.

M O 'C t!.....tm))

$  (ti,....tm)

If 'Tom moved swiftly' is formalised as 'swiftly (moved (Tom))' and 'Tom 

moved' by 'moved (Tom)' then the argument Tom moved swiftly therefore Tom 

moved' becomes represented as:-

swiftly (moved (Tom)) 

moved (Tom)

which is an instance of the rule of predicate modifier detachment given above. 

Clark opens his paper by stating what he takes to be the difference between 

stating what he takes to be the difference between Davidson and a 'radical' 

like himself on issues of this kind.

'The conservative philosopher [Davidson] attributes to the English sentence a 

hidden logical form which does not coincide with its apparent logical form. 

Radicals [Clark], by contrast, will be inclined to take the English sentence at 

face value. Instead they will tinker with standard logic hoping to 

accommodate those recalcitrant inferences in an enriched formal structure'.

Clark [30](311)
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This summarises the differences quite well. The different patterns of Clark's 

and Davidson's arguments can be brought out if their positions are simplified 

and idealised to draw attention to the salient features of each; thus:-

Davidson

P

Q

R

((P & Q) & R 

S

The first-order predicate calculus is the correct logic 

for the purposes of formalisation.

'Tom moved swiftly' is true.

In order to properly formalise 'Tom moved swiftly' in 

first order logic, events have to be quantified over.

If the first-order predicate calculus is the correct 

logic for the purposes of formalisation and 'Tom 

moved swiftly' is true and in order to properly 

formalise 'Tom moved swiftly' in first-order logic 

events have to be quantified over then events exist.

S Events exist.

Clark

- S Events do not exist.

Q 'Tom moved swiftly' is true.

R In order to properly formalise 'Tom moved swiftly' in

first order logic events have to be quantified over.

C(P & Q) & R) If the first-order predicate calculus is the correct 

"D S logic for the purposes of formalisation and 'Tom

moved swiftly' is true and in order to properly 

formalise 'Tom moved swiftly' in first-order logic 

logic events have to be quantified over then events 

exist.

- P The first-order predicate calculus is not the correct

logic for the purposes of formalisation.
___ O A  5 ________



Both arguments are tautologically valid. The Davidsonian argument is of the 

form P,Q,R,((P & Q) & R)D S f- S. Clark's argument is of the form -S,Q,R, ((P 

& Q) & R) 3  S t- -P.

The problem facing the ontologist here is this: does he accept the correctness 

of the first-order predicate calculus (thus accepting P) and then acknowledge 

the existence of events (accepting S); or does he reject the existence of events 

(thus affirming - S) and then revise his opinion of the correctness of the 

predicate calculus (asserting - P)?

Each course has its own prima facie advantages. Accepting (P & S) allows the 

ontologist to keep his logic simple; but at the cost of inflating his ontology 

with events. Accepting (- P & - S) allows the ontologist to keep his ontology 

free from events - at the cost of inflating his logic. The metaontological 

problem is to try to discern some superordinate principles by which such 

contests can be decided.

These contests are by no means restricted only to the formalisation of action 

sentences. For instance:-

Quantification over periods of vs

time in formalising tensed 

sentences and retaining first- 

order logic 

Quine [119]

Quantification over possible vs

worlds in formalising strong 

conditionals and counterfactuals 

and retaining first-order logic 

Lewis [83]

Stalnaker [134]

Rejecting first-order logic in 

favour of tense logic and dispensing 

with moments in time

Geach [49]

Using a special notation for strong 

conditionals and counterfactuals 

thus removing the need to quantify 

over possible worlds.

Pollock [102]
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Quantification over attributes in vs Dispensing with attributes but using

formalising sentences of epistemic logic.

propositional attitude, but

retaining first-order logic. Ackermann [1]

Quine [117] Hintikka [67]

Haack recognises the generality and importance of this kind of logico- 

ontological disagreement. Her conclusion is that there may well be no 

question-begging way of deciding these contests.

'For myself I concede the desirability both of austerity of symbolism ... and of 

simplicity of paraphrase ....; I fear it is just a fact of logical life that these are 

competing desiderata.'

Haack [60] (161)

Gilbert Harman [63] is less pessimistic than Haack - but also less than 

cautious. Harman lays down a set of rules which are designed to filter out 

unwanted formalisations leaving only one survivor: 'the logical form' of the 

sentence under formalisation. In summary form, Harman's rules are:-

(1) A mode of formalisation must formalise sentences in such a way as to 

obey the constraint of finite axiomatisation.

(2) A mode of formalisation should limit itself, as far as possible, to first- 

order logic.

(3) A mode of formalisation should minimise the axioms that would be 

needed in a good (Davidsonian) theory of meaning for a language if that 

formalisation were incorporated in such a theory.

(4) A mode of formalisation should avoid ascribing unnecessary ontological 

commitments to the sentences formalised.
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(5) A theory of formalisation should assign forms which would be assigned by 

a good transformational grammar.

Some of these rules are quite obscure (what for instance counts as a 'good' 

transformational grammar?) others are lacking justification (why the bias 

towards first-order logic?). The most obviously relevant rules to our 

discussion are (2) and (4); on those Harman has this to say.

On rule (2)

'A theory of logical form should minimise rules of logic. In practice this 

means that rules of logical implication should be kept as close as possible to 

the rules of ordinary (first-order) quantificational logic; for example, one 

might suppose that a three-valued logic yields a better account of the 

language than a two-valued logic does; or one might take quantification in the 

language to be 'restricted' in one or another way. But, other things equal, one 

account is better than another, the closer its logical rules are to those of 

ordinary quantificational logic'.

Harman [63] (291)

On rule (4)

'A theory of logical form would avoid ascribing unnecessary ontological 

commitments to sentences of the language. Other things being equal, one 

theory is better than another to the extent that it interprets sentences as 

implying the existence of more ordinary sorts of things.'

Harman [63] (299)

I do not know what Harman means by 'ordinary sorts of things': but rules (2) 

and (4) are incapable, as Harman states them, of arbitrating the sorts of
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contest previously examined. It is over these contests that an ontologist has 

to choose between (2) and (4). What Harman needs is some hierarchic 

arrangement whereby his rules can be placed in order of importance.

Harman does have some idea of the relative importance of rules (2) and (4). In 

considering predicate modifiers vs quantification over events, Harman chooses 

the latter. Harman remarks that one should only change one's logic 'as a last 

resort'. But the game is given away at the end of the article where Harman's 

logical conservatism is defended on the grounds that it goes to 'help to narrow 

down possibilities'.

This is true. But a series of ad hoc and unsupported conditions does not 

rationally limit possibilities: nor does it give confidence to the idea that every 

sentence has a unique logical form. Harman needs to show that his possibility- 

limiting rules have some other justification apart form limiting possibilities - 

otherwise why not just pick straws? This problem will be resumed in chapter 

seven.

6.3 Reduction by Limitation of the Target Language

A major 'discovery' of post-war Oxford philosophers was made by Austin [9] 

who found that not all indicative sentences performed or could perform in a 

statement-making role. Austin's case study specialised much in promises and 

other avowals which Austin called 'performatives'. In ontology the fact that 

an indicative sentence may not be declarative is sufficient condition to bar it 

from being formalised or from having ontological commitments attributed to 

it. Such sentences can be limited from target language.

An instance of a philosopher taking this line, though not admittedly for 

ontological reasons, is Campbell [17]. After discussing the well-known 

problems involved in formalising the subjunctive and counterfactual 

conditionals in terms of the weak material conditional, Campbell chooses
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Mackie's analysis of both. According to Mackie [87], strong and counterfactual 

conditionals are not really declarative sentences at all. They are really very 

telescoped arguments with many suppressed premises (enthymemes). If strong 

and counterfactual conditionals are emthymemes, then they are not 

statements and so they need not be formalised. Campbell concludes:-

'....since on Mackie's view conditionals are not assertions, they need not (and 

indeed cannot) figure in a complete schedule of assertions....[Therefore]... 

there is no good purpose served by including these reasonings among the 

assertions on which reasoning rests. So such conditionals should not figure in 

the canonical schedule of assertions that claims to be complete in principle.'

Campbell [17] (173)

Mathematicians often use the non-declarative response in defending 

mathematics (and themselves) from the charge of Platonism. Mathematical 

sentences, it is claimed, do not make statements at all; they are simply 

collections of marks on paper which are manipulated according to certain rules 

to give certain results. The applicability of mathematics to the physical 

sciences is explained by the mathematical signs being capable of 

interpretations which relate them to physical and measurable properties and 

operations. But these interpretations are not essential to pure mathematics, 

and properly speaking mathematical sentences are senseless. Mathematics has 

no ontology. This is the philosophy of mathematics which is modern formalism 

as espoused by Haskell Curry [34] and others.

Whether an invocation of the non-declarative response is correct obviously 

depends on whether the sentences so classified are declarative or not. How 

does one tell? Given Austin labelled as the 'descriptive fallacy', that of 

assuming that an indicative sentence can always be used to make a statement, 

syntax can give no help. The best approach is to consider what it is a 

declarative can be used to do, that a non-declarative sentence cannot.
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One of the commonest uses of statement-making sentences is to justify, 

defend, or explain a position; or else to refute or attack somebody else's 

position. It is a peculiar feature of declarative sentences that, when put 

together to form a set of assumptions or premisses, it often happens that it is 

then possible to infer a completely new decarative sentence, and this peculiar 

feature is the basis of reason and argument in general. What defines a 

sentence as declarative, is that it can be added to a set of declarative 

sentences to derive a declarative sentence not previously derivable.8 Thus 

from 'Charles I was beheaded or Charles I escaped to France' we can infer 

neither 'Charles I was beheaded' or 'Charles I escaped to France'. But add 

'Charles I did not escape to France' and it is immediately deducible that 

'Charles I was beheaded'.

Applied to strong conditionals the criterion disagrees with the Mackie- 

Campbell view of their non-declarative status. Consider the sentences:-

(a) 'This solution of hydrogen peroxide has bleach added to it at time t.'

(b) 'This solution of hydrogen peroxide evolves oxygen at time t + 5 seconds.'

Suppose the indexical elements of (a) and (b) are anchored to the appropriate 

particulars, (a) does not entail (b). However if to (a) we add (c)

(c) 'If this solution of hydrogen peroxide has bleach added to it at time t 

then it must be that this solution of hydrogen peroxide evolves oxygen at 

time t + 5 seconds.'

then from (a) and (c), (b) is derivable. Consequently (c) is an information 

bearing sentence and counts as declarative.

Applied to formalism as a philosophy of mathematics, the criterion propels 

discussion into the area of mathematical reasoning in applied mathematics.
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The issues here are too ramified to be treated fully in a short section, and 

Lehman [79] contains an examination of Curry's modern formalism which can 

be consulted by those interested in the issues. I will only mark out where I 

think the important issues are.

Bearing in mind the criterion for declarativeness suggested, there is a prima 

facie case for saying that mathematical sentences are declarative or 

information-bearing. Mathematics plays an important part in inferences in the 

physical sciences. For instance, calculus is required in order to derive a report 

on the position and velocity of a shell at time t given a complete account of 

the forces acting on the shell from the moment of firing. Without calculus 

such ballistic calculations would be impossible. This suggests that calculus 

must consist of declarative sentences.

The strangest counter to this argument I can think of is to deny what is 

presumed in the argument: that calculus is required to derive results in 

physics. This seems patently wrong, but the position is quite defendable in 

fact. The formalist argues that calculus can be used in applied mathematics 

as a set of transformation rules for deriving physical sentences from other 

physical sentences, much as the schema '(p3q) & p)Dq' can be used as a rule 

of reasoning in argument. Physicalistic sentences are actually derivable 

without mention of calculus, but calculus is mentioned because it makes the 

reasoning easier to follow. The fact that the sentences of calculus appear in 

the same calculation as evidently declarative reports on the velocity of the 

shell, should not, according to the formalist, mislead us into thinking they have 

the same logical status.

As a tentative realist I must register my disquiet over two aspects of this 

reply. The first, and possibly the least justified flutter of suspicion is that 

when inferences in applied mathematics are formalised in first-order idiom, 

that the sentences of pure mathematics have to be entered in the same 

manner as sentences reporting on the physical position, velocity etc., of any
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mass body, if the argument is to be represented as logically valid. The 

formalist will retort that formalisation in first-order logic distorts the nature 

of mathematical reasoning by requiring the misrepresentation of the logical 

status of mathematical sentences. (Since logic is equipped fundamentally only 

to handle declarative sentences, my first disquiet is perhaps too much of a 

petitio anyway). The second grumble is perhaps more serious. The formalist 

owes us an account of the logical status of sentences which combine 

terminology of pure mathematics with that of reference to the physical world 

(e.g. reports on standard deviations, numbers of items etc.). These sentences 

are obviously declarative and the challenge to the formalist is to supply an 

account which is fully satisfactory and yet involves no recantation of his 

formalist ideals.

6.4 Identity Reduction

An identity reduction occurs where a sort K of entities is identified with 

another sort J. In philosophy, identity reductions cause the maximum of 

argument and the minimum of reasoned agreement; why this is will be seen 

shortly. First, it is useful to see why identity reductions are ever attempted 

at all.

Frequently, in ontology, an ontologist ambitious enough to formulate an 

ontological hypothesis, is challenged to take a position in respect of a kind K, 

which (a) there is good reason to think instances exist; but (b) does not 

apparently fit into any category of objects admitted by his hypothesis. The 

ontologist may then choose to challenge (b) by claiming that Ks are in fact 

identical with a particular species of entity J recognised by his hypothesis.

An example of this technique is provided by Berkeley [14], Berkeley's ontology 

consisted of minds and their ideas. This ontology collides with the view that 

there are also objects of everyday experience which are non-mental. Rather
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than deny the existence of such objects, Berkeley identified them with 

perceptions in the mind of God. A more modern identity reduction is 

attempted by Smart [133]. Smart believes in a physicalist ontology. What 

then of thoughts and sensations? Rather than deny their existence, Smart 

identifies them with brain-processes. Since this example is the most currently 

absorbing of all identity reductions, I will use it as the centrepiece in 

examining identity reductions in general.

Identity claims come in two kinds. The first, most familiar kind, are where 

two terms are equated via an identity sign (eg. 'Cicero = Tully', 'Abraham 

Lincoln = America's greatest president'). Identity statements of this kind I call 

token-token identity statements, since they relate specific particulars. Type- 

type identity statements are statements which claim the identity of a 

particular kind with that of another e.g. 'Numbers are identical with a species 

of set', 'Thoughts are brain-processes (of an unspecified kind)'.4 

One way of coming to grips with the problems of identity reductions is to 

enquire how type-type identity statements can be verified or falsified.

Consider the case of the mind-brain identity theory. Might we say that this 

theory is falsified if it became known that there was a lack of significant 

correlation between mental processes and brain processes? Such an empirical 

discovery need not falsify the mind-brain identity theory. The mind-brain 

identity theorist can then retreat to a position that Davidson [40] calls 

'anomalous monism' in which mental events are identical to brain processes for 

each token, but there is a lack of correlation in the form of psycho-physical 

laws relating the occurence of a particular type of brain-process to a 

particular type of thought. Anomalous monism is by no means merely an ad 

hoc evasion of a potentially falsifying situation (though it does, I think, deprive 

the mind-brain identity theory of most of its empirical interest). It is quite 

possible that given genetic and environmental differences that the same type 

of thought in X as in Y is not encoded as the same type of brain-state. (An
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analogy exists in computing: the same piece of software can be stored at 

different addresses by different computers).

Would a correlation between mental processes and brain processes verify (or at 

least render more probable) the mind-brain identity theory? Alas, once again,

no. There is a group of traditional dualist views which insist both on such a 

correlation and yet deny any identity between brain-processes and mental 

processes: parallelism, epiphenomenalism, and interactionism are the leading 

three versions of dualism. At this point, it becomes clear that there is no 

possible empirical resolution of this particular philosophical dispute. When the 

hard core empirical question about mind-brain process correlation is 

subtracted from the mind-brain identity theory, what is left over is a 

philosophical pseudo-problem concerned with the valuation of fringe sentences 

which could only be settled by convention. But not all type-type identity 

claims are pseudo-claims; indeed Smart [133] groups 'Mental processes are 

brain processes' with 'Lightning is a form of electrical discharge' as being both 

genuine empirical theories. This is not so, and it is worth looking at the 

difference.

For the sake of a simple illustration I prefer to use 'Macroscopic organisms are 

collections of cells' rather than 'Lightning is an electrical discharge'. It is 

obvious that the claim 'Macroscopic organisms are collections of cells' is a 

substantive empirical claim. How would it be verified (or for Popperians, 

corroborated)? The obvious way to endorse this claim (in fact, the way it was 

endorsed and the study of ontology founded) is by microscopic examination of 

thin slices of plant and animal tissue. Under the resolution of a good optical 

microscope it is quite easy to make out the cellular structure of an 

appropriately prepared and mounted specimen.

Looking down the microscope the cytologist is presented with a structure of 

remarkable diversity in appearance from the structure that presents itself to 

the naked eye on the platform of his microscope. What he sees down the

. 2 5  5



microscope looking at a piece of plant tissue is a brick-wall arrangement of 

cells each with a cellulose wall framing a cytoplasm and nucleus and an 

internal vacuole filled with fluid. What he sees on the platform is a thin green 

translucent piece of plant tissue. At very high magnifications, e.g. under an

electron microscope, the cytologist is presented with a world even more 

bizarre and diverse from the macroscopic world of his senses.

Yet ontology has never been plagued by philosophical arguments. There are no 

cellular interactionists who insist that the domain of cellular structures and 

living organisms are radically diverse and distinct and yet mysteriously 

interactive. There are no cellular epiphenomenalists who insist that what 

happens to the body influences the cells, that nothing that happens to the cells 

influences the body. The main reason for this happy agreement is that 

cytologists have agreed that the same identity criteria apply to both 

collections of cells and parts of living organisms and living organisms 

themselves. Living organisms and collections of cells belong to the same 

category. A cytologist who looks down a microscope is presented with a 

structure at space-time coordinates x,y,z,t which are the same coordinates as 

the tissue mounted on his slide. Any material object x and any material object 

y are identical just when their space-time coordinates are the same: therefore 

the cytologist of a philosophical cast of mind rightly and logically concludes an 

identity.

Identity claims (whether token-token or type-type) are significant, cognitive 

claims just when they equate items of the same category. To put the matter 

in the formal mode, as long as there is an agreement on the criterion of 

identity appropriate to evaluating an identity claim, so that the 

terms/expressions of the claim are assessed relative to the same criterion then 

there is a significant claim. Identity claims of this kind I call subcategory 

identity statements. In contrast identity claims that relate expressions where 

there is no such agreed criterion are intercategory identity claims, which



belong to the domain of fringe sentences as do their denials. If two disputants 

of the truth of an identity claim are not willing to abide by the same identity 

criterion then there is no way in principle of settling their differences. 

Contests like the mind-brain identity theory vs dualism are incapable of 

resolution, because neither the identity theorist, nor his dualist opponents, can 

concede that mental processes or brain processes are governed by the same 

identity criteria: to do so would be either to beg the question in favour of 

their own position or to give it away to their opponents.

As practised by scientists identity reductions are an important part of the 

progress of science. In philosophy, however, identity reductions are generally 

intercategoric operations frought with dissent, and ontologists are advised to 

avoid them.

6.5 Quine on Ontological Reduction

Quine views on ontological reduction are required reading for anybody anxious 

to get to grips with the topic of ontological reduction. This chapter would be 

incomplete without an examination of his writings on the subject. Since 

Quine's views evolve starting from 'On What There Is' in 19A8 and continuing to 

'Ontological Relativity' in 1970, I have chosen to examine his thought 

chronologically.

'On What There Is' (1948)

Quine's remarks on ontological reduction are limited to part of one paragraph.

'...... when we say that some zoological species are cross fertile we are

committing ourselves to recognising as entities the several species themselves, 

abstract though they are. We remain so committed at least until we devise
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some way of paraphrasing the statement as to show that the seeming 

reference to species on the part of our bound variable was an avoidable 

manner of speaking.'

Quine [116] (13)

Despite the brevity of this passage, there are two points here to note of 

special interest.

First, when Quine talks here about banishing ontological commitments, he has 

in mind banishing the ontological commitments of people rather than theories 

(hence 'We remain so committed....'). Quine consequently avoids a mistake 

attributed to him by Alston [2], and an attribution endorsed by Searle [131], of 

believing that it is possible to change the ontological commitments of a theory 

through formalisation or paraphrase. Alston's argument is in essence a direct 

one. Let S be any sentence with an ontological commitment to Ksj an 

ontological commitment the ontologist O does not want to share. O tries to 

reduce this commitment by paraphrasing S as Si. In Si, reference to Ks is 

avoided and an ontological reduction effected. What is wrong with this 

method, argues Alston, is that either S and Si make the same statement or 

they do not. If they do, then their ontological commitments are the same and 

no reduction has taken place. If they do not, then Si is no true paraphrase of S 

since they are used to make different claims.

Applied to Quine; this criticism misses the point of his theory of ontological 

reduction as Chihara [26] has observed. The idea of paraphrasing a theory T to 

remove an unwanted reference to species is not to show that T was not so 

committed to species but to provide an ontologically superior theory Ti which 

does not have such a commitment and which we can adopt in place of T. The 

presupposition of this approach is that although whatever useful purpose T 

served can be served by Ti, T and Ti do not make the same ontological claims, 

and hence do not make the same overall statement.
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This point raises the second and related point about the nature of paraphrase. 

It follows directly from Quine's position that paraphrase need not preserve 

meaning: if it did, then it would be impossible to reduce a theory Tjs by 

paraphrase alone. Quine's disavowal, in Word and Object, of the relevance of
5

synonymy to paraphrase, was legislated by his position in 'On What There Is'. 

Word and Object (1960)

Word and Object is rich in ontological speculation concerning propositions, 

numbers, sets and universals. However metaontological developments are 

more restricted. I shall concentrate on a theme that Quine raises: that of the 

distinction (if any) between explicative and eliminative reduction.

Quine's exposition of the distinction is marred by some amount of the 

equivocation and unclarity. At the simplest level the distinction between 

eliminative and explicative reductions is the distinction between (a) a 

reduction where a kind K is eliminated from our ontology and (b) where a kind 

K l is explicated as a kind

However Quine fogs the distinction by declaring that '...explication is 

elimination, and ... conversely elimination can often be allowed the air of 

explication' (Quine [116] (265)). Quine also refers to explication as 

'philosophical analysis' (259), and hastens to add he does not understand by 

'analysis' what the Oxford School of linguistic analysis understood by 'analysis', 

but something quite different that does not depend on replacing expressions by 

synonymous expressions. What that something is, is left in the air, but Quine's 

passing remarks incline to the judgement that what Quine means by 

'explication' is what he means by 'paraphrase' since what he says about them is 

much the same.

Quine's 'explication is elimination', which he italicises (260), comes clearer in 

respect ot Wiener's and Kuratowski's treatment of ordered pairs, which Quine
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offers as an example of 'explication*. Quine's point is that this 'explication' 

(=paraphrase) allowed mathematicians to achieve a kind of elimination - 

whether of ordered pairs from their ontology or the language of ordered pairs 

from the language of mathematics is not made clear - which they could not

have achieved before. This is an uncontroversial stand which can only be 

condemned on the grounds that the terminology used to put it across is 

confusing.

Quine's '...conversely elimination can often be allowed the air of explication.' 

is even more confusing; principally because Quine is here equivocating again of 

'explication' using it in the original sense as applied to reduction. Decoded, 

Quine is saying that, in certain cases, when T is paraphrased as a theory T j, 

the reduction of the entities of T to those of can be treated as an 

explicative reduction as easily as an eliminative reduction.

It becomes apparent on later reading that Quine is ambivalent about the value 

of his own distinction between explicative and eliminative reduction. Thus in 

contrasting eliminative and explicative physicalism, Quine remarks:-

'Is physicalism a repudiation of mental objects after all, or a theory of them? 

Does it repudiate the mental state of pain of anger in favour of its physical 

concomitant [eliminative physicalism], or does it identify the mental state 

with a state of the physical organism [explicative physicalism] (and so a state 

of the physical organism with the mental state)?.... Some may... final comfort 

in reflecting that the distinction between an eliminative and explicative 

physicalism is unreal.'

Quine [116] (265)

Immediately afterwards, Quine openly rejects the eliminative-explicative 

distinction.
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Some attempt on these questions can be made through the services of System 

4 which was designed specifically to deal with reasoning of this kind In which 

classical principles do not apply. Let P = 'There are only physical objects and 

processes', Q = 'Mental processes do exist' and R = 'Mental processes are 

physical processes'. We have (P & Q) R. Since R has been classified as a 

fringe sentence neither R nor - R is true i.e. - (R v - R). The question as to 

whether P or Q being fringe hypotheses follows from (P & Q)d R and - (Rv - R) 

can be formalised in System 4 s the query as to whether

K(P & 0 )0  R) & - (Rv - R)] 3  [- (Pv - P) v - (Qv - Q)]

is valid in System 4 or not. The answer is that it is valid; for it can be proved
ethat this formula is a member of any conforming set.

The conclusion, based on System 4 reasoning, is that either physicalism (P) 

and/or the view that mental processes exist is a fringe hypothesis. Since the 

existence of mental processes seems fairly established, the weight of suspicion 

would seem to fall on P.

As regards Quine's second example, Eddington vs Stebbing, the issues are quite 

different. Swarms of molecules and solid tables belong to the same category 

of being, since, as spatio-temporal objects, they share the same identity- 

conditions. If a swarm of molecules occupies the same space-time coordinates 

as a wardrobe or table, then the swarm and the table are one. There is nothing 

problematic in this identification and in this Stebbing is in the right; and Quine 

in the wrong for classifying the identity claim as unreal.

'Ontological Reduction and the World of Numbers' (1964)

In this article Quine specifically sets out to examine the nature of ontological 

reduction as applied to first-order theories. The goal is to specify the nature
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of the reduction relation (R) as it holds between two theories 0  and 

'ROOi' can be read as ’̂ reduces to 0\\ Quine's definition of R is as follows:-

'The standard of reduction of a theory ^ t o  a theory 0\  can now be put as 

follows. We specify a function, not necessarily in the notation of 0  or 0 \ , 

which admits as arguments all objects in the universe of 0  and takes values in 

the universe of This is the proxy function. Then to each n-place primitive 

predicate of 0 , for each n, we effectively associate an open sentence of 0\  

with n free variables, in such a way that the predicate is fulfilled by an n-tuple 

of arguments of the proxy function always and only when the open sentence is 

fulfilled by the corresponding n-tuple of values.'

Quine [116] (218)

The idea, I take it, is that if R 00\ then theory 0\ is capable of subsuming the 

position that 0  held and can be freely used in place of 0 \ . Quine does not 

mention constants or function-letters in his definition of R. I conjecture that 

a plausible extention of Quine's account would be as follows. Let p be the 

proxy function from the domain D of 0  to the domain Dj of then for each 

n-ary primitive function-letter f of 0 there is effectively associated an n-ary 

function-expression f^ of such that where d^,..., dp+1 are any elements of 

D, <d!,...d n+]> is an element of the extension of f iff <p(di)..., p(dn+j)> is an 

element of the extension of fj_. Where c is a primitive constant of 0 which 

denotes d, there is associated a closed term c j  which denotes p(d). I also take 

it that the formulae of 0  are written out in primitive notation. Some logical 

observations on R.

First, an unfortunate feature of Quine's definition of R has been isolated by 

Tharp [143], It turns out that unless the proxy function is an onto function 

from the domain D of 0  to the domain Dj of 0 i, that truths in 0^do not
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necessarily go into truths of 0 ± . Tharp suggests adding this extra condition 

into Quine's definition and I shall suppose this done.

R is reflexive. Given theory with domain D, we give the identity function 

on D as proxy function and the identity function on the set of primitive 

variables of ^ a s  Quine's second function (since Quine does not give it a name 

call it the symbol function). In this case - £3̂ .

Is R transitive? Certainly it should be and intuition suggests that, as Quine 

defines it, it is. Certainty would demand a proof in mathematical logic of 

considerable bulk and complexity. In view df the fact that, as we shall shortly 

see, Quine's criterion is at any rate seriously wrong, the labour involved would 

not be rewarded by a result of sufficient philosophical interest to repay it.

Is R symmetrical? In the general case, no, since to demonstrate R is 

symmetrical we should have to suppose two things. First that the proxy 

function was always 1 - 1  and hence always had an inverse. Second, that the 

values that the symbol function gave for its arguments were all and only the 

primitive variables of

In Ontological Relativity, Quine denied that the proxy function need always be

1 - 1.

'The proxy function used in reducing one theory to another need not, like Godel 

numbering, be one-to-one ....[for] the fragment of economic theory lately 

noted...[we] would happily reduce its ontology of persons to a less numerous 

one of incomes. The proxy function would assign to each person his income. It 

is not one - to - one; distinct persons give way to identical incomes. The 

reason such a reduction is acceptable is that it merges the images of only such 

individuals as never had been distinguished by the old theory.'

Quine [113] (56)

However Quine goes on to argue that given any 1 - 1  function f from the 

domain D of a theory ^  the ontology of pfcan be reduced to that of the range

of f. 2 6 4



'One ontology is always reducible to another when we are given a proxy 

function f that is one - one. The essential reasoning is as follows. Where P is 

any predicate of the old system, its work can be done in the new system by a 

new predicate which we interpret as true of just the correlates fx of the old

objects x that P was true of.'

Quine [113] (59)

It seems that Quine's standards of ontological reduction are too liberal. For 

let the domain D of ^ b e  countable; then a 1 - 1 function exists from the 

domain D into the set N of natural numbers. Would this show that we could 

dispense with all countable ontologies bar that of numbers? Quine recognises 

a similar sort of danger from a strong form of the Lowenheim-Skolem theorem 

which says that every first-order theory that has a model in the domain of 

natural numbers. Remarking on this theorem, in 'Ontological Reduction and 

the World of Numbers', Quine says

'Reduction of a theory $  to natural numbers -  true reduction by our new 

standard, and not mere modeling - means determining a proxy function that 

actually assigns numbers to all the objects o f / i  and maps the predicates o f ,# ' 

into open sentences of the numerical model. Where this can be done, with 

preservation of truth-values of closed sentences, we may well speak of 

reduction to natural numbers. But the Lowenheim-Skolem argument 

determines, in the general case, no proxy function. It does not determine 

which numbers are to go proxy for the respective standards ofjzf! Therein it 

falls short of our standard of ontological reduction.'

Quine [110] (219)

Quine is, in effect, adding a rider to his previous conditions; this rider is that 

the proxy function be constructively demonstrated to exist from the domain of
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to that o f /0 i  i.e. that the reductionist first give an individuating description 

of the proxy function before proving it to be a proxy function. This 

requirement does banish the spectre of a wholesale Pythagoreanism blanking 

out our ontology. However, Quine's criterion of reduction still produces some

peculiar results.

One of these results is that whenever a relation R is discovered to well-order 

the domain D of a theory jZ(̂  where D has countably many items, (by Quine's 

criterion) the ontology of (0 /is reducible to that of natural numbers. It is quite 

simple in such as case to specify a proxy function that takes the form of an 

order isomorphism from the set D into a subset S of the set N of natural 

numbers. Thus supposing that no two Oxford philosophers are born at exactly 

the same time, it would be possible to enumerate them by their ages. Any 

statement about these philosophers could thus be effectively associated in the 

manner Quine suggests, with a remark about natural numbers.

What is wrong in principle with Quine's suggestion that one ontology is always 

reducible to another given a 1 - 1 proxy function? The answer is that we 

cannot implement the suggestion unless we introduce numerical predicates 

whose sense is fixed by reference to the objects of the old ontology. Thus i 

may attempt to reduce the elements of Oxford's philosophy department by 

enumerating them. I then proceed to replace each predicate P applied to the 

unreduced dons by a numerical predicate Pjsj true of just those numbers 

correlated to the objects P is true of. But then to fix the sense of Pjsj, an 

essential reference is required to the Oxford philosophy department and I am 

forced to reacknowledge my old commitment. There are other things wrong 

with Quine's criterion however.
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A serious deficiency of the whole of Quine's use of proxy functions is that it 

seems to require an acknowledgement of the objects of the domain of the old 

theory pfas  well as those of the new t h e o r y H o w  can a proxy function be 

defined at all unless we acknowledge the existence of the objects of the old 

theory as unreduced objects? Quine recognises he has a difficult problem 

here:-

'I must admit that my formulation suffers from a conspicuos element of make- 

believe.... My formulation belongs, by its nature, in an inclusive theory that 

admits the objects of $  as unreduced, and the objects of on an equal 

footing.'

Quine [110] (219)

But Quine shrugs off the problem adding:-

'But the formulation seems, if we overlook this imperfection [!], to mark the 

boundary we want.'

In 'Ontological Relativity’, Quine takes this issue more seriously.

'Ontological Relativity1 (1969)

Quine tackles the problem posed by the proxy function directly.

'....... we cannot declare our new ontological economies without having

recourse to the uneconomical old ontology.

This sounds, perhaps, like a predicament: as if no ontological economy is 

justifiable unless it is false economy and the repudiated objects exist after all. 

But actually this is wrong; there is no more cause for worry here than there is
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in reductio ad absurdum. If what we want to show is that the universe U is 

excessive and that only a part exists, or need exist, then we are quite within 

our rights to assume all of U for the space of the argument. We show thereby 

that if all of U were needed then not all of U would be needed, and so our 

ontological reduction is sealed by reductio ad absurdum.'

Quine [113] (58)

Is this a fair analogy? Reflection suggests it is not. Thus supposing one wishes 

to prove p; the method of reductio ad absurdum invites the assumption of -p. 

From -p and a pool of assumptions S, p is derived. Thus a contradiction is 

evolved from S U and —p (=p by Double Negation) is derived on the

strength of S. Though an inconsistency is evolved during the course of the 

proof, consistency in regard to assumptions is restored at the end of the proof. 

But in Quine's procedure, the intitial position is one of consistency and the 

terminal position is one of inconsistency . It is consistent to suppose that Kjs 

exist and K2S exist and a proxy function f exists from the domain of Kjs to 

that of K2S. It is not consistent then to conclude that one has shown that Kjs 

need not be acknowledged to exist on the strength of such a proxy function, 

since to acknowledge f is, ex hypothesi, to acknowledge K^s.

Quine suggests an alternative formulation of ontological reduction in 

'Ontological Relativity'.

'We may picture the vocabulary of a theory as comprising logical signs such as 

quantifiers and the signs for the truth functions and identity, and in addition 

descriptive or nonlogical signs, which, typically are singular terms, or names, 

and general terms, or predicates. Suppose next that in the statements which 

comprise the theory, that is, are true according to the theory, we abstract 

from the meanings of the nonlogical vocabulary and range of the variables. 

We are left with the logical form of the theory, or, as I shall say, the theory
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form. Now we may interpret this theory from anew by picking a new universe

for its variables of quantification to range over and assigning objects from this 

universe to the names, and choosing subsets of this universe as extensions of 

the one-place predicates and so on.'

Quine [113] (33 - 54)

Chihara [26] (127 - 128) does not regard this model-theoretic account of 

reduction as successful. Essentially Quine is arguing that we can ontologically 

reduce a commitment to Ks incurred by a theory O if we can define a model 

for O in which Ks do not occur. Chihara takes T as his theory form.

T: (3x)(3y)(3z)(x^( y & y ^ z & x ^ z &  (w)(w = x v w  = y v w  = z))

(x) -Rx

( 3x)(y)(Ty & Oy)= x = y

The interpretations given to T are as follows:-

Td: Domain:

R: ____

T: ____

O: _____

dogs that live in my neighbourhood, 

has retractable claws, 

has only three legs, 

is owned by Mr. Jones.

Tc: Domain:

R: ____

T: ____

O: ____

cats that live in my neighbourhood, 

has non-retractable claws, 

has only three legs, 

is owned by Mr. Smith.

Assuming that Tc and Td are both models for T, by Quine's criterion Tc can be 

reduced to Td or vice-versa. But does the ability to define alternative models
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for small slices of theory prove a reduction? Chihara does not think so and 

argues convincingly that since the key ontological concepts of a theory can be 

used outside that theory, reduction is only successful when it applies across 

the board to all occurrences of the concepts. Therefore the proper unit of 

reduction is not the theory but the language in which all relevant theories are 

expressed. In reducing a language ipso facto the theories expressed in that 

language are reduced as well.

The main focus of 'Ontological Relativity' is on the phenomenon I have called 

'ontological elasticity', and the consequences of accepting its presence. That I 

have no chosen to follow Quine's terminology of 'ontological relativity' is an 

indicator that our conclusions are not always in sympathy. Nevertheless there 

is much of first-rate importance with which I thoroughly agree with Quine and 

there is no doubt that Quine was the first to set the right level of importance 

on these fundamental issues. It is best to lay down the elements of Quine's 

position and demarcate the areas of agreement from disagreement. These 

elements are as follows:-

(a) There are often alternative representations of the domain of a theory 

which are equally acceptable on the basis of all evidence. None of them 

can be identified as the unique right representation.

'Each.... interpretation of ,.[a]...theory form is called a model of it if it makes 

it come out true. Which of these models is meant in a given actual theory 

cannot, of course, be guessed from the theory form... It is thus meaningless 

within the theory to say which of the various possible models of our theory 

form is our real or intended model.'

Quine [113] (54)
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(b) In such cases we cannot enquire after the identity of the elements of the 

domain of the theory.

'Numbers.....  are known only by their laws, the laws of arithmetic, so that any

constructs obeying those laws - certain sets for instance - are eligible in turn 

as explications of number. Sets in turn are known only by their laws, the laws 

of set theory.... The subtle point is that any progression will serve as a version 

of number so long and only so long as we stick to one and the same 

progression. Arithmetic is, in this sense, all there is to number: there is no 

saying absolutely what the numbers are; then? is only arithmetic.'

Quine [113] (44 - 45)

(c) Therefore we cannot enquire after the ontology of a theory or its 

ontological commitments, unless our enquiry is relativised to a particular 

interpretation of the theory itself.

'What makes sense is to say not what the objects of a theory are, absolutely 

speaking, but how one theory of objects is interpretable or reinterpretable in 

another.'

Quine [113] (50)

I agree with Quine on elements (a) and (b); but I am In some doubt about 

element (c), which Quine seems to treat as a corollary of (a) and (b).

First, a general observation. The phenomenon of ontological elasticity is a 

phenomenon which has been proven to extend only to some theories and not to 

all. Therefore for Quine to draw a conclusion in respect to all theories is an 

overstatement of what may reasonably be inferred from his assumptions. It 

seems wise then, to restrict the domain of (c) to all those and only those 

theories of which (a) and (b) hold true.
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Does (c) follow from (a) and (b)? An informal argument which suggests it does 

not is this one. A theory $  may be analogically elastic in that p f can be 

formalised to a variety of domains D j,..., Dn. But all of these domains may 

share a general feature F in common. In such as case, we can argue that 

although JZÎ does not require a universe which contains specifically one of D]., 

...Dn in order for^p^to be true, nonetheless p^does require a universe which 

displays the general property F. For example, it is true to say with Quine that 

any progression can be made to serve as the domain of Peano arithmetic. But 

a general feature of any such domain must be that it contains a denumerable 

number of elements. Therefore we can say, ontological elasticity 

notwithstanding, that Peano's axioms are committed to the existence of a 

denumerable domain.

Had Quine adopted this course, it would have fitted neatly in with one of his 

earlier definitions of ontological commitment which was quoted in chapter one 

and which I quote here once again.

'If a theory implies '(3 x) (x is a dog)' it will not tolerate an empty universe; 

still the theory might be fulfilled by a universe that contained Collies to the 

exclusion of Spaniels and also vice-versa. So there is more to be said of a 

theory, ontologically, than just saying what objects, if any, that the theory 

requires; we can also ask what various universes would be severally sufficient. 

The specific objects required; if any, are the objects common to all these 

universes.'

Quine [112] (96)

Quine's actual course, as remarked, differs sharply from that which might be 

projected from the above quotation, and it brings him into collision with some 

of his earlier views on ontological commitment. Thus the earlier Quine would 

have said that a theory which contained '(3x) number x' was committed to the
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existence of numbers. But the Quine of 'Ontological Relativity' would

disagree. Whether '(3 x) number x' was committed to numbers or not depends,

according to the later Quine, on how we interpret the 1 - place predicate

'number'. Thus let O be any theory having '(3 x) number x' as a theorem.

Suppose that O is reducible to a range of theories p i ,  . . . ,p n i.e. R pP l, Rpp2>

.....F\IẐ n. In some of p i , . . . ,  p n, '(3x) number x' is a theorem but in others it

is not; the predicate 'number' being taken over by some other predicate.

What prevents Quine from taking the course suggested; of examining each

reduction and arriving at the ontological commitments of $  by distilling off

the common elements of p i ,  ..., p^,? I think the reason may be that Quine

feels that the range of any reducing theories is not fixed, and therefore that

any such distillation will be made from an arbitrarily limited sample. Thus the

ontologies of p i ,. . . . ,  p i  are subject to the same relativism that p f  is, in that
/  . ✓

for any 0 [ ,  (1 < i < n), there is another reducing series p  m (where
'  / /ROj0i,..., ROiJZfp} and for any p j (1 < j < m) there is another reducing series 

Ol, ... O^and so on in an infinite regress. Two remarks about this possibility. 

The first is that there is a distinctness assumption buried in this idea of
/ s 4 t

infinite regress. This is that P i ,  ..., 0 n and p i ,.. . ,  and p i , . . . ,  p^are all 

disjoint series. This assumption is false if R is transitive. For if R p0j and 

R p p j then RpPj and p j  is an element of the series p]_..., 0 n. Hence the 

generation of a new series need not generate any new elements. It seems 

intuitively true that R is or should be transitive, in which case the distinctness 

assumption fails. So much for the regress.

The second remark concerns the infinite part of the regress. It may be that Jp* 

has an infinite number of reducing theories in which case p i ,  p2> p 3 - — is a 

series without end. But would this stop the distillation process from being 

practicable or at least comprehensible? It seems it should not, for Peano's 

axioms are ontologically committed to a denumerable domain as remarked, but 

they also have a denumerable number of reducing theories with different
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domains. Whether the concept of infinity ultimately proves bothersome here, 

will depend, I think, on two factors. First, on whether a series like f l i ,  ,02, 

,03, .... has a definable well-ordering. Secondly on whether one adopts a 

constructivist or anti-realist attitude to statements about infinite collections 

themselves.

If p i ,  JZI2 , proves to have a definable well-ordering relation then it

becomes possible to use inductive techniques to establish universal quantifier 

statements about them. In such a case I can see nothing problematic about a 

claim that all JZlj., JZf2, ,03>—* share F, where this claim is backed by an 

inductive proof.

What if $2* -03» •••• lacks the appropriate well-ordering relation? In this 

case the dissent between the realist mathematician and the anti-realist and 

constructivists becomes important. The realist will still credit sense to 

universally quantified claim about JZ)]_, .... The constructivists and

anti-realists will see it differently. The constructivist denies the existence of 

completed infinite collections: for him, to say that there are (e.g.) an infinite 

number of numbers is just a bad way of saying that for any finite collection of 

numbers it is always possible to think up (construct) a number not found in that 

collection. The constructivist prefers to see a universally quantified 

statement to the effect that all numbers have property F as being equivalent 

in cash-value terms to a statement about the impossibility of constructing a 

number which has -F. The dubious idiom of modal logic, 'impossibility', can be 

conveniently exchanged by saying that from the assumption that Fn for some 

arbitrary number n, a contradiction can be derived. This proof-theoretic 

interpretation of claims about infinite totalities is shared by the anti-realist 

mathematician. The difference is that whereas the constructivist bases his 

claim on an excursion into the metaphysics of infinity, the anti-realist trots 

towards the theory of meaning to gain his support. Both sorts of 

mathematician might be reasonably suspicious of the sense of an infinity-claim
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when the domain in question had no useful well-ordering and hence no means 

of proving the claim.
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APPENDIX HI

Russell's Recursive Reduction of Instants of Time

Russell's recursive reduction of instants of time is a good example of recursive 

reduction, if only because it dispels the idea that recursive reduction is 

necessarily limited to mathematics. The reduction is taken from Russell [123], 

Russell observes that the three main conceptions of physics are space, time 

and the objects therein. As regards time, we are only aware of events of 

measurable duration and not of instants of time. Instants of time are not 

objects of acquiantance, and for Russell, this meant their existence as 

unreduced entities was in doubt. According to Russell logical constructions 

were required to be substituted for instants of time. The process of recursive 

reduction begins with isolation of an axiom set describing the important 

properties of instants. Russell retails:-

'What are the properties we expect of instants? First, they must form a 

series: of any two, one must be before the one; if one is before another, and 

the other before a third, the first must be before the third. Secondly, every 

event must be at a certain number of instants; two events are simultaneous if 

they are at the same instant, and one is before the other if there is an instant, 

at which the one is, which is earlier than some [? any] instant at which the 

other is. Thirdly, if we assume that there is always some change going on 

somewhere during the time when any given event persists, the series of 

instants ought to be compact, i.e. given any two instants, there ought to be 

other instants between them.'

Russell [123] (95)

Some of the expressions of this passage require explanation.



In Russell's terminology, two events are simultaneous not only if they begin 

and end at the same time, but simply when there is a time at which they are 

both going on. One event is before another just when that event begins before 

the other event. An event is wholly before another when it begins and ends 

before the other event. The relations of being after and being wholly after, 

are just the converses of the relations of being before and being wholly before. 

(See diagram 5).

Russell's remarks about the properties we expect of moments of time can be 

codified in a language L]_.

Li = ['EV, IN, AT, <, SIM, <•}

EV =df is an event 

IN =df is an instant 

AT =df at

< =df before

SIM =df simultaneous

< =(jf  wholly before

Axiomatised in l_i, Russell's statements about instants emerge as an axiom set 

A, whose elements are just the following

A i(l) (x)(y)(IN x<5cINy&-x = y ) u ( x < y v y < x )

A£(2) (x)(y)(IN x & IN y )3  (x < y zd -  y < x)

A](3) (x)(yXz)(IN x & IN y & IN z ) d  ((x < y & y < z)Z5 x < z)

Ai(4) (x) EV x O (3y) IN y & AT x,y

Al(5) (xXyXEV x & EV y)z> (SIM x ,y s  (3z) IN z & AT x,z & AT y,z)

Ai(6) (xXyXEV x & EV y )3  (x < y e ( (3 z )  IN z & AT x,z & (w)(INw & AT y,w

3  z < w))



Diagram 7

time
♦>

e l  e l  e 2

e 2  e 2 e l

e i and e2 are simultaneous, SIM ex e2

e i  e l

e7 e2

ex is before e2, e2 *s after e]_, ex < e2

ei
—

ex is wholly before e2, e2 is wholly after ex

el  e i

e2
/

e i  is an initial contemporary of e2, ICON e i e2

e j is at instant i]_, 

e i  is not at instant ’12» 

iX is before i2«

AT ex ¡x & -  AT ex i2 & 

i l  < i2

iX l2
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A](7) (xXyXlN x & I N y & x < y ) D  (3z) I N z & x < z & z < y .

In order to recursively reduce unreduced instants, Russell begins by identifying 

the nature of the logical construction he is to offer in place of an instant, 

which I call a CIN or constructed instant.

'Let us take a group of events of which any two overlap, so that there is some 

time, however short, when they all exist. If there is any other event which is 

simultaneous with all of these, let us add it to the group; let us go on until we 

have constructed a group such that no event outside the group is simultaneous 

with all of them, but all the events inside the group are simultaneous with 

each other. Let us define this whole group as an instant of time. It remains to 

show that it has the properties we expect of an instant.'

Russell [123] (95)

To guarantee that CINs, as he has constructed them, have the properties 

expected of unreduced instants, Russell makes some auxiliary assumptions 

about the nature of SIM, < < and EV. Russell apparently believed (wrongly as 

it turns out) that his auxiliary assumptions suffice to guarantee that 

constructed instants have the properties of unreduced instants. Russell 

tabulates these''assumptions in a footnote.

’In order to secure that instants form a series, we assume:

(a) No event wholly precedes itself. (An 'event' is defined as whatever 

is simultaneous with something or other.)
» •

(b) If one event wholly precedes another, and the other wholly 

precedes a third, then the first wholly precedes the third.

(c) If one event wholly precedes another, it is not simultaneous with it.



(d) Of two events which are not simultaneous, one must wholly

precede the other.'

Russell [123] (96)

Together with his definition of a constructed instant these assumptions are 

axiomatised in language l_2.

t_2 = {  'EV, CIN, £,<,  SIM, <, ICON' }

EV =df is an event

CIN =df is a constructed instant 

£ = jf is a member of

< =c|f is before

SIM =df is simultaneous with

< =cjf is wholly before

ICON =(jf is an initial contemporary of

To be added to these assumptions is Russell's definition of temporal beforeness 

for CINs.

'.....we shall say one [constructed] instant is before another if the group which

is the one instant contains an event which is earlier than, but not simultaneous 

with, some event in the group which is the other instant.'

Russell [123] (95)

It turns out that, of the assumptions Russell makes to prove CINs have the 

properties of unreduced instants, some that are included are not needed and 

some that are needed are not included. If the necessary revisions are made, 

then the resultant axioms are encapsulated in A2(l) to A2(7).



A2(l) (w ) CIN w  = [(3x)(x £ w) &  (x)(x £ w o  EVx) &  (x)(y) ((x £  w &  y £w)

3  SIM xy) & (xX-x £w D (3y)y£w &  -SIM xy)]

A2(2) (xXy) (CIN x & CINy) 3 ( x  = yS  ((z) z £ x  3  z £  y))

A2(3) (xXy) (EV x & EV y) D (SIM xy O SIM yx).

A2(4) (xXy) (EV x & EV y & x < y )o  - SIM xy.

A2(5)(xXy) (EV x & EV y & - SIM x y )o (x  < y v y < x).

A2(6) (xXy) (CIN x & CIN y) O (x < y 5 ((3w)(3z)(w £ x & z £ y & w <  z)).

A2(7) (wXxXyXz) (EV w & EV x & EV y & EVz)3((SIM x y & x < z & w < y )

3  w < z).

We now require a recursive function r, where the domain of r is the set of l_i 

sentences, and the range of r is a subset of the set of L2 sentences. Moreover 

r, should be truth-preserving. In order for this recursive reduction to be 

judged successful, it must be assumed that; (i) the true sentences formulable in 

the language l_i are sufficient to state comprehensively what is taken as true 

of instants of time; (ii) that the set of theorems deducible from axiom set A i 

coincides fairly exactly, with the set of significant truths in l_i.

Under these suppositions it is sufficient, to effect a recursive reduction, to 

specify a function r that maps the theorems of A i into the set of theorems of 

A2. Here it suffices to show that if*< is an axiom of A j, then 1-^2 r($0. r 

itself is specified thus:-

where s is any sentence of L]_, r(s) = the result of substituting 'CIN' for 'IN' and 

'£,' for 'AT' throughout s.

From the definition of r, together with A2(l) - A2(7), it is provable, where s = 

A l(l) or s = Ai(2) or s = Al(3), that b A 2



Proof: KAjU)) = '(x)(y) (CIN x & CIN y & - x = y)3(x < y v y < x)'

Let A and B be CINs where - A = B. It is required to prove from A2 that 

A < B v B < A;

that is, - (A < B) 3  B < A. Assume - A < B. By A2(6) this assumption is 

equivalent to:-

- ((3w)(3z) w£ A & z £.B & w < z); 

that is:-

(w )(z) (w £ A & z  £B )3  - w  < z

Now since - A = B, by A2(2) either there is some x such that x £A 4  - x £ B  or 

there is some y such that - y £ A & y EB.

Lemma 1: there is some x such that x £ A & -  x£B. Let x = a. By A2O.) there 

is some b such that b£B & -  SIM a,b. Since (w)(z)(w£A & z£ B )3  - w < z then 

(a £ A ic b £ B )3  - a < b. Thus we have:-

-  SIM a,b & - a < b

for EVs a and b. By A2(5) it follows that b  < a. Therefore:- 

b£B & a £A & b < a 

By Existential Generalisation.

(3w)(3z) w£B LA & w < z.

This, by A2(6), entails B < A.

Lemma 2: there is some y such that -  y £A & y£.B. Let y = b. By A2(l) there 

is some a such that a £ A & -  SIM ba. But by A2(3) -  SIM b,a D - SIM a,b; so - 

SIM a,b. Thus we are returned to the same assumptions that were used in 

lemma 1 to derive B < A.

Theorem 1 h/\2 KAjCD)



Proof: r(A][(2)) = '(xXyXCIN x & CIN y ) D ( x < y 3 - y < x ) '

Let A and B be CINs. To prove A < B ^ - B < A ,  we will' prove -(A < B & B > A) 

by indirect proof.

Assume A > B and B < A. Since A > B; by A£(6) it follows that:- 

(3wX3zXw£A & z£B  & w < z)

Since B < A; by A£(6) it follows that:- 

(3wX3z)(w£.B & z C A & w < z)

So for some a,b,c,d:-

a f A & b £ B & a < b & c £ B ( ! c d £ A & c < d .

By A2(l) it follows:- 

SIM ad & SIM be 

By A 2O):-

(SIM a d & a < b & c < d ) D c < b

Therefore c < b. But by A2(4), c < b 3 -  SIM cb and by A2 O), - SIM cbD - SIM 

be. Therefore - SIM be & SIM be. This establishes - (A > B & B > A) by 

indirect proof.

Theorem 3 t  r(A]_(3))
/

Proof: r(Ai(3)) = '(xXyXz) (CIN x & CIN y & CIN z)D  ((x < y & y < z)3x < z)' 

Let A,B,C be CINs. Assume A < B & B < C. By A2(6) for some a,b,c,d. 

a f  A & b£B & a < b 

c £ B & d £C & c < d.
t

By A2(l), SIM cb, and so by A2( ):- 

(SIM cb & c < d & a < b) a < d.

Hence a < d. Therefore

a £ A & d C.C & a < d.

Theorem 2 I- r(A]_(2))



By Existential Generalisation

(3w)(3z) w £ A  &  z£_C &  w < z 

Hence by A2(6), A < C.

In order to accommodate the other axioms of A]_, Russell defines the concept 

of an initial contemporary (ICON).

'We have next to show that every event is 'at' at least one instant, i.e. that, 

given any event, there is at least one class, such as we used in defining 

instants, of which it is a member. For this purpose, consider all the events 

which are simultaneous with a given event, and do not begin later, i.e. not 

wholly after anything simultaneous with it. We will call these the 'initial 

contemporaries' of the given event. It will be found that this class of events is 

the first instant at which the given event exists, provided every event wholly 

after some contemporary of the given event is wholly after some initial 

contemporary of It.'

Russell [123] (96)

Russell's definition of an initial contemporary is contained in A2(8)

A2(8) (x)(y) (EV * & EV y) => (ICON x y s  (SIM xy & (z) (SIM y z D - z < x))

His assumption about ICONs of any given event is expressed in A2(9)

A2(9) (xXyXz) (EV x & EV y & EV z)o ((y  < x & SIM y z )3  (3w) ICON wz &

w < x)

Again, supplementary axioms are needed relating to ICONs. First, that for 

every event, there is a set containing ail and only those ICONs of that event.



Second of any two things, if they are ICONs of each other then they are 

events. Third, that any event is simultaneous with itself. Fourth, that if a and 

b are ICONs of each other and c is wholly before a, then c is wholly before b. 

These assumptions are expressed in axioms A2(10) - A2(13).

A2(10) ( x )  EV x D (3 y)(z) z £ y =  ICON zx.

A2( l l )  (x)(y) ICON xy O (EV x & EV y).

A2(12) ( x ) EV x O  SIM xx.

A2(13) (xXyXz) (EV x & EV y & EV z)3  ((ICON xy & z < x)dz < y)

To prove that every event is ’at’ an instant, it suffices to prove that every 

event is a member of an ICON set (a set of all ICONs of a given event) and any 

ICON set is a CIN. Theorems 4 and 5 prove just that.

Theorem 4 (x) EV xo(3y)(z)((z£ y S ICON z x) & x£y)

Proof: Let a be any EV. By A2(10) there is some A such that (z) z £A S

ICON za. Thus if ICON aa then a£A.

To prove ICON aa, it is required to prove that for any EV b, SIM aa & 

(SIM abD -b < a), (see A2(8)). By A2(12), SIM aa. Assume SIM ab, by A2O) 

SIM ba, and by A 2^» < a* Hence SIM ab O -  b < a.

Therefore any event is a member of an ICON set.

Theorem 5 Every ICON set is a CIN.

Let A be any ICON set. To establish A is a CIN it is required to prove that

(i) Q x) x £A

(ii) (x) x£  AOEV x

(in) (x)(y) (x EA & y £ A ) 3  SIM xy.



(iv) ( x ) - x i A 3  ((3y) y £ A & - SIM xy)

Lemma 1 Since A is an ICON set then 

(3x)(y) (y£A «ICON yx)

Since by theorem 4, ICON xx for all x, then (3x) x CA. This proves condition

(0

Lemma 2 Let a and b be any members of A, then there is some c £.A where 

ICON ac and ICON be. By A2O.D, a and b are both EVs. This proves condition 

(ii).

Lemma 3 Let a and b be any members of A. There is some c £,A where ICON 

ac & ICON be. By A2(8), SIM ac & SIM be. By A2(8) again, (z) SIM c z D - z  < a 

and (z) SIM cz 3  -  z < b. By universal elimination, SIM cbD - b < a and SIM ca 

3  - a < b. Given SIM ac & SIM be, by A2(3), SIM ca & SIM cb. Therefore - b < 

a and - a < b. By A2(5), SIM ab.

Lemma 4 Let a be any EV not belonging to A. Then for some c €A, - ICON 

ac. By A2(8)

- SIM ac v -(z) SIM c z O * z < a )

Assume - SIM ac; then (3y) y £A & - SIM ay. This proves condition (iv).

Assume - (z) SIM czO  - z < a; then (3z) SIM cz & z < a and hence by A2(9) (3w) 

ICON wc & w < a. But then (3y) y £„A & y < a, by the definition of A. By 

A2(4), (3y) y E-A & - SIM ya and by A2O), O y) y£ A & - SIM ay. This proves 

condition (iv).

Theorem 6 /\2 r(Ai(4))

Proof: r(Ai(4)) = '(x) EV x ( y) CIN y & x y'.



By theorem 4 every EV is a member of an ICON set and by theorem 5, every 

ICON set is a CIN.

In order to prove r(Aj(5)), it is required to assume A£(14)

A2(14) (xXyXEV x &EV y )o  (SIM xyO (3z) CIN z & x £ z & y £ z)

A2(14) is a particularly powerful axiom since, with A2(14), theorem 6 can be 

derived very simply without using Russell's ICONs (proof: let a be any event; 

SIM aa by A2 (12); by A2(14), Oz) CIN z k  a £.z). However Russell's ICONs 

have useful services to perform in deriving other theorems.

As for the truth of A2(14), this can be justified by the following informal 

proof. Let a and b be any events where SIM a b, (a and b need not be distinct). 

The series a0, aj_, a2> 83, •••• is an ordering of the set of all events.

is a series of sets defined as follows; A0 = £a,b]. For any A;, 

where i > 1, define A} =^ j_i U £ aj^ if aj is simultaneous with all members of 

aj_i, otherwise A Let A = L){Ae,..:.j; then a ciM since all elements

in A are simultaneous with each other and no element simultaneous with all 

members of A is to be found outside A. By hypothesis, a £ A  and so is b.

Theorem 7 I- r(Aj_(5))

Proof: r(A^(5)) = '(x)(y)(EV x & EV y )3  (SIM xy 9  (3z) CIN z & x£_z & y £.z)' 

That (x)(y)(EV x & EV y )3  (SIM x y o (3 z ) CIN z & x^ z  & y£z) is axiom A2(14). 

Let a and b be such that (3z) CIN z & x £z & y £z. By A2(l), SIM ab.

To prove theorem 8 it is required to prove that any event a is before an event 

b if and only if there is a CIN which a is 'at' which is before any CIN b is 'at'. 

This theorem requires two axioms. The first, A2(15), defines beforeness or £.



A2(15) (x)(y)(EV x & E V y ) 3 ( x < y S  (3z) SIM xz & z < y).

A2(15) suffices to show that if a < b, then there is an instant at which a is a 

member which is before any instant at which b is a member. To demonstrate 

the converse, and hence to complete the equivalence, A2(16) is needed.

A 2(16) (wXxXyXz) (EV w & EV x & EV y & EV z) 3  ((w < x & SIM wy &

ICON xz)3  y < z)

Theorem 8 h r(A]_(6))

Proof: r(Ai(6)) = '(xXyXEV x & EV y) Z> (x < y 3* (3 z) CIN z & x £. z & (w) 

(CIN w & y £.w)P z < w)'

Assume a < b where EV a and EV b. By A2(15), (3z) SIM az & z < b. Let 

z = c; then SIM ac & c < b. By A2(14) there is some A such that A is a CIN and 

a C A & c £ A. Let B be any CIN where b£B,  then we have:- 

c £ A & b £ B & c < b

from whence, (3wX3z) w £_A & z^B & w < z, which entails A < B by A2(6). 

Thus there is some CIN of which a is a member which is before any CIN of 

which B is a member.

Assume (3z) CIN z & a £.z & (w) (CIN w & b £w)D z < w. By theorems 6 and 7 

there is an ICON set B such that:- 

(x) x I B s  ICON xb.

and B is a CIN. There is some CIN A, where a £,A and A < B. By A2(6) there is 

some c and d, where c £ A & d  B c < d .  Hence by A2(l).

c < d & SIM ca & ICON db 

Therefore by A2(16)> a < b.

Theorem 9 establishes that CINs constitute a compact series. Russell remarks 

on the assumption necessary to derive theorem 9.



'Finally, the series of instants will be compact if, given any two events of 

which one wholly precedes the other, there are events wholly after the one and 

simultaneous with something wholly before the other. Whether this is the case 

or not, is an empirical question; but if it is not, there is no reason to expect 

the time-series to be compact.'

Russell [123] (96)

A2(17) CxXyXEV x <5c EV y & x < y) 3  (3z)(x < z & Qw) SIM zw & w < y) 

A2(17) is used to demonstrate theorem 9.

Theorem 9 h r(Aj_(7))

Proof: r(Ai(7)) = '(x)(y)(CIN x & CIN y & x < y) 0  (3z) CIN z & x < z & z < y '

Let A and B be CINs where A < B. By A2(6), there is some a and b where:- 

a £. A & b £.B & a < b 

By A2(17) there is some c and d where 

a < c & SIM cd & d < b

Since SIM cd, by A2(14), there is a CIN C of which c £C and d CC. Since a < c

by A2(6), A < C and since d < b, by A2(6), C < B.
/

Theorem 9 concludes the theorems. The axiom set A2 which recursively 

reduces instants of time is not uniquely privileged in that respect. Indeed, 

Russell suggests another logical construction which can serve as the basis for a 

recursive reduction of instants of time, (space prevents the investigation of 

this parallel axiom set). The ability of a theory to have its ontology 

reorganised into different axiom sets is, of course, simply more evidence of 

ontological elasticity at large.



1 See Davidson [38] (107 - 108). Davidson admits he has no 'knock down' 

argument to show FAC would be violated by this proposal. A knock-down 

argument would prove that adverbial modifiers could be extended to any finite 

length.

2 Clark does not mention Davidson's criterion for event identity which 

appeared in Davidson [39]. Since Clark's article appeared less than a year 

after Davidson's article on event identity, it is likely that Clark had not read 

Davidson [39] when Clark was writing. Tiles [144], writing six years after 

Davidson [39], does offer independent criticism of Davidson's criterion of 

event identity.

Put formally, the definition of a declarative sentence is:-

(1) If S is a true sentence or S is a false sentence then S is a declarative 

sentence.

(2) If B is a set of declarative sentences and Sj is a declarative sentence 

then if Sj is deducible from BU £sjbut not from B then S is a declarative 

sentence.

(3) Nothing else is a declarative sentence.

4 'All' statements can, in general be seen as covert type-type identity claims 

of a kind. Thus 'All men are mortal' is equivalent to 'Every thing that is a man 

is identical to a thing which is mortal'. In first order logic this is given by the 

theorem; (x)(Fx D G x)s (x)(Fx D  (3y) Gy & x = y).

9 See Quine [ ] (53, 54)



The proof runs as follows. Let n be any conforming set:-

K(P & Q)3R) & - (Rv -R)] => [-(Pv -P)v-(Qv-Q)]t \i

iff

((P & Q)D R & -(Rv-Rjgfr) or (-(Pv-P) v - (Qv - Q))fc|i

iff

( P & Q ) D R ^ H o r -  (Rv -R )^p or -(Pv -P)£(i or - (Qv -Q) 6 \i

iff

(P & Q 6 p and R j£p) or ( - R o r  --R jL p) 

or (-P t  ii and —P £ li) or (-Q Cp and —Q fcp) 

iff

(P£p and Q£p and R ^  p) o r - R£i p  or R^i p 

or (-P £ fi and P £ p) or (-Q fc p and Q £.p)

Since conforming sets are consistent, then both (-P € n and P €. p) and (-Q € p 

and Q £ p) are ruled out: therefore the final formula above is equivalent to 

the following:-

0

(P €- p and Q £ p and R ii) or -R j i  p or R £  p

This formula is true. Assume R Eji, then since p is consistent, then -R f- p; in 

which case the formula is true. Assume R p, then the formula is again true.



CHAPTER SEVEN

Logics and Ontology

7.1 Preliminary Remarks

Section 6.2 closed on an intransigent problem in contemporary philosophical 

logic: that of determining the proper choice (if any) of a notation for the 

formalisation of natural languages. The choice is by no means a purely 

cosmetic one, since, as became clear, important ontological issues concerning 

the existence of events, instants of time, possible worlds etc., were predicated 

on the choice of an appropriate notation. Thus the choice of a logic or 

canonical notation can play as great a part in the elimination or selection of 

an ontological hypothesis as the current state of empirical science. The 

philosophical problem posed by extended logics is that, whereas there is a 

definite rationale in the selection of competing scientific theories, there is 

none in the selection of competing logics. Yet the results of each kind of 

choice can be equally important for ontology.

If inroads are to be made on the problem of choosing logics, it has to begin 

with a very precise idea about what a logic is and how it is applied. For this 

reason, this chapter begins with the elucidation of logics as formal structures, 

open to logical or mathematical investigation as are other formal structures 

like Abelian groups or fields. The second part of this chapter is devoted to the 

investigation of the applications of these same formal structures or logics. 

Again the treatment of this topic is formal in that the application of a logic is 

taken as a formal structure incorporating the formal structure which is the 

logic of which it is the application. If the reader comes to find the formal 

exposition here unduly wearing, then he is referred to Haack [60] to whom is 

owed a debt of philosophical inspiration in writing this chapter.
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7.2 What a Logic is

A logic is an ordered pair <F,S> where F is a formal system and S is a formal 

semantics for F.

A formal system F is an ordered quadruple <A,W,P,R>. A is a non-empty set 

called the alphabet of F, and whose elements are called signs. W is a non

empty subset of the set M(A) of all finite sequences of elements of A. P is a 

subset of W and R is a set of finitary relations over W (a finitary relation over 

W is some subset of Wn where n > 1 is some positive integer). Elements of 

M(A) are strings of F; elements of W are called well-formed formulae, 

abbreviated as wffs, or just formulae of F; elements of P are called axioms of 

F; and elements of R are called primitive rules of inference or just rules of 

inference of F.

The above definition is the standard one of a formal system.^ It is also useful 

to partition the alphabet of F into a set of logical variables and a set of logical 

constants, and to require that each wff of F contain at least one logical 

variable. I shall make this requirement.

Given a formal system F and a set of wffs of F, we say y is immediately 

inferred from the set A of wffs just when there exists a primitive rule of

inference Rn of degree n and a finite sequence b j,..... . bn_i of elements of

such that Rn(bi..... t>n-l>y) holds or y is an axiom (thus an axiom is derivable

from any set of wffs). We say y is deducible from the hypotheses A if there 

exists a finite sequence c i,...,cn such that y = c n and such that every member 

of the sequence is either (i) an element of A or (ii) immediately inferred from 

a set of prior members of the sequence.

The finite sequence c i,....,cn itself is called a formal proof, formal deduction 

or derivation from the hypotheses . If A is empty then the sequence c i»—*>cn
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is called simply a formal deduction, formal derivation or formal proof in F, In 

this case y is said to be a provable wff or theorem of F. We write ' A Ff y' to 

show y is deducible from the hypotheses A, and 'Kp y' to show y is a theorem of 

F.

Example of a Formal System F 

F = <A,W,P,R>

A is the alphabet of F and A = V U C, where V is the set of logical variables of 

F and C is the set of logical constants of F. V and C are defined as follows:-

•a'e V

If x e V, so is x*.

Nothing else is a member of V 

C = 'b'

W is the set of wffs of F defined as follows:-

If x c V and y e V, then x^'b^y e W 

Nothing else is a member of W.

P is the set of axioms of F defined as follows:-

If x c  V, then x^'b^x e  P 

Nothing else is a member of P.

R is the set £ri,r2^ of primitive rules of inference of F defined for any wffs 

wl>w2»w3 of F as follows:-

ri(wi,W2) iff where x £ V and y e  V and given w  ̂= x 'b' y; W2 = y^'b’̂ x
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V2 (wj_,W2»W3) iff where x e V, y e V and z t V, given w  ̂ = x ^  'b’ ^ y  

and W2 = y^'b'^z; then W3 = x^'b'^z.

Given the above definition of F, elementary formal proofs of F include the 

following.

a* b a" h p a" b a'

1. a’ b a" Hypothesis

2. a" b a' By ri

a' b a", a" b a'" h p a'" b a'

1. a' b a" Hypothesis

2. a" b a"' Hypothesis

3. a' b a'" By T2

4. a'" ba ' By ri

h p a b a

1. a b a  Axiom

We now turn to the definition of a formal semantics of a formal system.

A formal semantics for a formal system F is an ordered triple S = <T,I,v>. T is 

a set of truth-values and T > 2. At least one element of T shall be designated 

the model truth-value or the truth-value true. I is a non-empty set whose 

elements are interpretations and v is the valuation function in 5 which takes 

ordered pairs of the form <w,j>, where w is a wff of F and j an interpretation 

and gives an element of T as a value. An interpretation j is said to satisfy or 

be a model of a wff w just when v<w, j> = t, where t is a model truth-value. An 

interpretation j satisfies or is a model of a set A of wffs if, and only if j i3 a
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model of every element in A. A logically implies w if and only if every 

interpretation that is a model of A is also a model of w. Wffs wj and W2 are 

logically equivalent if, and only if there is no model of one that is not a model 

of the other. A wff is valid or logically valid if and only if every 

interpretation is a model of it. If A logically implies w, we write 'A^gw' and if 

w is valid, we write >w'. The logic L = <F,S> is sound if Fpw implies £gw, and

complete if ft gw implies i-pw. S is said to characterise F just when L is sound

and complete.

Example of a Formal Semantics 5 

F is as given in the previous example.

5 = <T,I,v>

T is the set of all interpretations. I is the set of all functions whose arguments 

are just the logical variables of F.

v is the valuation function, v is defined as follows:

Where x 'b' y is any wff of F (x and y being logical variables of F) and j e I:-

v <x^b'^y, j> = 1 iff j (x) = j(y) 

v <x/ ',b,/>y, j> = 0 iff j (x) = j(y)

The soundness of the logic L = <F,S> under the above semantics follows from 

the equivalence of identity (namely (x) x = x; (x)(y) x = y 3  y = x; (x)(y)(z) (x = y

6  y = z ) 3  x = z). To prove completeness it is required to prove Hg v O  Kp w

for all wffs w; or equivalently, - I- pw 3  - ("gw. Assume - 1- pw; then since all
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theorems of F are of the form x *b* x, then for some logical variables x and y, 

w = x 'b' y and x i  y. Let j be any interpretation where j(x) = j(y); then v <w,j> 

= 0 and hence - £ sw. The logic L = <F,S> is somewhat simpler, and less useful, 

than the logics recognised as the classical propositional and predicate calculi. 

The difference serves to remind us that the word 'logics' serves to define a 

great many formal structures of greater or lesser application.

It may be said that the formal definition of a logic given fails to distinguish 

between a formalised theory and a logic. An immediate reply is that are a 

number of pertinent differences between the two. A formalised theory 

consists of statements which make significant claims and are (at lease in some 

cases) true or false. A set of formulae of a logic is not a theory, but a set of 

meaningless strings. We may, of course, wish to stipulate that, for the 

purposes of a particular occasion, a given variable shall be given to have 

meaning: such variables are revealingly referred to as dummy variables. But 

dummy variables play a part in the use of a logic rather than in the logic 

itself. 'Every statement or its denial is true' makes an assertion: 'pv-p' does 

not. Logics make no assertions.

It may be charged that the definition of 'logic' supplied fails to discriminate 

set theory from logic. Again a fair reply is that set theory consists of 

assertions about sets whereas a logic consists of no assertions at all.

Set theory could be reconstructed so that it contained no assertions. The 

axioms of ZF would become uninterpreted first-order formulae. The trouble 

then becomes finding a semantics for characterising ZF; first-order semantics 

will not do since the axioms of ZF are not valid in first-order logic. Even if '« ' 

is treated as a logical constant, the results are still unsatisfactory. For let A 

and B be any two distinct sets, and let C be any domain in which the elements 

belonging to A and B are one and the same. Now assign C as the range of the 

variable 'z' in the formula 'A = B =  (z)(z t A ~  z t B)', and the Axiom of 

Extensionality comes out as false. Perhaps more complex contrivances are
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possible, but it is simpler and more natural to demarcate set theory from 

logic.

7.3 Applications of Logics: Readings

So far we have treated logics as purely formal structures open to investigation 

in the same way that other mathematical theories are in abstract algebra. It 

is of the greatest importance to distinguish those purely formal investigations 

of a logic as a mathematical structure from those investigations and questions 

which arise when a logic is used as a guide for reasoning.

The situation that has obtained in contemporary logics is similar, in many ways 

to the situation that obtains with Euclidean and non-Euclidean geometries. 

Mathematicians have come to separate pure geometry as a mathematical 

discipline from applied geometry as it is used in physics. Within mathematics 

there is no sense to the question as to which geometry is correct. All that is 

important from the mathematical point of view is that Euclidean geometry 

and non-Euclidean geometries are all self-consistent: all can be practised 

without allotting any meaning to the primitive expressions used. Questions of 

correctness only arise when the primitive expressions of each geometry are 

given some interpretation. For instance, if 'straight line' is interpreted to 

mean 'path described by a beam of light', then Riemannian geometry becomes 

a true description of the behaviour of beams of light in gravitational fields. 

Hence physicists talk of Riemannian geometry as being 'correct' (and of space 

as being Riemannian) only under the presumption that the expressions of 

Riemannian geometry are given the appropriate physicalistic interpretations: 

any attempt to judge the correctness of Riemannian geometry in vacuo is 

misguided. Consequently modern mathematics has long since outgrown the 

ancient definition of its status as the science of space and quantity.
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Modern logic has outgrown its ancient definition as the science of reasoning. 

The development of multitudinous systems of logic in place of Aristotelean 

syllogistic logic, and the divorce of logic, as formal discipline akin to 

mathematics, from philosophy, makes it apppropriate to develop the same 

attitude to logics as to mathematics. This attitude makes a clear separation 

between logics and their applications. Unlike mathematics, however, this 

distinction is not so universally rooted, or taken for granted, in the minds of 

those involved in logic, as it is in mathematics. Mathematical logicians 

understand well how an uninterpreted 'theory* gains an interpretation, and in 

model theory the nature of and relations between uninterpreted theories and 

their models are disseminated in depth. This area requires no development 

here. But the way in which a logic acquires an 'interpretation' and thereby 

ceases to be a more formal structure on which to perform symbolic gymnastics 

is nowhere near as well understood. Until a clear view of how a logic acquires 

an interpretation is gained, discussions of logics must necessarily lack the 

desired precision. A consequence of this lack of precision will be a loss of 

philosophical penetration about the relation of logics to natural language 

reasoning.

As an entry into the area of applications of logics, Heyting's Intuitionist Logic 

furnishes a useful illustration. As a formal system, Heyting's logic consists of 

11 axioms and a rule of modus ponens. The axioms are as follows; where A B, 

C are any wffs of Heyting's calculus:-

1. A D ( A & A )

2. (A & B )0(B  <5c A)

3. ( A 3 B ) 0 ( ( A & C ) 0 ( B & C ) )

298



4. ((A 3B )<5c(B 3C ))o(A =>C )

5. B 3 (A o B )

6. (A 4 (A O B ))3 B

7. A o ( A v B )

8. (A v B) => (B v A)

9. ( (A 3 C )& (B d C ))d ((A v B)o C)

10. - A o ( Ad B)

11. ((Ad B ) & ( A O - B ) ) d - A  

MP. From A and A O  B, derive B.

Heyting's calculus was devised to incorporate just those canons of reasoning 

which intuitionists believed were validly employed in mathematics. For 

philosophical reasons to do with their views on infinite domains, intuitionists 

rejected the Law of the Excluded Middle and consequently 'pv-p' is not a 

theorem of Heyting’s calculus (nor is '—A O  A).

Heyting's calculus is a single identifiable formal structure created with a view 

to its application to mathematical reasoning. But this is not the only 

application which can be found for the calculus. Under another application, 

Heyting's calculus could be treated as a logic of verification and falsification 

as follows:-

It is verified that A 

It is falsified that A

It is verified that A or it is verified that B.

It is verified that A and it is verified that B.

If it is verified that A then it is verified that B.

The lack of 'A v - A' as a theorem, which seemed so radical previously, now 

seems eminently in accord with commonsense: it is not true to say, if any

A ......

-A .....

A v B 

A & B 

A O B
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statement A, that A is either verified or falsified, since patently there are 

many statements (e.g. Goldbach's Conjecture) which are neither. Similarly the 

lack o f - A D A' as a theorem is right too, since It does not follow from it 

being falsified that A is falsified, that A is therefore verified. The fact that 

Heyting devised his logic in response to the case for intuitionism in 

mathematics is, so as to speak, accidental to the logic he evolved. Heyting’s 

original application is just one application amongst many. To revert to the 

geometrical analogy used earlier; Euclidean geometry was originally evolved 

as a deductive set of assertions dealing with what the ancients reasonably 

supposed were the fundamental properties of space. But in its modern form, it 

is best viewed as an uninterpreted theory with a genealogy deriving from, and 

an application to, the nature of space.

There are two aspects to an application of a logic; or as a mathematician 

would say, an application A is an ordered pair <R,D> where R is a reading of a 

logic L and D is a depraved semantics for R.

A reading R is a quintuple <L,t,S,f,E>.

L is the logic of which the rest of R is a reading. The formal structure of a 

logic has already been defined in the previous section, so no comment is 

required here.

t is a bijective computable function called the transcription function. The 

domain of t is the set of W of wffs of L and the range of t is the set of S of 

sentence-frames of R. Typically a sentence-frame results from a wff W by 

the replacement of the logical constants in W by some fragment of a natural 

language which we shall call a depraved constant or natural language constant.

Example of a Transcription Function t

Let L be Heyting's calculus. Let R be the reading that interprets Heyting's 

calculus as a logic of verification and falsification, t is defined thus.
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For any atomic wff A

t(A) = 'It is verified that' - A

For any wffs B, C

t(-B) = 'It is falsified that' • t(B)

t(B => C) = ’If"t(B)-'thenQ(C)

t(B v C) = t(Bpor'*t(C)

t(B & C) = t(Bf'and'l(C)

The depraved constants are 'It is verified that', 'It is falsified that', 'If' 'then', 

'or' and 'and'.

f is a substitution function that assigns to each logical variable v of L a non

empty substitution set of possible substitutions for v. For Heyting's calculus 

treated as a logic of verification and falsification: f would assign to the 

logical variables (sentence letters) of the calculus, in each case, the set of all 

declarative sentences of some natural language (e.g. English).

Finally E is the set of recognised sentences of R. A recognised sentence of R 

arises by the uniform substitution of each logical variable v in a sentence-

frame s, of an element of the set f(v). Every element of E shall be a sentence
fc£*>w-

and if every element of E is a declarative sentence ^fp/ R is a declarative 

reading. (Not all logics are designed for declarative readings e.g. erotetic and 

imperative logics).

A sentence-frame s is depravedly deducible from a set A of sentence frames, in 

a reading R <L,t,s,f,E> if, and only if A^.j Kj_ t’ -̂(s) where A^.j is defined as 

follows:-

(x)(xe A f l S  (3y) yeA & t_1(y) = x)

A recognised sentence s* is depravedly deducible from a set A* of recognised 

sentences if, and only if there is some set A of sentence-frames, and some
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sentence-frame s, such that s is depravedly deducible from A; and s* and A* 

result from A and s by some uniform substitution of the logical variables in s 

and in the elements of A by possible substitutions.

When a sentence-frame s is depravedly deducible from a set A of sentence 

frames in R we write ’A &• r  s'._If s is such that F i_t‘ l(s) then s is a depraved 

theorem-frame of R and we write'¿-(rs'. A depraved theorem of R is any 

substitution-instance of a depraved theorem-frame.

An argument-frame is a pair <A,s> where A is a non-empty set of sentence- 

frames and s is a sentence-frame. <A,s> is a recognised argument-frame in R 

if and only if A £• r  s. An argument in R is a substitution-instance of an 

argument frame and a recognised argument is the substitution instance of a 

recognised argument frame.

Declarative readings are far more important than non-declarative readings; so 

in what follows, attention is given solely to declarative readings.

What is it that is to be reguired of a declarative reading? The most important 

reguirement of a declarative reading is that traditionally made of logic: that 

the patterns of inference laid down be reliable, in the sense that they never 

lead from a collection of truths to a falsehood. Call an argument <A*,s*> 

materially correct when it is not the case that:-

(1) (x)(x c A* 3  x is true).

(2) s* is false.

To demand that a reading R be fully reliable is to demand that every 

recognised argument in R is materially correct. Material correctness is a 

weak property for an argument to have, since, it is satisfied by all and only 

arguments whose premises materially imply their conclusions. However, we 

might expect that any useful logic which was fully reliable in our sense would 

also legislate for only valid arguments; i.e. arguments whose premises strictly
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imply their conclusions. A weak property, distributed over a very large 

number of cases, puts strong constraints on things as a whole.

Our definition of reliability in respect of readings can be defined equivalently 

thus:-

(S) If R is reliable then for any recognised argument frame <A,s> of R, every 

substitution-instance of <A,s> should be materially correct.

(S) suggests a natural complement.

(C) It is desirable that, if an argument-frame < A ,s> is such that every 

substitution-instance of <A,s> is true, that <A,s> be recognised by R.

In an unfarfetched way, (S) and (C) are suggestive of the formal soundness and 

completeness conditions of logic. The analogies will be explored in the next 

section.

7.4 Applications of Logics: Depraved Semantics

Logicians go to much trouble to provide formal systems with formal 

semantics, even though only professionals seem interested in the results. The 

secondary interest that formal semantics poses for those who use logic can be 

seen in the history of modern logic. Frege provided the modern apparatus of 

quantification in the Begriffschrift in 1879. Russell and Whitehead used and 

adopted form of Frege's 'conceptual notation' in Principia Mathematica circa 

1910. It was only in 1930, over half a century after Frege's innovation, that 

Godel offered the first completeness proof of first-order logic. The ability of 

logic to expand and establish itself, was not notably affected by the retarded 

development of formal semantics: a fact which must inevitably cast doubt on 

its relevance.
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Even today, with another half century or so separating us from Gó'del's work, 

the case for the philosophical relevance of formal semantics is still not fully 

established. Formal semantics, has not, for instance, helped significantly in 

the task of selecting the right (if any) modal logic. It is easy, given the formal 

ability, to show a modal logic is 'right' by concocting a formal semantics which 

characterises it. But no philosophical skeptic of modal logic is convinced by 

this sort of chicanery, since he knows that the correctness of a given formal 

semantics has to be itself justified by philosophical argument as much as the 

system it characterises.

A logician, if asked to justify the existence of formal semantics, will most 

probably reply that without formal semantics, formal soundness and 

completeness proofs are not possible. But what of it? Why are formal 

soundness and completeness proofs important anyhow? If pressed on this 

point, a logician is apt to reply that a soundness proof proves that everything 

that js a theorem, ought to be a theorem, and a completeness proof proves 

that everything that ought to be a theorem is one; so proving the identity of 

'is' and 'ought' of a logic. But what sense can be made of the prescriptive 

'ought' in this context? The expression 'ought to be a theorem' is not a 

standard expression in logic textbooks and it has no given analysis; yet it 

seems indispensable in the philosophical justification of the logicians' work. 

Applied to a formal structure like a logic it seems to have no purchase. 

'Ought' makes no sense as applied to logics in isolation, any more than such a 

teleological concept would as applied to atoms, cosmic rays, electricity or 

rocks. What for instance would we make of a pure mathematician who, having 

proved that a group was non-Abelian then said that is ought to be Abelian? 

'Ought' in this context assumes its proper perspective when a logic is put to 

use or given an application. Only in regard to what has purpose can we find 

fault or praise, and if we wish to justify the significance of soundness or 

completeness proofs in pure logic, we have to see it in the application for
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which that logic is designed. A useful place to begin is with a depraved 

interpretation.

A depraved interpretation (js of a reading R = <L,t,s,f,E> is a function that 

assigns to each variable v of L an element of the substitution-set f(v). (Js is

said to be a depraved model of a sentence-frame s just when the result of 

replacing each variable v in s by (ji(v) is a true sentence. We write '(j30 a  s ' to 

show that in application A, (jl is a depraved model of s. (|i is a depraved model 

of a set A of sentence-frames if is a depraved model of every element of A. 

A set A of sentence-frames depravedly imples a sentence-frame s just when 

every depraved model of A is a depraved model of s; or 'Ai?A 3 '• A sentence- 

frame s is depravedly valid in A if every depraved interpretation (£ is a 

depraved model of s or 'i“ A s '•

Having to hand the concepts of a depraved theorem-frame and depraved 

validity, it is natural to go on to define depraved soundness and depraved 

completeness. An application A is depravedly sound, where A = <R,D>, if 

where any sentence-frame s is a depraved theorem in R, s is depravedly valid 

in A. A is depravedly complete if, where s is any depravedly valid sentence- 

frame, s is a depraved theorem of R.

i.e. A is depravedly sound iff 33 0  A s

A is depravedly complete iff s ^ g . a  3

where A = <R,D> and s is any sentence-frame in R.

Depraved soundness and depraved completeness subsume, to a great extent, 

the philosophical purpose of conditions (S) and (C) of the previous section. It is 

not hard to see that depraved soundness (especially) and depraved 

completeness are two very desirable properties of any application of a logic. 

Therein lies the only possible point of any formal soundness and completeness 

proof. The only philosophical point to formal soundness and completeness
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proofs lie in their contribution to proofs of depraved soundness and 

completeness.

Having made this statement we are still not clear of the woods, for it is not 

clear what exactly the relations between formal soundness and completeness 

proofs and their depraved counterparts are. A formal soundness/completeness 

proof is not a depraved soundness/completeness proof. What has to be added 

to a proof of formal soundness/completeness before it becomes a proof of 

depraved soundness/completeness? The answer is: a depraved semantics.

A depraved semantics is essentially a means of establishing a connection 

between a formal interpretation and a depraved interpretation. More formally 

a depraved semantics D is an ordered triple <I,J,h> where I is the set of formal 

interpretations of a logic L, in an application A, J is the set of depraved 

interpretations in A, and h is a function from J into I. The role of h is to 

demonstrate that the elements of I simulate, in all important respects, the 

elements of J; for this reason I call h the simulation function in A.

Let A = <R,D> be any application where R = <L,t,S,f,E> and J3= <I,J,h>. Let 

be any depraved interpretation (member of J) and s any sentence-frame 

(member of S). It is provable that:-

If L is sound and h(( )̂ hLt'^s) implies 

If L is complete, h is onto, and a  s 

depravedly complete.

s ; then A is depravedly sound, 

implies h(CE) ^i_t"^-(s); then A is

These two theorems establish a vital connection between the formal and 

applied sides of logic and are worthy of proof.

Theorem 1 If L is sound and 

depravedly sound.

h(|5) Kf^s) implies A s ; then A is
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Proof: Assume L is sound and h(<jo|= i_t- l(s) implies s . Assume

£r ^ s; then h|_t“l(s) and, since L is sound, b|_t- l(s). Let (ji be any 

depraved interpretation, h((j3)̂  i_t"l(s) implies (jr£? a  s and since 

then hCol^t "^(s) and so (js^A s f° r anY Therefore^A s •

Theorem 2 If L is complete, h is onto, and (|ŝ \ s implies h((js) l|_t" (̂s); then 

A is depravedly complete.

Proof: Assume L is complete, h is onto, and s implies h ^ ) H_t-l(s).
• A

Assume s . Let | be any formal interpretation. Since h is onto, then 

for some depraved interpretation (Ĵ , h((j5) = j .  (jifefts implies h(Ĉ ) 

t “ l(s), and since s then (js s and so hCtjs) f^f^Cs) i.e. jj ^i_fl(s) 

for all j). Therefore H[_t“^(s). Since L is complete, l-|_t“l(s) ar>d so s •

Where A satisfies the antecedent of theorem 1, h is said to simulate the 

depraved soundness of A. Where A satisfies the antecedent of theorem 2, h is 

said to simulate the depraved completeness of A. If both these conditions 

hold, then h is said to be a good simulator in A. Demonstrating that h is agood 

simulator and hence that an application is depravedly sound and complete will 

take us into the very heart of applied logic: the point where logic, philosophy, 

and ontology meet.

7.5 Monism, Pluralism, Instrumentalism

The previous section completes our analysis of the formal structure of logics 

and their applications. In this section, the emphasis' will be less on the formal 

aspects of logics and more on the philosophical aspects. Nevertheless the 

clarity of perspective gained in our formal investigations will be invaluable In 

later stages.

Haack [60] (221), in her section on the metaphysical and epistemological 

aspects of logic, distinguishes between three metaphysical attitudes to logics.
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Monism: there is just one correct system of logic. 

Pluralism: there is more than one correct system of logic.

Instrumentalism: there is no 'correct' logic; the notion of

correctness is inappropriate.

If a logic is identified as a formal structure in the manner of this chapter, then 

there is no doubt that the instrumentalist is right in saying that there is no 

'correct' logic; since a logic is only a set of rules for manipulating meaningless 

signs. But Haack's trichotomy can be restored to life if we replace 'system of 

logic' and 'logic' by 'application' in the above. The problem then remains in 

seeing what 'correct' could mean in this context.

If 'correct' means 'depravedly sound and complete' then the pluralist is in the 

right. There is no question but that there are many applications of different 

logics which are depravedly sound and complete. In these terms the context is 

decided immediately. Let us see if there is a more interesting sense to 

'correct'.

Another interpretation of Haack's 'correct', which is, perhaps, closer to her 

intentions (and brings the debate closer to our own interests) is that to say an 

application of a logic is 'correct' is to say that it is suitable for reasoning in 

general. The concept of suitability for general reasoning can be conveniently 

exchanged for the idea that this concept is manifested by an application just 

when that application Is suitable to the task of formalising the language of 

science. Derivatively, a logic is correct when it has an application of this 

sort. In this roundabout manner, Haack's original distinctions begin to make 

sense.

Instrumentalism is one casualty of this line of definition. There are logics 

which, in virtue of their own structural limitations, are simply not rich enough 

to provide the basis for 'correct' applications. A case in point is the 

elementary logic of 7.2 which was designed specifically for reasoning about
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identity. This logic was far too simple a formal structure to use in 

formalisation. Just as there are mathematical structures which are too 

limited in detail for research into them to be interesting or for them to have 

useful physical applications, so there are logics which are too far removed 

from the syntactical structures of Indo-European languages for them to 

subsume the job of reasoning in those languages. These more primitive logics 

may, like the propositional calculus, find a use in regard to limited areas of 

thought; but they will never be serious candidates for formalising all precise 

thought.

This leaves monism and pluralism; and both positions have their attractions. 

The rest of this section will be concerned with the case for pluralism 

developed from the issues of 6.2.

The immediate difficulty about the Davidson - Clark dispute was that both 

their arguments were valid, but there were no obvious superordinate principles 

to check the truth of their assumptions. We can either follow Davidson in 

keeping our logic first-order (and include events) or follow Clark in making our 

logic more complicated (and exclude events): but how to choose!

The pluralist is ready to move into the vacuum created by those philosophical 

uncertainties. First, he roundly asserts that there are no principles by which 

contests of the sort between Davidson and Clark can be decided. The trouble 

with this kind of dispute, the pluralist continues, is that there are two 

disagreements being conducted simultaneously: (a) a disagreement about 

logic, (b) a disagreement about ontology. The resolution of either of these 

disagreements depends on how the other is resolved. The situation is 

analogous to that of a linear eguation with two unknowns: there is no unique 

pair of solutions to be found; but any given solution will help determine the 

other. The pluralist insists that a choice of logic is conditional on a choice of 

ontology and science. Thus given an ontology containing events and 

recognising the truth of some adverbial sentence, it is rational to prefer first-
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order logic as the basis for formalisation. On the other hand, assuming there 

are no events, but still recognising the truth of some adverbial sentences, it is 

rational to prefer a predicate-modifier logic. But there is no reason to prefer 

one logic to another in vacuo.

The pluralist has the makings of a very strong case: but his reasoning would 

still be beside the point if the pluralist accepted that every kind K existed or 

it did not exist, and every declarative sentence was either true or false. Let 

us call the former position ontological objectivism. If ontological objectivism 

is true, then either events exist or they do not. Assume they do: then 

Davidson is right (if events exist, why not quantify over them?). Assume they 

do not: then Clark is right (if events do not exist, we need to use a logic which 

avoids them).

But the pluralist does not have to accept ontological objectivism. He can 

assert that not only do answers to ontological questions are hard to capture, 

but that answers do not exist to be discovered even in principle. The position 

that the pluralist is adopting towards logico-ontological questions is akin to 

that of the quantum physicist, who, when confronted with the impossibility of 

simultaneously determining the position and momentum of an electron, prefers 

to argue that determinate twin values for these variables just don't obtain, 

rather than that they do obtain but are experimentally undiscoverable.

There is a good deal of theoretical support for the pluralist's attack on 

ontological objectivism to be found in the preceding chapter: particularly in 

respect of ontological elasticity. One consequence of ontological elasticity is 

that there may be some radical indeterminacy as regards the objects counted 

to exist. It is possible for the universe to accommodate conflicting ontologies, 

each inconsistent with each other, but each internally self-consistent. 

Ontological elasticity demands that we interpret this rivalry seriously as 

revealing ontological gaps in the universe, where conflicts break out.

The pluralists position thus has far-reaching consequences that overflow the 

boundaries of the original dispute as to whether there is one 'correct' logic or
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many. The pluralist sees logical, ontological and even scientific decisions as 

all interrelated, each affecting the other in that, e.g., a choice of ontology, if 

rigidly adhered to, may force logical and scientific réévaluations. The 

particular complex of a choice of logic, ontology and science, may fail to be 

free from internal conflict. It may be impossible to accept first-order logic, 

an event-free ontology and the truth of certain adverbial sentences: but it is 

not determined which element has to be revised in order to bring harmony. 

The pluralist suggests that a better conception of ontology subsumes that 

subject under a wider conception: that of comparing world-pictures. A world 

picture is determined by a choice of logic, science and ontology. Fruitful and 

resolvable disagreement about any element of a world-picture between any 

two respondents who agree on two elements of a world-picture. External 

disagreement takes place between respondents who disagree on more than one 

element of a world-picture and hence have no common ground on which to 

argue. External disagreements are unsolvable pseudo-arguments. Buttressed 

and developed in this way, the pluralist cannot be easily put down. 

Nevertheless if the pluralist cannot be crushed, he may yet be evaded. It has 

to be seen what arguments can be put up by the monist to defend his own 

cause.

7.6 The Case for Monism

It has been taken as gospel so far, that extended logics do offer alternative 

means for formalisation, with concomitant ontological savings to compensate 

for their added symbolism. The pluralist built his case with this much taken 

for granted. But there are reasons why the monist might wish to deny the 

pluralist free use of this assumption.

Closer study of many extended logics reveals something both faintly surprising 

and disturbing about extended logics. Though extended logics are put forward



as superior alternatives to classical (first-order) logic, examination of them 

reveals that their formal semantics are often expressed in a first-order 

fashion. A sort of strange implicit contradiction is to be found in these 

extended logics, for while their promotors often pretend that one of these 

logics should supercede classical logic; it is classical logic that they turn to in 

the course of giving a formal semantics to their logics.

Modal logic is the clearest example of an extended logic with this sort of 

background. Modal logics are generally explained by recourse to possible 

world semantics. A formula of the form O p is said to be true if, and ony if p 

is true in all possible worlds and Op is true if, and only if p is true in some 

possible world. Realists in regard to possible worlds and construe the 

reference to 'possible worlds' straightforwardly: possible worlds exist and 

everything that is possible occurs in at least one of them.

Realism in regard to possible worlds and their use to provide semantics for 

modal operators forces a recognition of the superfluity of modal operators 

except as a notational shorthand. Chellas [25] (13) in his book on modal 

propositional logics observes that the formulae of S5 can be effectively 

mapped into a first-order logic in which modal operators are eliminated in 

favour of first-order formulae and quantifiers ranging over possible worlds. 

Given a commitment to realist possible world semantics, it is ontologically 

more honest to register this commitment by employing first-order notation 

and quantifying over possible worlds, than by hiding this commitment behind 

modal operators which are explained, eventually, by employing the same first- 

order notation and making the same commitments.

The same criticisms apply to Clark's sponsorship of predicate modifier logic. 

Although Clark is wary of including events in his ontology, he is ontologically 

prodigal in equipping his predicate modifier logic with a semantics that 

includes entities called 'states of affairs' amongst its ontology. This same 

semantics appears recognisably first-order in appearance. Therefore, on
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Clark's own showing, whatever good can be derived from predicate modifer 

logic can be derived from first-order logic employing quantification over 

states of affairs.

The monist has a stick to belabour the pluralist in all this. Extended logics, so 

the line goes, offer no ontological savings after all, only ontological 

camouflage. We can camouflage our commitment to possible worlds or states 

of affairs by extending first-order logic to include modal operators or 

predicate operators; but we regain those same commitments in providing these 

trendy logics with semantics. The ontological dilemmas which the pluralist 

sees as revolving on a choice of logics, are in the end sham. There is no real 

alternative to first-order logic on display.

There is a counter to this attack, as there often is to general philosophical 

arguments. Although it is possible to interpret the references to possible 

worlds, in possible world semantics, as references to the elements o f a 

Leibnitzean ontology, it is not necessary to do so. The modal logician can 

insist that any structure that satisfies his description of the domain of possible 

worlds can be used to foot the ontological bill. Moreover as long as the modal 

logician retains his grip on first-order notation then he has a very powerful 

ally: the completeness theorem for first-order logic. This theorem assures us 

that any consistent first-order theory has a model. The modal logician can 

thus follow up his protestations of ontological innocence by bullishly insisting 

that since his frolic with symbols was at least a consistent frolic, then the 

completeness theorem underwrites all ontological debts.

This is an ingenious counter which goes a good distance to clearing possible 

world semantics of ontological doubt: but it does so at an extremely high 

price. What has been lost in throwing overboard all ontological inclinations 

towards possible entities, is also the very raison d’etre of formal semantics. 

We may have good reason to doubt the realist's ontology of possible worlds and 

their possible contents, but at least we can see how, if we accept his



Leibnitzean vision, where this all comes into reasoning involving modal logic. 

But if we reject the philosophical story that accompanies the symbol-pushing, 

what remains may be formally impeccable, but it is philosophically with 

purpose: rather like an engine robbed of its flywheel.

To see this clearly it is necessary to relate the picture built up of logics in the 

previous sections to a specific example. For our purposes Kripke's semantics 

for the logic S5 will do. Kripke [75] [76] is amongst these logicians who are 

most free in their use of the dialect of possible worlds. But unlike Lewis [83] 

or Plantings [98], Kripke is careful to disown any ontological commitment to 

possible worlds. Whether Kripke's remarks about rigid designators can be 

made sense of without such an ontology remains an open question. But that 

question is not the relevant one here. The relevant question is this. Can 

Kripke's semantics for modal logic (e.g. S5) justify the employment of S5 as a 

basis for modal reasoning without presupposing the existence of possible 

worlds?

This question can be formally sharpened. Suppose we determine a reading R 

for S5 in which 'O' is mapped to the depraved constant 'It is necessary that ...' 

and the other constants their usual readings (we will be more precise later). 

Does Kripke's semantics for S5 show anything about whether R is depravedly 

sound and/or complete? If the answer is no, then Kripke's semantics is 

philosophically useless. If the answer is yes, then some bridge is required 

between Kripke's formal semantics and the informal reading given to the 

formulae of S 5. Such a bridge was found to be a depraved semantics. 

Therefore, even if an ontological commitment to possible worlds is not 

admitted in Kripke's semantics, it may still be that within the depraved 

semantics that gives the formal semantics purpose, a Leibnitzean ontology 

may lie concealed. Only by close examination of the formal structures 

involved, can it be seen how matters stand.

S5 is given by the axiom set AO - A4.
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AO Truth-functional tautologies using'3* and/or 

A l. O ADA

A2. 0 ( A 3 B ) 3 ( 0 A D 0 B )

A3. O A D O O A  

A4. ^  A D O O A

and the rules R1 and R2

R l. h A D O  A 

R2. A ,A 3 B -» B

In Kripke's semantics for S5 a model structure <G,K,R> is an ordered triple 

where G e K and R is an equivalence relation on K. (Informally G is supposed 

to represent the actual world; K the set of possible worlds; and R is the 

relation of relative possibility on K. We shall self-conciously try to forget this 

informal picture for a moment). A Kripke interpretation is a 2-place function 

<t> whose arguments are of the form <A,H> where A is a wff of S5 and H tK  and 

whose range is the set{T,F] where T is the model truth-value. For any Kripke 

interpretation $ , $ is defined for all atomic formulae and all possible worlds. 

In other cases 4 is defined by induction.

4(- A, H) = T  iff <KA,H) = F

4>(ADB, H) = T  iff 4(A,H) = F o r  4(B,H) = T

<KOA, H) = T iff for some H' where RH’H, 4(A,H') = T

4(0 A, H) = T iff for any H’, if RH’H then 4(A,H') = T

A formula A is valid if, and only if 4(A, G) = T for all Kripke interpretations 

4. We write 4*A' to show A is valid. Kripke [77] has proved that H 55A iff |*A. 

In the reading R = <S5, t, S, f, F>, t is defined thus:-
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t(A) = A for all atomic sentences A. 

t(AOB) = t(A)~'materially implies'^t(B) 

t(-A) = 'It is not the case that' t(A) 

t($A) = 'It is possible that' t(A)
A

t(OA) = 'It is necessary that' t(A)

S is the set of resultant sentence frames and f is a function assigning to each 

sentence-letter in S5 the set of declarative English sentences. E is the 

resultant set of recognised sentences.

To prove the depraved soundness or the depraved completeness of R, a 

depraved semantics <I,J,h> is required, where h is a good simulator. For our 

modest purposes, to demonstrate soundness is sufficient. We shall look at two 

depraved semantics. The first is ontologically free of a commitment to 

possible worlds, but turns out to be inadequate to guarantee the depraved 

soundness of R. The second is ontologically committed to possible worlds and 

is sufficient to give a guarantee of depraved soundness.

The First Depraved Semantics: is an ordered triple <I,J,h> where I is the set 

all Kripke interpretations and J is the set of all depraved interpretations, 

where a depraved interpretation (ji is a function that assigns to each sentence 

letter A of S5, a declarative English sentence (member of f(A))„ h is an into 

function from J into I.

This completes our description of the minimal apparatus of our first depraved 

semantics. In order to attempt a depraved soundness proof, it is required to 

introduce some auxiliary assumptions. The first is as follows.

Assumption One: that there is some function i from 3 into I, such that where 

ct e J and A is any atomic wff of S5, GfeA iff i(G) t*A.
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Assumption one says that for any assignment of declarative sentences to the 

sentence letters of S5, given some sentence-letters will be represented as 

truths, there will be a Kripke interpretation that assigns the value T to just 

those sentence letters in question. Let us define h to be a function with the 

properties of i.

Two more assumptions are needed.

Assumption Two; that for any ^ e J, and for any wff A of S5, 

case that'^t(A) iff- (ji £ t(A).

Assumption two says that the result of placing a declarative sentence after 'It 

is not the case that', is true if, and only if the declarative sentence itself is 

not true.

%*lt is not the

Assumption Three; that for any (js e J, and for any wffs B and C of S5, 

(j; £=• t(B) - '‘materially implies that t(C) iff - &■ t(B) or fe t(C)

Assumption three states that any sentence materially implies another just 

when the first is not true or the second is.

To try to prove depraved soundness we proceed by induction on the number n 

of natural language constants in any sentence frame t(A), to prove (ji t(A) iff 

h (G)|= A for all cjs e J.

n = 0: 

for any

then A is an atomic sentence and so t(A) = A. By the definition of h,

£>A iff h(G)% A and so

Assume t(M) iff h((p) j® M for any sentence frame M with any number j, j < 

n, natural language constants: then t(A) is either of the form (0 It is not the 

case that t(B) (ii) t(B) materially implies t(C) (iii) It is necessary thatt(B)(iv) It 

is possible that t(B)
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We have the following series of equivalences:-

((¡fetCA) iff h(iJi)H A,' 

is equivalent to 

(^ t (A ) iff h(c|) <A,G> = T, 

is equivalent to,

(jigfe'It is not the case that' t(B) iff hCcjl) <-B,G> = T, 

is equivalent to,

£&'It is not the case that^t(B) iff h((js) <B,G> = F.

By assumption two, (|3§-'It is not the case that' t(B) iff - (Js&t(B). Hence the 

formula, '(jlfe'lt is not the case that' t(B) iff h(G) <B,G> = F' is equivalent to:-

-  (ji&t(B) iff h((ji) <B,G> = F; 

which is equivalent to 

cfi&tCB) Iff hCcf) <B,G> T, 

which is equivalent to 

(fl%t(B) iff h(cj) ̂ B;

Case 1 t(A) = 'It is not the case that' t(B)

Where B has n - 1 natural language constants. This last formula is true by the 

inductive hypothesis, and so G£ t(A) iff h(G)̂ * A is established for case 1.

r\ r\
Case 2 t(A) = t(B) 'materially implies that' t(C)

We have the following series of equivalences:-

(|;&t(A) iff h((j;)^ A 

is equivalent to
I O
ffig*t(B) 'materially implies that' t(C) iff h(G) (BoC,G) = T
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is equivalent to

(j3£»t(B) 'materially implies that' t(C) iff (h((fe)<B,G> = F or h(d)(C,G) = T)

By assumption three, the last formula is equivalent to:-

(-(Jàfet(B) or (jìÉrt(C)) iff (h((j3) <B,G> = F or h (£) <C,G> = T)

To prove the above formula it is sufficient to prove -  (jjfetCB) iff h((j3)<B,G> = F 

and (^&t(C) iff h(C )̂<C,G> = T.

- ^ t ( B )  iff h((f)<B,G> = F

is equivalent to 

fi&tCB) iff h(cfc)<B,G> T 

is equivalent to

<£frt(B) iff h(cf)[=B

where B has n - 1 natural language constants. This last formula is true by the 

inductive hypothesis. Similarly C has n - 1 natural language constants and so

<|3£t(C) iff h(G)<C,G> = T 

is equivalent to

And here the proof stops. Quite simply, the depraved semantics suggested is 

not ontologically or structurally rich enough to provide a depraved soundness 

proof. Cases 3 and A involving the modal constants cannot be established. 

Thus without invoking a depraved semantics richer than the one suggested

which is true. Consequently ffife-t(A) iff KG)!2 A is established for case 2.

here; it is only possible to validate that part of S5 which it shares In common
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with the classical propositional calculus. However, as we shall see, by 

invoking a Leibnitzean ontology of which Kripke's model structure is a 

representation, cases 3 and 4 can be completed.

The Second Depraved Semantics; is explicitly committed to a Leibnitzean 

ontology of possible worlds. There is a domain W of possible worlds in which oc 

t W and is the actual world. There is an equivalence relation P on W of 

relative possibility where P<p,oO iff f  is possible relative to«^ Kripke's model 

structure <G,K,R> is thought of as representative of the structure of W in the 

following sense. There is an isomorphism i from W onto K such that i(o<) = G 

and P(p,<x) iff R(i(p),i(*))

To this ontological picture has to be added a number of ancillary assumptions. 

The first is that, given there are a number of possible worlds, a depraved 

interpretation can be a model of a sentence-frame in one world and not in 

another. To say ^ is a depraved model of t(A) is to say that in the actual 

world (i.e.o<), 5̂ is a depraved model of t(A).

Assumption One: (^fet(A) iff (j5&-t(A) in o<. •

The next two assumptions relate to the depraved constants 'It is not the case 

that' and 'materially implies that'. These assumptions apply assumptions two 

and three of the previous depraved semantics to an possible worlds.

Assumption Two: for any possible world P,( f̂e»'It is not the case that' t(A) in P 

iff - c|sfet(A) in p .

Assumption Three: for any possible world p , (js & t(B) 'materially implies 

that' t(C) in p, iff - (js §• t(B) in p or (j; fc t(C) in p .
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Case 1: t(A) = 'It is not the case that' t®.

Cg=t(A) in/Siff h(j3)<Afi^)> = T 

is equivalent to

Gfr'It is not the case that' t®  in p iff h((j3)<-B, i(^> = T 

is equivalent to

(j^ 'It is not the case that' t®  in P iff h(C5)<B, i(ja)> * F

By assumption two, this last formula is equivalent to:-

-((J; t®  in p iff h(( )̂<B, i®> = F

is equivalent to 

j; t®  in p iff h(cjî)<B, i(p)> = T

where has n - 1 depraved constants. This last formula is true by the 

inductive hypothesis, so the hypothesis is established for case (i).

Case 2 t(A) = t(B) 'materially implies that' t(C)

(jsfertCA) in p iff h(|3)<A, i(p)> =T 

is equivalent to

(|3£=t® 'materially implies that' t(C) in P iff hojiXBDC, i(p)> = T 

is equivalent to

^  tOa)- 'materially implies th a t^ tO  in p iff h«Jo<B, i (p)> = F 

or hOjsXC, i(p)> = T

By assumption two this last formula is equivalent to:-

C-«ifr.t(B) in p) or (3fct(C) in y8) iff h(| )̂<B,iC )̂> = F or h(<3XC,l(p)> = T



To prove this formula it is sufficient to prove - (Ufet(B) in p>) iff h((jo <B,î ff)> 

= F and (tfrt(C) in p> iff h(Ci) <C,i(£)> = T.

First -(ij* ^  t(B) in p  ) iff h((js)<B,i( p)> = F is equivalent to (ji£t(B) in fi iff 

<B,i( p)> = T which is true by the inductive hypothesis since B has n - 1 

depraved constants. (Ji t(C) in £  iff h((js)<C,i( ^ )> = T also holds by the 

inductive hypothesis, since C has n - 1 depraved constants.

Thus the hypothesis is established for case 2.

Case 3 t(A) = 'It is possible that' t(B) 

t(A) in iff h(( )̂<A, i(/3)> = T 

is equivalent to

'It is possible that' t(B) in iff h(js)<OB, i(/3)> = T 

is equivalent to

'It is possible that' t(B) in ß  iff for some H, R(H, i(y3)) &

h((b)<B,H> = T

To prove the formula immediately above it is required to prove (i) If 'It is

possible that' t(B) in then for some H, R(H,i(p)) & h((!)<B,H> = T and (ii)

If for some H, R(H,i(^)) & h(<|2)<B,H> = T then (ja£'It is possible that' t(B) in 
/

P-

Assume for some H, R(H,i( ^  )) & h((J^)<B,H> = T. Then by the inductive 

hypothesis applied to t(B), (jl^tCB) in i"l(H) and by the definition of i, P(i“l(H), £ ).

Thus by assumption four, (^§^'It is possible that ' t(B) in ft.

This proves the hypothesis for case 3.

Case 4 t(A) = 'It is necessary that' t(B) 

t(A) in ft iff h(j;)<A,i(£)> = T 

is equivalent to



'It is necessary that' t(B) in p  iff h(G)<OB, i(/J)> = T 

is equivalent to

'It is necessary that' t(B) in ^  iff for any H, if R(H,i( )) then

h(G)<B,H> = T

To prove the formula immediately above it is necessary to prove (i) that 

ifB%>'It is necessary that' t(B) in then for any H, if R(H,i( f t  )) then 

h(G)<B,H> = T (ii) if R for any H, if R(H,i(£)) then h(G)<B,H> = T then Gfe'It 

is necessary that' t(B) in p .

Assume G 'It is necessary that' t(B) in £  . Assume for some given H, 

R(H,i(j3)). By the definition of i, P(i_l(H), ). By assumption five, since P(i"

y  'It is necessary that'^t(B) in , then ^6t(B) in i“l(H), Since 

t(B) has n - 1 constants, by the inductive hypothesis applied to t(B), since 

$fcrt(B) in i-iflH), then h((f)<B,H> = T.

Assume for any H, If R(H,i(p)) then h(G)<B,H> = T. Assume for some given y, 

P()r,^I. By the definition of i RO(J'), i(/3)) and so h(G)<B,i(jr)> = T. By the 

inductive hypothesis applied to t(B), §** t(B) in ¿T. Hence if P(>", £ )

then fe*“ t(B) in / .  By assumption 5, ^fr'It is necessary that'^tiB) in ^ .

This proves the hypothesis for case 4 and for all cases.

Granted £ & t(A ) in ^  iff h(G)<A,i( f>)> = T for all f >, then $fet(A) in «X iff 

h(G)<A,0> = T and, by assumption one, this is equivalent to l|r&t(A) iff h(G)J=A. 

Since S5 is formally sound by Kripke's semantics for S5, then by theorem 1 of 

6.3.1, the reading R is depravedly sound.

What philosophical conclusions are to be drawn from the preceding proof? In 

essence, that the elements of Kripke's model structure <G,K,R> have been 

thought of as isomorphic to, or standing for, elements of some sort of ontology 

with relevance to modal reasoning. If assumptions like this are not made, then 

a proof of depraved soundness reaches no further than the classical 

propositional calculus. Ontological decisions are deferred, rather than



eliminated, in steadfastly refusing to consider what significance the signs 

have, that are used in formal soundness and completeness proofs. In a proof of 

depraved soundness and completeness, those same decisions are forced back 

upon us.

Modal logic is perhaps the most thoroughly known and best researched of all 

branches of extended logic; but the same principles emerge in other extended 

logics. For example, it was remarked in the previous chapter that tense logic 

might be preferred, on ontological grounds, to first-order logic plus 

quantification over moments of time. McArthur [90] in his lucid work on tense 

logics provides the syntax and the formal semantics for a wide variety of tense 

logics. The formal semantics of these logics are based on the idea of indexed 

sets which are maximally consistent, called historical moments. Inspection of 

the semantics for tense logics invites the idea that these historical moments 

are formal proxies for temporal moments in time in the most real sense. It is 

difficult to see how the formal semantics could give any assurance to tense 

logics unless that were so. Therefore to bridge the gap between formal and 

depraved soundness/completeness for tense logics, some commitment to 

instants of time seems needed.

So the monist's defence is a powerful oner essentially a defence of first-order 

notation against its rivals, The defence is that where extended logics have 

been invoked, their formal semantics reveals, either directly (as with the 

realist interpretation of possible world semantics) or indirectly (as with 

Kripke's treatment of possible world semantics), that their useful purpose 

could be subsumed by first-order quantification over the elements 

ontologically presupposed in the formal semantics.

On balance, it seems fair to award the contest to the monist rather than the 

pluralist. But to draw this conclusion is not to adopt a neo-Kantian 

complacency that no improvement on first-order logic is possible. The 

conclusions of the monist's defence were, after all, based on an inductive
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inspection of certain researched extended logics. No apriori reason was 

offered to show that any conceivable extended logic had to fall prey to the 

monist's attack. Monism, is, simply speaking, the best bet as matters

currently stand in logic; but this is not to say it cannot be overthrown. In 

logic, as in ontology and science, hypothesis must substitute for certainty.
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