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CONSTRUCTING COMPOSITION FACTORS FOR A LINEAR GROUP

IN POLYNOMIAL TIME

DEREK HOLT, C.R. LEEDHAM-GREEN, AND E.A. O’BRIEN

In memory of our friend Kay Magaard

Abstract. We present a Las Vegas polynomial-time algorithm that takes as input a
subgroup of GL(d,Fq) and, subject to the existence of certain oracles, determines its com-
position factors, provided that none of those factors is isomorphic to one of 2B2(22k+1),
2F4(22k+1), 3D4(2k), or 2G2(32k+1), for any k.

1. Introduction

In 1987 Luks [41] provided the first polynomial-time algorithm to construct the compo-
sition factors of a permutation group. This result has important implications: Kantor
[33] employed it to obtain polynomial-time construction of Sylow subgroups, and Babai,
Luks & Seress [7] use it as a building block for a family of polynomial-time algorithms for
permutation groups. For an extensive related discussion, see Seress [45, §6.2].

Our goal in this paper is to provide the first polynomial-time algorithm to solve this
problem for linear groups defined over finite fields. In effect, the algorithm is an outcome
of the “matrix group recognition” project, a major topic of research over the past 25 years.
For an overview of the project, see [43].

Let G = 〈X〉 ≤ GL(d,Fq) where Fq is a finite field of order q = pe. In summary, the
fundamental aim of the project is to identify the composition factors of G, and to solve
the constructive membership problem in G. This means to decide whether a given g ∈
GL(d,Fq) lies in G and, if so, to write g as a word over X: namely, as a word in the
alphabet X ∪ X−1. In practice, we construct a compressed version of the word as a
straight line program [45, p. 10]; this ensures that its length (and cost of evaluation) is
polynomially bounded.

Two approaches have dominated the research undertaken. Babai & Beals [8] initiated
the black-box approach: it aims to construct a specific characteristic series of subgroups
for an arbitrary finite group G that can be refined to provide a composition series; the
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associated algorithms are independent of the given representation of G. In 2009, Babai,
Beals & Seress [11] proved that, subject to the availability of certain oracles, there exists
a Monte Carlo polynomial-time black-box algorithm to construct this characteristic series
for G = 〈X〉 ≤ GL(d,Fq) when q is odd, to identify the composition factors, and to
solve the constructive membership problem for G. (For the definitions of Monte Carlo
and Las Vegas algorithms, see Section 2.1 below.) If q is even, then they can construct
a composition series for G/Rad(G) and identify its composition factors, where Rad(G) is
the soluble radical of G. Their computations in the soluble radical rely on the work of
Luks [42].

The algorithms of [11] rely on two number-theoretic oracles. The first is a discrete log
oracle: for given nonzero µ and fixed primitive element ω of a finite field F , it returns
the unique k ∈ {0, . . . , |F | − 1} such that µ = ωk. It is needed for fields of order qi for
1 ≤ i ≤ d. The second oracle factorises numbers of the form qi− 1 for 1 ≤ i ≤ d. Both are
needed to solve problems in abelian matrix groups. The algorithms can be upgraded to
Las Vegas provided that polynomial-time black-box constructive membership algorithms
and short presentations (both defined below) are available for all nonabelian composition
factors of G.

By contrast, the geometric approach investigates whether G = 〈X〉 ≤ GL(d,Fq) satisfies

certain geometric properties in its action on its underlying vector space V = Fd
q . For exam-

ple, G acts reducibly if it fixes a nonzero proper subspace of V , and it acts imprimitively
if it permutes the summands of a direct sum decomposition of V . A classification of the
maximal subgroups of classical groups by Aschbacher [1] underpins this approach: in sum-
mary, either G preserves a linear structure in its action on V , and has a normal subgroup
related to this structure, so providing a reduction; or it has a normal absolutely irreducible
subgroup that is simple modulo scalars. The associated algorithms recursively exploit this
reduction to construct a composition series for G. The outcome is reported in [4], where
the algorithm CompositionTree is described. It takes as input G = 〈X〉 ≤ GL(d,Fq)
and outputs a composition tree, a data structure, for G. The tree allows us to list both a
composition and chief series for G, and to solve membership and other problems for G.

Central to the CompositionTree algorithm are short presentations for the simple groups
that occur as composition factors of G. For each finite nonabelian simple group S, we have
defined a specific sequence of standard generators. A constructive recognition algorithm for
S takes as input a group G = 〈X〉 known to be isomorphic to S, computes standard gener-
ators of G as words over X, and uses the standard generators to establish an isomorphism
between G and (a central quotient of) the standard copy of S, a specific representation of
S. The isomorphism is realised by an algorithm that solves the constructive membership
problem in G. The constructive recognition algorithm returns the standard generators and
the constructive membership algorithm for G. Babai & Szemerédi [5] define the length
of a presentation to be the number of symbols required to write it down. A presentation
on our standard generators for every finite nonabelian simple group S is known; with the
exception of one family of finite simple groups, this presentation is short in the sense that
its length is bounded by a function which is polynomial in log |S|; it is not known whether
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short presentations exist for the small Ree groups 2G2(3
2k+1). For details of the standard

generators and presentations, see [15, 17, 38, 40, 48]. Ultimately, these presentations for
the composition factors of G are combined to write down a presentation for G, allowing
us to verify the correctness of the output of the resulting Las Vegas CompositionTree
algorithm. The outcome is efficient in practice; an implementation of CompositionTree
and its associated algorithms is available in Magma [14].

In the introduction to [4], we wrote that “Serious obstructions remain before we have a
provably polynomial-time algorithm to compute a composition tree”. Here we revisit the
topic and obtain the following result.

Theorem 1.1. There is a Las Vegas polynomial-time algorithm that takes as input a
group G = 〈X〉 ≤ GL(d,Fq) and, subject to the existence of a discrete log oracle for
Fqi and an oracle to factorise integers of the form qi − 1 for 1 ≤ i ≤ d, and to the
availability of polynomial-time constructive recognition algorithms and short presentations
for the nonabelian composition factors of G, it constructs a composition tree for G.

By “constructs a composition tree for G”, we mean solving the basic problems discussed
earlier: compute a composition series for G, identify the factors in this series, and provide
a solution to the constructive membership problem in G. We also provide an isomorphism
between each nonabelian composition factor of G and (a central quotient of) the standard
copy of that factor.

The following corollary reflects the current status of constructive recognition algorithms
for the various families of finite simple groups.

Corollary 1.2. There is a Las Vegas polynomial-time algorithm that takes as input a
group G = 〈X〉 ≤ GL(d,Fq) that has no composition factor isomorphic to 2B2(2

2k+1),
2F4(2

2k+1), 3D4(2
k), or 2G2(3

2k+1), for any k, and, subject to the existence of a discrete
log oracle for Fqi and an oracle to factorise integers of the form qi − 1 for 1 ≤ i ≤ d, it
constructs a composition tree for G.

As we shall explain in Section 2.3, the oracle to factorise integers of the form qi−1 allows us
to calculate and factorise the orders of elements of G in polynomial time. Corollary 1.2 is a
direct consequence of Theorem 5.1, which is proved using Theorems 3.1 and 4.1. Although
the arguments used in the proofs of these theorems constitute a proof of Theorem 1.1, we
preferred to formulate them so that they provide more information on what we can do in
the cases excluded by the corollary.

In particular, we can handle groups having 2G2(3
2k+1) as composition factors but, since

no short presentations are known for the groups 2G2(3
2k+1), our algorithm is only Monte

Carlo. We can handle individual groups from the other excluded classes for small k by
treating them as “sporadic groups”.

The serious obstructions alluded to in [4] to a polynomial-time algorithm arose principally
from our inability to find (or prove the non-existence of) Aschbacher reductions of matrix
groups in polynomial time. We overcome that problem by proving in Theorem 3.1 that
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we can in Monte Carlo polynomial time find a nontrivial element in a proper normal
subgroup of a nonabelian black-box group, and then prove in Theorem 4.1 that we can
use such elements effectively to find Aschbacher reductions of matrix groups. There have
also been significant recent advances in the development of algorithms for the constructive
recognition of the finite exceptional groups of Lie type.

Our primary objective is to prove the theorem and corollary as stated, without considering
the degrees of the polynomials involved. It is easy to produce explicit bounds, but they
are too large to be of practical interest. Our implementation of the algorithm of [4] rarely
exhibits the difficulties that the algorithm presented here is designed to avoid; this justifies
our decision to pay little attention to practical performance.

The discrete log oracle is used in the constructive recognition of simple groups of Lie type,
and to determine the order and structure of certain abelian subgroups of GL(d,Fq) that
may be rewritten over an extension field Fqi for some i ∈ {1, . . . , d}. The most efficient
existing algorithms to solve the discrete log problem run in sub-exponential time (see [46,
Chapter 4]).

A complete or partial factorisation of integers of the form qi − 1 for certain i ∈ {1, . . . , d}
is needed. A partial factorisation into ‘small’ primes and certain coprime residues that are
products of ‘large’ primes can be carried out in polynomial time. Further factorisation is
only needed if G has a composition factor of order a prime dividing such a residue. That
a residue is prime may be determined in polynomial time.

In Section 2 we discuss black-box groups, Monte Carlo and Las Vegas algorithms, and pro-
cedures to generate random elements of black-box groups. We also summarise the current
status of constructive recognition algorithms for the finite simple groups. In Section 3 we
prove the main technical result of the paper by presenting a Monte Carlo algorithm that
takes as input a nonabelian black-box group G, and either identifies G as a finite simple
group, or outputs a nontrivial element of a proper normal subgroup of G. In Section 4
we show how this algorithm underpins a Las Vegas polynomial-time algorithm that takes
as input G ≤ GL(d,Fq) and either finds an Aschbacher reduction of G, or proves that
G is nearly simple and identifies its nonabelian composition factor. We use this to prove
Theorem 1.1 in Section 5.

2. Black-box groups and algorithms

The concept of a black-box group was introduced in [5]. In this model, the elements of
a finite group G are encoded by bit-strings of uniform length N , so G has an encoding
of length N and |G| ≤ 2N . The encoding of an element is not required to be unique,
but distinct group elements have distinct encodings. Not all bit-strings are required to
represent group elements.

Three oracles are supplied. One takes as input encodings of an ordered pair (g, h) of
elements of G and returns an encoding of gh; a second takes as input an encoding of g ∈ G
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and returns an encoding of g−1; the third takes as input an encoding of g and returns
True or False according as g is or is not the identity element of G. Both permutation
groups and matrix groups defined over finite fields are covered by this model.

A black-box algorithm for a black-box group G takes, as part of its input, a generating
set X of G, and the three oracles described above. Such an algorithm does not use
specific features of the group representation, nor particulars of how group operations are
performed. The size of the input is N |X|. In calculating the complexity of the algorithm,
each call to one of the oracles is regarded as a single operation taking constant time. (For
permutation groups and matrix groups defined over finite fields, these operations take time
polynomial in N .)

2.1. Monte Carlo and Las Vegas algorithms. A Monte Carlo algorithm is a ran-
domised algorithm that takes a positive real number ε < 1/2 as part of its input, and it
may, with probability at most ε, return an incorrect answer. Such an algorithm is said to
run in polynomial time if its running time is bounded by a polynomial function of its input
length and log ε−1. A Las Vegas algorithm is a Monte Carlo algorithm that never gives
an incorrect answer: it either returns a correct answer or it reports failure, and the latter
occurs with probability at most ε. A Monte Carlo algorithm is upgraded to Las Vegas if
it is combined with an algorithm that can decide whether or not its output is correct. See
[45, §1.3] for a discussion of these concepts.

Usually the randomisation employed in an algorithm is controlled by a random number
generator. Since we consider only randomised algorithms whose input includes a group
G = 〈X〉, we assume equivalently that the non-deterministic behaviour of the algorithm
is controlled by a random element generator that outputs nearly uniformly distributed
random elements of G as words over X. The proofs of our results depend on this property.

2.2. Constructing random elements. An algorithm constructs an ε-uniformly dis-
tributed element x of a finite group G if

(1− ε)/|G| < Prob(x = g) < (1 + ε)/|G| for all g ∈ G.
If ε < 1/2, then the algorithm constructs nearly uniformly distributed random elements of
G. Babai [6] presents a Monte Carlo polynomial-time black-box algorithm to construct
such elements. An alternative is the product replacement algorithm of Celler et al. [19];
that this runs in polynomial time was established by Pak [44]. See [45, §2.2] for a discussion
of these methods.

The two algorithms cited in the preceding paragraph make no use of the ‘is-identity’ oracle,
which tests whether a given group element is equal to the identity element. The elements
that they return are defined as words over the input generating set X. These properties
of the method used to generate random elements are assumed to hold in the proof of
Theorem 3.1, which relies essentially on the following behaviour.

Recall that the sequence of random objects generated by an algorithm is controlled by an
initial seed that can be set immediately before running the algorithm; if we reset the seed
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to be the same as in a previous run, then the same sequence of random objects will be
generated in the subsequent run. Suppose that G and H are two black-box groups with
the property that they accept the same bit strings as representing group elements, their
generating sets are represented by the same set X of bit strings, and they have identical
‘product’ and ‘inverse’ oracles, but possibly different ‘is-identity’ oracles. This situation
arises in particular when G ∼= H/K, and the ‘is-identity’ oracle for G tests elements of H
for membership of K. Suppose that we set the initial seed and construct a sequence of
random elements of G; then we reset the seed to the same value, and now construct the
same number of random elements of H. Then we obtain the same sequence of random
elements as words over X in the two runs. If the random elements of H are nearly
uniformly distributed, then so are the random elements of H/K.

2.3. An order oracle. Let G be a black-box group. We assume that an order oracle
FactoredOrder is available: it returns the prime factorisation of the order of a given
element of G. We regard each call to this oracle as a single operation. A BBo+ algorithm
is a black-box algorithm that uses this additional oracle; a BBod+ algorithm is one which,
in addition, uses an oracle to compute discrete logs in certain finite fields. Note that the
order and discrete log oracles are used only to enable black-box algorithms to run faster;
they do not change their functionality.

For a discussion of an order oracle for black-box groups, see [39, §5.1]. An algorithm that,
given the prime factorisation of integers of the form qi − 1 for 1 ≤ i ≤ d, determines the
factorised order of an element of GL(d,Fq) or PGL(d,Fq) in polynomial time is presented
in [20]. Factorisations of numbers of the form qi−1 are available as part of the Cunningham
Project [18].

2.4. Critical algorithms and their realisation. For a discussion of the families of finite
simple groups, see, for example, [47]. In particular, let G(q) denote a finite quasisimple
classical or exceptional group of Lie type over a field of order q.

Liebeck & O’Brien [39] present a Monte Carlo BBo+ algorithm to determine the defining
characteristic of a finite simple group of Lie type. Babai et al. [10] present a Monte Carlo
black-box algorithm that, given as input a black-box group G isomorphic to a simple group
of Lie type of known characteristic, determines the standard name of G. Using [32] and
[48], we extended this to include the alternating and sporadic groups. All of these run in
time polynomial in the size of the input.

A Las Vegas black-box algorithm to solve the constructive recognition problem for alter-
nating groups is described in [32]. It runs in time polynomial in the size of the input.

A Las Vegas black-box algorithm to solve the constructive recognition problem for classical
groups is described in [26]. The situation for exceptional groups is more complicated. We
exclude 2B2(2

2k+1), 2F4(2
2k+1), 3D4(2

k), and 2G2(3
2k+1) from discussion for now. Kantor

& Magaard [35] present Las Vegas black-box algorithms to solve the problem for the
remaining exceptional groups. The algorithms of [26, 35] take as input a representation of
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G(q) and run in time polynomial in the size of the input subject to the existence of the
following oracles:

• discrete log oracles for Fqe , the field of definition of G(q) (so e ≤ 3);
• an oracle to recognise constructively central quotients of SL(2,Fqe).

To realise the SL(2,Fqe)-oracle was challenging: for polynomial-time solutions in odd and
even characteristic respectively, see [13, 34].

Recall, from [36], that a faithful linear or projective representation of G(q) in characteristic
r coprime to q has degree that is a non-constant polynomial in q; since such input has size
bounded below by q, it is easy to design constructive recognition algorithms which achieve
polynomial time complexity. For matrix representations in defining characteristic, more
efficient algorithms are needed. By [24], for these representations, the SL(2,Fqe)-oracle is
reduced to a discrete log oracle for Fqe . The constructive membership problem for classical
groups is solved in polynomial time using the algorithms of [25]. Subject to an order oracle,
and discrete log oracle for Fqe where e ≤ 3, the work of [22, 23, 40] provides constructive
recognition algorithms, which are both practical and run in Las Vegas polynomial time,
for defining characteristic representations of those exceptional groups handled by [35].

We comment briefly on the exclusions among the exceptional groups. The polynomial-
time constructive recognition algorithms of [16, 3] for 2B2(2

2k+1) and 2G2(3
2k+1) apply

only to their smallest dimensional defining characteristic faithful irreducible matrix rep-
resentations. Bäärnhielm [2] gives a constructive recognition algorithm for the equivalent
representation of 2F4(2

2k+1). Using [23, 40], we obtain an O(2k) constructive recognition
algorithm for defining characteristic representations of 3D4(2

k). All assume the availability
of a discrete log oracle.

Building on this work, we assert the existence of Monte Carlo polynomial-time algorithms
to solve the following tasks. The first of these is BBo+, the second is BBod+.

• NameSimple(G, ε). If G is a nonabelian simple black-box group of order less than
2N then, with probability at least 1− ε, the name of G is returned. Otherwise the
algorithm returns False or an incorrect name.

• StandardGens(G,S, ε) where S is the name of a nonabelian simple group of
order less than 2N and not one of 2B2(2

2k+1), 2F4(2
2k+1), 3D4(2

k), or 2G2(3
2k+1).

Recall from Section 1 that each finite nonabelian simple group S has a specified
sequence of standard generators. If the black-box group G = 〈X〉 is isomorphic to
S, then, with probability at least 1− ε, the algorithm returns True, a sequence of
standard generators of G defined as words over X, and an algorithm to solve the
constructive membership problem in G. Otherwise the algorithm returns False.
StandardGens may fail to construct standard generators of a correctly named
input simple group.
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If S = 2G2(3
2k+1), then we cannot currently construct standard generators in G in polyno-

mial time, but the black-box algorithm of [28] solves the constructive membership problem
in G in polynomial time.

We also use the following black-box algorithm of [45, Theorem 2.3.9 and Remark 2.3.5].
NormalClosure(G, g, ε) takes as input a black-box group G, an element g of G, and
some ε with 0 < ε < 1/2. It returns a sequence of elements of G that, with probability at
least 1 − ε, generates the normal closure 〈gG〉 of g in G. If N is the encoding length of
G, then the number of operations is bounded by Cd(|X| + N) log ε−1e for some absolute
constant C. NormalClosure operates correctly if it returns generators of 〈gG〉.

3. Deciding simplicity

Theorem 3.1. There is a Monte Carlo polynomial-time BBod+ algorithm TestSimple
that takes as input a nonabelian black-box group G = 〈X〉 and ε ∈ (0, 1/2) and outputs
one of the following:

(i) True, the name of G, and a constructive membership algorithm for G;
(ii) False and w ∈ G;
(iii) Fail, possibly with the report that G may have one of the composition factors

excluded by condition (b) below.

This output is deemed to be correct if one of the following holds:

(1) G is simple, True is returned, the correct name for G is returned, and the con-
structive membership algorithm for G that is returned writes elements g of G as
words over X that evaluate to g; or

(2) False and w are returned, and w is nontrivial and lies in a proper normal subgroup
of G.

Otherwise the output is deemed to be incorrect; in particular, the output Fail is incorrect.

Suppose in addition that G satisfies at least one of the following conditions:

(a) G is not perfect;
(b) G has no quotient that is isomorphic to 2B2(2

2k+1), 2F4(2
2k+1), or 3D4(2

k), for
any k.

Then the probability that the output is incorrect is less than ε. If the output is (i), then it
is guaranteed to be correct except when G ∼= 2G2(3

2k+1) for some k.

We first describe TestSimple and then prove Theorem 3.1. TestSimple makes frequent
calls to an auxiliary function UpdateWitness. The “witness” in question is 1 6= w ∈ G.
As input, UpdateWitness takes the existing witness w together with h ∈ G, which we
think of as a candidate for membership in a proper normal subgroup of G. With high
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probability, the new value of w output by UpdateWitness will lie in a proper normal
subgroup of G if at least one of h or the original w does. So, after the complete run of
TestSimple, if any of the elements h to which UpdateWitness was applied lies in a
proper normal subgroup of G, then so does the final value of w.

Another variable Done is set to True if at any point during the run of TestSimple we
know (with high probability) that the current witness w lies in a proper normal subgroup
of G. We then immediately halt the run of TestSimple and return False and w.

Here is the pseudocode for UpdateWitness. The group G, its generating set X, and
ε, all referenced by UpdateWitness, comprise the input to TestSimple, and are never
changed. The witness w is initialised to a nontrivial commutator [x, y] for x, y ∈ X (recall
G is nonabelian), and Done is initialised to False.

Function UpdateWitness(h,w,Done)

Y := NormalClosure(G, h, ε/c) for some positive integer c;
for y in Y do
if [w, y] 6= 1 then w := [w, y]; return w,Done; end if;

end for;
Done := True;
for x in X do

if [h, x] 6= 1 then return w,Done; end if;
end for;
w := h;
return w,Done;

The value of the integer c in the first line is specified in Lemma 3.3 below. Let us
assume that NormalClosure operates correctly, so 〈Y 〉 = 〈hG〉. In most runs of
UpdateWitness we do not expect w to lie in the centraliser of 〈hG〉 in G, and w is
replaced by a nontrivial commutator of itself with a generator of that normal closure. But
if w ∈ CG(〈hG〉) then Done is set to True. In this case, the next step tests if h ∈ Z(G).
If so, then we replace the witness w by h, which lies in the proper normal subgroup Z(G)
of G (recall G is nonabelian). If not, then CG(〈hG〉) is a proper normal subgroup of G
that contains w, so we leave w unchanged.

The procedure TestSimple also uses modifications of NameSimple and StandardGens,
which we call NameSimple+ and StandardGens+. The modifications are as follows.
(The motivation for these modifications will become clear during the proof of Theorem
3.1.) Recall that a BBo+ algorithm applied to a group G has access to an order oracle
FactoredOrder(g) for g ∈ G. Whenever we call FactoredOrder(g) on any element
g in either of these two procedures, we follow this call immediately by invocations of
UpdateWitness(gn/p, w,Done) for each prime p that divides the order n of g. So if
any nontrivial power of g lies in a proper normal subgroup of G then, after this call to
UpdateWitness, the same is true of the witness w. Furthermore, if Done is not True
after this call, then w remains an element of [G,G]. But if Done is set to True, then
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we immediately abort the call to NameSimple+ or StandardGens+ and also that to
TestSimple, and return False and w.

We now give a top-level outline of TestSimple. Recall from the statement of Theorem
3.1 that its input consists of a nonabelian black-box group G = 〈X〉 and ε ∈ (0, 1/2).

(1) Initialise Done to False and w to a nontrivial commutator [x, y] for some x, y ∈ X.
(2) Run NameSimple+(G, ε/3). If Done is now True, or if NameSimple+ returns

False, then return False and the witness w.
(3) Otherwise NameSimple+ returns the name S of a finite simple group. If S is one

of 2B2(2
2k+1), 2F4(2

2k+1), or 3D4(2
k), then this contradicts the hypotheses of the

second part of Theorem 3.1, so we return Fail, and report the reason for failure.
Assume that S 6= 2G2(3

2k+1): we consider that case later.
(4) Run StandardGens+(G,S, ε/3). If Done is now True, or if StandardGens+

returns False, then return False and w.
(5) Otherwise StandardGens+ returns True, a list Y of group elements, and a

constructive membership algorithm for G. Decide whether Y satisfies the known
short presentation of S on its standard generators. If so, then return True, the
name of S, and the constructive membership algorithm.

(6) Otherwise, one of the relators of the presentation evaluates to a nontrivial element
h. Call UpdateWitness(h,w,Done) and then return False and w.

Lemma 3.2. The number of calls to UpdateWitness in a run of TestSimple is bounded
by a polynomial function f(N |X|, log ε−1).

Proof. Apart from the single call in the final step of TestSimple, UpdateWitness is
called only from within NameSimple+ and StandardGens+, each of which is called at
most once by TestSimple. Since |G| ≤ 2N , there are at most N prime divisors of |G|, and
so UpdateWitness is called at most N times following each call to FactoredOrder
from NameSimple+ and StandardGens+. Since NameSimple and StandardGens
are Monte Carlo polynomial-time algorithms, their running times are both bounded by
polynomial functions of the input length N |X| and log ε−1, and so the same applies to the
total number of calls to FactoredOrder. The result now follows. �

Lemma 3.3. Let f be the polynomial function in Lemma 3.2 and let c be 3f(N |X|, log ε−1)
in the call to NormalClosure from UpdateWitness. Then the probability that all
calls to NormalClosure operate correctly (that is, they return generators of the normal
closure in G of the input element g) is at least 1− ε/3.

Proof. Note that all calls to NormalClosure in a run of TestSimple occur from within
a call to UpdateWitness. By Lemma 3.2 there are at most c/3 such calls, so the

probability that they all operate correctly is at least (1− ε/c)c/3 > 1− ε/3. �

Lemma 3.4. TestSimple is a polynomial-time BBod+ algorithm.
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Proof. NameSimple+, StandardGens+, and NormalClosure are polynomial-time
BBod+ algorithms. We saw in Lemma 3.2 that the number of calls to UpdateWitness and
NormalClosure is bounded by f(N |X|, log ε−1), a polynomial function. Furthermore,
the time taken by each call to NormalClosure is a polynomial function of N |X| and
log(c/ε). Since log(c/ε) is also bounded by a polynomial function of N |X| and log ε−1, the
same applies to the time taken by all calls to UpdateWitness. Finally, the presentations
of the simple groups used to check correctness are short, so their length is bounded by a
polynomial function of log |G| ≤ N . �

Proof of Theorem 3.1: Suppose first that G is simple. Suppose also that all calls to
NormalClosure operate correctly which, as we saw in Lemma 3.3, happens with prob-
ability at least 1− ε/3. Since G is simple, all such calls return generators of G and, since
w 6∈ Z(G), Done does not become True during calls to UpdateWitness, which would
cause TestSimple to abort. So, with probability at least 1 − 2ε/3, NameSimple+ cor-
rectly identifies G, and StandardGens+ correctly finds standard generators that satisfy
the relators of the presentation. So TestSimple correctly returns True, the name of G,
and the constructive membership algorithm for G. Hence, when G is simple, the output
of TestSimple is correct with probability at least 1− ε.

On the other hand, since TestSimple only returns True when it finds standard gener-
ators of G and verifies that they satisfy the relations of a known presentation of a simple
group S, a return value of True is guaranteed to be correct. (We still assume for now
that G has no quotient isomorphic to 2G2(3

2k+1) for any k.)

Hence we may assume that TestSimple returns False and that G is not simple. We
need to prove that the returned element w is correct (that is, w 6= 1 and w lies in a
proper normal subgroup of G) with probability at least 1 − ε. By Lemma 3.3 all calls to
NormalClosure operate correctly with probability at least 1 − ε/3. We shall assume
that this is the case and prove that, under this assumption, the returned w is correct with
probability at least 1− 2ε/3.

If Done becomes True at any point, then our assumption that all calls to NormalClosure
operate correctly implies that the returned w is correct. Assume that Done never be-
comes True. As we observed earlier, w ∈ [G,G] in this case, so the result returned is also
correct when G is not perfect. So we may assume that G is perfect.

Hence G has a nontrivial normal subgroup K with G/K nonabelian simple. We re-
call that the witness w is updated during the run of TestSimple by the application
of UpdateWitness to h ∈ G; each h is a power gn/p of g, where p is a prime divi-
sor of the order n of g, and FactoredOrder(g) is called by either NameSimple+ or
StandardGens+. When w is updated, it is replaced by the commutator [w, y] for some
element y of the normal closure of h in G (recall we assume that Done does not become
True). If, at any time during the run, w ∈ K, or if any of the elements h to which
UpdateWitness is applied lies in K, then the final witness w returned by TestSimple
lies in K; so TestSimple operates correctly.
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If neither of these conditions is satisfied, then, for each call to FactoredOrder(g) from
NameSimple+, the order of g must be the same as the order of gK in G/K ∼= S, since

otherwise gn/p ∈ K for some prime divisor p of the order n of g. But this means that
NameSimple+ operates exactly as it would if the input group were G/K with generators
{xK : x ∈ X}. So, with probability at least 1− ε/3, NameSimple+ (incorrectly) returns
the name S. This argument relies critically on our assumptions about the algorithm used
to generate random elements of a black-box group, as discussed at the end of Section 2.2.

By a similar argument, if w 6∈ K after the call to StandardGens+ then, with probability
at least 1 − ε/3, StandardGens+ returns True and a set of elements whose images in
G/K are standard generators of S. But now at least one of the relators of the known
presentation of S must evaluate to a nontrivial element of K, and so w ∈ K after the final
call to UpdateWitness. So TestSimple correctly returns False and w ∈ K. (We make
this final call to UpdateWitness rather than just returning h to ensure that w ∈ [G,G],
a requirement at this point in the proof.)

This completes the proof under the assumption that S 6= 2G2(3
2k+1) for any k. Finally, we

describe the modifications to TestSimple when NameSimple+ returns S = 2G2(3
2k+1)

for some k in Step (3) of TestSimple. When that happens, rather than proceeding to Step
(4), we use the constructive membership algorithm of [28] to write dlog2(3ε

−1)e random
g ∈ G as words over X. If False is returned for any of these elements, then we return
False and the witness w. Otherwise, we evaluate the word returned for g to obtain g′ ∈ G.
If g = g′ for every g, then we return True and the constructive membership algorithm.
Otherwise some g 6= g′; now we put h := g−1g′, call UpdateWitness(h,w,Done), and
return False and w.

As before, if G ∼= 2G2(3
2k+1), then the correct result is returned with probability at least

1 − ε. Otherwise, the proof proceeds as before, and leads us to the situation in which
there is a nontrivial normal subgroup K of G with G/K ∼= 2G2(3

2k+1). If w ∈ K when
TestSimple completes, then it has behaved correctly, so assume not. We claim that the
constructive membership algorithm must write elements in the same coset of K to the
same word over X. This is because, as we have seen earlier, w 6∈ K implies that the
black-box algorithms behave in the same way as they would if the black-box group were
G/K rather than G, and hence they do not distinguish between elements in the same
coset of K. Thus the proportion of elements of G for which the word returned by the
constructive membership algorithm is correct (namely, it evaluates to that element) is at
most 1/|K|. Hence the probability that the constructive membership algorithm writes
a random element of G correctly is at most 1/|K|, and hence the probability of writing
dlog2(3ε

−1)e such elements correctly is at most ε/3. So the probability of True being
returned incorrectly is at most ε. On the other hand, by a similar argument to the main
proof, if any of the elements fail to write correctly, then w lies in K with probability at
least 1− ε. 2
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4. Deciding reductions for matrix groups

Aschbacher [1] showed that maximal subgroups of classical groups over finite fields are in
one of nine classes, which he called C1 – C8 and S. We extend (or abuse) this notation by
applying it to arbitrary subgroups of maximal subgroups in classes C1 – C7. For example,
we view every reducible matrix group as a member of class C1. Viewed in this way, the
main result of [1] is that every subgroup G of GL(d,Fq) either lies in at least one of C1 –
C7, or it lies in C8 or S, in which case G has a normal absolutely irreducible subgroup that
is simple modulo scalars, and G does not lie in class C5 (that is, it is not defined over a
proper subfield of Fq modulo scalars). A description of these nine classes appears in [43,
Theorem 5.1].

We use the Monte Carlo algorithm TestSimple of Section 3 to prove the following the-
orem. The operations of the final sentence are multiplication and inversion of matrices;
a discrete log oracle for Fqi for 1 ≤ i ≤ d; and an oracle to factorise integers of the form

qi−1 for 1 ≤ i ≤ d (which, as explained in Section 2.3, allows us to compute and factorise
the orders of elements of G).

Theorem 4.1. Let G = 〈X〉 ≤ GL(d,Fq) for some d > 1. There is a randomised
algorithm SearchForDecomposition(X, ε) that, provided G has no composition factor
isomorphic to 2B2(2

2k+1), 2F4(2
2k+1), or 3D4(2

k), for any k, either:

(1) finds a normal absolutely irreducible subgroup K of G such that K/Z(K) is non-
abelian simple, and asserts that K/Z(K) ∼= S for some named simple group S,
and that G is in Aschbacher class C8 or S; or

(2) finds a decomposition of G in its action on the underlying vector space V ∼= Fd
q

which is dictated by its membership of one of the Aschbacher classes C1 – C7; or
(3) returns Fail with probability less than ε.

If (1) applies, then the algorithm returns False, K, the name of S, and a constructive
membership algorithm for K; otherwise, it returns True and the Aschbacher decomposi-
tion obtained for G.

The assertion in (1) is guaranteed to be correct except when K/Z(K) ∼= 2G2(3
2k+1) for

some k, in which case there is an error probability of at most ε. If (2) applies, then the
decomposition returned is guaranteed to be correct.

SearchForDecomposition is guaranteed to halt after at most

f(|X|, N, log ε−1)

operations for some polynomial function f , where N = d2dlog2 qe.

We comment briefly on the requirements for the discrete log oracle. As mentioned earlier,
we may need this for fields Fqi , where 1 ≤ i ≤ d, to process cyclic composition factors of
G. By [36], nonabelian composition factors that are groups of Lie type over fields of order
r coprime to q arise only when d is bounded below by r, and so discrete logs over fields
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of order rk for k ≤ 3 can be computed in polynomial time without recourse to an oracle.
For Lie type composition factors in characteristic that of Fq, we require discrete logs for

fields of order at most qd.

SearchForDecomposition uses the algorithm Smash described in [29]. This is ef-
fectively an algorithmic realisation of Clifford’s theorem [21] about decompositions of V
preserved by a nonscalar normal subgroup of G. That Smash runs in Monte Carlo poly-
nomial time is established in [29, §5].

Certain types of normal subgroups of G give rise to a decomposition of V that immediately
implies that G lies in one of the classes C1 – C7. For example, if G acts irreducibly on V ,
but K � G acts inhomogeneously on V , then G is imprimitive; we refer to this situation
as a decomposition of G of type C2 where K lies in the kernel of the decomposition.

More precisely, Smash(X,w, ε) takes as input generators X of an absolutely irreducible
subgroup G of GL(d,Fq), a nonscalar w ∈ G, and a maximum error probability ε. It
searches for an Aschbacher decomposition of G of type C2, C3, C4, C6, or C7 in which
〈wG〉 lies in the kernel of the decomposition. The following proposition summarises the
behaviour of Smash.

Proposition 4.2. Assume that G is an absolutely irreducible subgroup of GL(d,Fq) and
that w is a nonscalar element of G. Let K = 〈wG〉.

(i) If K is not absolutely irreducible, then K lies in the kernel of an Aschbacher
decomposition of type C2, C3 or C4, and this decomposition will be found by Smash.

(ii) If K is absolutely irreducible and KZ(G)/Z(G) is elementary abelian, then K lies
in the kernel of an Aschbacher decomposition of type C6, and this decomposition
will be found by Smash.

(iii) If K is absolutely irreducible and KZ(G)/Z(G) is a nonabelian minimal normal
subgroup of G/Z(G) that is not simple, then K lies in the kernel of an Aschbacher
decomposition of type C7, and this decomposition will be found by Smash with
probability at least 1− ε.

Proof. The claim is proved in [29, §2] apart from the error probability of (iii). In that
case G is tensor induced and w lies in the kernel K of the permutation action of G on
the k tensor factors for some k > 1, where K is isomorphic modulo scalars to the direct
product of k copies of a finite nonabelian simple group S. To complete the construction
of the decomposition, Smash needs to find an element of K that projects onto nonscalar
elements of some but not all of these factors. Let g be a random element of K. If the
prime divisors of the orders of the projections of g onto the k copies of S are not identical,
then the required element is gn/p, where p is some prime divisor of the (projective) order
n of g.

It is proved in [12] that, if a nonabelian simple group is a quotient of a subgroup of
GL(d,Fq), then, for every prime r, the proportion of elements having projective order
not divisible by r is at least ρ := min{1/31, 1/2d}. Hence the probability that a random
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nonscalar g ∈ K has the property described above is at least ρk−1. So, by considering
powers gn/p of an appropriate number of random g ∈ K, we can find an element with the
property required by Smash with probability at least 1− ε. �

Proof of Theorem 4.1: There is a Las Vegas polynomial-time algorithm [30, 31] to decide
if a given subgroup G of GL(d,Fq) acts irreducibly or absolutely irreducibly on V . If so,
then this algorithm returns a new basis of V to exhibit the decomposition, G lies in one of
the Aschbacher classes C1 or C3, and Case (2) of the statement of Theorem 4.1 holds. So
we may assume that G acts absolutely irreducibly on V . In particular, since we assume
that d > 1, G must be nonabelian.

The Las Vegas polynomial-time algorithm of [27] takes as input an absolutely irreducible
subgroup G of GL(d,Fq), and, provided [G,G] acts absolutely irreducibly on V , decides
whether there is a proper subfield Fs of Fq such that G is conjugate in GL(d,Fq) to
a subgroup of GL(d,Fs)Z(GL(d,Fq)). If so, then the algorithm returns a conjugating
matrix; so G lies in the Aschbacher class C5, and Case (2) of the statement of Theorem
4.1 again holds.

Thus we may assume that either [G,G] does not act absolutely irreducibly on V , or G does
not lie in the class C5. We now present pseudocode for SearchForDecomposition under
this assumption. Recall that our goal is to recognise constructively a normal absolutely
irreducible quasisimple subgroup of G, or to construct an Aschbacher decomposition of
G. All calculations are done modulo the scalar subgroup Z of GL(d,Fq), including the
application of TestSimple. For the black-box algorithms, this is achieved by making
the ‘is-identity’ oracle return True if and only if its input matrix is scalar. The function
λ(d, q) in Line 3 bounds the length of a subnormal series of subgroups of GL(d,Fq), which
we take to be d2 log q (although better bounds are known).

Recall that TestSimple returns at most three values found, value, alg, where found
is True, False or Fail; value is the name of a simple group when found is True, and
a witness for a proper normal subgroup when found is False; and alg is a constructive
membership algorithm for the simple group when found is True. Also Smash returns
values found and decomp, where found is True if an Aschbacher decomposition is
found, in which case decomp is that decomposition, and found is False otherwise.

Function SearchForDecomposition(X, ε)

1 G := 〈X〉; K := G; YK := X; (K = 〈YK〉 will remain a subnormal subgroup of G)
2 w := any nonscalar element of X;
3 ε′ := ε/(4λ(d, q));
4 for ct in [1 . . λ(d, q)] do
5 if IsAbelian(KZ/Z) then
6 w := wt with t ≥ 0, where p := o(wtZ/Z) is prime, and o(wt) is a power of p;
7 L := 〈NormalClosure(X,w, ε′)〉; (so L ≤ Op(G))
8 w := z with zZ central of order p in LZ/Z;
9 else
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10 found,value,alg := TestSimple(YK , ε
′); (applied modulo scalars)

11 if found then
12 if K �G then return False, K, its name value, and the algorithm alg;
13 else return Fail;
14 end if;
15 else
16 w := value;
17 end if;
18 end if;
19 found, decomp := Smash(X,w, ε′);
20 if found then return True, decomp; end if;
21 YK := NormalClosure(YK , w, ε

′);
22 K := 〈YK〉;
23 end for;
24 return Fail;

We can decide whether K is normal in G in Line 12 by using the constructive membership
algorithm for K that is returned by TestSimple as alg. Since L is a p-group in Line 7,
we can easily find a nontrivial central element of LZ/Z by repeatedly taking commutators.

There are four calculations in the above function that can return Fail or an incorrect
answer: TestSimple in Line 10, Smash in Line 19, and NormalClosure in Lines 7 and
21. Each is executed at most λ(d, q) times; to make the total probability of failure at most
ε, we choose our parameters so that each fails with probability at most ε′ = ε/(4λ(d, q)).
Since the decompositions returned by Smash are guaranteed to be correct, the only way
that SearchForDecomposition can return a wrong answer, rather than Fail, is for
TestSimple to incorrectly identify a black-box group as 2G2(3

2k+1) for some k.

Let us assume that none of the above causes of failure arises. Then we must prove that, at
some stage, either the subgroup K of G is proved to be simple modulo scalars in Line 10
and normal in G in Line 12, or else Smash finds a decomposition in Line 19. So suppose
that neither of these eventualities occurs.

Note that K is redefined only in Line 22, where it is replaced by the normal closure in K
of a nontrivial element; so K remains a subnormal subgroup of G throughout.

Assume first that, at some stage, IsAbelian returns True in Line 5, so K is abelian
modulo scalars. The element w defined in Line 6 lies in Op(K) and hence in Op(G), and
its normal closure L in G defined in Line 7 lies in Op(G). Observe that w is redefined in
Line 8 as an element whose image in LZ/Z is central and of order p. So the normal closure
M in G of the new w has elementary abelian image in LZ/Z. Now, by Proposition 4.2,
the call to Smash in Line 19 will find a decomposition of type C2, C3 or C4 if M is not
absolutely irreducible, or of type C6 if it is.

Assume now that IsAbelian never returns True in Line 5. If we reach Line 19, then the
element w is a witness from a call to TestSimple that returned False at Line 10, and so
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it lies in a proper normal subgroup of K. So, if Smash fails to find a decomposition, then
K is redefined at Line 22 as a proper normal subgroup of itself. Since λ(d, q) bounds the
length of a subnormal series of G, and we assume that K is never abelian modulo scalars,
it must eventually be simple modulo scalars. Now TestSimple returns True in Line 10.
It can be shown by induction on the subnormal depth that a nonabelian simple subnormal
subgroup of a group lies in the socle of that group, and so KZ/Z lies in the socle of GZ/Z.
Hence, if K is not normal in G, then the normal closure of KZ/Z in GZ/Z is a minimal
normal subgroup of GZ/Z isomorphic to a direct product of more than one copy of KZ/Z.
But then, by Proposition 4.2 (iii), Smash should have returned a C7-decomposition of G
in the previous iteration of the for loop. This justifies the return of Fail in Line 13.

On the other hand, if K � G at Line 12, then K must act absolutely irreducibly, since
otherwise Smash would have found a decomposition on the previous iteration of the for
loop by Proposition 4.2. So [G,G] acts absolutely irreducibly on V and hence, by the
second paragraph of this proof, G is not in the Aschbacher class C5. So Case (1) of the
statement of Theorem 4.1 holds (the definition of the class S requires that [G,G] acts
absolutely irreducibly and that G is not in C5). 2

4.1. The use of IsPerfect. We have proved Theorem 4.1 as a theoretical result, but we
also claim that implementations of (variants of) these methods perform well in practice.
We can improve their performance by the use of an additional BBo+ algorithm, which we
now briefly describe.

Let G = 〈X〉 be a black-box group with normal subgroup L defined by a generating set.
A BBo+ algorithm is given in [37, §5.3] to compute a multiplicative upper bound to the
order modulo L of g ∈ G. Deciding whether this upper bound is 1 provides a membership
test for g in L that is guaranteed to be correct when the answer is positive. Babai &
Shalev [9, §4.4] prove that this provides a Monte Carlo polynomial-time membership test
when L is a nonabelian simple group.

Consider L = [G,G]. We first use NormalClosure (on commutators of elements of
X) to find generators of L, and then apply the membership test to all elements of X to
produce an algorithm IsPerfect to decide whether G is perfect; a positive answer is
guaranteed to be correct. We enhance this to IsPerfect+ by calling UpdateWitness,
as we did for NameSimple and StandardGens.

Now we modify SearchForDecomposition as follows. We recall that this function
maintains a set of group elements YK that generate a subnormal subgroup of the input
group G = 〈X〉. We call IsPerfect(YK , ε

′) for suitable ε′ immediately before the call to
TestSimple in Line 10 and, if it returns False, then we proceed immediately to the call
to Smash in Line 19.

We justify these modifications as follows. If G is not perfect, then IsPerfect returns
False and the witness is in the proper normal subgroup [G,G] of G, so we avoid the more
time-consuming call to TestSimple. If G is nonabelian simple, then IsPerfect returns
True with probability at least 1 − ε′, so we proceed with the call of TestSimple. If G
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is perfect but not simple, then IsPerfect may incorrectly return False, and we have
no estimates for the probability of this happening. In that situation, since the algorithm
has behaved differently from what it would have done if G had been simple, we use the
same argument as in the proof of Theorem 3.1 to conclude that, with high probability, the
witness w lies in a proper normal subgroup of G.

4.2. Constructing generators of Z(K). To compute a composition tree of a linear
group, we need to find generators of Z(K) when Case (1) of Theorem 4.1 occurs. If we
have a short presentation of K/Z(K) on its standard generators, then we can do that in
polynomial time as follows.

Let Y be a set of inverse images in K of the standard generators Y of K/Z(K). For a
word w over Y , let σ(w) ∈ K be the result of evaluating w with ȳ ∈ Y replaced by the
corresponding y ∈ Y . Let R be the set of defining relators of the known presentation of
K/Z(K), and let A = {σ(r) : r ∈ R} ⊆ Z(K). Let ρ be the rewriting map that maps
elements of K/Z(K) to words over Y , let X be our given generating set of K, and let
B = {x·σ(ρ(xZ(K)))−1 : x ∈ X} ⊆ Z(K). It can be shown readily that Z(K) is generated
by A ∪B.

If K/Z(K) ∼= 2G2(3
2k+1)), then we have no short presentation. Instead we obtain a Monte

Carlo algorithm to construct generators for Z(K) by evaluating g · σ(ρ(gZ(K)))−1 for a
collection of random g ∈ K.

5. A polynomial-time version of CompositionTree

We summarise a mildly simplified version of the CompositionTree algorithm presented
in [4, §3.1]. It takes as input G = 〈X〉 ≤ GL(d,Fq) and outputs a composition tree for G.

(1) Do one of the following:
(i) construct an effective epimorphism θ : G→ G1, for some group G1; or
(ii) prove that G is simple, in which case G becomes a leaf in the tree.
In Case (i), θ must be a reduction: namely, G1 is “smaller” than G in some respect
– for example, its degree or field of definition. Assume henceforth that Case (i)
applies.

(2) Recursively construct a composition tree for G1 := 〈θ(Y )〉.
(3) Construct generators for G0 := Ker θ.
(4) Recursively construct a composition tree for G0.
(5) Combine the composition trees for G1 and G0 into a tree for G.

Theorem 5.1. Let G = 〈X〉 ≤ GL(d,Fq) and assume that G has no composition factor

isomorphic to 2B2(2
2k+1), 2F4(2

2k+1), or 3D4(2
k), for any k. Then, subject to the exis-

tence of a discrete log oracle for Fqi and an oracle to factorise integers of the form qi − 1
for 1 ≤ i ≤ d, CompositionTree runs in polynomial time. The resulting algorithm is
Las Vegas if G has no composition factor isomorphic to 2G2(3

2k+1) and Monte Carlo if
there is such a factor.
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Proof. If d = 1, then G is cyclic: it is straightforward to use a discrete log oracle and the
factorisation of q− 1 to find a composition series of G. So we may assume that d > 1 and
hence G satisfies the hypotheses of Theorem 4.1.

Theorem 4.1 shows that Step 1 can be carried out in polynomial time subject to the
existence of the required oracles. Since the number of composition factors of G is at most
log |G|, the recursive Steps 2 and 4 run in polynomial time. If a decomposition of type
C6 arises, then (as shown, for example, in [29, §2]) d = rk for some prime r 6= p and
G1 ≤ GL(2k, r). Processing G1 requires calculating discrete logs in fields of order ri with
1 ≤ i ≤ 2k, but each order is at most d2, so we do not need a discrete log oracle for this
purpose.

Step 3 is described in [4, §5.3.1]. Once Step 2 is complete, we can evaluate images of g ∈ G
under θ, and also images of elements of G1 under a map σ : G1 → G such that θ◦σ = 1G1 ,
all in polynomial time. We can now construct random elements of G0 as g · σ(θ(g))−1

for random g ∈ G. As shown in [4, §5.3], the number of random elements required to
generate G0 with high probability is O(log |G|). Step 5, described in [4, §§4.4–4.5], is
straightforward once the required data structures have been set up. �

Of course, we must calculate failure (or, in the case of a composition factor 2G2(3
2k+1),

error) probabilities for individual steps in this process to ensure that the overall failure
(or error) probability for CompositionTree is at most the chosen value of ε, but this is
straightforward given the known bounds on the number of steps in the recursive process.
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