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SUMMARY

Statistical analysis on networks has received growing attention due to demand from various emerging
applications. In dynamic networks, one of the key interests is to model the event history of time-stamped
interactions among nodes. We model dynamic directed networks via multivariate counting processes. A
pseudo partial likelihood approach is exploited to capture the network dependence structure. Asymptotic 15

results are established. Numerical experiments are performed to demonstrate effectiveness of our proposal.

Some key words: Recurrent event; Survival analysis; Multivariate counting processes; Dynamic directed networks.

1. INTRODUCTION

In classical survival analysis, one would like to understand how specific covariates are affecting the life-
time distributions. One of the many powerful tools thereof is the Cox model (Cox, 1972), which stipulates 20

the hazard function in the following form:

λT (t | Z) = exp{βo>Z}λ0(t), (1)

where λT (· | Z) denotes the conditional hazard function given covariates Z ∈ Rp of the event time of in-
terest T , βo ∈ Rp denotes the coefficients, where p is a positive integer, and λ0(·) is the baseline function.

There has been an extensive amount of research on theoretical, methodological, computational and ap-
plication aspects of (1) since Cox (1972). Dynamic network data, which consist of a sequence of networks 25

ordered by time, are ubiquitous in the Big Data era. Among many different possibilities in modelling dy-
namic networks, counting processes are also deployed. Existing works, including Butts (2008), Snijders
et al. (2010), Krivitsky & Handcock (2014), Cauchemez et al. (2011) and Perry & Wolfe (2013), to name
but a few, used the hazard functions involved models to analyze how certain covariates affect the networks
forming. 30

At first glance, it is straightforward to extend the scope of (1) and apply it to model activities in net-
works. For example, one may model the interaction times between pairs of nodes and edge-specific infor-
mation as event times and covariates, respectively. However, there are two hurdles.

(i) The most prominent feature of networked data is the dependence among observations. If our in-
terest lies in the interactions among nodes and the observations are the interactions among nodes, the 35

independence assumption among individuals may no longer be valid.
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(ii) The Cox model was originally proposed for lifetime data, which implies that for each subject, there
is at most one observation, i.e. death. However in many applications, for example international trades,
there are multiple interactions between two countries, and these interactions are dependent across time.
Rigorously speaking, this additional level of dependence handicaps the martingale foundation in the Cox40

model analysis (e.g. Andersen & Gill, 1982) and voids the inference thereof.
As for hurdle (ii), recurrent event data, e.g. cancer relapses data, share the same difficulty. In order

to model multiple event times, Wei et al. (1989) developed a marginal approach, and Lin et al. (2000)
established large sample theory based on empirical processes. Readers may also refer to Andersen et al.
(1993) and Martinussen & Scheike (2006) for summaries.45

Hurdle (i) is inherited from the relational nature of the networked data. The common practice in the
statistical network literature is to capture the dependence structure by conditioning on a set of covariates or
observations, which happens with latent state models (e.g. Hoff et al., 2002) and Markov-type models (e.g.
Hunter et al., 2011; Hanneke et al., 2010). This strategy is handy for many problems, but it is challenging
to adopt the same treatment if we are interested in the interaction times and hazard rates thereof. In order50

to guarantee that (1) is a valid hazard function, the covariates can only be external; in other words, the
observed values of these covariates should not carry information of the failure times. In contrast to the
external covariates, many network-dependence-related covariates, e.g. history information or common
neighbours, are internal covariates, and adding them in (1) is an abuse of the hazard function. For detailed
explanations, we refer the readers to Section 6.3 in Kalbfleisch & Prentice (1992).55

Another intuitive remedy for (ii) is to exploit time series models. Unfortunately, in network data, the ob-
servations are not collected in a linear order like those in the time series data. Lacking a widely-recognized
definition of distances, it is hard to directly adopt any time series method. Having said this, lacking an
explicit definition of ‘distance’ does not mean that there is not a certain form of ‘distance’. To understand
this, we see that in a social network, one person might only have direct influences over a number of other60

people, and the influences decrease as a certain sense of ‘closeness’ decreases. This distance is possibly a
combination of many factors.

In this paper, we provide a novel and theoretically-rigorous framework to study how the edge-specific
covariates affect the edge formulation in dynamic and directed networks, allowing for an unspecified
distance. We list our main contributions as follows.65

Firstly, since it is hard to propose a suitable distance in network data, we opt for an implicit definition of
distance. We borrow the idea of composite likelihood to capture the associated but unspecified dependence
structure, to which, our method will be able to improve the covariate inference procedure.

Secondly, in order to derive asymptotic results, we establish a network version of the m-dependent
central limit theorem using Stein’s (Stein, 1972) method. We only need to assume that for any node in70

the network, there are at most m other dependent nodes. In the analysis procedure, we do not need to
know which m nodes are dependent or how they depend on each other. A refined asymptotic tightness
of stochastic processes result is derived by allowing m to grow with the sample size at a suitable rate.
Convergence results of our proposed estimators are presented in Section 2·2.

In this paper, denote S = {1, . . . , n} by the set of nodes and S×2 = S × S \ {(i, i), i ∈ S}. For each75

pair (i, j) ∈ S×2, we have the edge-specific covariates Zij(t) ∈ Rp, t ∈ [0, T ], T > 0, its corresponding
event times Tij,0, . . . , Tij,nij , where Tij,0 = 0. We also assume that there is no self-loop, i.e. for the pair
(i, i), i ∈ S, nii = 0. For a vector v ∈ Rp, let ‖v‖1 and ‖v‖ be the `1- and `2-norms of v, respectively. For
a p× q matrix A = (aij), we adopt the notation of ‖A‖∞ = maxi,j |aij | and ‖A‖1 = maxi

∑q
j=1 |aij |.

For any set B, we denote its cardinality by |B|. For f(n), g(n) > 0, let f(n) � g(n) denote that f(n) =80

O(g(n)) and g(n) = O(f(n)). Let 1(·) ∈ {0, 1} be the indicator function. The graph theory definitions
are standard in this paper and are deferred to the supplementary materials.
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2. METHODOLOGY

2·1. Setup

Recall that our interest lies in the effects of edge-specific covariates on the distributions of interaction 85

times. For any i ∈ S, we use multivariate counting processes to record its activities. Specifically, we adopt
the notation

Ni = {Ni(t), t ∈ [0, T ]} = {(Nij(t), j 6= i), t ∈ [0, T ]},

where the univariate counting process {Nij(t), t ∈ [0, T ]} encodes direct edges starting at i and ending
at j. The corresponding mean function is given by

E
{
dNij(t) | Zij(t)

}
= exp

{
βoTZij(t)

}
λ0(t) dt. (2)

Perry & Wolfe (2013) assumed that each interaction in a network follows the Cox model and is condi- 90

tionally independent with other previous events given covariates history. To be specific, in order to ensure
that (1) is a valid hazard function, time-varying covariates involved in the regression have to be external
(see Section 6.3 of Kalbfleisch & Prentice, 1992). In the context of dynamic networks, if one adds history
events or network structures in the covariates in the hazard function, then one is implicitly assuming that
history and network information are either pre-determined or their distributions do not involve the life- 95

time distribution specified by (1). This is not realistic and therefore one would not prefer adding history
or network information in (1).

Different from Perry & Wolfe (2013), our formulation adopts the idea in Lin et al. (2000), which does
not require accurate specifications of the dependence of sequential events within each pair. There is a
subtle difference between (2) and the Cox model which essentially assumes 100

E{dNij(t) | Ft−} = E{dNij(t) | Zij(t)} (3)

in addition to (2). The notationFt− is the natural σ-field generated by {Nij(s), i, j ∈ S, 0 ≤ s < t ≤ T}.
The requirement specified in (3) implies that the covariates included can capture all the dependence be-

tween the future and past events. This is a valid assumption when at most one event occurs; however, when
multiple events may happen over a certain period of time, it is challenging to capture all the dependence
by a set of covariates. Our formulation does not require (3). 105

If we define {Mij(β, t), t ∈ [0, T ]} as

Mij(β, t) = Nij(t)−
∫ t

0

exp{βTZij(s)}λ0(s) ds = Nij(t)− Λij(β, t), (4)

then, due to (2), each {Mij(β
o, t), t ∈ [0, T ]} is a mean zero process but not a martingale difference

process because (3) is no longer assumed.
To establish our inference procedure and introduce our proposed estimator, we borrow the idea of com-

posite likelihood (e.g. Lindsay, 1987; Cox & Reid, 2004; Varin & Vidoni, 2005) and consider a pairwise 110

pseudo partial likelihood. Since the observations are possibly dependent, this formulation is particularly
useful when the full likelihood is too complicated to be expressed or optimized. The corresponding log
pseudo partial likelihood is defined as follows,

`n(β) =

n∑
i=1

∑
j 6=i

∫ T

0

{
βTZij(t)− log

[
n∑
k=1

∑
l 6=k

exp
{
βTZkl(t)

}]}
dNij(t),

whose score function is given by

Un(β) =

n∑
i=1

∑
j 6=i

Uij(β) =

n∑
i=1

∑
j 6=i

∫ T

0

{
Zij(t)− Z̄n(β, t)

}
dNij(t),
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where115

Z̄n(β, t) =

∑n
k=1

∑
l 6=k Zkl(t) exp

{
βTZkl(t)

}∑n
k=1

∑
l 6=k exp

{
βTZkl(t)

} .

As shown in Section 2·2, the score function Un(β0), when suitably normalized, is asymptotically normal
with mean zero. This makes Un(β) = 0 a valid consistent estimation equation. In the sequel, we define
β̂n as the solution of

Un(β̂n) = 0. (5)

2·2. Theory

As we have emphasized that it is restrictive to assume that the edges are independent and difficult120

to define a distance or neighbourhood in a network. To overcome these hurdles, we only assume that for
every node in the network, there are at mostm other nodes, the stochastic processes associated with which
are dependent. In Condition 1, we formalize this dependence.

Condition 1. For any i ∈ S, there exists Ji ⊂ S, such that for any j ∈ S \ Ji,Ni andNj are indepen-
dent, and Zi and Zj are independent, where Zi = {Zil(t), l ∈ S, t ∈ [0, T ]}. Assume for any i ∈ S, it125

holds that

|Ji| � mn = o(n1/4). (6)

Condition 2. Assume for all (i, j) ∈ S×2, there exists a universal constant K > 0 such that
‖Zij(0)‖1 +

∫ T
0
‖dZij(t)‖1 ≤ K. Let

µn(βo, t) =
E
{∑n

i=1

∑
j 6=i Zij(t) exp(βoTZij(t))

}
E
{∑n

i=1

∑
j 6=i exp(βoTZij(t))

} ,

Σ1,n = E

[∑n
i=1

∑
j 6=i

n(n− 1)

∫ T

0

{Zij(t)− µn(βo, t)}{Zij(t)− µn(βo, t)}T exp(βoTZij(t))λ0(t) dt

]
and130

Σ2,n = E

(
1

n(n− 1)

 n∑
i=1

∑
j 6=i

∫ T

0

{Zij(t)− µn(βo, t)} dMij(β
o, t)


×

 n∑
i=1

∑
j 6=i

∫ T

0

{Zij(t)− µn(βo, t)} dMij(β
o, t)

T)
,

satisfying that 0 < lim supn→∞ ρmax(Σj,n)/ρmin(Σj,n) <∞, j = 1, 2, where ρmin(A) and ρmax(A) are
the minimum and maximum eigenvalues of matrix A, respectively. In addition, we assume that there exist
a non-random vector µ(t) and matrices Σ1, Σ2 such that135

sup
t∈[0,T ]

max
{
‖µn(βo, t)− µ(t)‖,

∥∥Σ1,n − Σ1

∥∥, ∥∥Σ2,n − Σ2

∥∥} P→ 0.

Condition 1 is the key assumption, but is mild. It restricts the growing rate of the number of dependent
notes. The m-dependence assumption is commonly adopted in time series, where m-dependence stipu-
lates that the observation at time point t is independent with the observations with lags more than m. To
ensure that this assumption is realistic in our applications concerned, we also allow the dependence num-
ber mn to diverge with n. It is a parallel version of long-range memory models for network data. Under140

Condition 1, each node in a network can be dependent with an increasing number of other nodes as the
network grows, but we expect it to be of a much slower growth compared with that of the network size.
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This assumption also covers conventional models including stochastic block models assuming that all
edges are independent in which case we have mn = 1. In order to show the asymptotic normality of the
estimators in Theorem 1, we need to show a finite-dimensional central limit theorem, which requires 145

maxi∈S |Ji| ≤ mn = o(n1/4), and the tightness of relevant processes, which requires for any i ∈ S,
|Ji| � mn ≤ O(n1/3).

In fact, if an accepted definition of distance is available, then one would first estimate the neighbourhood
based on the distance. Our method and theory can adapt correspondingly with reasonable convergence
results. A well-defined distance will lead to a well-defined neighbourhood for each node, which in turns 150

provides efficient estimators; see Chapter 3 of Guyon (1995).
Condition 2 requires a specific covariance-type structure that guarantees its positive definiteness. We

define Σ1,n and Σ2,n in this way such that we can apply the self-normalizing version of the central limit
theorem, which works under mild assumptions on the dependence structure. Condition 2 also implies that
the mean processes {Λij(βo, t), t ∈ [0, T ]} are Lipschitz continuous. This fact will be repeatedly used in 155

the proof in the Appendix.

THEOREM 1. Under Conditions 1 and 2, with β̂n defined in (5) and Σ1,n,Σ2,n specified in Condition 2,
we have that β̂n is asymptotically normal with mean βo and covariance matrix Σn = Σ−11,nΣ2,nΣ−11,n. In
particular, for any v ∈ Rp,

vT(β̂n − βo)(
vTΣ−1n v

)1/2 → N (0, 1), (7)

in distribution, as n→∞. 160

Theorem 1 states that the convergence rate is related with mn. It follows from (5) in the proof that the
convergence rate of the variance vTΣ−1n v, v ∈ Rp, which is O(m2

nn
−1/2). If mn = 1 as assumed in the

independent edges cases or mn = O(1) as in Schweinberger & Handcock (2015), then the convergence
rate is n−1/2, which is the same as the standard situation and is optimal. The convergence rate decreases as
mn increases. Schweinberger & Handcock (2015) also considered dependent network models, and the re- 165

sults developed therein are based on a general exponential random graph model in a Bayesian framework.
The key differences between ours and theirs are summarized as follows: (i) the random variable associ-
ated with each edge is a Bernoulli random variable representing the presence of the edge in Schweinberger
& Handcock (2015), while in our paper, each edge has its own counting process; (ii) although both pa-
pers allow m-dependence, in Schweinberger & Handcock (2015) m is assumed to be finite, while in our 170

setting, m is allowed to be of order o(n1/4); and (iii) since we are in the survival analysis framework,
the dependence structure is assumed to be among the senders, while Schweinberger & Handcock (2015)
investigated exponential random graph models, and therefore the dependence lies among edges.

It is also natural to estimate the mean function Λ0(t) for i ∈ S by the Aalen–Breslow-type estimator
Λ̂0(t) =

∫ t
0
{d
∑n
i=1

∑
i 6=j Nij(s)}/{

∑n
i=1

∑
i 6=j exp{β̂T

nZij(s)}}, t ∈ [0, T ], which can be shown to be 175

consistent, by proving that β̂n is almost surely consistent in Step 1 in the proof in the supplementary
materials. This requires a strong law of large numbers for dependent random variables (e.g. Korchevsky
& Petrov, 2010). The result can also be generalized further so that individual can have different baseline
hazards.

The result (7) has the same sandwich variance form which resembles those obtained via the composite 180

likelihood inference (e.g. Lin et al., 2000). It degenerates to the efficient estimator case when Σ1,n = Σ2,n,
i.e. all the directed edges are assumed to be independent.

There are a few key ingredients in the proof of Theorem 1. First, we exploit Stein’s method, which has
been extended to dependent cases (e.g. Baldi & Rinott, 1989). We have developed a new device of the
central limit theorem which is designed for the semiparametric setting, integrating chaining arguments. 185

Second, we extend the weak convergence proof in the independent case stated in Lin et al. (2000) to a
dependent case. Since we allow mn to diverge, this is a substantial improvement.
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2·3. Variance estimators

We have established the asymptotic of β̂n in Theorem 1, but it involves unknown population quantities
Σ1,n and Σ2,n. Usual estimators are based on the assumption of independent observations or independent190

innovations in the time series context. To tackle the unknown dependence structure, we adopt the jackknife
sandwich estimator proposed in the composite likelihood literature (e.g. Varin et al., 2011) in an attempt
to provide reasonable estimation for Σ1,n and Σ2,n.

Let Σ̂1,n and Σ̂2,n be the estimators of Σ1,n and Σ2,n, respectively, defined as follows:

Σ̂1,n =

n∑
i=1

∑
j 6=i

nij∑
k=1

{
Zij(Tij,k)− Z̄

(
β̂n, Tij,k

)}{
Zij(Tij,k)− Z̄

(
β̂n, Tij,k

)}T

δij ,

and195

Σ̂2,n =
1

n

n∑
s=1

∑
i 6=s

∑
j 6=i,s

nij∑
k=1

{
Zij(Tij,k)− Z̄(β̂(−s), Tij,k)

}δij
×

∑
i 6=s

∑
j 6=i,s

nij∑
k=1

{
Zij(Tij,k)− Z̄(β̂(−s), Tij,k)

}δijT

, (8)

where δij = 1{Nij(T ) > 0}, β̂(−s) is the estimator to the estimating equation (5) after deleting the sth
node and its corresponding data from the observations. The proposed jackknife procedure (8) offers one
possible approach for variance estimation in Theorem 1. Although unless there is additional network and200

time dependence structural assumption, there is no single construction of consistent estimates for Σ2,n

nor the variance, the jackknife procedure performs decently in terms of achieving empirical coverage
probabilities that are very close to the nominal values, as we shall demonstrate in Section 3.

In fact, for a general composite likelihood inference problem, estimating the variability matrix is dif-
ficult. The essence of composite likelihood is to make use of the working independence and sandwich205

variance estimator to capture the dependence so that specific dependent structures need not be assumed.
In practice, a good estimator of the variance is inevitably a function of the unknown structure.

Consequently, for α ∈ (0, 1), a (1− α)× 100% percent confidence region for the true regression

parameter βo can, be expressed as
{
β : (β̂n − βo)T

(
Σ̂1,nΣ−12,nΣ̂1,n

)−1
(β̂n − βo) ≤ χ2

p,1−α
}

, where

χ2
p,1−α is the corresponding quantile of a chi-square distribution with degrees of freedom p.210

3. NUMERICAL ANALYSIS

3·1. Simulation

We generate recurrent events for each pair of nodes of size 150 in a connected network from the
model λij(t;Z) = ηiλ0i(t) exp{βT

0Zij}, where λ0i(t) = 1(i ≤ n/2) + 1.21(i > n/2) denotes the base-
line hazard. The sample size of 150 is chosen to resemble the Enron dataset analyzed in Section 2 in the215

Supplementary materials. The unobserved random variable η that introduces heterogeneity to this random-
effect intensity model is assumed to follow Γ(1, 1/16). Denote N = n(n− 1). We consider two sets
of time-invariant covariates. The first set Z̃ = (Z1, Z2, Z3) = (Zij)N×3 is generated as follows: Z1 =
(ZT

11·, . . . , Z
T
1n·)

T = (1(Ξ1 ≥ 0)T, . . . ,1(Ξn ≥ 0)T)T, where ≥ denotes the element-wise comparison,
Ξj is an independent and identically distributed N (0n−1,Σ

(1)), with Σ(1) = (1(i = j) + ρ1(i 6= j)) for220

j = 1, . . . , n. Covariate Z2’s are generated from UNIF(0, 1) and Z3 = (ZT
31·, . . . , Z

T
3n·)

T are independent
and identically distributed as N (0,Σ(2)) with

(
Σ(2)

)
ij

= 1(i = j) + ρ1(|i− j| = 1). Under this setup,
when ρ 6= 0, we impose the dependence in the data.

For the jackknife procedure, both odd-1-out and odd-2-out procedures are examined: The odd-2-out
procedure randomly removes two nodes from the network for estimating the corresponding variances225

based on 150 random draws.
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Table 1. Summary statistics for the simulation studies
ρ Parameters Bias SE SEE SEE SEE SEE ECP ECP ECP ECP

(P&W) (JK) (JK2) (P&W) (JK) (JK2)
0·00 β10 0·015 0·016 0·008 0·016 0·016 0·016 0·212 0·952 0·952 0·952

β20 -0·005 0·022 0·009 0·024 0·024 0·025 0·016 0·952 0·952 0·960
β30 0·002 0·007 0·004 0·007 0·007 0·007 0·040 0·920 0·920 0·936

0·30 β10 0·013 0·019 0·020 0·019 0·019 0·019 0·624 0·962 0·962 0·872
β20 -0·004 0·026 0·010 0·025 0·025 0·025 0·000 0·936 0·936 0·956
β30 0·001 0·008 0·005 0·007 0·007 0·007 0·040 0·952 0·952 0·900

0·50 β10 0·018 0·033 0·019 0·046 0·046 0·042 0·572 0·973 0·973 0·856
β20 -0·003 0·028 0·013 0·025 0·025 0·026 0·040 0·928 0·928 0·944
β30 0·002 0·008 0·004 0·007 0·007 0·007 0·024 0·924 0·928 0·944

Bias is the mean differences between parameter estimates and their corresponding true values, SE denotes the standard
errors of the parameter estimates; SEE(JK2), SEE(JK), SEE are the means of the variance estimates under odd-two-
out, odd-one-out jackknife and naı̈ve standard error estimates, respectively; SEE (P&W) is the standard error of the
estimates from Perry & Wolfe (2013); the corresponding empirical coverage probabilities are denoted as ECP(JK2),
ECP(JK), ECP and ECP (P&W), respectively. The naı̈ve standard error estimates are based on Σ̂−1

1,n.

The results of the simulation studies are summarized in Table 1 based on 250 iterations. The estimates
provided by the proposed method are virtually unbiased while the variance estimator also provides rea-
sonably accurate estimation of the true variances of β̂ upon which the confidence intervals constructed
demonstrate empirical coverage probabilities that are close to their nominal values. As we can see from the 230

standard errors and empirical coverage probabilities of estimates yielded from conventional approach, if
one ignores the recurrent event nature of the problem as well as the possible dependence amongst individ-
uals, the standard errors will be substantially underestimated, resulting in potentially erroneous inference
conclusions as reflected in the less than par empirical coverage probabilities. It is worth mentioning that
the proposals of Perry & Wolfe (2013) perform worse than the naı̈ve estimators. This is potentially due 235

to their abuse of the covariates added in the hazard functions. As we have emphasized, only external
covariates can be added into the hazard functions.

4. DISCUSSION

In this paper, we assume the same set of nodes across time. One way to relax this condition is to
study dynamic networks in the branching processes (e.g. Banerjee et al., 2018). In addition, we assume 240

bounded covariates, which can be relaxed by exploiting concentration inequalities and empirical processes
arguments, and constructing a large probability event where the boundedness assumption holds. We also
assume the dimension of the regression coefficient to be fixed, i.e. βo ∈ Rp, and p is fixed. One could
incorporate high-dimensional inference techniques developed (e.g. Huang et al., 2013). The undirected
network is a simpler model than the directed case, and one can apply our methodology to undirected 245

networks straightforwardly by ignoring the directions of the interactions.
If for some real data sets, where a reasonable distance between pairs of edges is available and the

dependence structure is known, one can also use the results in random fields to establish the limiting
distribution of the estimators with efficient variance estimators. We would leave this as future work when
data sets with definitions of distance properly defined are available. 250
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SUPPLEMENTARY MATERIAL255
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