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Abstract

This paper presents identification and estimation results for causal effects of group-level vari-

ables when agents select into groups. I specify a triangular system of equations to model outcome

determination and group selection, accommodating general nonseparable models. Using con-

ditional independence and completeness assumptions, I show that the group-level distribution

of individual characteristics is a valid control function, conditional on which group-level vari-

ables of interest become exogenous. Building on this result, I identify average effects under

a common support condition. The key identifying requirements are more plausible in settings

where a rich array of individual characteristics are observed. For the identified parameter, I con-

struct a kernel-based estimator and prove its consistency. Although the identification argument

uses completeness, the estimation procedure does not involve solving for an ill-posed integral

equation.
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observed heterogeneity, average structural functions.
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1 Introduction

Policy makers often design interventions to influence individual outcomes through group-level vari-

ables. For instance, a government may relocate disadvantaged children to higher quality schools

to improve their academic performance. Given their potential impact, many studies in economics

have sought to evaluate group-level policy interventions (see Durlauf, 2004; Durlauf and Ioannides,

2010; Graham, 2018, and references therein). Nevertheless, estimation of group-level treatment

effects is challenging. The problem is that individuals select into groups in part based on their

unobserved characteristics, and this sorting causes systematic dependence among group-level vari-

ables and those individual characteristics. Therefore, comparing outcomes across groups without

accounting for differences in unobserved heterogeneity is subject to selection bias.

Specifically, the endogeneity issue arises because the group-level distribution of unobserved

heterogeneity varies with group-level characteristics in a systematic way. As an example, consider

a setting where students choose schools. Academically motivated students tend to prefer high

quality schools, and therefore, high quality schools have a larger proportion of highly motivated

students or a right-skewed distribution of student motivation. It is this correlation between school

quality and the unobserved distribution of motivation that hinders consistently estimating effects

of school quality. Thus, addressing the selection bias issue requires some way to control for the

school-level distribution of unobserved heterogeneity.

In this paper, I develop a novel identification strategy motivated by the observation that un-

observed motivation varies with other student characteristics observed by an econometrician, and

thus observed covariates provide some information about the unobserved. To explain the idea,

suppose that a researcher observes parents’ education level and that parent’s education is posi-

tively correlated with (unobserved) child’s academic motivation. For ease of exposition, further

assume that student’s motivation and parents’ education level take just two values, high and low.

In this simple case, the school-level distribution of motivation reduces to the fraction of highly

motivated students within a school. Then, with positive correlation between motivation and par-

ents’ education, a higher fraction of highly educated parents implies a larger proportion of highly

motivated students within a school. That is, there exists a monotonic relationship between the

fractions of highly educated parents and highly motivated students. Because strict monotonicity
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implies one-to-one mapping, we conclude that conditioning on the observed distribution of parents’

education holds constant the unobserved distribution of student motivation. Then, provided that

school quality has sufficient variation remaining, controlling for the school-level fraction of highly

educated parents enables identifying the ceteris paribus effect of interest.

I formalize the preceding argument by specifying a triangular system of equations, where the

first-stage equation specifies group selection and the structural equation determines an outcome

of interest. In my model, both selection and outcome equations are nonseparable in unobserved

heterogeneity, and I do not impose monotonicity with respect to unobserved heterogeneity as group

choice is a discrete object. To achieve identification, I rely on two main assumptions. One restriction

is conditional independence, which is motivated by the structure of how group formulation and

selection into groups take place. Another key identifying condition is that observed individual-

level covariates have sufficient correlation with unobserved heterogeneity. To formalize the idea of

sufficient correlation, I use the notion of bounded completeness, which has been applied in a wide

range of nonparametric identification problems. With these conditions, I show that the group-

level distribution of individual covariates plays a role of a control function, conditional on which

group-level variables of interest become exogenous.

The identification result is somewhat non-standard in that the control variable is function-

valued, which belongs to an infinite-dimensional space, and existing results for estimation do not

apply directly. In this paper, I propose a kernel-based estimator for average effects of group-

level variables and, leveraging results from nonparametric functional data analysis literature, I

prove consistency of the estimator. Although I use a completeness assumption in the identification

argument, the estimation procedure does not involve solving for an ill-posed integral equation. This

feature may be desirable as ill-posedness adversely affects precision of estimates through slower

convergence rates, although I do not have results on convergence rates in this paper.

This paper’s identification strategy complements existing approaches in the program evaluation

literature (c.f., Abadie and Cattaneo, 2018; Imbens and Wooldridge, 2009). As an example, con-

sider a selection-on-observables type assumption, where selection becomes exogenous conditional

on observed agent-level covariates W . This assumption means that conditional on W , the selection

mechanism is like a random assignment for the purpose of particular analysis. In some obser-

vational studies, this type of assumption may be deemed too strong. This paper’s identification
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strategy allows for non-random selection even after conditioning on W and instead imposes that W

has sufficient correlation with the random vector entering the selection equation. In other words,

what I require is W be a good proxy for the individual characteristics determining the selection

process. Therefore, this paper’s identification strategy is more fruitful when a researcher observes a

rich array of individual characteristics, as in large survey datasets. As another example of existing

methods, consider instrumental variables (IV) method, whose exclusion restriction is often justified

by natural/quasi experimental variation. Although a powerful source of identification, such setting

is an exception rather than the rule. On the other hand, this paper’s identification strategy can be

reasonable in absence of experimental variation.

In the context of triangular simultaneous equations models, this paper presents a new set of

identifying conditions for average effects of endogenous variables. In particular, this paper applies

statistical completeness in a novel way to develop a control function approach. An advantage of

my approach is that I obtain identification results in nonseparable models without imposing mono-

tonicity, which can be important when choice variables are discrete or unobserved heterogeneity is

multi-dimensional. To elaborate on these contributions, I now review the related literature.

1.1 Related Literature

This paper’s model is a special case of nonseparable triangular simultaneous equations models (see

Matzkin, 2007, for a review of identification results in these models). In a general triangular model,

Y = m(X, ε)

X = h(Z, η) (1)

where the interest lies in partial effects of X on Y and the identification issue is X 6⊥⊥ ε. With

the independence assumption Z ⊥⊥ (ε, η), X becomes independent of ε after conditioning on η. As

pointed out by Imbens (2007), some type of monotonicity condition on h(·) facilitates identification

via restricting possible values of η. For instance, Chesher (2003) and Imbens and Newey (2009)

impose strict monotonicity of h(·) with respect to η and thus fixing X and Z holds constant η.

For related approaches, see also D’Haultfoeuille and Février (2015); Florens et al. (2008); Matzkin

(2016); Torgovitsky (2015). In the case of discrete X with ordered values, Chesher (2005) imposes
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weak monotonicity of h(·) that implies η lies in an intrval defined by some functions of X and

Z, which, in combination with other restrictions, produces an identified set for the function m(·).

In the case of binary X, Heckman and Vytlacil (1999) and Vytlacil and Yildiz (2007) use the

threshold-crossing structure, which restricts the range of η via the propensity score. As evident

from these existing results, monotonicity restrictions play a crucial role in solving the endogeneity

problem in nonseparable models.

However, such monotonicity condition can fail to hold in empirically relevant situations. For

instance, when X results from unordered multinomial choices, the conventional notion of mono-

tonicity is not well-defined (see Heckman and Pinto, 2018, for a recent development in this setting).

More broadly, when the unobserved heterogeneity η is multi-dimensional, monotonicity fails in

general (see e.g., Florens et al., 2008; Imbens, 2007). In this paper, I present a novel identifica-

tion result without relying on a monotonicity assumption. I instead impose existence of a proxy

variable W for η as well as conditional independence assumptions. Importantly, I relax the joint

independence assumption Z ⊥⊥ (ε, η), and thus I do not rely on availability of IV.

There exist other studies that do not impose monotonicity in the first stage equation. Cher-

nozhukov and Hansen (2005) impose a completeness assumption on Z in relation to X to point-

identify the structural quantile function. In this paper, I impose completeness on a proxy variable

W in relation to the unobserved heterogeneity η. Unlike Chernozhukov and Hansen, I do not

require the outcome be continuously distributed. Altonji and Matzkin (2005) do not model the

mechanism for X and impose exchangeability among group members to construct a control vari-

able. Also, Chesher and Rosen (2019) present a unified framework of single-equation IV approach

to address endogeneity in a wide class of models. Generally, this generalized IV method produces

set identification of the structural function.

This paper’s model can be viewed as a version of panel data models, although I focus on the

group-individual structure rather than the individual-time setting as in many papers on panel

data.1 Recent papers studying models with group structures include Altonji and Mansfield (2018),

Arkhangelsky and Imbens (2019), Chetverikov et al. (2016), and Graham et al. (2018). The work

by Altonji and Mansfield is most closely related to this paper. Like their paper, I use the idea that

the group-level distribution of observed covariates moves together with the distribution of unob-

1Here individual is broadly defined, including person, household, firm, and other economic agents.
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served heterogeneity. Whereas Altonji and Mansfield exploit functional form restrictions to obtain

identification in a linear model, I use a conceptually distinct approach to achieve identification in

a nonseparable model. For other papers, they consider different models and assumptions. Yet,

interestingly, Arkhangelsky and Imbens also show that the group-level distribution of individual

covariates plays the role of a control variable despite differences in identifying assumptions.

In addition, this paper is related to the growing literature on nonparametric identification using

completeness. Since the seminal work of Newey and Powell (2003), completeness has been ap-

plied to a wide range of econometric identification problems. Examples include nonparametric IV

(e.g., Chernozhukov and Hansen, 2005; Darolles et al., 2011; Hall and Horowitz, 2005; Newey and

Powell, 2003), errors-in-variables models (e.g., Hu and Schennach, 2008), nonparametric discrete

choice models with unobserved product characteristics (Berry and Haile, 2014), nonseparable (dy-

namic) panel data models (e.g., Arellano et al., 2017; Cunha et al., 2010; Freyberger, 2018; Sasaki,

2015), and semiparametric random coefficients models (Hoderlein et al., 2017). My paper applies

completeness in a novel way to construct a control function.

The rest of this paper proceeds as follows. In Section 2, I set up an econometric model and

discuss my main identification result. Building on the identification result, in Section 3, I propose an

estimator for average effects of group-level variables and prove its consistency. Section 4 concludes.

Notations For random elements a, b, supp(a) is the support of a, supp(a|b) indicates the support

of the conditional distribution of a given b, Fa|b denotes the conditional distribution function of a

given b, and fa|b represents a conditional density function of a given b with respect to some measure.

| · | is the Euclidean norm and ‖ · ‖ denotes the supremum norm on a function space. 1{·} is the

indicator function, which takes 1 if the statement inside the bracket is true and takes 0 otherwise.

For random vectors X,Z, I write dx, dz to denote the dimensions of X and Z, respectively.

2 Econometric Model and Identification Result

In this section, I describe the econometric model and discuss the main identification result. I show

that the group-level distribution of individual covariates plays the role of a control function. As in

the introduction, I use the school example throughout to keep the discussion on concrete terms.
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In the model, there exist individuals and groups, indexed by i and g, respectively. Here, group

corresponds to school and individual to student. The outcome of interest, denoted by Yig, can be

student’s test scores and it is determined by the following education production function:

Yig = m(Xg, νi, ug) i = 1, . . . , N, g = 1, . . . , G (2)

where m(·) is an unknown function, Xg is observed school characteristics (e.g., school quality), νi

is a student-level unobserved variable (e.g., academic motivation), and ug represents unobserved

school features. Also, we observe student-level covariatesWi. In principle, Wi can enter the outcome

equation, but as I focus on the effect of Xg on Yig, I subsume Wi in νi as a subvector. In the sequel,

I write εig = (νi, ug).

In (2), the outcome is defined for all groups, but a researcher only observes the outcome variable

for the group to which an individual belongs. That is, with Ji ∈ {1, . . . , G} representing the school

student i attends, we only observe YiJi =
∑G

g=1 Yig1{Ji = g}. I model the group determination by

Ji = J(Z1, . . . , ZG,Θi, ζi1, . . . , ζiG) (3)

where J(·) is a nonparametric function, Zg denotes observed school characteristics important for

student’s choice, Θi represents student’s unobserved preference for different school features, and

ζig is an idiosyncratic term. The school-level covariates Zg may contain Xg as a subvector and

generally contain elements excluded from the outcome equation. In the school setting, for instance,

the quality of athletic programs may matter for student’s decision of school but presumably does

not affect academic performance directly and thus is excluded from the outcome equation. In

Appendix B.1, I consider an extension with no observed excluded elements under an alternative

sampling scheme. I note that without affecting the results of this paper, I can include unobserved

school characteristics in the selection equation but I omit it for ease of exposition.

The specification in (3) is quite general and encompasses many models of interest. For example,

one canonical model takes the form

Ji = arg max
g∈{1,...,G}

{
Z ′gΘi + ζig

}
, (4)
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which is a version of random utility discrete choice models and prevalent in empirical work. As seen

from this example, the unobserved heterogeneity in the selection equation can be multi-dimensional

and I do not impose monotonicity of J(·) with respect to Θi.

Before proceeding, I point out that the model (2)-(3) is a special case of general triangular

models (1). To verify the claim, rewrite the model as

Yi = m(Xi, εi)

Xi = h(Z1, · · · , ZG, ηi), ηi = (Θi, ζi1, · · · , ζiG) (5)

where Yi ≡ YiJi , Xi ≡ XJi , εi ≡ εiJi , h(Z1, · · · , ZG, ηi) =
∑G

g=1Xg1{J(Z1, · · · , ZG, ηi) = g} is

viewed as some nonparametric function, and Zg includes Xg as a subvector. I use this formulation

to compare the identifying assumptions in this paper with those in the existing work.

In the model (2)-(3), the parameter of interest is the partial effect of Xg on Yig, e.g., the ceteris

paribus effect of school quality on student’s test scores. One such measure is the average structural

function (ASF) (Blundell and Powell, 2003):

µ(x) =

∫
m(x, e)fε(e)de.

We can also consider other measures such as the quantile structural function (Imbens and Newey,

2009) and the local average response (Altonji and Matzkin, 2005). In the sequel, I focus on the

ASF. Other measures of group-level partial effects are treated in Appendix B.2.

In observational studies, a non-trivial challenge to identify µ(x) is that due to selection, the

group-level variables of interest XJi may be correlated with the unobserved heterogeneity νi. This

type of endogeneity arises due to dependence among unobserved heterogeneity in outcome and

selection equations (c.f., Heckman, 1976; Imbens, 2007). In the school example, student’s preference

Θi in the choice equation is correlated with their work ethics νi in the outcome equation because

highly motivated students have strong preference for high-quality schools.

In light of the model, selection bias manifests as

E[Yig|Xg = x, Ji = g] =

∫
m(x, e)fε|XJ(e|x, g)de 6=

∫
m(x, e)fε(e)de = µ(x) (6)
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because fε|XJ 6= fε in general. In words, the school-level distribution of student motivation fε|XJ

varies across schools due to the variation in school quality Xg. One way to solve this identifica-

tion problem is to find a control function such that conditional on this variable, the conditional

distribution of εiJi becomes invariant with respect to XJi . In the literature, various structures of

outcome and/or selection equations have been exploited to construct a control function. For exam-

ple, Altonji and Matzkin (2005) exploit exchangeability among group members, Das et al. (2003)

use the threshold-crossing structure of the selection equation as well as additive separability of the

error term in the outcome equation, and Imbens and Newey (2009) leverage strict monotonicity of

the endogenous variable with respect to the unobserved heterogeneity.

In this paper, I propose a novel approach via conditional independence and completeness as-

sumptions to construct a control variable. To describe my approach, I first discuss the conditional

independence assumption.

Assumption 1. (i) (Xg, Zg, ug)
G
g=1 ⊥⊥ (Wi, νi)|Θi, (ii) (Xg, Zg)

G
g=1 ⊥⊥ (ug)

G
g=1|Θi, and (iii) (ζig)

G
g=1

is independent of everything else conditional on Θi.

The first part of Assumption 1 roughly states that school characteristics and student variables are

independent before selection into groups occurs. In particular, it does not impose (XJi , ZJi , uJi) ⊥⊥

(Wi, νi), where the index by Ji denotes that they are observed after selection. To rationalize

such independence condition, consider the following scenario: first, school features and student

characteristics are drawn independently from some distributions, and then students determine

which school to attend. This may be a reasonable model given that schools are established first and

then households make decisions to relocate near their desired schools. Note that this independence

requirement only needs to hold after conditioning on Θi, which allows for more general settings

than complete independence of school and student characteristics. For instance, it accommodates

some dependence through multiple-stage selection (e.g., first select into a metropolitan area, and

then select into a school district/neighborhood) as long as the first-stage selection only depends on

Θi. In a sense, this conditional independence assumption is essential for analysis of selection bias

because without such independence assumption, endogeneity would be present even if there were

no selection.

The part (ii) of Assumption 1 requires that the unobserved school characteristics ug be indepen-
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dent of other school features. This requirement means that a researcher has good measurements

of school features that enter the education production function. Admittedly, this independence

condition can be stringent. Yet, without such restriction, endogeneity would be present even if

it were not for selection into groups, via dependence between Xg and ug. Since I focus on the

issue of selection bias, I maintain this assumption. The third part of the assumption imposes that

(ζi1, . . . , ζiG) is a purely idiosyncratic term, independent of all the other variables.

To compare Assumption 1 with identifying restrictions used in the literature, consider the for-

mulation in (5). From how it is used in the proof of Theorem 1 below, Assumption 1 essentially

translates to Z ⊥⊥ (W, ε)|η, whereas a standard assumption in the literature is Z ⊥⊥ (ε, η). By sub-

suming the extra term W in ε as a subvector, we see that the conditional independence assumption

in this paper is implied by the standard assumption. As endogeneity arises due to dependence

between ε and η, the conditional independence of Z and ε given η is considerably weaker than the

full independence of Z from (ε, η). In particular, this paper does not rely on Z being an instrument

in the sense that Z ⊥⊥ (ε, η) need not hold. This weaker condition suffices in part because I impose

another restriction somewhere else, namely completeness on the proxy variable W . I will elaborate

on this point later.

Going back to the model (2)-(3), one implication of the independence assumption is that the

issue of endogeneity (i.e., across-school variation in fε|XJ , see (6)) arises from the variation in the

school-level distribution of the preference variable Θi. To see this point, subsume Xg in Zg as

a subvector and write Z−g = (Z1, . . . , Zg−1, Zg+1, . . . , ZG) for the collection of Z’s excluding Zg.

Then,

fε|JZ(·|g, z) =

∫
fε|JZΘZ−g

(·|g, z, θ, z−g)fΘZ−g |JZ(θ, z−g|g, z)d(θ, z−g)

=

∫
fε|ZΘZ−g

(·|z, θ, z−g)fΘZ−g |JZ(θ, z−g|g, z)d(θ, z−g)

=

∫
fε|Θ(·|θ)fΘZ−g |JZ(θ, z−g|g, z)d(θ, z−g)

=

∫
fε|Θ(·|θ)fΘ|JZ(θ|g, z)dθ (7)

where the second equality follows from Ji = J(Z1, . . . , ZG,Θi, ζi1, . . . , ζiG) and independence of

(ζi1, . . . , ζiG) from other variables, and the third equality uses (Z1, . . . , ZG) ⊥⊥ (νi, ug)|Θi. From
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the last line in the display, we see that the variation in the school-level distribution of motivation

comes from the variation in the school-level distribution of the preference variable. This obser-

vation suggests that accounting for the across-school variation in fΘ|JZ(·|g, z) would address the

endogeneity issue. Put it differently, we have εiJi ⊥⊥ XJi |fΘ|ZJ(·|Ji, ZJi).2 Of course, this insight

is not directly useful as we do not observe Θi. Yet, we can infer some information about this

unobserved heterogeneity from the observed individual-level covariates Wi.

Now, I indicate that the school-level distribution of student covariates fW |JZ(·|Ji, ZJi) plays the

role of a control function. Doing the same calculation as above, we obtain

fW |JZ(·|g, z) =

∫
fW |Θ(·|θ)fΘ|JZ(θ|g, z)dθ,

which implies that the school-level distribution of student characteristics varies as fΘ|JZ(·|g, z)

changes. Then, if the above mapping from fΘ|JZ(·|g, z) to fW |JZ(·|g, z) is one-to-one, conditioning

on fW |JZ(·|g, z) holds constant fΘ|JZ(·|g, z). That is, if the above mapping is indeed injective, there

exists some function Ψ† satisfying Ψ†(fW |JZ(·|g, z))(θ) = fΘ|JZ(θ|g, z). And from (7), we obtain

fε|JZ(e|g, z) =

∫
fε|Θ(e|θ)Ψ†(fW |JZ(·|g, z))(θ)dθ.

Therefore, by holding constant the school-level distribution of Wi, we can hold constant fε|JZ(·|g, z).

Now, we can identify ceteris paribus effects ofXg on Yig by computing E[YiJi |XJi = x, fW |JZ(·|Ji, ZJi)]

and varying x while holding constant fW |JZ .

Here, the crucial hypothesis of the identification argument is that the above integral transform

is one-to-one. To discuss the plausibility of this condition, I first provide a formal statement of this

injectivity requirement.

Assumption 2. The following mapping, defined on the set of bounded and integrable functions,

(Ψh)(w) =

∫
h(θ)fW |Θ(w|θ)dθ

is injective.

2Note that fΘ|JZ(·|Ji, ZJi) is a random element whose randomness comes from that of Ji and ZJi .
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This assumption, usually referred to as bounded completeness, ensures that the integral transform is

an injective mapping. This condition can be viewed as a generalization of the instrument relevance

condition in linear IV models (Newey and Powell, 2003) and has been widely used in the recent

econometric literature on nonparametric identification (see Section 1.1). Intuitively, injectivity

requires the function fΘ|W (·|w) to sufficiently vary in the conditioning value w. For sufficient

conditions for different types of completeness, see Andrews (2017); D’Haultfoeuille (2011); Hu

et al. (2017); Hu and Shiu (2018); Mattner (1993) and references therein.

To understand this assumption, suppose for a moment that a researcher observed student’s

preference Θi. Under this hypothetical situation, we could solve the endogeneity problem by con-

ditioning on Θi because we have εiJi ⊥⊥ XJi |Ji,Θi. This identification strategy relies on a so

called selection on observables assumption: conditional on the observables Θi, selection becomes

exogenous. However, in many cases, observing Θi seems implausible as preference is difficult to

measure. In this paper, I provide an alternative identifying restriction that replaces the selection

on observables assumption. In particular, instead of full measurement of Θi, I only require partial

information on Θi through observed covariates Wi. For instance, we might posit that Θi is a func-

tion of Wi and another random element ωi. Even when the selection on observables condition fails

(i.e., ωi 6⊥⊥ εig|Wi), Assumption 2 can be satisfied provided that Wi has non-trivial influence on Θi

via the functional relationship.

An alternative, related way to interpret this completeness assumption is to view observed stu-

dent characteristics Wi as proxies or noisy measurements for the unobserved preference Θi (see e.g.,

Schennach, 2016). In recent development of identification in nonparametric errors-in-variables mod-

els, injectivity of certain integral transformations plays an important role, where Θi corresponds

to unobserved correctly measured variables and Wi to noisy measurements. From the viewpoint of

Wi as coarse measurements of Θi, the richer array of student characteristics in a dataset, the more

plausible Assumption 2 becomes. Thus, this paper’s identification strategy may be more fruitful

when a researcher analyzes datasets with detailed information on individual characteristics, such

as large survey datasets.3

3A notable distinction from the measurement error literature is the literautre considers unobserved heterogeneity
distribution (i.e., the distribution of correctly measured variables) to be one of the main objects of interest, which
is a nuisance parameter in this paper. Due to this difference in target estimands, whereas methods on measurement
errors usually require at least two measurements of the unobserved variable, I only need one “proxy” for Θi.
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In the current setting, if a researcher is willing to impose more structures on the selection

equation (3), we can find some primitive conditions for Assumption 2. For instance, Altonji and

Mansfield (2018) posit that the group choice is determined by a random utility discrete choice

model like (4) and in particular the preference variable Θi takes the form

Θi = ΓWi + ωi

where Γ is some conformable non-stochastic matrix and ωi is an unobserved random vector. A

classical result states that completeness holds if ωi given Wi has a mean-zero normal distribution

with a fixed non-singular covariance matrix and Γ is of full column rank. More generally, (i)

ωi ⊥⊥ Wi, (ii) the characteristic function of ωi is non-zero everywhere, and (iii) supp(ΓWi) = Rd

with d = dim(Θi) are sufficient conditions for bounded completeness (Mattner, 1993). Another

possibility of identifying restrictions is to model unobserved heterogeneity as a discrete variable.

With discrete unobserved heterogeneity, we can interpret Θi to represent an agent type. This

strategy has been employed in a number of empirical studies. For instance, recent papers of

Abowd et al. (2019) and Bonhomme et al. (2019) study the consequence of worker-firm matching

on labor market earnings, and they model worker and firm heterogeneity as discrete types. Under

this additional structure, the completeness assumption reduces to full column rank of the matrix

[Pr(Wi = w`|Θi = θk)]`,k where supp(Θi) = {θ1, . . . , θK} and supp(Wi) = {w1, . . . , wL}.4

Now I discuss Assumption 2 in relation to the assumptions used in the literature.5 Among

the existing work discussed in Section 1.1, common restrictions are (i) some form of monotonicity

on h(·) and (ii) Z ⊥⊥ (ε, η). Relative to them, Assumption 2 is a new restriction this paper

imposes. In particular, it requires that a researcher observe a proxy variable W for the unobserved

heterogeneity causing endogeneity. There is some trade off between imposing Assumptions 1-2 and

the standard conditions. The approach in this paper does not require monotonicity of h(·) and

the full independence Z ⊥⊥ (ε, η). On the other hand, it requires to specify what Θ represents in

the selection equation and to observe a good proxy for the unobserved heterogeneity. One may

argue that this is a reasonable trade off because, although availability of a good proxy is a crucial

4It is without loss of generality to assume discrete distribution of Wi because we can use binning to transform a
continuous random variable to discrete one.

5For this paragraph, refer to a general nonseparable model (1) and (5) for the notation.
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and potentially stringent assumption, so is availability of valid instruments. Since the two sets of

conditions are plausible in different circumstances, I view the two approaches as complementary.

Researchers may use one method over the other depending on the type of data they have.

To present the identification result, I additionally impose the following conditions.

Assumption 3. With respect to some σ-finite product measure, the distribution of Wi× εig×Z1×

· · · × ZG ×Θi is absolutely continuous, and the conditional density of Θi given ZJi is bounded.

Assumption 4. The joint distribution of (Wi, XJi , ZJi ,Θi, εiJi) is identical across i, and the dis-

tribution of (YiJi ,Wi, XJi , ZJi) is identifiable from the data. The conditional density of Wi given

ZJi, denoted by fW |ZJ
, is continuous.

Assumption 5. For some non-empty set X ⊂ supp(Xg), the support of fW |ZJ
(·|ZJi) conditional

on XJi = x equals the unconditional one for x ∈ X . That is, supp(fW |ZJ
(·|ZJi)|XJi = x) =

supp(fW |ZJ
(·|ZJi)) for x ∈ X .

With these assumptions, I now state the main identification result of this paper, which formalizes

the heuristic identification argument above. The proof is in the appendix.

Theorem 1. If Assumptions 1-4 hold, then the conditional distribution of εiJi given XJi =

x, fW |ZJ
(·|ZJi) is invariant across x. In addition, suppose E[|m(x, εig)|] < ∞ for all x ∈ X and

Assumption 5 holds. Then µ(x) is identified for x ∈ X .

The theorem states that the school-level distribution of student characteristics fW |ZJ
(·|ZJi) plays

the role of a control function, and furthermore, under the support condition Assumption 5, the

ASF is identified. One important distinction from the heuristic argument above is that I use

fW |ZJ
(·|ZJi) as a control function rather than fW |JZ(·|Ji, ZJi). The latter object denotes the

group-level distribution for a specific school Ji = g with some fixed g, which might not be identified

from the data if datasets contain only a moderate number of students for each school. This point

is reflected in the proof of Theorem 1.

Although I focus on the model of selection into groups, Theorem 1 can be adapted to the general

nonseparable model (1). The key assumptions are Z ⊥⊥ (W, ε)|η and bounded completeness of the

distribution of (W, ε) with respect to W . As discussed above, this result complements the existing

results by providing an alternative set of identifying conditions. In particular, while most of the
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existing methods rely on IV, this paper does not and instead employs a proxy variable for the

unobserved heterogeneity influencing the selection process. Thus, Theorem 1 opens a new avenue

for identification when good candidates of IV are not available.

Besides non-reliance on IV, there is another distinct aspect of Theorem 1: the control variable is

function-valued, living on an infinite-dimensional space. Since the identification argument involves

computing a nonparametric conditional expectation given the infinite-dimensional random element,

it is not immediately clear how to construct an estimator for µ(x). In the next section, I leverage

results from nonparametric functional data literature to propose an estimator.

Now, I discuss Assumptions 3-5. Assumption 3 imposes mild regularity conditions on the joint

distribution of random elements. Absolute continuity with respect to some σ-finite measure means

that there exists a density for the distribution of these variables. Assumption 4 concerns identical

distribution and identifiability of the joint distribution of observed variables. A sufficient condition

for identifiability, in combination with Assumption 1, is that group-level variables (Xg, Zg, ug) are

i.i.d. draws across g, individual-level variables (Wi, νi,Θi) are i.i.d. draws across i, the idiosyncratic

shock ζig is i.i.d. across (i, g), and (Xg, Zg, ug) ⊥⊥ (Wi, νi,Θi). This random sampling assumption is

an easy-to-interpret sufficient condition, but we can accommodate a wide class of data generating

processes. For instance, we can allow for school features (Xg, Zg, ug) to exhibit spatial dependence

via mixing conditions or cluster structures. Also, Assumption 4 imposes some regularity on the

conditional density of Wi given ZJi to ensure nice behavior of conditional distributions given the

random element.

Assumption 5 requires that the support of the random element fW |ZJ
(·|ZJi) be invariant after

conditioning on XJi . Imbens and Newey (2009) refer to this restriction as a common support

condition, and although essential, it can be a stringent assumption. It generally requires a large

support of Zg conditional on Xg. For illustration, suppose Xg is a subvector of Zg and write

Zg = (X ′g, Z
′
2g)
′. Further assume that the group-level distribution of Wi is affected via some

index function φ(Zg) i.e., FW |ZJ
(·|z) = H(·|φ(z)) for some function H. Then in order to satisfy

Assumption 5, we need Z2g to have sufficient variation conditional on Xg such that the range of

φ on supp(Zg) equals the range of φ(x, ·) on supp(Z2g|Xg = x). Also, note that in this example,

Zg affects the conditional distribution only through a scalar function φ. For the common support

condition to hold, the way Zg affects the conditional distribution needs some restrictions.
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If the support condition is not satisfied, we can still identify some versions of the ASF as done

in the literature. One possibility is to focus on a local version of the ASF:

∫
m(x, e)fε|V (e|v)de x ∈ X̃

where I condition on the control variable Vi = fW |ZJ
(·|ZJi) and X̃ = supp(XJi |Vi = v). This

type of parameter has been considered in the literature (e.g., Fernández-Val et al., 2018) as a local

measure of average effects. For instance, if εig denotes unobserved academic motivation, holding

constant fW |ZJ
(·|ZJi) means that we fix the distribution of motivation at some value. Although

this distribution of motivation is not identified, this version of the ASF represents average effects for

some subpopulation of schools. Another approach for identification without the common support

condition is to develop bounds on the ASF as in Imbens and Newey (2009) if the outcome of interest

Yig has known upper and lower bounds. Also, Chernozhukov et al. (2019) consider semiparametric

triangular models where the support condition can be relaxed using structures of the outcome and

choice equations. A similar approach may be possible, although developing a formal theory is

beyond the scope of this paper.

3 Estimation

In this section, I propose a kernel-based estimator for the ASF identified in the previous section

and provide a set of conditions for consistency.

We observe (Yi,Wi, Xi, Zi) ≡ (YJi ,Wi, XJi , ZJi) and denote FW |Z(·|Zi) by Vi, which is a random

function. We do not directly observe Vi, but we can estimate it from data. With estimated F̂W |Z(·|·),

we take V̂i = F̂W |Z(·|Zi). Any nonparametric method can be used to estimate FW |Z provided that

the estimator satisfies a mild rate restriction for uniform convergence on a slowly expanding set.

Suppose that an estimator of the control variable is given. Then, we can construct an estimator

for the ASF µ(x0) by

µ̂(x0) =
1

N

N∑
i=1

m̂(x0, V̂i)1{|Zi| ≤ τN}, m̂(x, v) =

∑N
j=1 YjK([Xj − x]/hN )L(‖V̂j − v‖/hN )∑N
j=1K([Xj − x]/hN )L(‖V̂j − v‖/hN )

where x0 is some fixed value chosen by a researcher, K and L are kernel functions, hN is a bandwidth
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sequence, ‖ · ‖ denotes the supremum norm on function spaces, and τN is a sequence of positive

numbers tending to infinity. In the sequel, all asymptotic statements are understood as N →∞.

This estimator µ̂(x) is a partial means estimator studied by Newey (1994), which averages

the estimated conditional expectation over the control variable V̂i. As we need to evaluate the

conditional expectation for a range of values, I introduce the trimming function 1{|Zi| ≤ τN}

to achieve some type of uniformity. The estimator of the conditional expectation, m̂(x, v), is

the usual Nadaraya-Watson estimator for conditional expectations with one important difference:

the conditioning variable Vi is function-valued. This setting of function-valued covariates naturally

arises in many fields of natural and social sciences, and there has been some work on nonparametric

estimation with function-valued covariates. For a textbook treatment, see Ferraty and Vieu (2006).

One complication in this setting is that Vi is infinite-dimensional and from our knowledge on

the finite-dimensional case, we suspect that the curse of dimensionality adversely affects properties

of the estimator m̂(x0, v). In general, estimators like m̂(x, v) might converge at logarithmic rates

due to sparseness of data points in an infinite-dimensional space (see Chapter 13 of Ferraty and

Vieu, 2006, for discussion). Fortunately, we have enough structures in this problem that prevent

the issue of logarithmic convergence rates. In particular, the variation in the object Vi = FW |Z(·|Zi)

comes from Zi, which is a finite-dimensional random element, and using continuity, we see that Vi

concentrates around a given point v like finite-dimensional variables do (see Lemma 1 for a formal

result).

Here I provide a set of conditions ensuring consistency of µ̂(x0).

Assumption 6. The covariate Xi is a subvector of Zi. The observation {Yi,Wi, Zi}Ni=1 is a random

sample. The random vector Zi has a bounded and continuous Lebesgue density fZ , which is positive

on Rdz . The conditional distribution function FW |Z is continuously differentiable with respect to

z and the derivative is bounded and ‖∂FW |Z(·|z)/∂z‖ > 0 for all z. The conditional expectation

m(x, v) = E[Yi|Xi = x, Vi = v] is uniformly continuous on x0× supp(Vi), for some s ≥ 2, E[|Yi|s] <

∞, and E[|Yi|2|Xi = x, Vi = v] is bounded on {x : |x− x0| ≤ δ} × supp(Vi) with some δ > 0.

This assumption specifies restrictions on the data generating process, most of which are natural

extensions from the finite-dimensional covariate case. The condition Xi ⊂ Zi is without essential

loss of generality as including Xi in Zi does not change the identification argument. The restriction
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supp(Zi) = Rdz is partially motivated by Assumption 5, which generally requires a large support

of Zi. Although including discrete random variables in Zg is a relatively straightforward extension,

I omit it to simplify presentation. Difficulties may arise in accommodating compactly supported

continuous random variables since special care needs to be taken for the boundaries of the support.

The next condition specifies properties of kernel functions.

Assumption 7. The kernel functions K and L are bounded, non-negative, and compactly sup-

ported. Additionally, for some constants cL > 0, L(u) ≥ cL1{|u| ≤ cL} and there exists a function

L∗ such that |L(v)− L(u)| ≤ L∗(u)|v − u| for |v − u| ≤ δ with some δ > 0 and L∗ is bounded and

compactly supported and satisfies L∗(u) ≥ cL1{|u| ≤ cL}.

Most of the existing work on nonparametric estimation with function-valued variables assume simple

kernel functions. Following the practice, I impose non-negativity and compact support. In addition,

to handle estimated control variables and achieve uniformity, I assume Lipschitz continuity of L.

With these assumptions, I show consistency of µ̂(x0) to µ(x0). The proof is in the appendix.

Theorem 2. Assume Assumptions 1-7 hold with x0 ∈ X and max1≤i≤N ‖V̂i − Vi‖1{|Zi| ≤ τN} =

oP(hN ). Let qN = inf |z|≤τN fZ(z) and if τN → ∞, log τN (logN)−1 = O(1), hNq
−1
N = o(1), and

N1−1/shdzN qN (logN)−2 →∞, then µ̂(x0)→P µ(x0).

The hypothesis max1≤i≤N ‖V̂i − Vi‖1{|Zi| ≤ τN} = oP(hN ) is a mild requirement on the first-stage

estimator V̂i = F̂W |Z(·|Zi). For concreteness, consider the Nadaraya-Watson estimator for FW |Z .

For nonparametric kernel estimators, Hansen (2008) and Lemma B.1 of Cattaneo et al. (2013)

among others present results on uniform convergence rates. With slight modifications in their

proofs, we can show that the estimation error, max1≤i≤N ‖V̂i − Vi‖1{|Zi| ≤ τN}, has a polynomial

convergence rate provided that τN tends to infinity at an appropriate rate. See Appendix B.3 for

details.

4 Conclusion

This paper presents new identification and estimation results for group-level causal effects in a

setting where individuals select into groups and selection is in part based on individual unobserved

heterogeneity. It specifies a triangular model of the outcome and choice equations and imposes
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conditional independence and completeness assumptions, which leads to a novel construction of a

control variable. Building on the identification result, I propose a kernel-based estimator for the

average structural function and prove its consistency.
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A Proofs

In the sequel, I use the Greek letters λ, π, ρ to denote generic σ-finite measures.

A.1 Proof of Theorem 1

First note that by Assumption 1 (i) and (ii), (Wi, εig) ⊥⊥ (Xg, Zg)
G
g=1|Θi.

Denote the conditional density of εi given ZJi by fε|ZJ
. We have

fε|ZJ
(·|z) =

∫
fε|ZJΘJZ−J

(·|z, θ, g, z̃)fΘJZ−J |ZJ
(θ, g, z̃|z)d(λ× π × ρ)(θ, g, z̃)

=

∫
fε|ZJΘZ−J

(·|z, θ, z̃)fΘJZ−J |ZJ
(θ, g, z̃|z)d(λ× π × ρ)(θ, g, z̃)

=

∫
fε|Θ(·|θ)fΘJZ−J |ZJ

(θ, g, z̃|z)d(λ× π × ρ)(θ, g, z̃)

=

∫
fε|Θ(·|θ)fΘ|ZJ

(θ|z)dλ(θ)

where the definition of conditional densities (Assumption 3 guarantees the existence of the condi-

tional densities), the second equality uses Ji = J(Z1, . . . , ZG,Θi, ζi1, . . . , ζiG) and ζig’s are indepen-

dent of everything else given Θi, the third equality uses εig ⊥⊥ (Zg)
G
g=1|Θi, and the fourth equality

follows from integrating over (J, Z−J). Using the same argument,

fW |ZJ
(·|z) =

∫
fW |Θ(·|θ)fΘ|ZJ

(θ|z)dλ(θ).

By Assumption 2, there exists a function Ψ† such that

Ψ†
(
fW |ZJ

(·|z)
)
(θ) = fΘ|ZJ

(θ|z).

Then, conditioning on fW |ZJ
(·|ZJi), the random element fε|ZJ

(·|ZJi) is non-stochastic. Letting
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Vi = fW |Z(·|ZJi), we have

E[YiJi |XJi = x, Vi] = E[m(x, εiJi)|XJi = x, Vi]

= E[E[m(x, εiJi)|XJi = x, ZJi ]|XJi = x, Vi]

= E[E[m(x, εiJi)|ZJi ]|XJi = x, Vi]

= E
[ ∫

m(x, e)fε|ZJ
(e|ZJi)dρ(e)

∣∣XJi = x, Vi

]
=

∫
m(x, e)E

[
fε|ZJ

(e|ZJi)
∣∣XJi = x, Vi

]
dρ(e)

=

∫
m(x, e)E

[
fε|ZJ

(e|ZJi)
∣∣Vi]dρ(e)

where the second equality follows from Vi is a function of ZJi , the third equality follows from

εig ⊥⊥ Xg|Θi, Zg, the second-to-last equality uses the Fubini theorem to interchange the order of

integration, and the last equality uses fε|ZJ
(·|ZJi) is non-stochastic conditional on Vi = fW |ZJ

(·|ZJi).

Finally, letting σ be the distribution of fW |ZJ
(·|ZJi), which is identifiable from the data,

∫
E[YiJi |XJi = x, Vi = v]dσ(v) =

∫ ∫
m(x, e)E

[
fε|ZJ

(e|ZJi)
∣∣Vi = v

]
dρ(e)dσ(v)

=

∫ ∫
m(x, e)E

[
fε|ZJ

(e|ZJi)
∣∣Vi = v

]
dσ(v)dρ(e)

=

∫
m(x, e)E

[
fε|ZJ

(e|ZJi)
]
dρ(e)

=

∫
m(x, e)fε(e)dρ(e)

where the second equality uses the Fubini theorem and the third equality requires Assumption 5.

A.2 Proof of Theorem 2

Let πN = (N)1/s logN and define

µ̆(x) =
1

N

N∑
i=1

∑N
j=1 YjNK([Xj − x]/hN )L(‖V̂j − V̂i‖/hN )∑N
j=1K([Xj − x]/hN )L(‖V̂j − V̂i‖/hN )

1{|Zi| ≤ τN}, YjN = Yj1{|Yj | ≤ πN}

where µ̆(x) is different from µ̂(x) in replacing Yj ’s with the truncated version YjN = Yj1{|Yj | ≤ πN}.

Then,

P [µ̆(x0) 6= µ̂(x0)] ≤ P [|Yj | > πN for some j] ≤ Nπ−sN E[|Yj |s] = o(1)
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and it suffices to show µ̆(x0)→P µ(x0). Define

ϕ(v) = E
[
K

(
Xi − x0

hN

)
L

(
‖Vi − v‖
hN

)]
, ϕ∗(v) = E

[
K

(
Xi − x0

hN

)
L∗
(
‖Vi − v‖
hN

)]

ĝ(v) =
1

Nϕ(v)

N∑
i=1

YiNK

(
Xi − x0

hN

)
L

(
‖V̂i − v‖
hN

)
, g̃(v) =

1

Nϕ(v)

N∑
i=1

YiNK

(
Xi − x0

hN

)
L

(
‖Vi − v‖
hN

)

f̂(v) =
1

Nϕ(v)

N∑
i=1

K

(
Xi − x0

hN

)
L

(
‖V̂i − v‖
hN

)
, f̃(v) =

1

Nϕ(v)

N∑
i=1

K

(
Xi − x0

hN

)
L

(
‖Vi − v‖
hN

)
.

Then, µ̆(x0) =
∑N

i=1 1{|Zi ≤ τN}ĝ(V̂i)/f̂(V̂i)N and

µ̆(x0) =
1

N

N∑
i=1

g̃(Vi)1{|Zi| ≤ τN}+
1

N

N∑
i=1

g̃(Vi)
[
f̂(V̂i)

−1 − 1
]
1{|Zi| ≤ τN}

+
1

N

N∑
i=1

[ĝ(V̂i)− g̃(Vi)]f̂(V̂i)
−1
1{|Zi| ≤ τN}.

Below I show that

max
1≤i≤N

|g̃(Vi)−m(x0, Vi)|1{|Zi| ≤ τN} = oP(1), max
1≤i≤N

|f̃(Vi)− 1|1{|Zi| ≤ τN} = oP(1) (8)

max
1≤i≤N

|ĝ(V̂i)− g̃(Vi)|1{|Zi| ≤ τN} = oP(1), max
1≤i≤N

|f̂(V̂i)− f̃(Vi)|1{|Zi| ≤ τN} = oP(1) (9)

from which µ̆(x0)→P µ(x0) follows.

For the first statement of (8), it suffices to show supv∈AN
|g̃(v)−m(x0, v)| = oP(1) where AN =

{v : ∃z s.t. v = FW |Z(·|z) & |z| ≤ τN}. Using uniform continuity of m(x, v) and compact support

of K and L, |E[g̃(v)]−m(x0, v)| = o(1) uniformly in v. Thus, it remains to show supv∈AN
|g̃(v)−

E[g̃(v)]| = oP(1), for which I build on the discretization argument in Cattaneo et al. (2013).

Pick points {v∗1, · · · , v∗M} ⊂ AN for which min1≤m≤M ‖v − v∗m‖ ≤ h2
N for all v ∈ AN with

M = O(τdzN h−2dz
N ). Define g̃∗(v) =

∑N
i=1 YiNK([Xi − x0]/hN )L∗(‖Vi − v‖/hN )/Nϕ(v) and by

Lemma 2 and (10),

sup
v∈AN

|g̃(v)− E[g̃(v)]| ≤ C max
1≤m≤M

|g̃(v∗m)− E[g̃(v∗m)]|+ ChNq
−1
N max

1≤m≤M
|g̃∗(v∗m)− E[g̃∗(v∗m)]|

+ ChNq
−1
N

(
max

1≤m≤M
E[g̃(v∗m)] + max

1≤m≤M
E[g̃∗(v∗m)]

)
where qN = inf |z|≤τN fZ(z). Then arguing as in the proof of Lemma B-1 of Cattaneo et al. (2013),
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it remains to verify that Bernstein’s inequalities apply. Note that

∣∣∣∣YiNK (Xi − x0

hN

)
L

(
‖Vi − v‖
hN

) ∣∣∣∣ ≤ CπN
and

E
[ ∣∣∣∣YiNK (Xi − x0

hN

)
L

(
‖Vi − v‖
hN

)∣∣∣∣2 ] ≤ ϕ(v)C sup
|x−x0|≤δ,‖u−v‖≤δ

E[|Yi|2|Xi = x, Vi = u].

Then, Bernstein’s inequalities imply

P [|g̃(v)− E[g̃(v)]| > δ] ≤ 2 exp

(
− δ2Nϕ(v)/2

C + πNCδ/3

)

and NqNπ
−1
N (logN)−1 → ∞ implies the desired result. The second statement of (8) follows from

a similar argument.

For (9),

|ĝ(V̂i)− g̃(Vi)| ≤
ϕ(Vi)

ϕ(V̂i)

1

Nϕ(Vi)

∑
j 6=i
|YjN |K

(
Xj − x
hN

)
L∗
(
Vj − Vi
hN

)
‖V̂j − Vj‖

hN
+
|ϕ(Vi)− ϕ(V̂i)|

ϕ(V̂i)
|g̃(Vi)|

and the desired result follows from max1≤i≤N ‖V̂i − Vi‖1{|Zi| ≤ τN} = oP(hN ), Lemma 1, (10),

NhdzN qN →∞, (8), and m(Xj , v)1{|Xj − x| ≤ δ} <∞.

A.2.1 Lemmas

The following inequality is a simple application of Lipschitz continuity. As it arises multiple times

in the proof, I state it here for reference.

|ϕ(v)− ϕ(u)| ≤ E
[
K

(
Xi − x
hN

)
L∗
(
Vi − u
hN

)]
‖v − u‖
hN

= ϕ∗(u)
‖v − u‖
hN

. (10)

The following lemma provides a lower bound on ϕ(v), ϕ∗(v), which are a version of small ball

probabilities (see Chapter 13 of Ferraty and Vieu, 2006, for discussion).

Lemma 1. Assumptions 6 and 7 hold and for a given v ∈ supp(Vi), pick z ∈ supp(Zi) such that

v = FW |Z(·|z). Then, for some C > 0,

min{ϕ(v), ϕ∗(v)} ≥ hdzN inf
|e|≤1

fZ(z + e)C
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for sufficiently large N .

Proof. Using min{L(v), L∗(v)} ≥ cL1{|v| ≤ cL} and Lipschitz continuity of FW |Z ,

min{ϕ(v), ϕ∗(v)} ≥ cLE
[
K

(
Xi − x
hN

)
1 {‖Vi − v‖ ≤ cLhN}

]
≥ cLE

[
K

(
Xi − x
hN

)
1 {CF |Zi − z| ≤ cLhN}

]
= cLh

dz
N

∫
Rdz

K(s1)1{CF |s| ≤ cL}fZ(z + shN )ds

where s1 ∈ Rdx is a subvector of s ∈ Rdz and using compact support of K, we obtain the desired

result.

Lemma 2. Recall AN = {v : ∃z s.t. v = FW |Z(·|z) & |z| ≤ τN}. Under Assumption 7,

sup
v∈AN

ϕ∗(v)

ϕ(v)
= O

(
inf
|z|≤τN

fZ(z)
)

Proof. For v, pick z such that v = FW |Z(·|z) and we have ‖Vi − v‖ = ‖∂FW |Z(·|z̃)/∂z′(Zi − z)‖

where z̃ is some value between Zi and z. Because the derivative is non-zero everywhere, for some

cz > 0,

ϕ∗(v) ≤ E
[
K

(
Xi − x
hN

)
L∗
(
cz|Zi − z|

hN

)]
= hdz

∫
K(s1)L∗(cz|s|)fZ(z + shN )ds

and by Lemma 1, we obtain the desired result.

B Additional Discussion

B.1 Identification Without Excluded Group-Level Variables

Here, I consider an alternative model where a researcher does not observe excluded group-level

variables in the selection equation. Using the notation from the main paper, set up the following

model.

Yig = m(Xg, νi, ug)

Ji = J(A1, · · · , AG,Θi, ζi1, · · · , ζiG)
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where Ag represents unobserved group-level features affecting group determination and it generally

includes Xg as a subvector. The difference from (2)-(3) lies in the inability to observe group-level

variables entering the selection equation. Since we do not observe Ag, we cannot compute the

conditional distribution fW |AJ
, which we would use as a control variable if Ag were observed.

To accommodate this setting, assume that data contain many individuals for each group. Then,

we can compute the group-level distribution by using observations within each group. Specifically,

for each group g, we can compute

1

Ng

N∑
i=1

1{Wi ≤ w}1{Ji = g}, Ng =
N∑
i=1

1{Ji = g}

and under appropriate conditions, as Ng → ∞, this within-group sample average converges in

probability to

FW |AJ(w|A1, . . . , AG, g).

The conditioning on Ag’s follows from Ji = J(A1, · · · , AG,Θi, ζi1, · · · , ζiG) and the fact that averag-

ing over i with Ji = g holds (A1, · · · , AG) fixed. This averaging over i holding constant Ji = g is akin

to averaging individual variables over time dimension in panel data models: i.e., if Yit denotes an

outcome for individual i at time t and αi represents individual fixed effects,
∑T

t=1 Yit/T →P E[Yit|αi]

under appropriate conditions.

With the identified group-level distribution FW |AJ , we can now use the same identification

argument as in the main paper to identify averages effects of Xg on Yig.

B.2 Other Measures of Partial Effects

In the main paper, I only discuss the average structural function to focus on main ideas. Here,

I consider other measures of partial effects. The quantile structural function (QSF) (Imbens and

Newey, 2009) is the quantile of m(x, εiJi) for a fixed x. Note that the quantile is computed using

the marginal distribution of εiJi . To consider the identification of this parameter, note

FY |XV (y|x, v) = E[1{YiJi ≤ y}|XJi = x, Vi = v] = E[1{m(x, εiJi) ≤ y}|Vi = v]

where Vi = fW |ZJ
(·|ZJi) and the second equality follows under the hypothesis of Theorem 1. Then,

provided that the common support condition holds, integrating this object with respect to the
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marginal distribution of Vi yields

E[1{m(x, εiJi) ≤ y}],

which is the distribution function for the random variable m(x, εiJi), and the left-inverse of this

distribution function is the QSF. Imbens and Newey (2009) discuss bounds for the QSF when the

common support condition fails.

Next, I consider the local average response (LAR) of Altonji and Matzkin (2005). Assume Xg

is continuously distributed and m(x, ε) is continuously differentiable with respect to x. Then, the

LAR is defined as ∫
mx(x, e)fε|XJ

(e|x)de, mx(x, e) =
∂

∂x
m(x, e).

To identify this parameter, suppose that Xg ⊂ Zg with Z2g denoting the excluded elements, Zg

has a Lebesgue density fZ , and define Z(x, v) = {z2 ∈ supp(Z2g) : v = FW |Z(·|x, z2)}. For a given

x0 ∈ supp(Xg), assume that if fZ(x0, z2) > 0, then there exists a δ > 0 such that for all |x−x0| ≤ δ,

we can find z′2 ∈ Z(x, FW |Z(·|x0, z2)) with fZ(x, z′2) > 0. Furthermore, if for some δ > 0

E
[ ∫

sup
|x−x0|≤δ

|mx(x, e)|dFε|V (e|Vi)
]
<∞

holds, then the LAR is identified at x0. The involved condition for positivity of fZ translates

Assumption 2.2 in Altonji and Matzkin (2005) to this setting.

B.3 Uniform Convergence Rates for the Conditional Distribution Function

Hansen (2008) and Cattaneo et al. (2013) present results on uniform convergence rates for the

following nonparametric estimator.

1

N

N∑
i=1

YiκN (Xi − x)

where κN (u) = b−dxN κ(u/bN ), κ is a kernel function, and bN is a bandwidth sequence. In this paper,

I need to obtain a rate for

sup
w∈Rdw ,|z|≤τN

∣∣F̂W |Z(w|z)− FW |Z(w|z)
∣∣
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where F̂W |Z(w|z) = Ψ̂(w|z)/f̂(z),

Ψ̂(w|z) =
1

N

N∑
i=1

1{Wi ≤ w}κN (Zi − z), f̂(z) =
1

N

N∑
i=1

κN (Zi − z).

For f̂(z), I can directly apply the results from the aforementioned papers. For Ψ̂(w|z), I need to

handle uniformity in evaluation points w. We have the decomposition

Ψ̂(w|z)− FW |Z(w|z)fZ(z) = Ψ̂(w|z)− E[Ψ̂(w|z)] + E[Ψ̂(w|z)]− FW |Z(w|z)fZ(z)

and by assuming appropriate differentiability and boundedness conditions,

∣∣E[Ψ̂(w|z)]− FW |Z(w|z)fZ(z)
∣∣ ≤ CbPN

where P is the order of kernel κ and C is independent of w and z. Then, it remains to bound

P

[
sup

w∈Rdw ,|z|≤τN

∣∣Ψ̂(w|z)− E[Ψ̂(w|z)]
∣∣ > CrN

]

for some rate rN . Assume Lipschitz continuity of κ as I did in Assumption 7 for L. Also, discretize

the space {|z| ≤ τN} by {z∗m}Mm=1 as done in the proof of Theorem 2. Then,

∣∣Ψ̂(w|z)− E[Ψ̂(w|z)]
∣∣ ≤ ∣∣Ψ̂(w|z∗)− E[Ψ̂(w|z∗)]

∣∣+
∣∣Ψ̂∗(w|z∗)− E[Ψ̂∗(w|z∗)]

∣∣∣∣∣z − z∗
bN

∣∣∣
+ 2
∣∣E[Ψ̂∗(w|z∗)]

∣∣∣∣∣z − z∗
bN

∣∣∣
where Ψ̂∗(w|z∗) =

∑N
i=1 1{Wi ≤ w}κ∗N (Zi − z∗)/N . Then, I need to bound probabilities like

P

[
sup

w∈Rdw

max
1≤m≤M

∣∣Ψ̂(w|z∗m)− E[Ψ̂(w|z∗m)]
∣∣ > CrN

]
.

Applying symmetrization technique from empirical process theory (e.g., Lemma 2.3.1 of van der

Vaart and Wellner, 1996), the above probability is bounded by

P

[
2 sup
w∈Rdw

max
1≤m≤M

∣∣∣∣ 1

N

N∑
i=1

εi1{Wi ≤ w}κN (Zi − z∗m)

∣∣∣∣ > CrN

]
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where εi ∈ {−1, 1} is a Rademacher variable independent of data. Now, conditioning on the data,

P

[
sup

w∈Rdw

max
1≤m≤M

∣∣∣∣ 1

N

N∑
i=1

εi1{Wi ≤ w}κN (Zi − z∗m)

∣∣∣∣ > CrN

∣∣∣(Wi, Zi)
N
i=1

]

= P

[
max

1≤`≤L
max

1≤m≤M

∣∣∣∣ 1

N

N∑
i=1

εi1{Wi ≤ w`}κN (Zi − z∗m)

∣∣∣∣ > CrN

∣∣∣(Wi, Zi)
N
i=1

]

≤
∑
`,j

P

[∣∣∣∣ 1

N

N∑
i=1

εi1{Wi ≤ w`}κN (Zi − z∗m)

∣∣∣∣ > CrN

∣∣∣(Wi, Zi)
N
i=1

]

where replacing the supremum with maximum over a finite number of points is possible as we

condition on Wi’s. Note that L = O(Ndw). Then, applying Hoeffding’s inequality,

P

[∣∣∣∣ 1

N

N∑
i=1

εi1{Wi ≤ w`}κN (Zi − z∗m)

∣∣∣∣ > CrN

∣∣∣(Wi, Zi)
N
i=1

]
≤ 2 exp

(
− C2Nr2

n/2
1
N

∑N
i=1 |κN (Zi − z∗m)|2

)
.

Now applying Lemma 33 in Chapter 2 of Pollard (1984), max1≤m≤M
1
N

∑N
i=1 |κN (Zi − z∗m)|2 is

bounded by a constant multiple of max1≤m≤M E[|κN (Zi − z∗m)|2] = O(b−dzN ) with probability ap-

proaching one if nbdZN / logN →∞. Then, we can take rN = (logN/NbdzN )1/2. Finally, assuming all

the regularity conditions hold for the above arguments, we obtain

sup
w∈Rdw ,|z|≤τN

∣∣Ψ̂(w|z)− FW |Z(w|z)fZ(z)
∣∣ = OP

(
bPN +

√
logN

NbdzN

)
,

which can be used to obtain the convergence rate for supw∈Rdw ,|z|≤τN
∣∣F̂W |Z(w|z)− FW |Z(w|z)

∣∣.
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