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Abstract: 

Polymeric nanoparticles show great promise in a range of biomedical applications, improving pharmacokinetic 

properties, dose requirements and immune response in drug delivery and bioimaging. Common synthesis 

techniques such as self-assembly, while prevalent, are unscalable and require the use of organic solvents, or 

extensive purification. In contrast, recent developments in dispersed state reversible deactivation radical 

polymerisation allow the preparation of well-defined nanomaterials in fully aqueous environments often 

achieving full monomer conversion, and thus direct use in biological environments without purification in high 

quantities. These techniques have allowed the preparation of a variety of nanoparticle architectures (nanogel, 

latex, micelle, nanoworms, vesicles), using ATRP, RAFT and NMP, which in many cases perform significantly 

better than free radical alternatives. This review focusses on the biological relevance of RDRP in dispersed 

systems, covering miniemulsion, dispersion, suspension and emulsion polymerisations.  

1  Introduction 

Over the past few decades, nanomaterials, specifically nanoparticles have become ubiquitous in modern 

biomedical research. There are now many examples of organic (polymeric, liposomal, protein)[1-3] and inorganic 

(metallic, quantum dots, silica)[4-6] nanoparticles which excel in applications such as cargo (drug/protein/nucleic 

acid)[7-9] delivery, bio-imaging[10] and diagnostics.[11] While to date their clinical use has been limited,[12, 13] 

‘nanomedicine’ is an active field of research within the academic and industrial world, largely due to the versatility 

of materials available, and the advantageous properties they display. Their large volumes (relative to molecular 

drugs) are known to significantly increase circulation time[14] and encapsulate/protect a tremendous amount of 

pharmaceutic payloads.[15] Whereas their large surface area has been exploited to improve biocompatibility and 

disease targeting through conjugation of ‘stealthy’ polymers[16] and bio-active moieties respectively.[17] In 

particular nanoparticles have been studied for their potential use in cancer therapy, mostly driven by their ability 

to passively accumulate in leaky malignant tumour tissue, known as the enhanced permeability and retention 

(EPR) effect.[18, 19] Overall these properties can improve therapeutic efficacy, minimise clinical side effects 

while reducing the maximum dose requirements. 

Out of the plethora of reported biomedical targeted nanoparticle systems, polymeric systems have shown great 

promise due to their chemical versatility.[20] For example, factors such as chemical functionality, charge, stimuli-

responsivity and degradability can be easily introduced by tuning the monomer composition. Furthermore, a 

variety of polymeric nanoparticle architectures (self-assembled micelles,[21] nanoworms,[22] polymersomes,[23] 

latex particles,[24] branched polymers (hyperbranched[25] and dendrimers[26]) and nanogels[27]) can now be 

prepared with relative ease. 

Perhaps the most prominent advancements in polymer nanoparticle design have arisen from developments 

surrounding reversible deactivation radical polymerisations (RDRP), either based on reversible deactivation (e.g 

atom transfer radical polymerisation (ATRP),[28] nitroxide mediated polymerisation (NMP)[29, 30] and single 

electron transfer-living radical polymerisation (SET-LRP)[31]) or degenerative chain transfer (e.g reversible 

addition fragmentation chain transfer (RAFT)) (Figure 1).[32] These methods have allowed researchers to 

prepare materials with controlled molecular weight distributions,[33-35]  versatility in terms of block 



architecture,[36] [37] and functional end-groups.[38] Since RDRP is well suited for preparing block copolymers, 

self-assembly has been the most popular method to prepare biologically relevant nanoparticles, as the ability to 

transform intricate polymer design into supramolecular structures is appealing from a design perspective.[39-41] 

Furthermore, the ability to control dispersity of a polymer chain population using these techniques is vital, as this 

is known to have a profound effect on the self-assembly properties of these materials. [42-44] These processes 

however suffer from scalability limitations, with suspensions above a few weight percent being difficult to 

achieve.[45] Furthermore, these nanomaterials may disassemble at low concentrations (such as those found 

endogenously), thus releasing their cargo prematurely. 

Figure 1 Mechanisms of nitroxide mediated polymerisation (NMP), atom transfer radical polymerisation (ATRP) and reversible addition-
fragmentation chain transfer (RAFT). 

Heterogeneous polymerisations (emulsion,[46] dispersion,[47] suspension,[48] miniemulsion[49] and inverse 

emulsion)[50] are now heavily exploited to generate polymer colloids reproducibly at large scales and with 

environmentally friendly conditions. In many, but not all of these systems, compartmentalisation effects (i.e 

segregation of propagating radicals) lead to fast propagation rates, full monomer conversion, low termination and 

therefore high molecular weight materials. However the multicomponent nature of many RDRP techniques means 

that these processes cannot be directly translated to heterogeneous systems.[51, 52] Nonetheless, this approach 

was initially achieved by Bon et al. who described the NMP of styrene in emulsion conditions in 1996.[53] 

However, until 2007, research on RDRP techniques in dispersed states remained fairly fundamental, of which 

there are many reviews on this topic.[52-61] Since overcoming many of the obstacles initially presented, much of 

the present work points to applying these to synthesise nanomaterials geared towards a range of applications.  

With the increased use biomedical nanoparticles, and RDRP in dispersed states there are now many examples 

using these approaches to generate nanoparticles for these applications. In this review, different heterogeneous 

polymerisations will be critically analysed but from the perspective of preparing biologically relevant 
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nanomaterials. In each section a description of the heterogeneous system, examples from the literature, and 

analysis of the advantages and disadvantages each brings for biological applications will be given. Within this 

review we will focus solely reports which explicitly show to have been designed for biological applications, due 

to the already available reviews on their synthesis. 

2 Miniemulsion polymerisation 

In conventional miniemulsion polymerisations, a water immiscible monomer is emulsified with surfactant in an 

aqueous continuous phase using external shearing forces such as ultrasonication, resulting in kinetically stable, 

but thermodynamically unstable droplets (Figure 2a).[49] This can also be applied to a water in oil system - 

inverse miniemulsion polymerisation, in which the polymerisation occurs within aqueous monomer droplets 

dispersed in an oil continuous phase (Figure 2b).[50] In an ideal system, each monomer droplet is converted into 

a polymeric particle, and as these are effectively a mini-bulk/solution polymerisations, this removes the necessity 

for monomer diffusion through the aqueous phase (as in normal emulsion polymerisation). As such many RDRP 

(RAFT,[62-65] ATRP,[66-68] and NMP[69, 70]) miniemulsion polymerisations, either conventional or inverse, 

have been reported.  

Figure 2 Schematic representation of (A) miniemulsion polymerisation and (B) inverse miniemulsion polymerisation. I = initiator species, 
yellow = oil/monomer phase, blue = aqueous phase, red = polymer phase. 
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2.1 Conventional Miniemulsion polymerisation 

Conventional miniemulsion polymerisation occurs within sub-500 nm monomer droplets, stabilised by surfactant. 

This results in the formation of solid hydrophobic particles potentially capable of encapsulating hydrophobic 

drugs for controlled delivery. While some examples of ATRP and NMP miniemulsion polymerisation have been 

reported,[66, 67, 69-72] none are for biological purposes, with RAFT being the most favoured option for this 

application due to its compatibility with many monomer families, and is easily translated from traditional free 

radical systems, simply by addition of a suitable RAFT agent.  

Introduction of glycosylated moieties at the particle surface has been shown to significantly improve disease 

targeting and cellular uptake, especially in immune cells.[73, 74] Yaacoub and co-workers reported the RAFT 

miniemulsion polymerisation of protected glucose and fructose methacrylates, with a subsequent chain extension 

with either methyl methacrylate (MMA) or butyl methacrylate (BMA).[75] Polymerisations were attempted with 

three different RAFT agents, with one yielding significantly narrow dispersities, as low as 1.10 and particle 

diameters between 150 and 350 nm. Nonetheless no biological characterisation (lectin binding, toxicity etc) were 

reported, possibly due to the large quantities of surfactant present in the polymerisation mixture.[75] 

It is desirable to avoid conventional surfactants during nanoparticle synthesis, and such ‘surfactant free’ systems, 

which use amphiphilic macro-RAFT agent stabilisers are prevalent within this field. While not specifically for 

biological applications, Clavier and co-workers report on the RAFT miniemulsion copolymerisation of styrene 

and various boron-dipyrromethene (BODIPY) monomer types (styrenic, acrylate, methacrylate) to produce 

fluorescently labelled nanoparticles.[76, 77] This approach used a poly(ethylene oxide)-b-(acrylic acid)  (PEO-b-

PAA) macro-RAFT agent as the stabiliser and therefore avoids the use of conventional surfactants. Depending on 

the analogue of BODIPY monomer used in the polymerisations, some particles were up to 2000 times brighter 

than typical quantum dots, and as such could be useful in bioimaging applications.[76] It should be noted however 

that quantum dots are significantly smaller than the nanoparticles synthesised here (> 60 nm diameters), which 

would impact their circulation time. 

An elegant approach which combines miniemulsion polymerisation with nanogel formation was described by 

Stenzel and co-workers using a P(PEGMA)-b-P(DMAEMA)-b-P(t-BMA) macro-RAFT agent stabiliser.[78] This 

was chain extended with miniemulsion polymerisation using t-BMA and crosslinked with different ethylene 

glycol dimethacrylate (EGDMA) amounts (10, 20 or 30%) resulting in nanoparticles with roughly 200 nm 

diameters. Hydrolysis of the tert-butyl methacrylate cores with trifluoroacetic acid yielded swollen P(MAA) 

nanogels with varying cross-linking densities. The anionic core was then used to encapsulate large quantities (50 

wt%) of anticancer therapeutic doxorubicin with electrostatic interactions, also enabling almost quantitative drug 

loading efficiencies. In release studies, they found that addition of acid shrunk the P(MAA) core and swelled the 

P(DMAEMA) shell resulting in a gated squeezing effect releasing over 90% of the encapsulated drug. This 

translated into a lower IC50 concentration for the drug loaded nanoparticles compared to free doxorubicin, which 

is exceptionally difficult to achieve (Figure 3).[78]  



Figure 3 (A) Conventional miniemulsion polymerisation of tert-butyl methacrylate stabilised by a P(PEGMA)-b-P(DMAEMA)-b-P(t-BMA) 
macro-RAFT agent and subsequent hydrolysis with trifluoroacetic acid to produce pH gated nanogels. (B) TEM images of P(t-BMA) latexes 
and (C) release of loaded doxorubicin at pH 5.0 and 7.4.[78] Copyright 2010. Adapted with permission from the American Chemical Society. 

The lack of RDRP miniemulsion polymerisation systems for biologically relevant nanoparticles may arise from 

rising popularity of other techniques yielding similar core-shell structures without the limitations of miniemulsion 

polymerisation. For instance, the requirement of high shearing limits the scalability of this process in comparison 

to polymerisation-induced self-assembly or conventional emulsion procedures (vide infra). Furthermore, the 

effect of molecular weight control may not influence any biological activity, as particle size and surface 

functionality are controlled by shearing and surfactant composition. This may then render FRP and RDRP latexes 

identical when using surfactant stabilised miniemulsion polymerisation, and therefore the added complexity of 

RDRP agents may be redundant. However, a key advantage of RDRP techniques here is the introduction of 

particular functionality at the particle surface, and the evasion of conventional surfactant use to improve potential 

biocompatibility. 
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2.2 Inverse miniemulsion polymerisation 

Inverse miniemulsion polymerisation enables the preparation of fully hydrophilic nanoparticles, in which the 

polymer chains are cross-linked (covalent or non-covalent) in a network like structure giving them the term 

‘nanogels’. These are typically swollen when suspended in aqueous solutions, making their chemical structure 

accessible for potential degradation triggered by endogenous biochemical stimuli (e.g glutathione,[79] 

enzymes,[80] pH changes[81]).  It should be noted that although these are conventionally called ‘inverse emulsion 

polymerisation’ in reality they are closer to an ‘inverse miniemulsion polymerisation’ as the monomer does not 

diffuse from large droplets to growing. 

Many examples of nanogels synthesised with free-radical polymerisation exist in the literature, and are used 

mainly in from drug delivery,[82] diagnostics[83] and imaging[84]. However, their network-like structure in 

particular lends them towards encapsulation of biomacromolecules, such as proteins and nucleic acids by physical 

entrapment.  RDRP techniques even allow for the distribution of cross-linking points thus a more homogenous 

gel structure directly impacting their biological performance. This has been extensively reported for ATRP and 

RAFT based nanogels.[85] Notably there are no NMP inverse miniemulsion polymerisations reported, and is 

likely a consequence of commercially available nitroxides being relatively water insoluble. 

2.2.1 ATRP nanogels 

ATRP relies on an external catalyst (typically a transition metal complex) to reversibly deactivate propagating 

radicals to a dormant state.[28] This reliance on a secondary species means that for efficient ATRP, the two 

components must be present in the same phases, without significant partitioning. For these reasons inverse 

miniemulsion polymerisations, which are simply compartmentalised aqueous polymerisations, are the most 

commonly used for heterogenous ATRP.  

This was first reported by Matyjaszewski and co-workers who prepared 200 nm poly(poly(ethylene glycol) methyl 

ether methacrylate) (P(PEGMA)) nanogels cross-linked with a redox responsive disulphide functional 

dimethacrylate monomer, and were synthesised using a cyclohexane continuous phase.[68] They highlight that 

the sonication process intended for homogenisation also results in oxidation of the active Cu(I) species back to 

the Cu(II) complex. For that reason, the authors successfully implemented the activators generated by electron 

transfer (AGET) ATRP mechanism, using ascorbic acid as a water soluble reducing agent, alongside a PEG 

macromolecular ATRP (macro-ATRP) initiator to limit partitioning into the oil phase. They found that their ATRP  

220 nm nanogels had better colloidal stability, almost double swelling ratios, and were degradable into individual 

polymer chains (Ð < 1.5), when compared to analogous nanogels prepared with free radical polymerisation.  

In a follow up study, these nanogels were evaluated as potential anticancer agents with the encapsulation of up to 

16.4 wt % doxorubicin, which released steadily after biodegradation with tripeptide glutathione.[86] The drug 

loaded nanogels gave reduced viability in in vitro studies against a cervical cancer cell line (HeLa). Further to 

this, they exploited the RDRP approach, and chain extended the initial nanogel with 2-hydroxyethyl acrylate 



(HEA) to introduce hydroxyl functionality to the nanogel surface, and subsequently conjugated with bioactive 

moiety biotin.  

Figure 4 Typical ATRP inverse miniemulsion polymerisation to produce disulphide cross-linked nanogels. [68, 86] Copyright 2007 and 2009. 
Adapted with permission from the American Chemical Society. 

As stated above, the ability to entrap hydrophilic objects within a nanogel matrix remains a major advantage. 

Matyjaszewski and co-workers have thoroughly exploited this property with their ATRP nanogel system. Initially 

they reported encapsulation of rhodamine modified dextran (RITC-Dx), as a model for carbohydrate 

therapeutics.[87] These were entrapped with over 80% efficiency, with a maximum loading of 6.4 wt %. Upon 

degradation with glutathione, the released dextran was able to bind strongly to Concanavalin A (ConA), and cause 

aggregation monitored by an increase in turbidity with UV-Vis spectroscopy. Analogous non-degradable RITC-

Dx loaded nanogels were found to accumulate in clathrin coated pits (indicating uptake via clathrin mediated 

endocytosis) in murine osteoblast cells (MC3T3).[88] This was then further confirmed with TEM by 

encapsulating gold nanoparticles. By copolymerising PEGMA and an RGD (integrin binding peptide) 

functionalised monomer, an increased cellular internalisation of the nanogels was observed.[88] To evaluate if 

protein encapsulation was viable during such harsh preparation conditions (sonication, heating high radical flux), 

bovine serum albumin (BSA) was added into the aqueous polymerisation phase. Western-blot analysis of lysed 

cells which were treated with BSA-nanogels indicated that a large amount of the protein remained native after 

nanogel preparation (Figure 4).[88]  

Instead of physical entrapment, an alternative approach to generate protein-nanogel hybrids was reported, 

whereby a green fluorescent protein (GFP) was genetically engineered such that a phenyl alanine bearing an 

ATRP initiator was introduced in a site specific manner.[89] This was used in conjunction with the traditional 

PEG-ATRP initiator described above to produce nanogels with covalently bound GFP. Confocal microscopy and 

fluorescence spectroscopy confirmed the incorporation of 2.1 wt% GFP into the nanogels. When compared to 

physical entrapment, the authors found that no GFP was retained after purification, highlighting the importance 



of covalent attachment. This is somewhat contradictory to the identical BSA nanogels above which were readily 

retained after physical entrapment.[88, 89]  

More recently this AGET ATRP inverse miniemulsion polymerisation approach was exploited to produce 

nanogels capable of encapsulating of nucleic acids. Similar systems have been shown to protect these 

macromolecules from nucleases, potentially enhancing gene delivery applications.[90] PEGMA was 

copolymerised with quarternised 2-(dimethylamino) ethyl methacrylate (qDMAEMA) as a cationic comonomer 

following the same inverse miniemulsion approach. The resulting nanogels had a larger hydrodynamic diameter 

(275 nm) than those without qDMAEMA and a strongly positive zetapotential (+43.7 mV) thus making it capable 

of complexing plasmid DNA. They found w/w ratios greater than 5:1 nanogel:pDNA was sufficient to bind 

plasmids, and heparin sulfate could be used to displace it below 10:1. In contrast, siRNA required a ratio of at 

least 15:1 nanogel:siRNA for full complexation and could be displaced up to 25:1. Nanogel polyplexes with 

pDNA encoding for firefly luciferase (FLuc), and silencing siRNA for Renilla luciferase (RLuc) showed 

comparable transfection and knockdown efficiencies to commercially available FuGENE-HD (Figure 5).[90] 

Figure 5 (A) ATRP inverse miniemulsion polymerisation of qDMAEMA to produce cationic nanogels capable of complex both siRNA and 
plasmid DNA. Relative transfection efficiency of a (B) plasmid containing a firefly luciferase reporter gene and (C) knockdown of Renilla 
luciferase with siRNA.[90] Copyright 2012. Adapted with permission from the American Chemical Society.

Hollinger and co-workers later used these cationic nanogels to complex siRNA which silences Runx2 and Osx, 

key regulators of osteogenetic differentiation, as a potential treatment of heterotopic ossification (abnormal bone 

growth).[91] In general, similar silencing capabilities (40-60% reduction in gene expression) were observed 

between nanogels and commercial transfection agent lipofectamine, however no cytotoxic effects were evident 

after nanogel treatment whereas lipofectamine yielded 60% cell viability.[91]  
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2.2.2 RAFT nanogels 

In contrast to ATRP, RAFT is a degenerative chain transfer process which does not typically require a catalyst, 

and involves a chain transfer agent (thiocarbonylthio compounds) and an external radical source. From a 

biological perspective, nanogels synthesised using RAFT may offer significant advantages over ATRP as the 

synthetic process is simpler, and the presence of excess copper complexes (the most common ATRP catalysts) 

can be cytotoxic.[92] While most biologically relevant RAFT nanogels are synthesised by precipitation/dispersion 

polymerisation of thermoresponsive polymers (e.g P(NIPAM)),[85] or soluble branched structures, there are a 

few notable examples using inverse miniemulsion procedures for biomedical applications. 

As common RAFT agents are fairly hydrophobic, their applicability in fully aqueous polymerisation can be 

limited. This has been overcome by preparation of hydrophilic macro-RAFT agents to enhance water solubility. 

For instance, Davis and co-workers report on the synthesis of cationic DMAEMA based nanogels from a 

hydrophilic P(PEGMA) macro-RAFT agent, previously prepared in acetonitrile, for gene delivery 

applications.[93] Inverse miniemulsions were performed with and without macro-RAFT agent at 60°C, and cross-

linked with a similar disulphide dimethacrylate. Interestingly only the RAFT inverse miniemulsion achieved over 

98% monomer conversion in 6 h, whereas the analogous free radical analogous polymerisation was limited to 

90% within the same time frame. Narrow dispersity polymers (Ð < 1.3), and consistent average molar masses 

were achieved with the RAFT system, however a small proportion of the macro-RAFT agent remained 

unconsumed. In contrast, the free radical polymerisation (FRP) nanogels consisted of much higher molecular 

weight polymers, however the particles had smaller diameters (~100 nm), compared to the RAFT nanogels (~250 

nm), both with zetapotentials of +42 mV which is in agreement with the ATRP nanogels described above. This 

difference in size depending on polymerisation technique may have significant implications on their biological 

activity.[93] 

Klok and co-workers have reported the synthesis of poly(N-(2-hydroxypropyl)methacrylamide) P((HPMAm)) 

nanogels using a similar approach.[94] P(HPMAm) is widely used in polymer therapeutics as it shows high 

biocompatibility, tuneable functionality, and is included in materials which have entered clinical trials after FDA 

approval.[95] In contrast to the above study, the authors use a solvent mixture of 9:1 H2O:Methanol to aid 

solubility of their RAFT agent. A variety of RAFT P(HPMAm) nanogels were synthesised using different 

experimental conditions (DP, surfactant, initiator concentration, cross-linker concentration) as well as a free 

radical analogue cross-linked with a disulphide bridge. With high concentrations of initiator, quantitative 

monomer conversions were attained, yielding P(HPMAm) RAFT nanogels between 150-200 nm in diameter and 

dispersities around 1.4 for the component polymers. As a proof of concept protein encapsulation experiment, 

cytochrome C (5 wt%) was added to the aqueous phase with 73% incorporation. Release studies showed rapid 

protein release (100% within 1 h) only after disulphide reduction with a phosphine, with none observed without 

nanogel degradation (Figure 6).[94]  



Figure 6 (A) Inverse RAFT miniemulsion polymerisation of HPMA to produce disulphide cross-linked nanogels. (B) Atomic force 
micrographs of the synthesised nanogels and (C) release of encapsulated cytochrome C with (cirlces) and without (squares) addition of Tris(2-
carboxyethyl)phosphine hydrochloride (TCEP) as a reducing agent.[94] Copyright 2013. Adapted with permission from the Royal Society of 
Chemistry.

2.2.3 General remarks on RDRP nanogels 

As mentioned previously, inverse emulsion polymerisations are a highly favourable route to design fully 

hydrophilic nanoparticles for loading and transport of biomacromolecular cargo. However excess surfactant and 

the continuous phase (typically cyclohexane) must be removed prior to biological use due to inherent cytotoxicity 

or aqueous incompatibility. Surfactant use can be circumvented by utilising amphiphilic RDRP control agents 

(inistab),[96, 97] however with this it is impossible to independently tune the colloidal stability and the molecular 

weight of resulting polymers. The sonication procedures used are unfeasible in large volume reactors and the low 

monomer concentrations used limit their scale up potential. Nanoparticle size is a key parameter in a variety of 

biomedical applications, with nanoparticles with diameters below 200 nm reported being most effective.[98] From 

the above studies, it seems that RDRP inverse miniemulsion procedures are rarely able to produce nanoparticles 

below this threshold, potentially limiting clinical translation. Additionally the above RDRP nanogel assemblies 

use proteins such as BSA and cytochrome C, which are relatively tolerant to extreme conditions such as 

sonication, heating and solvents during purification. Therapeutic proteins under these conditions could easily 

denature thus rendering them inactive thus reducing efficacy. In general RDRP techniques have been shown to 

improve release rate and targeting potential through chain extension with functional moieties, however as of yet 

has not improved synthetic issues limiting their biological use.  
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3 Dispersion polymerisation 

Figure 7 Mechanism of aqueous dispersion polymerisation. I = initiator species, yellow = monomer, blue = aqueous phase, red = polymer 
phase.

In contrast to other dispersed phase systems, in dispersion polymerisations all of the components (monomer, chain 

transfer agents, initiator) are soluble in the continuous phase at the start of the reaction.[47] The phase separation 

then occurs during the polymerisation, where the polymer chains reach a critical chain length then become 

insoluble in the continuous phase and precipitate resulting in particle formation (Figure 7). Common RDRP 

dispersion polymerisations have manifested themselves as a type of polymerisation-induced self-assembly 

(PISA), which is where a solvophilic unit is chain extended with a block which selectively precipitates leading to 

self-assembled nano-objects coated in the initial solvophilic block (Figure 8).[99] The resulting morphologies are 

then dependent on the solvophobic/solvophilic volume ratio, and are often similar to those found using 

conventional selective solvent self-assembly procedures.[100, 101]  Typically PISA is performed by taking a 

single solvophilic homopolymer and throughout the elongation of the second solvophobic block, the morphology 

reorganises from spheres, to worms, to vesicles and in some cases to lamellae as the polymerisation ensues. The 

in situ self-assembly allows for a much higher solids contents (up to 40%) in comparison to conventional self-

assembly however can be limited, as not all monomers display this phenomenon. Many RDRP dispersion 

polymerisations have been reported including NMP,[102] ATRP,[103]  cobalt mediated polymerisation 

(CMP),[104] reversible complexation mediated polymerisation (RCMP)[105], organotellerium-mediated radical 

polymerisation (TERP),[106] and via ‘non-living’ addition fragmentation chain transfer (AFCT)[107, 108] 

polymerisation, however RAFT polymerisation remains the most popular approach and is the only method used 

for biologically relevant particles. Aspects such as particle morphology, particle size and core/shell compositions 

can be easily tuned using RAFT, and as such PISA is highly attractive from a biological standpoint either for 

fundamental studies or specific applications.[109]  



Figure 8 Generalised representation of RAFT polymerisation-induced self-assembly from a solvophilic macro-RAFT agent by chain 
extending with a monomer which upon polymerisation becomes solvophobic inducing self-assembly into spherical, worm and vesicle 
morphologies. [110] Copyright 2014. Adapted with permission from the American Chemical Society. 

In particular, the aqueous compatibility of RAFT polymerisation is likely to be a key factor in its successful 

translation to dispersion polymerisation. Early developments of aqueous RAFT dispersion polymerisation were 

reported by Hawker and co-workers who described polymerisation of N-isopropylacrylamide to generate block 

copolymer micelles in situ.[111] Following this study, a number of different monomers, such as diethyl 

acrylamide (DEAm),[112] 2-methoxyethyl acrylate (MEA)[113, 114] and di(ethylene glycol) methyl ether 

methacrylate (DEGMA)[115] were also shown to be capable of aqueous dispersion polymerisations, usually 

utilising the thermoresponsive behaviour of their respective polymers (Figure 10). Nonetheless, the above 

systems were only capable of producing spherical systems, however over the past 8 years it is has been established 

that morphological controlled assemblies can easily be using other core forming monomers such as 2-hydroxy 

propyl methacrylate (HPMA),[101, 116] diacetone acrylamide (DAAm)[117-119] and NIPAM (Figure 9).[120] 

This is potentially useful for biomedical applications, as the formed nano-objects could be injected directly for 

therapy, bolstered by compartmentalisation effects resulting in a rapid increase in polymerisation rate and high 

monomer conversions. Furthermore the cost, abundance and high boiling point of water make this an attractive 

solvent from an industrial perspective potentially enabling scale up of aqueous dispersion polymerisations. Given 

this, a number of PISA formulations have been employed to generate biologically relevant nanoparticles.  



Figure 9 Monomers used for the core-forming block of aqueous dispersion polymerisation-induced self-assembly. 

Aqueous dispersions of HPMA have been widely used due to its robust control over individual morphologies.[101, 

116, 121-126] Chain extension of a poly(glycerol methacrylate) (P(GMA) macro-RAFT agent with HPMA of 

three different chain lengths (90, 140 and 220) yielded the conventional sphere, worm, vesicle morphologies.[121] 

Importantly quantitative monomer conversions were observed within 2 h. Upon cooling to room temperature, the 

P(GMA)54-P(HPMA)140 worm-like assemblies formed a soft malleable gel at 10 wt% due to worm-worm 

entanglements. Interestingly further cooling to 4°C resulted in a free flowing solution, which was later found be 

due to a worm to sphere transformation. The authors postulated that such a system could be used as a 

thermoresponsive biological storage medium, which can be sterilised by degelation and passing through a typical 

0.45 µm filter upon degelation. To probe this the free flowing dispersion was contaminated with fluorescently 

labelled S. aureus and after sterilisation negligible contamination was observed. Furthermore the worm-gels were 

found to be fully biocompatible in cell viability assays.[121] 

In two follow-up publications, this system was shown to be versatile in a number of biological applications as a 

potential replacement for cryopreservation. In one study, the authors used the worm-gels as mucin mimics which 

are known to induce stasis of mammalian embryos consisting of pluripotent stem cells in utero.[122] Storage of 

human embryos within these worm gels showed significantly greater stability than those in a commercially 

available alternative (Matrigel). Remarkably a high degree of a nuclear envelope statin was observed through 

immunostaining experiments, suggesting cell stasis within these conditions. When repeated with only pluripotent 

stem cell colonies, the majority of cells continued to express pluripotency markers rather than those for 

differentiation. The promising results observed are clearly related to the close mucin-mimicry available (worm-

like and hydroxyl rich) through PISA and RAFT dispersion polymerisation.[122]  

Gibson and co-workers have previously shown that polyalcohols are capable of mimicking anti-freeze 

glycoproteins in solvent-free cryopreservation of biologics.[127] This was recently expanded to use the above 

HPMA worm-gel system.[124] Ice recrystallization inhibition studies with worm-gels indicated limited activity, 
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and neither ice growth nor nucleation was promoted in these conditions. Interestingly, the worm-gels alone only 

resulted in 20% red blood cell recovery, however a cooperative effect between the worms and poly(vinyl alcohol) 

(PVA) was apparent resulting in over 60% erythrocyte recovery with no indication of haemaglutination or 

abnormal cell shape.  

In the above cases, control over the surface monomer composition was critical to their performance in the desired 

applications. This approach has been employed to introduce biologically active moieties. Armes and co-workers 

described simultaneous co-PISA from the previous P(GMA) macro-RAFT agent, and a novel glycosylated 

poly(galactose methacrylate) macro-RAFT agent using HPMA as the core-forming block forming assemblies 

containing different degrees of galactose at the surface.[123] Similar to other studies, the dispersions display 

reversible thermoresponsive gelation between worm and spherical assemblies albeit with less rheological 

hysteresis than the previous example. Lectin binding studies indicated a much faster and greater response from 

worms and vesicles than the respective spherical nanoparticles, which likely contributed to the strong cellular 

uptake observed in live HDF cells.[123]  

In an inspiring strategy, Huang and co-workers describe protein coated block copolymer assemblies via PISA by 

modifying BSA with an N-hydroxysuccinimide functionalised RAFT agent capable of reacting with lysine 

residues.[127] This was then used as the solvophilic block and chain extended with HPMA using a mild low 

temperature light activated RAFT to avoid denaturation of the protein during polymerisation. In this case however 

only spherical nanoparticles, albeit with increasing size, were obtained as the P(HPMA) chain length increased. 

Importantly by monitoring the hydrolysis of 4-nitrophenyl acetate, it was observed that the esterase activity of 

BSA was retained, and the hydrophobic nature of the core was used for encapsulation of a hydrophobic drug 

model, pyrene.[127] 



3.1 Fundamental biological studies 

The design of biomedical nanoparticles is often led by fundamental studies identifying the effect of individual 

physico-chemical properties (size, shape and surface functionality)[98, 128] on cellular uptake, biodistribution 

and pharmacokinetics. Non-spherical nanoparticles have attracted significant interest as many reports suggest they 

have improved cellular uptake and circulation time, and therefore greater therapeutic efficacy compared to 

spherical counterparts.[22] As such, PISA represents a promising method to probe this feature as morphology can 

be easily tuned without significantly affecting their surface chemistry which is also known to heavily influence 

biological performance. 
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Figure 10 Block copolymers produced using polymerisation-induced self-assembly in alcoholic medium for biological applications. Green = 
functional group used for specific application, blue = solvophilic block, red = solvophobic block.  

Boyer and Davis reported the RAFT PISA of styrene from a P(PEGMA) macro-RAFT in methanol, where styrene 

is soluble but polystyrene is insoluble.[129] As expected nanoparticle morphology evolved from spheres through 

to polymersomes with increasing monomer conversion. When relating the DP of styrene to the resulting 

morphology, it became apparent that isolating individual morphologies, particularly high aspect ratio particles 

was non-trivial as mixed morphologies could be seen at various chain lengths. To probe the in situ encapsulation 

of a model hydrophobic drug Nile Red was added at the start of the polymerisation. UV-Vis analysis showed 

higher encapsulation with longer PS chain length (i.e. higher conversion), and Nile Red concentrations over 10 

fold of that found in the methanol highlighting their potential use in drug delivery.[129] 

In a subsequent study, styrene was copolymerised with vinyl benzaldehyde (VBA) during the PISA process to 

produce pH-responsive pro-drug imine containing nanoparticles with doxorubicin to evaluate the effect of 

morphology on drug delivery efficiency.[130] Narrow particle size distributions and the expected morphologies 

were produced depending on styrene chain length. Perhaps one of the major disadvantages in this approach is that 

large DP’s e.g. 5000 were targeted, and therefore specific morphologies were formed at very low monomer 

conversion (< 20%). This meant that extensive purification was necessary to fully remove monomeric styrene and 
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methanol before use in biological studies. Nonetheless, cellular studies with nanoparticles carrying a 5 wt% drug 

load indicated significantly higher cellular uptake for rod and worm-like micelles,  which yielded the lowest IC50

values (0.796 and 0.302 µM for rod and worm-like nanoparticles respectively).[130] 

In a similar approach, Pan and co-workers performed PISA with an aldehyde functional methacrylate from a 

P(DMAEMA) macro-RAFT agent in ethanol for post-functionalisation.[131] In contrast to the above studies, the 

particle morphology was controlled by targeting different solvophobic chain lengths (50, 100, 150, 200 and 250), 

each reaching full monomer conversions in 18 h. Although this eliminated the need to remove unconsumed 

monomer, purification was still necessary to remove the ethanol continuous phase. All of the resulting 

nanoparticles, regardless of morphology, had a smaller total diameter, as measured by dynamic light scattering 

(DLS), below 200 nm, which is the cited upper limit for endocytosis.[132] Doxorubicin loading was achieved 

using Schiff base formation, which naturally increased with longer aldehyde chain lengths reaching up to 16.2 

wt%. Similar to the studies described above, DOX-loaded nanorods displayed the greatest cytotoxic effects 

against HeLa cells in comparison to spheres and vesicles, however longer nanowires showed minimal activity. 

This was rationalised with cellular uptake studies which indicated that nanorods had greater lysosomal (low pH 

compartment) residence time, thus improving drug release potential.[131]  

The study of doxorubicin release was further investigated by Gooding and Gaus using pair correlation microscopy 

to probe the intracellular trafficking and site of drug release for different shapes nano-objects.[133] In this work, 

identical nanoparticles to those reported by Davis and co-workers were prepared instead with a PS-co-P(VBA) 

core. Their findings indicated that worm and rod-like materials passively enter the nucleus in a five-fold higher 

amount than spherical and vesicular systems. Furthermore attachment of nuclear localising peptides resulted in 

much greater doxorubicin release within the nucleus and enhanced cytotoxic effects.[133]  

Many of the above studies use relatively simple block copolymer compositions (P(PEGMA)-b-PS) for nano-

objects synthesis (Figure 10). As dispersion polymerisations begins in solution, complex functionality can be 

introduced through the copolymerisation of functional monomers when preparing the solvophilic block which can 

be further utilised for specific biological applications. Kaminskas and Whittaker reported the first fundamental in 

vivo study on particle morphology using nano-objects decorated with functional groups generated via PISA.[134] 

In this work a hydrophilic diblock copolymer of poly(glycidyl methacrylate-b-P(PEGMA)) was synthesised to 

introduce amine reactive functionality to the particle surface. Dispersion polymerisation of styrene in methanol 

was then used to generate various nanoparticle morphologies with an amine reactive epoxide surface, which were 

ring-opened with a tritium labelled (3H) ethanolamine for radiolabelling. Biodistribution studies indicated 

significantly higher accumulation in reticuloendothelial organs (liver, spleen) for worms and rods, however small 

21 nm micelles showed much greater association with tumour tissue.[134]  

Drug delivery and cancer therapy are not the only applications in which nanomaterials can excel within 

biomedicine. The long circulation times and non-specific biodistribution exhibited by these structures makes them 

ideal imaging agents. In particular there are now a number of reports describing dispersion polymerisation to 

produce nano-objects for magnetic resonance imaging (MRI)[135] and the effect of morphology on their contrast.  

Whittaker and co-workers report the synthesis of block copolymer nano-objects with a fluorine containing 

monomer as potential 19F MRI contrast agents.[136] The authors describe that fluorine density is a major 



parameter in MRI performance and therefore different morphologies may yield different contrasts. Initially a 

range of PEGA and trifluoroethyl acrylate (TFEA) copolymers were synthesised with different feed monomer 

compositions, with relaxivity studies indicating 2.68 wt% TFEA as optimum to avoid 19F association. Dispersion 

polymerisations of styrene and VBA were then performed in isopropanol, targeting a total DP of 5000 stopping 

at 4.4 (spheres), 11.3 (worms), 17.2 (vesicles) and 22.5% (compound vesicles) styrene conversion to isolate 

individual morphologies. Relaxivity studies of block copolymer nanoassemblies suggested that T1 and T2

relaxation was independent of morphology.[136]  

In a different approach, Davis and co-workers adapted their epoxide functional macro-RAFT agents to introduce 

gadolinium chelates into their nano-objects as potential MRI contrast agents.[137] Polystyrene nano-assemblies 

were prepared in methanol as described above. Prior to gadolinium functionalisation, the epoxide functionality 

was modified with thiols and to generate azide functional particles, highlighting the tuneable functionality possible 

with RAFT dispersion. Amine functional Gd-tetra-azacyclododecatetraacetic acid (Gd-DOTA) was used to ring 

open the surface functional epoxides on spherical, worm and vesicle nanoparticles. Similarly to Whittaker and co-

workers, little difference in relaxivity was evident between morphologies.[137] 

In an earlier study, Davis and Boyer used dispersion polymerisation to generate nanoparticles containing iron-

oxide nanoparticles which are well-known MRI contrast agents.[138] In an versatile approach, Fe(II) and Fe(III) 

salts were fed to aqueous solutions of spheres, worms and vesicles which bound electrostatically to methacrylic 

acid moieties introduced in the macro-RAFT agents. Subsequent addition of ammonia resulted in precipitation of 

iron oxide on the surface of the nanoparticles. Interestingly the size of the resulting iron oxide nanoparticles could 

be tuned by increasing the MAA content of the solvophilic sections. In contrast to the above studies, micellar 

morphologies gave the highest transverse relaxivity (r2 = 582 mM-1 s-1), several times higher than commercially 

available contrast agent Feridex (r2 = 100 mM-1 s-1) .[138]  



3.2 Stimuli responsive nano-assemblies 

Figure 11 Oxidation responsive micelles synthesised by polymerisation-induced self-assembly of N-acryloylthiomorpholine from a poly(N-
acryloylmorpholine) macro-RAFT agent.[139] Copyright 2018. Adapted with permission from the Royal Society of Chemistry. 

One of the major problems in nanoparticle drug delivery is that most therapeutics can be cytotoxic in any area of 

the body, causing adverse side effects once release from its carrier. This has typically been overcome through 

introduction of functionalities which have either a chemical or physical transition after treatment with a particular 

stimulus.[140] This can either be an external stimulus, such as temperature or light, which can give spatial control 

over the site of drug release, or using endogenous biochemical stimuli such as the low pH and high glutathione 

content found in cancer tissue. Such a stimuli-responsive nature has been incorporated into dispersion 

polymerisations through copolymerisation of functional monomers. 

With this in mind, Pan and co-workers report a redox-responsive system using PISA for delivery of a 

topoisomerase inhibitor camptothecin (CPT).[141] A disulphide functional prodrug containing solvophilic block 

copolymer was chain extended with benzyl methacrylate and a disulphide cross linker as the core-forming block 

to form 35 nm spherical micelles. All of the polymerisations reached full monomer conversion negating the need 

for extensive purification. The covalent drug-monomer approach allowed for high (12.8 wt%) drug content, and 

when incubated with 10 mM GSH (cytosolic concentration), 40% drug release occurred over 48 h. Although high 

loading was obtained, IC50 values of the micelles against HeLa cells were found to be between 6-7 µg mL-1 which 

is significantly higher than values reported for free CPT (0.08 µg mL-1).[141, 142]

In a second study, a photo-sensitive system using 2-nitrobenzyl methacrylate (NBMA) and a coumarin 

methacrylate was developed.[143] In this work the above monomers were chain extended from a P(HPMA) 

macro-RAFT agent to form spherical, worm-like and vesicle nano-objects in methanol as previously described. 

Upon photoirradiation (UV 365 nm) it was expected that the nitrobenzyl unit of NBMA would cleave and become 

a carboxylate group, and subsequently cause disassembly of the nano-objects. However, inclusion of the coumarin 

groups resulted in their dimerization as subsequent chain-chain cross-linking producing anionic nanogels. This 

strong transition from hydrophobic to hydrophilic was exploited for fast and efficient release of doxorubicin from 

each of the morphologies generated. The vesicle assemblies had the greatest cytotoxicity in comparison to worm-

like and spherical morphologies.[143]  

Brendel and co-workers, report an oxidation responsive system as a possible vector to inflammatory disorders 

which have increased levels of reactive oxygen species.[139, 144] By chain extending an N-acryloylmorpholine 

(NAM) macro-RAFT agent with N-acryloylthiomorpholine (NAT), a PISA process ensued resulting in 25-75 nm 



spherical micelles depending on the comonomer composition. After incubation with 10 mM hydrogen peroxide 

the thiomorpholine solvophobic block oxidised into a hydrophilic polysulfoxide, resulting in particle disassembly. 

This was further probed by the reduction of fluorescence intensity of a model hydrophobic drug, Nile Red, which 

was released after treatment with hydrogen peroxide, highlighting this systems potential use for drug delivery 

(Figure 11).[139]  

3.3 Biomacromolecule encapsulation 

As discussed in the previous section, delivery and transportation of biomacromolecules, such as therapeutic 

proteins are a potential alternative to small molecule drug delivery. Polymeric vesicles (polymersomes) have been 

shown as promising carriers for enzymes, proteins and antibodies due to their large hydrophilic 

compartment.[145] Typically polymersomes are prepared at low polymer concentrations and with organic 

solvents, using traditional self-assembly methods[100] or thin-film rehydration[146] of block copolymers which 

becomes problematic at large scales. In the above sections, we have highlighted how PISA can be used to produce 

a variety of morphologies including polymersomal vesicles, which may be able to encapsulate cargo in high 

quantities. Traditional PISA protocols are an adaptation of conventional RAFT polymerisations, and as such are 

performed at high temperatures (e.g 70°C), which could lead to denaturation of biological materials. This has 

been overcome by low temperature PISA protocols, such as redox initiation,[113] however many of these 

examples only resulted in spherical morphology. Boyer and co-workers reported on the low temperature 

photoinduced PISA of HPMA from a PEGylated macro-RAFT agent able to produce spheres worms and vesicles. 

This approach has been extended in three separate studies for protein encapsulation and subsequent biological 

applications.  

Zhang and co-workers describe an adaptation of Boyer and co-workers HPMA photo-PISA, where at HPMA 

concentrations > 15 wt%, higher order morphologies, including vesicles could be prepared.[147] Using this 

system full monomer conversions were achieved in under 30 mins irradiation. As a proof of concept for 

encapsulation, fluorescein labelled BSA was added into the PISA formulations, which remained 90% active as 

determined by the hydrolysis of 4-nitrophenyl acetate. Interestingly the BSA encapsulated within the 

polymersomes was 65% more active than BSA heated to 70°C, similar to that if the polymerisation was conducted 

with thermally initiation.[147]  

Such polymersome-protein hybrids can also be used as enzymatic nanoreactors assuming that the membrane is 

permeable to small molecule substrates. This approach was studied by Gibson and O’Reilly who utilised the above 

HPMA photo-PISA technique to generate separate glucose oxidase (GOx) and horseradish peroxidase (HRP) 

loaded vesicles with encapsulation efficiencies of around 25%.[148] First proof of concept experiments, showed 

that HRP vesicles could catalyse the oxidation of 3,3’-dimethoxybenzidine (DMB) despite the substrates 

residence in the external medium, indicating the vesicle membranes were permeable to small molecules. 

Furthermore, using the GOx and HRP loaded vesicles, D-glucose was metabolised into d-glucono-1,5’-lactone, 

producing hydrogen peroxide as a by-product which facilitated the catalytic oxidation of DMB by HRP within a 

separate vesicle, highlighting how multiple enzymes can be used in a cascade even though they are physically 

seperated.[148]  



The above strategy was further utilised in which L-asparaginase (ASNS) was encapsulated into the permeable 

vesicles as a possible treatment for lymphoblastic leukaemia. Importantly, the ASNS loaded vesicles showed 

excellent stability towards proteolylsis from α-chymotrypsin, whereas free ASNS and PEGylated ASNS had no 

activity after the same treatment(Figure 12). To test this effect in vitro, human lung cancer fibroblasts were 

silenced to inhibit ASNS activity, thus rendering the cells reliant on the treated ASNS loaded vesicles for 

proliferation. In vivo biodistribution studies of the ASNS loaded vesicles showed accumulation within the typical 

organs for nanoparticle systems (spleen, liver, kidneys) and slower clearance in comparison to the free 

enzyme.[149] This approach was extended by exploiting poly(sarcosine) macro-RAFT agents to produce 

enzymatic nanoreactors via photoinduced PISA of HPMA. The resulting polymersomes showed high stability 

against multiple proteases compared to PEG counterparts. [150] The authors were subsequently able to utilise 

surfactants within these PISA reactions to incorporate a functional channel-forming membrane protein (OmpF 

Porin). Colorimetric assays revealed successful incorporation and membrane channel function of these OmpF 

Porin vesicles, in comparison to analogous polymersomes without OmpF Porin which showed negligible colour 

changes.[151] 

Figure 12 Encapsulation of L-Asparaginase using photo-PISA of HPMA to produce permeable catalytic polymersomes.[149] Copyright 2017. 
Reproduced with permission from the American Chemical Society.

Over the last 5-7 years RAFT dispersion polymerisations in the form of PISA has made nanoparticle formation 

more accessible than ever before. The ability to modulate surface and core chemistries, as well as particle 

morphology in one-step has made this particularly attractive for fundamental or application driven research at the 

biological interface. Recent synthetic advances made now mean that these systems can easily be generated in 

aqueous conditions with no by-products (100% monomer conversion), in low temperature and oxygenated 

conditions.[152, 153] Nonetheless, the limited number of core-forming monomers capable of aqueous PISA mean 

that introduction of stimuli-responsivity is a challenging prospect, unlike in traditional self-assembly processes. 

Furthermore, what is clear from PISA oriented literature is that the resulting spherical particles are relatively small 

(< 30 nm diameter)[99] and unlike in emulsion systems (vide infra), altering the molecular weight of the core 

forming block typically does not modify particle size without a morphological transformation, which is not 

suitable for all applications. Even still, if worm-like or polymersomal morphologies are required from 



novel/unreported block copolymer compositions, one must perform the arduous task of producing a pseudo-phase 

diagram by mapping the morphologies of the resulting nano-objects by solvophobe chain length and total solids 

content.  

4 Suspension polymerisation 

Suspension polymerisations take place within micron sized monomer droplets, using a monomer soluble initiator 

stabilised by conventional surfactants.[48] They are similar to miniemulsion polymerisations in the sense that 

they are essentially compartmentalised bulk polymerisations, however are dispersed with agitation only and not 

with sonication (Figure 13). This typically results in the formation of microparticles (> 1 µm diameter) decorated 

with the surfactants present during the polymerisation. While this review is focussed on the synthesis of 

biologically relevant nanoparticles (not micron sized) using RDRP, an interesting approach to generate non-

spherical nanoparticles has arisen using a post-polymerisation strategy pioneered by Monteiro and co-workers 

using RAFT suspension polymerisation.[154] As mentioned in the previous section, the formation of non-

spherical, elongated nanoparticles is becoming increasingly important due to their longer circulation time and thus 

greater therapeutic efficacy compared to spherical analogues. This approach operates on the use of a 

thermoresponsive macro-RAFT agents which collapse and become hydrophobic during the high temperatures 

(70°C) of suspension polymerisations. Upon cooling the macro-RAFT agent swells within the aqueous phase, and 

after addition of small amount of plasticiser, the 1-2 µm spheres transform into long worm-like fibrils stabilised 

by the thermoresponsive shell. Notably in many of the works which use this technique, it is mistakenly called a 

dispersion or emulsion polymerisation whereas it is actually a suspension polymerisation.  

Figure 13 Mechanism of suspension polymerisation. I = initiator species, yellow = oil/monomer phase, blue = aqueous phase, red = polymer 
phase.



Davis and co-workers have expanded on this approach using poly((diethyleneglycol) methyl ether methacrylate)-

co-(HPMA) (P(DEGMA)-co-(HPMA)) macro-RAFT agents with P(DEGMA) being the thermoresponsive 

component.[155] Following suspension polymerisation of styrene droplets stabilised by sodium dodecyl sulfate 

(SDS), 1 µm polystyrene block copolymer spheres were generated, and after cooling and addition of different 

volumes of toluene (20-160 µL mL-1) polymeric nanowires, vesicles and lamellae were produced (Figure 14). 

Interestingly, as seen in other supramolecular systems, sonication could be used to cut the nanowires into much 

shorter rod-like structures. To expand the scope of this approach Davis and co-workers have now shown it is 

possible to achieve these nanobjects with a variety of polymer cores in multigram quantities, and showing high 

biocompatibility in humane endothelial (HUVEC) and fibrosarcoma (HT1080) cells regardless of 

morphology.[155, 156] In a further study, Davis and co-workers report the morphological stability in the presence 

of surfactants of the above nanoparticle system, via NOESY NMR spectroscopy. This aspect is vital in understand 

the fate of complex nanomaterials once exposed to biological environments. [157]  

Although this technique allows for control over nanoparticle morphology, the specific thermoresponsive shell 

composition required to achieve this phenomenon severely limits surface functionality available for further 

modification. Relatively little biological work (only cell viability) has been reported using nanoparticles prepared 

using this particular technique thus far. However, it is easy to see that molecular drug delivery, bioimaging and 

other applications not requiring biologics (which may denature in the presence of surfactant and organic solvent), 

could be achieved using this approach. Aqueous dispersion polymerisations (as discussed above) can achieve 

many of the same properties (morphology control, tuneable surface and core composition), but can be performed 

in the absence of surfactant and at low temperatures, possibly making this suspension polymerisation method less 

useful. 



Figure 14 Suspension polymerisation of styrene from a hydrophilic thermoresponsive macro-RAFT agent. Upon addition of different volumes 
of toluene (0, 20, 40, 80 and 160 µL mL-1) and cooling to room temperature various morphologies were formed.[155] Copyright 2015. Adapted 
with permission from the Royal Society of Chemistry. 

5 Emulsion polymerisation 

In a typical emulsion polymerisation, the initial reaction mixture is comprised of micrometre sized monomer 

droplets which are immiscible in the aqueous continuous phase, surfactant micelles and a water soluble 

initiator.[46] Particles are generated first through monomer propagation in the aqueous phase, forming 

hydrophobic Zmers which subsequently nucleate micelles (or self-nucleate in surfactant free emulsion 

polymerisations). Particle growth ensues during polymerisation of monomer which is continuously diffusing from 

monomer droplets into the surfactant micelles, which when complete, results in surfactant coated solid latex 

nanoparticles. This process has been implemented using free-radical polymerisation for decades to generate vinyl 

polymers at large scales and in environmentally friendly conditions. The compartmentalisation effect enables fast 

propagation rates, high monomer conversions and importantly low termination rates resulting in high molecular 

products.[46] Due to these key advantages, especially for industrial applications, much work has gone into 

translating RDRP techniques to emulsion polymerisation. However the complex monomer and radical transfer 

mechanisms mean that RDRP methods cannot be implemented in ab initio emulsion polymerisations by simply 

adding in a control agent. 

Figure 15 Mechanism of emulsion polymerisation (1) reaction mixture, (2) initiation phase, (3) propagation and diffusion of monomer from 
monomer droplets to growing particles, (4) final latex particles. I = initiator species, yellow = oil/monomer phase, blue = aqueous phase, red 
= polymer phase.



In general, early studies to implement RDRP methods in emulsion processes resulted in one or more of the 

following drawbacks: (1) poor colloidal stability of the resulting latex; (2) lack of control over the molar mass, 

and (3) high Mw/Mn values.[51] This was overcome by implementing stabilising amphiphilic macroinitiators 

which are chain extended in the emulsion polymerisation and avoid the use of external surfactant. This was first 

pioneered by Hawkett and co-workers who used poly(acrylic acid)-b-poly(n-butyl acrylate) macro-RAFT agent 

micelles to seed a RAFT emulsion polymerisation of n-butyl acrylate (n-BA) leading to colloidally stable uniform 

block copolymer nanoparticles (Dh = 60 nm, PDi < 0.01) which are coated with P(AA) at their surface (Figure 

16).[158, 159] After dissolution in organic solvent, the block copolymers displayed narrow molecular weight 

distributions (Ð < 1.3) and excellent molecular weight control. This tactic was further implemented using NMP 

(poly(acrylic acid) based macroalkoxyamines) however little progress has been made on this topic since 2008, 

possibly due to its incompatibility with methacrylates.[160-163] In contrast, ATRP emulsion procedures have 

mainly focussed on inistabs (amphiphilic surfactant-like ATRP initiators) and water soluble initiators using either 

conventional ATRP or ARGET ATRP.[164-167] Many examples utilising these approaches unfortunately led to 

broad particle size distributions and unsatisfactory molecular weight control likely due to phase separation of the 

transition metal catalyst from the ATRP initiator.[60] As such the degenerative chain transfer mechanism of 

RAFT, and its compatibility with most monomer families, have led to this technique being the most popular RDRP 

emulsion polymerisation method and has now been expanded to a large range of monomers and stabilisers 

(cationic, anionic and neutral).[168] Many of these studies focus on synthetic aspects (kinetics and morphology 

control)[169-171], however some features could be useful in designing nanoparticles for biological applications. 

[172] 

5.1 RAFT emulsion polymerisation 

Particle size has been shown to drastically influence biological performance, affecting nanoparticle cellular 

uptake, biodistribution and thus potential therapeutic efficacy.[98] Even though most reports on RAFT emulsion 

polymerisations yields only spherical morphologies the resulting nanoparticles are highly uniform and in over 

different size ranges (30-200 nm diameters).[98] Davis and co-workers have previously been shown that particle 

volume has a linear relationship with the molecular weight of the polymeric core and as such can be tuned during 

the core-forming step.[173] The particle sizes produced by RAFT emulsion polymerisation are significantly larger 

than those produced by dispersion polymerisations (<30 nm diameters), which may make the former more useful 

in vivo by reducing their susceptibility to renal clearance.[174]  



Figure 16 Schematic representation of RAFT emulsion polymerisation using an amphiphilic macro-RAFT agent stabiliser.[159] Copyright 
2005. Reproduced with permission from the American Chemical Society.  

As with the dispersion PISA formulations previously described, the stabilising macro-RAFT agents in RAFT 

emulsion processes are imparted at the particle surface. Stenzel and co-workers were the first to exploit this 

approach for biological applications, through the introduction of glycosylated moieties, which are known to 

improve disease targeting and bacterial interactions in vivo, when present at the particle surface.[175] To achieve 

this poly(glucose methacrylamide)-b-PS was used to stabilise the emulsion cross-linking copolymerisation of 

styrene and a redox responsive disulphide diacrylate monomer. The resulting nanoparticles were produced within 

6 h, were fairly uniform (PDi < 0.2) and within a biologically relevant size range (50-80 nm diameters). While 

the particles did disassemble after dithiothreitol addition (DTT), this did not occur in an aqueous environment but 

had to be pre-swollen in organic media making this response unsuitable for redox responsivity in vivo. 

Nonetheless, turbidimetric binding assays revealed a strong binding event to lectin Con A, with similar 

performances evident in bacterial adhesion studies. Importantly the RAFT emulsion polymerisation approach 

yields a particle whereby the polymeric corona is covalently attached to the nanoparticle core, thus cannot desorb 

in vivo potentially inducing toxicity or other negative side effects.[175] 

More recently, Lansalot and co-workers reported RAFT emulsion polymerisation using glycopolymer stabilisers. 

In this work alginate derived polysaccharide macromonomers were copolymerised with NAM and further chain 

extended with styrene emulsion polymerisation to generate polysaccharide coated nanoparticles.[176] 

Surprisingly, when emulsion polymerisations were performed with polysaccharide macromonomers severely 

decreased particle uniformity (Dw/Dn > 1.07) and broadened molecular weight distributions (Ð > 1.50) were seen 

in comparison to pure P(NAM) stabilisers (Dw/Dn < 1.05; Ð < 1.3).[176]  

Wang and co-workers report the synthesis of shell cross-linked pH responsive nanoparticles using RAFT emulsion 

polymerisation.[177] Emulsion polymerisation of styrene was initiated from a poly(2-(dimethylamino)ethyl 

methacrylate) (P(DMAEMA)) and cross-linked during the early phase of the polymerisation with a disulphide 

diacrylate monomer yielding 95 nm particles. Similarly to the above, degradation studies were performed in DMF, 

with particles completely disassembling after addition of DTT. In proof of concept drug release studies, 



indomethacin was encapsulated within the nanoparticles, and due to the pH responsive P(DMAEMA) shell, a fast 

release (70% with 24 h) was evident at pH 5.4 with the addition of DTT. Finally, although high cell viability was 

reported against human cervical cancer (HeLa) cells, this was only measured with concentrations up to 50 µg mL-

1 yielding 70% viability which is relatively cytotoxic for such a low concentration.[177] 

In a recent report by Armes and co-workers, they were able to elegantly combined RAFT emulsion 

polymerisation, and RAFT dispersion polymerisation to produce framboidal hollow pH responsive nanoparticles. 

Chain extension of a preformed P(Gly)-b-P(HPMA) polymersome  or 3% P(MPC)-b-P(HPMA) mixed 

polymersome with pH responsive monomer diisopropylaminoethyl methacrylate under emulsion conditions leds 

to the formation of ~300 nm framboidal vesicles. Upon addition of acid the DPA block becomes hydrophilic 

reverting the structure into small ABC triblock nano-objects with no defined morphology determined via TEM 

and SAXS analysis. Interestingly these peculiar vesicles closely mimic the structure of the dengue virus which 

are renowned for their endosomal escape properties. Furthermore the phosphoryl-choline decorated derivatives 

displayed preferential uptake into triple-negative breast cancer cells (MDA-MB-231) in comparison to normal 

MCF-7 breast cancer cells. The endosomal escape properties of these materials were exploited to deliver an EGFP 

encoding plasmid using electroporation to load into the hollow core.  

One of the major advantages of RDRP methods is the possibility of introducing functional groups at both ends of 

the polymer chain typically imparted by the respective control agent(s).[178] These can then be used to introduce 

biologically relevant functional molecules (e.g. nucleic acids, proteins, targeting peptides etc.). This approach was 

applied to RAFT emulsion polymerisation by Poon et al. who described the post-modification of carboxylated 

particles with microRNA.[179] First a poly(acrylamide)-b-PS stabiliser was synthesised with a RAFT agent 

exhibiting a functional carboxylic acid on the reinitiating group. This was then chain extended in an ab initio

RAFT emulsion polymerisation of styrene yielding very small 11 nm nanoparticles. The carboxylic functionality 

was first modified with an amino functional pyridyldisulfide as a redox-responsive linker for the microRNA, 

which was further conjugated at the particle surface in a typical thiol exchange reaction. Addition of 10 mM GSH 

resulted in 60% microRNA release from the particle surface over 72 h. They explain that the particular microRNA 

used (miR-200b) can supress the epithelial-mesenchymal cell transition.[179] 

The high functional group density that RAFT emulsion polymerisation imparts on the particle corona was further 

used for attachment of a rhodamine dye to produce nanoparticles capable in in vitro and in vivo imaging 

applications.[180] In this case, Poon et al synthesised both 11 and 22 nm polystyrene particles and were 

subsequently conjugated with rhodamine amine at 10 and 12% efficiencies respectively. After incubation with 

HK2 cells, the punctuated structure in fluorescence microscopy images indicated endosomal or lysosomal 

colocalisation, consistent with many other studies. Finally the 22 nm rhodamine labelled nanoparticles were 

injected intravenously in healthy mice, with the highest accumulation occurring in the liver and kidneys.  While, 

this was the first in vivo study of latex nanoparticles synthesised via RAFT emulsion.[180]   



Figure 17 Synthesis of polysulfonate decorated polystyrene nanoparticles synthesised using RAFT emulsion polymerisation-induced self-
assembly as potential wound healing agents.[181] Copyright 2018. Adapted with permission from Wiley-VCH Verlag GmbH & Co. 

Our group have also utilised RAFT emulsion polymerisation to produce the first heparin mimicking, 

polysulfonated nanoparticles, able to stabilise the basic growth factor (bFGF), imperative in wound-healing 

applications. [182] In this work, poly(2-acrylamido-2-methylpropane sodium sulfonate) (P(AMPS)) macro-

RAFT agents were prepared using aqueous RAFT polymerisation, then were directly chain extended with styrene 

via emulsion polymerisation without prior purification (Figure 17). A systematic parameter screening study 

revealed that stirring speed and P(AMPS) chain length had the greatest effect on particle size and polydispersity. 

Proliferation studies indicated that the polysulfonated nanoparticles had three fold and two fold greater bFGF 

stabilisation compared to heparin and bFGF alone respectively. It was postulated that this effect was due to a 

higher valency of growth factor being transported to the bFGF receptor at the cell surface.[181]  

Additionally, we have reported the in vivo and in vitro tolerability of different sized PEGylated nanoparticles 

prepared via RAFT emulsion polymerisation. Diblock macro-RAFT agents of P(PEGA)-b-((t-BA) or (n-BA)) 

were prepared via conventional RAFT polymerisation, then further assembled into micelles which were chain 

extended during the subsequent RAFT emulsion polymerisations. Particles with diameters between 30 and 130 

nm were prepared, and were found to be non-toxic against colorectal carcinoma, and tolerated in acute and sub-

acute in vivo studies after intraperitoneal injection. Finally, after loading with a near infra-red fluorescent probe, 

the, organ accumulation and pharmacokinetic studies revealed significant deposition in the liver and intestine, 

with clearance rates similar to other intraperitoneally administered formulations.[183]  

Due to their non-degradable nature, highly uniform polydispersity and dense surface chemistry, nanoparticles 

prepared by RAFT emulsion polymerisation can be excellent models when studying nanomaterials in biological 

systems. In a recent study, Davis and co-workers utilised polystyrene core nanoparticles, copolymerised with Cy5 

maleimide for fluorescent labelling to investigate the effect of particle size and surface chemistry on cellular 

association under flow conditions. Nanoparticle suspensions with diameters of 40, 70 and 130 nm, each with a 

variety of surface chemistries were incubated with HUVEC cells cultured in a model microfluidic vascular 

network, and compared to HUVEC cells under static conditions. In general it was found that flow conditions 

significantly reduced the cellular association, however it was noted that the larger positively charged particles had 
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significantly higher association than the smaller derivatives under flow conditions. In constrast, when studying 

the negatively charged particles, he opposite effect was observed.[184]  

Not all biological applications need to be biomedical. For instance, Carlmark and co-workers have recently 

reported the preparation of both low and high Tg latexes with RAFT emulsion polymerisation for cellulose 

modification. Emulsion polymerisations of BMA and MMA were initiated from a P[(DMAEMA)-co-(MAA)] 

macro-RAFT agent, resulting in uniform nanoparticles (PDi < 0.1). The aqueous system allowed for direct 

adsorption onto cellulose fibres monitored using a quartz crystal microbalance. Contact angle measurements 

indicated that P(BMA) latexes induced hydrophobicity before and after annealing, whereas with high Tg P(MMA) 

latexes, this only occurred after annealing. It was found that these latexes significantly improved the mechanical 

strength of these biocomposites after annealing.[185]  

From a biological perspective, RAFT emulsion polymerisation is a relatively simple method to produce uniform 

nanoparticles with tuneable (monomer composition) cores and corona, specific surface functionality (reinitiating 

group on RAFT agent) with a variable size range (target molar mass) all in an aqueous environment without 

external surfactants. Many of the advantages seen here are comparable in RAFT aqueous dispersion 

polymerisations, which can also produce non-spherical species (notwithstanding the emulsion systems also show 

this ability)[186] using similar conditions. However, there are very few monomers capable of the soluble 

monomer to insoluble polymer transition required for aqueous dispersion polymerisation (vide supra).[99] In 

contrast, the number of monomers capable of emulsion polymerisation (i.e water immiscible molecules e.g MMA, 

styrene, BA) is far greater, which may be useful when tailoring core properties. Furthermore, the most common 

use of core-shell nanoparticles is controlled drug delivery, powered by the high loading efficiencies of insoluble 

therapeutics.[187] However aqueous dispersion polymerisations typically use much more hydrophilic 

components than analogous emulsion polymerisations, potentially limiting this application. 

Nonetheless similar core-shell structures with higher order morphologies can also be prepared using popular self-

assembly procedures such as solvent-switch protocols.[100] To date, these are the most heavily used methods and 

have been used to prepare nanoparticles far more complex (stimuli-responsiveness,[188] degradability[189] and 

specific disease targeting[190]) than any heterogenous RDRP technique. However, as stated above, these efforts 

can only be realised at low concentrations and require organic solvents, thus must be purified before biological 

use. Moreover the resulting particles are generally dynamic and may disassemble at low concentration possibly 

leading to premature clearance in vivo.  

There have been some efforts to avoid the use of surfactants without RDRP methods (i.e surfactant free emulsion 

polymerisations using conventional free radical polymerisation) which can be achieved in one step from monomer 

directly to nanoparticle.[191-193] However these typically lead to a large proportion of high molar mass 

hydrophilic polymers contaminating the continuous phase, which must be removed through dialysis or 

centrifugation. Furthermore unless specific monomer combinations are used with this approach, it is non-trivial 

to produce sub 200 nm particles which are the most efficacious in biological studies.[194]  



6 Conclusions and Future Perspectives 

Overall the field of RDRP in dispersed states is undergoing a clear revolution from primarily synthetic work 

towards understanding how it can be implemented in modern applications, including biomedicine. It is now well 

understood how to translate popular RDRP techniques with many heterogeneous polymerisations and their 

advantages realised to prepare systems applicable for delivery (gene and drug), and fundamental studies both in 

vitro and in vivo.  The degenerative chain transfer mechanism of RAFT, and its synthetic versatility (monomer 

compatibility, aqueous and low temperature polymerisations) have resulted in this approach being applied in all 

heterogeneous polymerisations discussed above, with NMP and ATRP being largely forgotten. An important 

factor in this, has been the development of RAFT aqueous dispersion polymerisations to produce non-spherical 

nanoparticles, such as rods and vesicles in low temperature environments which show enhanced cellular uptake 

and can be used to entrap hydrophilic cargo. Nonetheless the limited number of core-forming monomers severely 

reduces the flexibility of this system. In contrast, RAFT emulsion procedures can be performed with practically 

any water immiscible monomer, and by modifying the monomer and stabilising macro-RAFT agents involved, 

the polymer shell, core, particle size and surface functionality can be tuned. The original motivation to implement 

heterogeneous techniques was to enhance scalability, and improve the industrial applicability of polymers and 

block copolymers with narrow molar mass distributions. What is clear however, is that the facile nature of many 

of these techniques has led to monomer functionality and block copolymer composition being the more important 

features compared to polymer dispersity.  

Nonetheless, a number of challenges still remain if such systems are to be implemented in commercial therapeutic 

applications. At present, very few of these formulations have been studied in vivo, and very little information is 

available regarding biodistribution, clearance rate and long-term tolerability. A potential reason for this may be 

that while responsive materials which disassemble under heat, light or chemical stimuli have been developed, 

there are almost no examples of heterogeneous RDRP techniques to produce degradable materials such as 

polyesters, or containing such subunits. Such systems such as polymerisation of cyclic ketene acetal monomers, 

are relatively easy methods to produce such materials using radical chemistry. As such, focus should shift to these 

milestones over the next few years if heterogeneous RDRP is to reach its full potential in medical applications.  
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