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Quantification of Parameter Uncertainty in Wind Farm Wake Modeling

Jincheng Zhanga, Xiaowei Zhaoa,⇤

aSchool of Engineering, University of Warwick, CV4 7AL, Coventry, UK

Abstract

Reliable prediction of wind turbine wakes is essential for the optimal design and operation of wind farms. In order to achieve this,
the parameter uncertainty of analytical wake model is investigated for the first time. Specifically, large eddy simulations (LES) of
wind farms are carried out with di↵erent turbine yaw angles, based on SOWFA (Simulator fOr Wind Farm Applications) platform.
The generated high-fidelity flow field data is used to infer the low-fidelity model’s parameters within the Bayesian uncertainty
quantification framework. After model calibration, the posterior model check shows that the predicted mean velocity profile with
the quantified uncertainty matches well with the high-fidelity CFD data. The prediction of other quantities, such as wind farm flow
field and turbine power generation, is also carried out. The results show that the wake model with the model parameters specified
by their posterior distributions can be seen as the stochastic extension of the original wake model. As most of the existing wake
models are static, the resulting stochastic model shows a great advantage over the original model, as it can give not only the static
wind farm properties but also their statistical distributions.
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1. Introduction

As one of the most important clean energy resources, wind
energy has been investigated extensively all over the world. In
order to reduce the overall cost of wind power harvesting, wind
turbines are usually grouped together to form a large wind farm.
However, wake interactions between individual turbines within
a wind farm have a large impact on the farm’s overall perfor-
mance [1], e.g., the wind turbines operating in the wakes caused
by the upstream turbines usually generate less electricity and
experience more severe structural load due to the reduced wind
speed and increased flow turbulence. Therefore, wake model-
ing is of great importance in order to take wake interactions into
account in the optimal design and control of wind farms, which
is becoming a very active area [2, 3]. A range of wake models
have been developed in the literature [4], including the high-
fidelity large eddy simulation (LES) models [5, 6], medium-
fidelity 2D dynamic models [7, 8], and low-fidelity analytical
models [9, 10, 11].

The high-fidelity models solve the Navier-Stokes equation
with the turbine rotor represented by actuator lines [12, 13, 14]
or actuator disks [15, 16, 17, 18]. Despite the rapid devel-
opment of high-performance computing technology, the high-
fidelity models are still not suitable for the control design or
real-time control study due to their high computational cost
and long simulation time. Thus the low-fidelity wake mod-
els based on analytical formulations [19, 20, 21] remain the
main tool in the industry and are still under active development
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[22, 23, 24, 25]. However, these models are not able to pre-
cisely predict the detailed flow dynamics and careful calibration
of empirical model parameters is often needed to increase the
prediction accuracy [26]. The underlying uncertainty of analyt-
ical wake models needs to be investigated in order to achieve
reliable predictions of wind turbine wakes.

The input uncertainty and model uncertainty are the two main
sources of uncertainty in wind turbine wake predictions. The
former has been investigated in the literature. In [27], wind di-
rection uncertainty was investigated and its impact on predict-
ing turbine power generation was evaluated. The results showed
the inclusion of direction uncertainty improved the agreement
between the power predictions of analytical wake models and
measurement data. In [28], Jensen wake model was employed
with the consideration of the inflow direction uncertainty to
predict the wake profile behind wind turbines and the results
showed a better match between the predicted wake profiles and
measurement data. Recently, the inclusion of uncertainty in ac-
tive wake control is also receiving attention [29, 30]. However,
all these work only considered the input uncertainty and did not
consider the model uncertainty. The inclusion of model uncer-
tainty is of great importance for reliable predictions of wind tur-
bine wakes, which enables optimal design and control of wind
farm. Therefore, the present paper focuses on rigorously quan-
tifying the model uncertainty in wind farm wake predictions in
the Bayesian uncertainty quantification (UQ) framework.

The Bayesian UQ for a general computer model was first pre-
sented by Kennedy and O’Hagan [31], where the model uncer-
tainty was classified into parameter uncertainty, model inade-
quacy, residual variability, parametric uncertainty, code uncer-
tainty, etc. Among them, the parameter uncertainty and model
inadequacy are the two most important uncertainty sources.
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The former arises from the lack of knowledge of the heuris-
tic model parameters and the latter represents the discrepancy
between the true physical values and the model output at the
optimal model parameters. In recent years, a lot of research
attention has been paid to the parameter uncertainty of fluid dy-
namics such as boundary layer flows [32, 33, 34], channel flows
[35], transitional flows [36], compressible jet-in-crossflow [37],
etc. To our knowledge, the parameter uncertainty of wake
model in wind farm simulations has not been investigated yet
in the literature, which is the main aim of the present paper.
The advantage of capturing model uncertainty through model
parameters instead of model inadequacy is that the former al-
lows the multi-turbine predictions with quantified uncertainty
being carried out in a straightforward manner.

The empirical parameters in existing data-driven analytical
wake modeling [14, 38] were usually calibrated against high-
fidelity simulations or measurement data. But the underlying
uncertainty was usually ignored in these work thus only fixed-
point predictions can be carried out for the quantities of interest
(QoIs). In the present work, the high-fidelity LES data, here
generated by SOWFA (Simulator for Onshore/O↵shore Wind
Farm Applications) [39, 40], is used to calibrate the analytical
wake model, using FLORIS (FLOw redirection and Induction
in Steady-state) [14] as an example, in terms of the parame-
ters’ probability distribution functions (PDFs) in the Bayesian
UQ framework. The resulting model with parameter uncer-
tainty (called stochastic FLORIS) can predict the statistics of
the QoIs which include the information for both the mean value
and the corresponding uncertainty while the fixed-point calibra-
tion can only predict a single value. An apparent advantage of
this method is that it can be used to not only maximise the av-
erage power but also minimise the power fluctuation while the
fixed-point prediction of the QoIs cannot be used for the latter.

Our study shows that the stochastic FLORIS performs much
better than the original wake model FLORIS. First, the mean
flow field prediction is greatly improved and a correct charac-
teristic of uncertainty in the ”mixing zone” is predicted, which
agrees with the high-fidelity SOWFA results. Second, the
prediction for the power generation shows that the stochastic
FLORIS performs similarly as the FLORIS model in terms of
predicting average turbine power, but it performs much better
in terms of predicting the turbine power fluctuation. The main
contribution of the present paper is the first application of un-
certainty quantification method in wind farm wake modeling
and the detailed analysis of the resulting stochastic model. This
work paves the way for wind farm predictions with quantified
uncertainty and the proposed framework can be easily applied
to other wake models.

The remaining part of this paper is organised as follows: the
Bayesian UQ approach is described in Section 2. The appli-
cation of the UQ approach in the wake model FLORIS is de-
scribed in Section 3, where the formulation of FLORIS and the
procedure of high-fidelity data generation are given. The results
are given in Section 4, including the parameter uncertainty of
FLORIS inferred from the high-fidelity data and the evaluation
of the prediction performance of the developed FLORIS model
with parameter uncertainty. The conclusions are drawn in Sec-

tion 5.

2. Bayesian Uncertainty Quantification

The UQ approach used in this work is briefly described in this
section and further details can be found in [33, 34]. In Bayesian
UQ framework, various forms of uncertainties are represented
through random variables, which are usually characterized by
their PDFs. Here for the parameter uncertainty, model parame-
ters are treated as random variables. According to Bayes’ rule,
the posterior distributions of model parameters can be obtained
by

p(z|d) / p(d|z)p(z), (1)

where p(z) represents the prior distribution of the model param-
eters z and p(d|z) represents the likelihood of the experimental
observation d given z. A stochastic model needs to be con-
structed in order to obtain the likelihood. In this work it is con-
structed by simply modeling the model inadequacy through a
multiplicative Gaussian random variable:

d̃ =(1 + ⌘)M (x, z), (2)

where d̃ is the true value of the experimental observation,
M (x, z) is the prediction of d̃ by the computer model which
depends on the explanatory variable x (e.g. turbine yaw an-
gle) and the model parameter z, and ⌘ is a random vector with
each component ⌘i being zero-mean, independent and identi-
cally distributed Gaussian, i.e. ⌘i ⇠ N (0,�2). d̃ can be related
to the experimental observation d as:

d = d̃ + e. (3)

Here e represents the measurement error, which is modeled as
a zero mean, independent and identically distributed Gaussian,
i.e. ei ⇠ N (0,�2

e). �e is determined from the corresponding
experiments. From Eq. 2 and 3, the model output can be related
to the experimental observation as

d =(1 + ⌘)M (x, z) + e. (4)

Thus,

d|�, z ⇠ N (µ, �), (5)

where

µ =M (x, z) and � =M T (x, z)�2M (x, z) + �2
e I. (6)

Eq. 1 can then be recast as:

p(✓M |d) / 1
p

(2⇡)Nd |�|
exp(�1

2
�T��1�)p(✓M) (7)

where ✓M denotes {�, z}, Nd is the dimension of the exper-
imental observation, |�| represents the determinant of �, and
� = d �M (x, z).
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Then a sampler is employed to obtain the posterior samples
according to Eq. 7 and the kernel estimation is used to evalu-
ate the posterior PDFs of the model parameters. In this work
the adaptive Metropolis-Hastings Markov chain Monte Carlo
(MCMC) sampler [41], as implemented in the R [42] package
MHadaptive [43], is employed. Once the calibration is com-
pleted, the model prediction can be carried out by propagating
the posterior PDFs of model parameters through the computer
model to obtain the PDFs of the QoIs. The so-obtained PDFs
are in fact the posterior distribution of the QoIs given the exper-
imental observation:

p(q̃|d) =
Z

p(q̃, z|d)dz

=

Z
p(q̃|d, z)p(z|d)dz

=

Z
p(q̃|z)p(z|d)dz, (8)

where q̃ represents the QoIs, which can be the same quantity as
the experimental observation or other flow quantities. The last
step in Eq. 8 follows by assuming q̃ and d are conditionally
independent given z.

3. Application to wind farm wake modeling

The Bayesian UQ approach described above can be used for
general fluid systems and is thus applied to wind farm wake
modeling in this section. For this purpose, the computer model
M (x, z) and the experimental observation d in Equation (7)
need to be specified. Here the computer model M (x, z) is spec-
ified as the analytical wake model FLORIS, with x being the
turbine yaw angle, z being the empirical parameters in FLORIS,
and the output M being the flow field prediction. The detailed
formulation of M (x, z) is given in Subsection 3.1. The exper-
imental observation d is generated by high-fidelity numerical
experiments with the simulation details given in Subsection 3.2.

3.1. An Analytical Wake Model - FLORIS

The analytical wake model FLORIS is briefly described in
this section, including the modeling of wake deflection, wake
expansion and wake velocity. Further details can be found in
[14].

For wake deflection, the turbine wake center yw(x) is deter-
mined by

yw(x) = Y + �yw,rotation(x) + �yw,yaw(x), (9)

where x is the downwind coordinate, Y is the turbine’s cross-
wind location, and �yw,rotation(x) and �yw,yaw(x) represent the
rotation-induced and yaw-induced wake lateral o↵set. They are
formulated as:

�yw,rotation(x) = ad + bd[x � X], (10)

and

�yw,yaw(x) =
⇠init(a, �)


15
h

2kd[x�X]
D + 1

i4
+ ⇠init(a, �)2

�

30kd
D

h
2kd[x�X]

D + 1
i5 (11)

� ⇠init(a, �)D[15 + ⇠init(a, �)2]
30kd

, (12)

where X is the turbine’s downwind location, D is the turbine ro-
tor diameter, a is the axial induction factor, � is the yaw angle,
and ⇠init(a, �) = 2cos2(�)sin(�)a[1�a]. Three empirical param-
eters, ad, bd, and kd, are involved in this deflection model. After
determining the center of the wake location, the wake region be-
hind the turbine is divided into three zones and the diameters of
each zone are given by

Dw,q(x) = max(D + 2keme,q[x � X], 0), x > X, (13)

where the index q represents the di↵erent zones. The three
zones are the ”near wake” (q = 1), ”far wake” (q = 2), and
”mixing zone”(q = 3). ke, me,1, me,2 and me,3 are the four em-
pirical parameters involved in this wake expansion model. The
velocity profile within zone q is then modelled as

Uw,q(x) = U[1 � 2acq(x)] (14)

where U is the freestream wind speed, and

cq(x) =
"

D
D + 2ke[x � X]MU,q/cos(aU + bU�)

#2
. (15)

Five empirical parameters, aU , bU , MU,1, MU,2, and MU,3, are
used in calculating the wake profile. From the formulation
above, it can be seen that the FLORIS model predicts the ve-
locity profile at a specific downwind location as a piecewise
constant function.

In total, there are 12 empirical model parameters in the
FLORIS model. For Bayesian calibration, the prior distribu-
tions of these parameters, i.e. p(z), need to be specified. In this
work, the uniform distribution is used and their prior ranges are
given in Table 1. They are determined by trial and error and are
kept as large as possible so that the posterior is mainly deter-
mined by the likelihood.

3.2. High-fidelity Data Generation

SOWFA is employed here to generate high-fidelity CFD data
for Bayesian calibration of the FLORIS model described in
Subsection 3.1. SOWFA is a numerical solver developed based
on OpenFOAM for the 3D large eddy simulation of wind flow
around wind turbine array in the atmospheric boundary layer,
where the turbine rotors are represented by actuator disk model
(ADM) or actuator line model (ALM). The detailed implemen-
tations and validations of SOWFA can be found in [40, 13].
First, a precursor simulation of neutral atmospheric boundary
layer is carried out to obtain the initial flow field and inflow
boundary conditions. The employed turbulent inflow has a
mean hub-height free-stream wind velocity of around 8m/s and
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Model parameter kd ad bd ke me,1 me,2 me,3 aU bU MU,1 MU,2 MU,3

Left boundary 0.05 -50.0 -0.05 0.04 -1.0 -0.3 0.0 0.0 0.66 0.2 0.7 3.0
Right boundary 0.25 50.0 0.05 0.14 -0.2 0.3 4.0 10.0 2.66 0.8 1.3 15.0

Table 1: The prior range of model parameters.

Figure 1: A top view of the simulation domain at turbine hub height. The contour shows the instantaneous flow field at 400s for the case with turbine yaw angle �
equal to �40�.

a free-stream turbulence intensity (FSTI) of 6%. For the subse-
quent wind farm simulations, wind turbines are modeled using
ALM and the baseline pitch and torque control are defined as
in [44]. A top view of the simulation domain at hub height
is shown in Figure 1. The size of the simulation domain is
3000m ⇥ 3000m ⇥ 1000m, with the inflow wind coming from
southwest direction. For the mesh generation, a two-level local
mesh refinement is used, as is suggested in [45]. The outer
mesh dimension is 12m⇥12m⇥12m, the inner mesh dimension
is 3m ⇥ 3m ⇥ 3m, and the dimension of the mesh in-between is
6m ⇥ 6m ⇥ 6m. The total number of cells is 1.8 ⇥ 107. In this
way, the mesh size around the turbine rotors is 3 meters so that
the simulation can capture the detailed turbine wake dynamics.
A NREL 5-MW baseline turbine is positioned in the simulation
domain. For each turbine yaw angle, 1000-second simulations
are carried out with a time step of 0.02s. The mean velocity
field is then obtained by averaging the instantaneous flow field
from 400s to 900s. Each high-fidelity simulation by SOWFA

requires around 30 hours using 256 processors. The generated
LES data is then used to carry out the Bayesian calibration in
the next section.

4. Results

4.1. Model calibration

In order to calculate the likelihood, the stochastic model is
constructed according to Section 2. Since the parameter uncer-
tainty is the main focus of the current investigation, the model
inadequacy term is ignored in the remaining part of this paper.
SOWFA is employed for generating high-fidelity flow field data
for three scenarios, i.e. � = �40�, � = 0�, and � = 40�. Then
the hub-height velocity profile at 5 rotor diameters downstream
behind the wind turbine is extracted to calibrate the FLORIS
model, as the wind farm with downwind spacing of 5 rotor di-
ameters is of great practical interests and has been studied pre-
viously for wake modeling and wind farm control [14]. The

4



(a) Wake deflection (b) Wake expansion

(c) Wake velocity

Figure 2: The posterior distribution of the model parameters arising from modeling wake deflection, wake expansion, and wake velocity. The square points represent
the nominal values of the model parameters reported in [14].

measurement error is estimated as the zero-mean Gaussian with
�e = FSTI ⇥ U1. 12000 MCMC samples of the model pa-
rameters are generated with a burn-in length set to 2000. The
kernel estimation is used to estimate the posterior PDF from
the MCMC samples. The results are shown in Figure 2. For
simplicity, the posterior distributions of the model parameters

arising from modeling wake deflection, wake expansion and
wake velocity are shown in di↵erent sub-figures. As can be
seen from Figure 2, most of the model parameters are well
identified. Among them, the correlation between ad and bd is
strong, which agrees with the design of the wake deflection. In
fact, both parameters intend to capture the same aspect of the
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(a) � = �40�

(b) � = 0�

(c) � = 40�

Figure 3: The predictions of the velocity profiles at 5 rotor diameters downstream for three di↵erent yaw angles (� = �40�, 0�, 40�). The high-fidelity SOWFA
results are also included.

wake flow, i.e., the rotation-induced lateral o↵set of the turbine
wake. The nominal values of the model parameters reported in
[14] are also shown in Figure 2. They are the optimal values
determined by matching the turbine power with the SOWFA
results for a wind farm with 7 rotor diameters’ downwind spac-
ing. The Maximum A Posteriori (MAP) values of our calibra-
tion are slightly di↵erent from their reported values, which is
reasonable as the downwind spacing of our calibration case (5
rotor diameters) is slightly di↵erent from theirs.

The posterior model check is then carried out by propagat-
ing the posterior PDFs of the model parameters through the
FLORIS model. The predictions with quantified uncertainty
for the velocity profiles at 5 rotor diameters downstream are
shown in Figure 3. The results with nominal and MAP model
parameters are also shown for comparison. As can be seen, the

predicted velocity profile with quantified uncertainty matches
well with SOWFA results, indicating the Bayesian calibration is
done successfully. In addition, since the FLORIS model divides
the wake into three distinct zone and the velocity is determined
separately in each zone as a constant function of the crosswind
coordinate y, the velocity profile predicted with nominal/MAP
model parameters is discontinuous at the zone boundary, while
in reality the wake dynamics should be continuous. In this
sense, the predicted mean value of the velocity profile matches
much better with SOWFA results than the nominal/MAP pre-
dictions.

4.2. Evaluation of the stochastic FLORIS model

After model calibration, the FLORIS model with its param-
eters specified by their posterior distributions can be used to
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(a) Mean value predicted by stochastic FLORIS

(b) Standard deviation predicted by stochastic FLORIS

(c) FLORIS with MAP model parameters

Figure 4: The prediction of the flow field by the stochastic FLORIS model and
FLORIS with MAP model parameters, for the case of turbine yaw equal to
�40�.

predict the statistics of the flow field, turbine power generation,
turbine torque, etc. Hereby the FLORIS with uncertain model
parameters is denoted as the stochastic FLORIS model and we
evaluate the stochastic FLORIS model’s performance in terms
of predicting wind farm flow field and turbine power generation
in this section.

4.2.1. Flow field prediction
The posterior distributions of the 2D flow field at hub height

are obtained by propagating the PDFs of the model parameters
through FLORIS model. The mean value and standard devia-
tion of the flow field are given in Figure 4 for the case of turbine
yaw equal to �40�. The analysis for 0� and 40� turbine yaws
are similar, thus omitted. For comparison, the FLORIS pre-
diction with MAP model parameters is also included in Figure
4. The mean and standard deviation of the unsteady SOWFA
results are given in Figure 5. As can be seen, the mean flow
field given by stochastic FLORIS matches better with SOWFA
than the MAP results. Furthermore, the standard deviation of
SOWFA and stochastic FLORIS results shares a similar qualita-
tive feature: the largest unsteadiness/uncertainty is in the ”mix-
ing zone”.

(a) Mean value predicted by SOWFA

(b) Standard deviation predicted by SOWFA

Figure 5: The prediction of the flow field by SOWFA for the case of turbine
yaw equal to �40�. The mean and standard deviation are calculated based on
the instantaneous flow field from 400s to 900s.

4.2.2. Turbine power generation prediction
In order to evaluate the stochastic FLORIS model’s perfor-

mance in predicting turbine power generations, a series of high-
fidelity simulations are carried out for the case of two turbines
operating in a row. The simulation domain and mesh configura-
tion of these two-turbine cases are the same as the one-turbine
cases shown in Figure 1. The only di↵erence is that another
NREL 5-MW turbine is added in the flow domain located at
5 rotor diameter downstream of the first turbine. 30 samples of
turbine yaw angles are generated by Latin Hypercube Sampling
and the yaw angles are reported in Table 2. SOWFA is then
employed to generate the high-fidelity data for the 30 cases and
each SOWFA simulation requires around 30 hours using 256
processors. The turbine power generation is recorded for the
simulation period of 500 seconds (from 400s to 900s). The tur-
bine power generation is one of the primary concerns in wind
farm design and control, thus we now focus on the evaluation of
FLORIS and stochastic FLORIS in terms of predicting turbine
power generation.

In order to obtain a better prediction of the turbine power
generations, the input (inflow wind speed) uncertainty is also
considered in the FLORIS and stochstic FLORIS prediction.
We simply assume the inflow wind speed as a Gaussian, i.e.
u1 ⇠ N (µu,�2

u) (µu = 7.83 and �u = 0.276). The mean value
and the standard deviation are estimated from the unsteady in-
flow boundary condition of SOWFA simulations so that all the
predictions are carried out with the same inflow wind condition.

First, we compare the time series of power generation pre-
dicted by SOWFA and the trace of the power samples predicted
by FLORIS. Three typical cases are shown in Figure 6, where
the front turbine is in the condition of no yaw, negative yaw,
and positive yaw respectively. The results predicted by FLORIS
with MAP model parameters and stochastic FLORIS are both
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(a) �1 = 0.1�, �2 = �1.0�

(b) �1 = �24.2�, �2 = �26.4�

(c) �1 = 24.4�, �2 = �2.6�

Figure 6: The time series of power generation predicted by SOWFA and the trace of the power samples predicted by FLORIS/Stochastic-FLORIS. Three cases with
di↵erent yaw angles are included.
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(a) �1 = 0.1�, �2 = �1.0�

(b) �1 = �24.2�, �2 = �26.4�

(c) �1 = 24.4�, �2 = �2.6�

Figure 7: The distribution of power generation predicted by SOWFA, FLORIS, and Stochastic-FLORIS. Three cases with di↵erent yaw angles are included.
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Case No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
�1 16.5 0.1 12.7 2.3 -23.9 21.0 -6.7 -17.3 -3.1 -4.5 -14.1 -24.2 -14.0 8.1 24.4
�2 4.7 -1.0 24.8 8.7 -5.1 1.7 7.8 18.6 -21.8 21.2 -14.3 -26.4 -8.2 17.2 -2.6

continued 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
�1 -19.2 22.3 -9.6 -11.5 -28.4 28.6 15.4 6.7 -1.5 5.2 19.8 -27.3 27.5 -20.7 11.1
�2 -28.6 -19.4 -23.9 13.4 -17.0 -10.5 10.1 -24.2 28.0 -7.5 -13.9 14.9 3.1 27.0 22.6

Table 2: The samples of turbine yaw angles generated by Latin Hypercube Sampling. �1 represents the front turbine yaw and �2 represents the rear turbine yaw.

included. For all three cases, FLORIS and stochastic FLORIS
get the same results for predictions of power generations of the
front turbine, as the inclusion of parameter uncertainty only in-
troduces uncertainty to the downstream wake flow (thus only
a↵ecting the rear turbine’s power generation). For the rear tur-
bine, stochastic FLORIS predicts similar power fluctuations as
the ones given by SOWFA, while FLORIS with only input un-
certainty predicts much smaller power fluctuations. However, it
should be noted that this comparison is only meaningful in sta-
tistical sense, because the trace of power samples of FLORIS do
not have time relevance. In addition, the turbine power distribu-
tions can also be obtained from the time-series data or statistical
samples, which are shown in Figure 7. It is clear that stochastic
FLORIS results match with SOWFA results much better than
FLORIS. The FLORIS can be employed as an internal model
for wind farm control to maximise the power generation, e.g.
in [14]. Because the stochastic FLORIS can predict the distri-
bution of power generation, it can be used for more purposes,
such as maximising the average power, minimizing the power
fluctuation, guaranteeing certain amount of power generation
with certain confidence level, etc.

To further evaluate the performance of the stochastic
FLORIS model, the predictions of turbine average powers and
power fluctuations for all the 30 cases are given in Figures 8 and
9. The FLORIS and stochastic FLORIS get same results for the
power predictions of the front turbine. They di↵er slightly in
the predictions of rear turbine’s average power, and their per-
formances are similar compared to SOWFA results. However,
compared with FLORIS, the power fluctuation prediction abil-
ity of the stochastic FLORIS is improved dramatically in all the
30 cases due to the inclusion of parameter uncertainty.

5. Conclusions

The parameter uncertainty of FLORIS model has been in-
vestigated in this work. Large eddy simulations (LES) of wind
farms were carried out with di↵erent turbine yaw angles and
the generated high-fidelity flow field data was used to infer the
model parameters. After model calibration, the posterior model
check showed that the predicted mean velocity profile with the
quantified uncertainty matched well with the high-fidelity LES
data. The prediction of other wind farm quantities, such as the
hub-height flow field and the turbine power generation, was
then carried out. The results showed that the inclusion of pa-
rameter uncertainty improved the flow field prediction and a
correct characteristic of uncertainty in the ”mixing zone” was
predicted, which agreed with the high-fidelity SOWFA results.

As for the power generation, the inflow wind speed uncertainty
was also included and the stochastic FLORIS performed simi-
larly as the FLORIS model in terms of predicting average tur-
bine power, but it performed much better in terms of predicting
the turbine power fluctuation in all the test cases. This meant
that the stochastic FLORIS model can be used to not only max-
imise the average power but also minimise the power fluctua-
tion.

Future research may involve the UQ of other wake models
in order to reveal further insight in wake modeling and to im-
prove the reliability of wind farm wake predictions. Another
important research direction is the application of the resulting
stochastic wake model in wind farm optimal design and control.
In order to facilitate the use of the stochastic FLORIS model for
wind farm design and control community, the MCMC samples
of the model parameters are reported in the supporting material
of this paper. It can be used directly with FLORIS for predict-
ing the statistics of the turbine power generation, turbine torque,
flow field, etc.
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