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Developmental dyslexia, a severe deficit in literacy learning, is a neurodevelopmental learning disorder. Yet, it is
not clear whether existing neurobiological accounts of dyslexia capture potential predispositions of the deficit or
consequences of reduced reading experience. Here, we longitudinally followed 32 children from preliterate to
school age using functional and structural magnetic resonance imaging techniques. Based on standardised and
age-normed reading and spelling tests administered at school age, children were classified as 16 dyslexic par-

ticipants and 16 controls. This longitudinal design allowed us to disentangle possible neurobiological pre-
dispositions for developing dyslexia from effects of individual differences in literacy experience. In our sample,
the disorder can be predicted already before literacy learning from auditory cortex gyrification and aberrant
downstream connectivity within the speech processing system. These results provide evidence for the notion that
dyslexia may originate from an atypical maturation of the speech network that precedes literacy instruction.

1. Introduction

Developmental dyslexia (DD) is a specific neurodevelopmental
learning disorder. Despite normal intellectual skills, affected individuals
struggle severely with literacy acquisition, thus facing profound educa-
tional disadvantages throughout life. Impairments may affect reading
and spelling specifically, and may occur independently of performance in
other domains like mathematics (Skeide et al., 2018b). Beyond academic
achievement, living with DD has considerable negative effects on mental
health, such as an increased risk of anxiety disorders and depression,
posing a costly burden on society (Klassen et al., 2013).

While speech processing deficits are most consistently found in
dyslexic individuals, DD is considered to be a heterogeneous condition
that may also relate to other domains, such as vision or attention.
Accordingly, affected individuals show different cognitive profiles across
these domains (Heim et al., 2008; Ramus et al., 2003; Steinbrink et al.,
2014). Accordingly, there are various accounts aiming to explain the
neurobiological underpinnings of DD (Table 1). These accounts, how-
ever, are largely based on data of school-aged or adult participants. This
is a limitation, since differences between dyslexic participants and con-
trols might also reflect confounding differences in literacy acquisition. In

a recent study, Haft et al. (2018) demonstrated that children with
dyslexia actively avoid reading-related stimuli. This bias may reduce
reading practice of affected individuals compared to typically developing
individuals. As a consequence, dyslexic individuals may vary in amount
and quality of neuroplastic changes related to successful reading acqui-
sition (Brem et al., 2010; Dehaene et al., 2015; Skeide et al., 2017). This
line of argumentation has been recently adopted by Huettig et al. (2018),
suggesting that cognitive deficits in dyslexic individuals are at least in
part similar to those observed in illiterates who have no practice in
reading. Hence, discriminating potentially predisposing factors from
consequences of DD is a major challenge for identifying neural correlates
of dyslexia.

Twin and family studies indicate an increased risk of literacy im-
pairments in individuals with a dyslexic parent or sibling (DeFries et al.,
1987; Lyytinen et al., 2004). Therefore, the question for possible pre-
disposing neurobiological factors for DD has been extensively studied
based on work in children with a family history of dyslexia. Magnetic
resonance imaging (MRI) data suggest that preliterate children at a fa-
milial risk exhibit reduced grey matter volume and atypical cortical
folding in left occipitotemporal and temporoparietal regions associated
with reading (Im et al., 2016; Raschle et al., 2011). These structural
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Table 1
Neurobiological accounts of dyslexia.
Account Potential core deficit Target regions Target
tracts
Visual deficit decreased contrast LGN (Livingstone LGN —
sensitivity caused by etal., 1991) V1
reduced size and thus faulty =~ V1 (Livingstone etal., LGN —
response of visual 1991) MT
magnocells (Stein, 2019) MT (Eden et al., 1996) V1l —
FG
Auditory faulty perception of shortor  IC (Hornickel and IC -
deficit rapidly changing sounds Kraus, 2013) MGB
due to decreased size of MGB (Galaburda MGB —
auditory magnocells and et al., 1994) Al
more variable responses to Al (Clark et al., 2014;
auditory stimuli (Goswami, Lehongre et al., 2011)
2019)
Cerebellar cerebellar hypoactivation, Cerebellum
deficit resulting in procedural (Freedman et al.,
sequence learning 2017; Nicolson et al.,
difficulties 2001)
Phonological impaired representation A1, PT (Lehongre Al >
deficit and processing of speech etal., 2011; PT
sounds Vandermosten et al.,
2020)
BA6 (Dufor et al., PT —
2007) BA6
BA44 (Kraft et al., PT —
2016) BA44
Orthographic deficient processing of print ~ FG (Cao et al., 2018; FG -
deficit caused by reduced Salmelin et al., 1996) PT
activation of neurons FG —
selectively tuned to printed BA45/
words 47

BA=Brodmann area; LGN = lateral geniculate nucleus; V1 = primary visual
cortex; MT = middle temporal visual area; IC = inferior colliculus; MGB = medial
geniculate nucleus; Al = primary auditory cortex; PT = planum temporale; FG =
fusiform gyrus.

results are complemented by findings of reduced activity within bilateral
occipitotemporal and left temporoparietal areas during phonological
processing (Raschle et al., 2012). Similar effects have been reported for
children that were diagnosed with dyslexia after formal literacy in-
struction (Williams et al., 2018). Beyond cortical anomalies, white matter
differences within the left arcuate fasciculus connecting temporoparietal
regions with premotor and inferior frontal areas were detected within
children at a familial risk of developing dyslexia (Langer et al., 2017).
Furthermore, these brain networks are also related to the strongest
behavioural predictors of literacy outcome, namely phonological
awareness and phonological short-term memory (Raschle et al., 2011;
Saygin et al., 2013). Taken together, these results suggest that functional
and structural alterations related to the emergence of DD may develop in
early childhood and are thus already detectable before literacy onset.

Studies assessing preliterate children with a familial risk cross-
sectionally do not allow to answer the question whether reported dif-
ferences reflect potential predisposing factors of developing DD or con-
sequences of reduced literacy exposition. Thus, longitudinal designs are
crucial to validate insights derived from cross-sectional studies. There is
first longitudinal evidence that infants who later developed dyslexia
show reduced electrophysiological responses to speech (e.g., discrimi-
nating consonant onsets in the syllables /da/ vs. /ga/) already 2-5
months after birth (Schaadt et al., 2015; van Zuijen et al., 2013). More-
over, longitudinal structural MRI work revealed reduced thickness in left
temporal and parietal cortices (Clark et al., 2014; Kraft et al., 2015), as
well as reduced myelination of the arcuate fasciculus in future dyslexic
children (Kraft et al., 2016; Vanderauwera et al., 2017). Recently, Beelen
et al. (2019) identified anatomical anomalies in bilateral fusiform gyrus
related to phonological awareness in pre-reading children who later
developed dyslexia.

While the currently available data point to atypical functioning and
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maturation of the brain’s speech system, it is unclear whether differences
in other sensory or cognitive domains highlighted in the literature
(Table 1) already exist prior to literacy acquisition. Accordingly, the
present study was designed to shed light on this topic. To this end, we
followed children longitudinally that underwent multimodal MRI and
psychometric testing before literacy instruction (at 5-6 years in kinder-
garten without pre-school education as typical in Germany) and after
literacy instruction in school (at 7-8 years in second grade). Combining
resting-state functional MRI (fMRI), T1-and diffusion-weighted imaging,
we were able to comprehensively reconstruct the complex cortical and
subcortical networks that were previously linked to DD. Building on this
dataset, we examined functional and structural measures both before and
after literacy instruction has begun, while controlling for sociodemo-
graphic factors (maternal education), domain-general cognitive capac-
ities (non-verbal IQ, attention), and comorbid learning disorders
(mathematical deficits). This approach allowed us to investigate whether
dyslexia-related differences reported in older cohorts already existed in
our cohort prior to literacy acquisition. To this end, we compared brain
structural and functional measures between future dyslexic children and
controls, separately for both measurement time points. Given the strong
left-hemispheric dominance of MRI effects associated with dyslexia as
revealed by meta-analyses (Richlan et al., 2011), we focused on left
cortical and sub-cortical regions of interest previously found to be related
to literacy deficits (Table 1).

Following the current literature on preliterate children, we expected
neural differences between dyslexic participants and controls to be
confined to the speech system. In particular, we assumed that we were
able to replicate previous results indicating atypical functioning and
structural organisation of left auditory, superior temporal and inferior
frontal cortices as well as the interconnecting arcuate fasciculus. Thus far,
positive evidence for the persistence of these effects from preliteracy to
literacy only exists for reduced cortical thickness of the left auditory
cortex (Clark et al., 2014; but see methodological concerns expressed in
Kraft et al., 2015). However, other morphometric indices that have not
yet been investigated might also play a role. For instance, inherited
polymicrogyria were reported in the left auditory cortex and the left
superior temporal cortex in post-mortem investigations of dyslexic adults
(Galaburda et al., 2006). Such malformations might rather be captured
by indices quantifying gyrification, as suggested by previous
cross-sectional work on children with dyslexia (Caverzasi et al., 2018).
Accordingly, we tested the hypothesis that significantly reduced cortical
thickness and/or increased gyrification of the left auditory and/or the left
superior temporal cortex distinguishes individuals with DD from controls
both before and after literacy. Additionally, we expected group differ-
ences in functional and structural connectivity of auditory and superior
temporal areas with downstream regions such as the premotor and
inferior frontal cortex.

2. Methods and materials

Participants. Between 2012 and 2013, 82 children were recruited from
the Leipzig metropolitan area for this study. To maximize the number of
dyslexic participants in the final sample, individuals with a familial risk
of developing dyslexia were the main target group of the recruitment
procedure. 37 of the 82 children had at least one first- or second degree
relative with DD. Status of familial risk of dyslexia was assessed as part of
a questionnaire answered by the parents. All parents gave written
informed consent and all children gave verbal informed assent to
participate. The study was approved by the Ethics Committee of the
University of Leipzig, Germany. Initial data acquisition took place be-
tween 2012 and 2013. Follow-up sessions were conducted between 2015
and 2016.

Initial screening ensured that participants did not have a history of
neurological, psychiatric, hearing or vision disorders, that they were
native German monolingual speakers and that they did not yet receive
literacy training. In this context, it has to be noted that in many European
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countries, including Germany, typical state kindergartens are not part of
the school system and do not provide formal literacy education.
Accordingly, while children have access to books that are read to them by
kindergarten caregivers, they typically do not train letter decoding before
entering school.

Further, 39 individuals were excluded from analysis because they
either received a diagnosis of attention deficit hyperactivity disorder
(ADHD, n = 4, determined based on parental questionnaire), exhibited
excessive head motion during functional and/or structural MRI (n = 20),
were unable to attend follow-up sessions (n = 4), did not finish all psy-
chometric tests (n = 7; Table 2) or performed below the 16th percentile
in a standardised math test (n = 4, Table 2, to exclude participants with
developmental dyscalculia). Moreover, one additional participant had to
be excluded due to an experimental error during psychometric testing. A
follow-up assessment based on a parental questionnaire ruled out that
children in our sample were diagnosed with ADHD between kindergarten
and the end of second grade in school.

In the remaining sample of 42 children, dyslexia was operationally
defined at the end of second grade based on standardised and age-
normed reading and spelling tests (Table 2). Performance below the
16th percentile rank (equivalent to 1 standard deviation below the mean
of the normal distribution or a t-score of 40) of the test’s reference
population performance in either one or both spelling accuracy and real-
word reading fluency led to assignment to the dyslexic group. Our final
sample included 3 children with isolated spelling deficits, 3 children with
isolated reading deficits, and 10 children with combined deficits. For our
control group, we only considered children that had neither first- nor
second-degree relatives with DD (n = 21; assessed by parental

Table 2
Psychometric assessment.

Trait Test Measure

Kindergarten (before literacy, age 5-6)

Handedness Edinburgh Handedness laterality quotient
Inventory (Oldfield, 1971)
Maternal Self-constructed combined school and
education questionnaire vocational qualification
Non-verbal Wechsler preschool and performance IQ

intelligence primary scale of intelligence
(WPPSI-III) (Wechsler et al.,

2009)

Phonological
awareness
Rapid naming

Phonological
short-term

Bielefeld screening of literacy
precursor abilities (BISC)
(Jansen et al., 1999)

BISC (Jansen et al., 1999)
Kaufman Assessement Battery

for Children (K-ABC)
(Kaufman et al., 2009)

Second grade (age 8-9)

Spelling
accuracy

Reading fluency

German spelling test
(DERET1-2) (Stock and
Schneider, 2008)

Salzburg test of reading and
spelling, second edition
(SLRT-II) (Moll and Landerl,
2010)

composite score from rhyming,
sound association, syllable
segmentation, sound-to-word
matching tasks

rapid naming of coloured
objects

recall of verbally presented
number sequences of ascending
length

writing from dictation

real word reading speed

Non-verbal Wechsler intelligence scale perceptual reasoning IQ
intelligence for children (WISC-IV)
(Petermann and Petermann,
2011)
Mathematical Heidelberg maths test (HRT1-  composite score of arithmetic
ability 4) (Haffner et al., 2005) performance and numerical-

Phonological
awareness

Basic competences for
reading and writing abilities
(BAKO) (Stock et al., 2003)

logical reasoning

composite score of pseudo
word segmentation, vowel-
replacement, word completion,
phoneme exchange, sound
categorization, vowel length
judgment, word reversal tasks
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questionnaire). Further, to exclude poor readers and spellers that did not
meet the criterion for being considered dyslexic, only individuals per-
forming above the 25th percentile rank were assigned to the control
group. Consequently, n = 5 poor readers or spellers scoring between the
16th and the 25th percentile rank were excluded to form distinct groups
and to avoid performance overlap (Shaywitz et al., 2002). Applying these
criteria, 16 children were classified as dyslexic and 16 children were
classified as typically developing controls following our operational
definition (Table 3). None of the participants in the final sample scored
below 85 (equivalent to the 16th percentile rank, 1 standard deviation
below the mean of the normal distribution and a t-score of 40) on average
in the two non-verbal IQ tests.

Additionally, two controls had to be excluded from the resting-state
fMRI analysis of kindergarten data, and two dyslexic participants were
excluded from the functional data analysis of school-age data due to
excessive head motion during the respective scans.

MRI data acquisition. MRI data were acquired on a 3T Trio scanner
(Siemens, Erlangen, Germany) at a preliterate age (kindergarten) and on
the same scanner upgraded to a 3T Prisma (Siemens, Erlangen, Germany)
at the end of second grade (Table 4).

T1-weighted data processing. T1-weighted MP2RAGE images were first
visually inspected to exclude data corrupted by imaging artefacts
including diffuse image noise along the phase-encoding direction,
ghosting or Gibbs artefact. Subsequently, images were skull-stripped
(Freesurfer, Version 5.3.0, http://surfer.nmr.mgh.harvard.edu/) and
used to create a group template with an isotropic resolution of 1.0 mm in
Montreal Neurological Institute (MNI) space (Advanced Normalization
Tools, Version 2.2.0, http://picsl.upenn.edu/software/ants/) to which
individual images were normalised (Computational Anatomy Toolbox,
CAT12, Version r1109; http://www.neuro.uni-jena.de/cat/). Further-
more, T1 data were segmented into grey and white matter (CAT12,
SPM12, Update Revision Number 6906, www.fil.ac.uk/spm/in Matlab
R2017b, The Mathworks, Inc., Natick, MA, USA). Finally, maps of
cortical thickness (CT), gyrification index (GI), cortical folding
complexity (CF), and sulcus depth (SD) were extracted for each partici-
pant and smoothed with a 15 mm full width at half maximum (FWHM)
kernel, in accordance with the matched-filter theorem. T1 images were
also extracted, but not smoothed.

ROI selection. Cortical, participant-specific region of interest masks
(ROIs, Table 5) were obtained by aligning a multi-modal parcellation of
brain areas comprising 180 cortical regions per hemisphere (Glasser
et al., 2016, retrieved 09/01/2016 from https://balsa.wustl.edu/study/
show/RVVG) to each participant’s MNI-T1 image and to Freesurfer’s
fsaverage image. Additionally, subcortical areas MGB, LGN, and IC were
manually defined by two of the authors (U.K., M.A.S.), independently
from each other on a T1 template with a resolution of 0.5mm3 isotropic
(retrieved 09/05/2016 from http://openscience.cbs.mpg.de/bazin/7
T_Quantitative/Group_Atlases/). The overlap of both definitions was
taken as final subcortical ROI. Location of thalamic ROIs corresponds to
coordinates specified in the literature from other manual and
connectivity-based segmentations (Devlin et al., 2006). Finally, the
Spatially Unbiased Atlas Template (Diedrichsen, 2006; Diedrichsen et al.,
2009; Version 3.2, retrieved 09/05/2017 from http://www.diedrich
senlab.org/imaging/suit.htm) of cerebellum and brainstem were used
to extract a cerebellar ROI.

Diffusion-weighted data processing. Prior to pre-processing, diffusion-
weighted echo-planar imaging (EPI) MRI data were semi-automatically
and visually inspected for motion artefacts by identifying signal drop-
outs (Schreiber et al., 2014). Pre-processing was performed using FSL
v5.0 (https://fsl.fmrib.ox.ac.uk). Data were corrected for motion by
affinely aligning volumes with different b-values to respective averages
previously rigidly aligned with the individual participant’s MNI-T1
image.

Susceptibility artefacts were corrected based on two diffusion vol-
umes with reverse phase encoding (FSL TOPUP) additionally acquired for
each participant. To preserve high data quality, all transformations were
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Table 3
Demographic information and psychometric performance.

Before literacy instruction After literacy instruction

Dyslexia Control statistic P value Dyslexia Control statistic P value
Demographics
N 16 16 . . 16 16 . .
Age® 58+4 56+4 U =169 0.1239" 8;,8+3 84+3 t(29) = -3.35 0.0022°
Sex* 11/5 9/7 OR = 1.68° 0.7160"
Maternal education® 3.94 +0.98 4.63 +1.15 U=284 0.0893"
Handedness" 79.06 + 15.22 65.38 + 39.63 U =1485 0.4344"
Familial risk status' 10/6 0/16
Psychometrics
Non-verbal IQ/ 99 +12 109 + 12 t(29) =2.39 0.0236° 107 £ 13 114 £13 t(29) = 1.66 0.1081°¢
Phonological short-term memoryk 9+1.93 10.25 +£ 1.77 U =179.5 0.0473" . . . .
Phonological awareness' 32.16 + 4.72 35.38 + 3.59 t(28) =2.19 0.0368° 21.88 +17.84 62.63 + 20.78 U =236 <0.0001°
Rapid naming™ 6.06 + 2.02 6.81 +1.05 U=162 0.1790" . . . .
Spelling accuracy” 15.19 + 15.52 55.94 + 22.83 U =240 <0.0001"
Reading fluency® 16.16 + 24.60 68.47 + 22.56 U =238 <0.0001°

? Years; months, age at MRI-scan, mean + standard deviation (std).

b Wilcoxon-Mann-Whitney U test (data not normally distributed).

¢ Welch two-sample t-test (data normally distributed).

4 Male/female.

¢ 0dd’s ratio.

f Fisher’s exact test.

8 Questionnaire derived, combined score of mother’s school education (4—point scale: no degree: 0 points; German ‘Abitur’ [high school diploma/A level]: 3 points)
and vocational qualification (5—point scale: no qualification: 0 points; German ‘Habilitation’ [postdoctoral academic qualification]: 4 points); mean=+std.

h Laterality quotient; scores range from —100 (left handed) to 100 (right handed), left-handedness is defined as an LQ<—28, i.e. the first decile value; right-
handedness defined as LQ>48, i.e. the first decile value; ambidexterity: —28<laterality quotient<48); mean-std.

! Familial risk of DD/no familial risk of DD.

i Average normed IQ score is 100 with a standard deviation of +15, i.e.; mean =+ std.

k Raw scores of number sequence recall task; sequence length increases every 3 items from 2 to maximally 9 until all three items of a length are recalled incorrectly;
children receive a point for each correctly recalled number sequence; mean=std.

! Before literacy instruction: combined number of correct responses (max. 40, 10 per task) from rhyming, sound association, syllable segmentation, and sound-to-word
matching tasks; after literacy instruction: average standardised scores (percentile ranks) from pseudoword segmentation, vowel-replacement, word completion,
phoneme exchange, sound categorization, vowel length judgment, and word reversal tasks; mean-+std.

™ Time needed to rapidly name colours of 24 visually presented black and white objects, converted to scores ranging from 0 to 8; mean =+ std.

" Writing after dictation, standardised scores (percentile ranks) based on spelling accuracy (DERET1-2); mean =+ std.

° Reading speed, standardised scores (percentile ranks) based on number of real words correctly read within 1 min (SLRT-II); mean + std.

Table 5

Table 4 Definition of cortical regions of interest derived from the Glasser atlas.

MRI protocols.

Regions of interest Atlas labels?

T1 dwMRI rsfMRI
- - - - - - left primary visual cortex (V1) LV1ROL1
Time Time Time Time Time point left middle temporal area (MT) L MT ROI, 23
point 1 point 2 point 1 point 2 1/Time left fusiform gyrus (FG) L_VVC_ROI, 163
point 2 left primary auditory cortex (A1) L_A1_ROI 24
TE (ms) 2.82 2.01 83 73 30 left planum temporale (PT) L _LBelt_ROI, 174;
TR (ms) 5000 5000 8000 4700 2000 L PBelt ROL, 124
TI (ms) 700 700 _ _ _ left ventral premot.or corte)f (BA§) L _6v_RO]I, 56; L _6r ROI, 78
Voxel size (mm 1.3 x 1.0 x 1.9 x 1.7 x 3.0 x 3.0 x left pars opercularis of the inferior frontal gyrus L_44 ROI, 74
xmmxmm) 1.3 x 1.0 x 19x1.9 17x17 3.99 (BA44)
1.3 1.0 left pars triangularis/orbitalis of the inferior frontal L _45_ROl, 75; L 47 ROL 76
FoV(mmxmmx 250 x 256 x 186 x 210 x 192 x 192 gyrus (BA45/47)
mm) 219 x 240 x 186 x 204 x x 111 BA=Brodmann area; ® Glasser et al. (2016), retrieved 09/01/2016 from https://ba
e 188 176 126 133 Isa.wustl.edu/study/show/RVVG,; if several areas are given, they were combined
No. of diffusion - - 60 60 - X . .
. to form the final region of interest.
encoding
directions
b-ValuzeS (s/ - - 1000; 0 1000; 0 - ROI involved, once as seed region and once as target region. We seeded
mm-) . 5000 streamlines (curvature threshold = 0.2, step length = 0.5 mm) in
No. of by images - - 7 8 -

each voxel within the grey matter-white matter interface of the seed
region at hand. While this approach produced confined tracts for most of
the target connections of interest (Table 1), tracking was restricted using
exclusion masks to quantify structural connectivity of the left planum
temporale with inferior frontal regions BA6 and BA44 and local con-
nectivity between the left primary auditory cortex and left planum
temporale via the dorsally located arcuate fasciculus. To this end, we
used a rectangular ventral exclusion mask for the tract passing through

T1 = T1-weighted scan; dwMRI = diffusion-weighted MRI; rsfMRI = resting-
state functional MRI; TE = echo time; TR = repetition time; TI = inversion time;
FoV = field of view.

combined and applied in a single step of interpolation. Finally, the
diffusion tensor (FSL DTIFIT) and the fibre orientation distribution for
each voxel were determined (FSL BEDPOSTX). Fractional anisotropy and

mean diffusivity were derived from the tensor fit. Tractograms were
computed by applying probabilistic tractography (FSL PROBTRACKX2).
ROI masks of target tracts (Table 1) were generated by using each cortical

the planum temporale and BA6/BA44 and a combination of a ventral and
dorsal exclusion mask for the tract passing through the auditory cortex
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and the planum temporale. The corresponding masks were defined
within the common MNI group templates for the respective time points.
Position in y-direction of the ventral exclusion mask was 5 mm anterior
of the maximal y-coordinate of all participant’s planum temporale seeds,
spanning 3 mm into the anterior direction (i.e. y = 7-9). In x- and z-di-
rection, the plane extended from coordinate O into the negative di-
rections (i.e. x = 0 to —61, z = 0 to —49), covering the entire anterior
temporal lobe. The dorsal exclusion mask was defined as a plane covering
the whole field of view in x- and y-direction for z = 22-24. Resulting
streamline density maps were first log-transformed and then voxel-wise
divided by the log-transformed maximal number of possible stream-
lines. Summed, log-transformed and normalised maps were averaged and
thresholded at the 80th percentile to extract only the core of the
respective tract.

Resting-state fMRI data processing. T2*-weighted gradient-echo EPI
resting-state fMRI (rsfMRI) data were preprocessed using FSL v5.0,
Matlab R2017b and AFNI Version 17.2.17 (https://afni.nimh.nih.gov/).
After removal of the first 4 vol of each scan, data were slice time cor-
rected. Head motion was quantified by frame-wise displacement (the
sum of rotational and translational rigid body realignment parameters
from one volume to the next) (Power et al., 2012). To account for head
motion, volumes with frame-wise displacement >0.5 mm were excluded
from further analysis, yielding 75 vol per participant at time 1 and 118
vol per participant at time 2. Due to excessive head motion, two controls
were excluded from further rsfMRI analysis at time point 1 (i.e., N =16
dyslexic, N = 14 controls). For the same reason, 2 dyslexic individuals
had to be excluded from the rsfMRI analysis at time point 2 (i.e., N = 14
dyslexic participants, N = 16 controls). Partial volume maps for grey
matter, white matter, and cerebrospinal fluid were generated from the
segmented MNI-T1 data (FSL FAST). White matter (WM) and cerebro-
spinal fluid (CSF) masks were thresholded at 80% tissue probability,
before rigid alignment to individual rsfMRI space. To control for motion
as well as scanner-related and physiological noise, five principal com-
ponents from WM and CSF were regressed out together with the six
linearly detrended motion parameters previously determined (Muschelli
et al., 2014). Finally, residual data were bandpass-filtered at 0.01-0.1Hz
and spatially smoothed with a 6 mm FWHM kernel, leading to an
effective smoothness of around 8-9 mm given the resolution of 3.0 x 3.0
x 3.99 of the rsfMRI data. To investigate local as well as global similarity
of blood oxygenation level dependent time-series (functional connec-
tivity), we extracted and converted regional homogeneity and fractional
amplitude of low frequency fluctuations from each grey matter voxel to
z-scores (Yan and Zang, 2010). Mean functional connectivity was
computed by extracting mean hemodynamic time-series for each of the
cortical, subcortical and cerebellar ROIs and calculating pair-wise cor-
relations between areas that are connected via target connections (i.e.,
the 10 connections shown in Table 1 and Supplementary Table 1) using
AFNI 3dfim+.

Experimental Design and Statistical Analysis. Dyslexic and control par-
ticipants underwent MRI (Table 4) and psychometric assessment
(Table 2) at two time points, that is, once at age 5-6 in kindergarten
(before they acquired literacy skills) and again approximately 2 years and
11 months later at the end of second grade (range of time between
measurements: 2.2-3.8 years; children were age 8-9 at s time point).

In terms of psychometric testing (Table 2), we used measures quan-
tifying spelling accuracy and real-word reading fluency at the end of
second grade in school to operationally define DD. Further, measures of
handedness, non-verbal intelligence and mathematical ability served as
covariates in the statistical models assessing neural differences between
dyslexic and control participants at the respective time points. Addi-
tionally, we covaried out maternal education (i.e., the combination of the
mother’s highest educational and vocational qualification) which served
as a proxy for home literacy environment (Rashid et al., 2005).

Measures of literacy precursor abilities assessed at kindergarten age,
including phonological awareness, rapid naming and phonological short-
term memory, were used as behavioural predictors in a receiver
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operating characteristic curves (ROC) analysis. Lastly, re-assessment of
phonological awareness at school age allowed us to see whether group
differences with respect to this important literacy precursor ability still
hold after two years of formal literacy instruction. The rationale behind
this approach is that phonological awareness is one of the best known
predictors of literacy skills but at the same time known to be modulated
by reading experience (Peterson and Pennington, 2015). In line with this
previous evidence, we were able to demonstrate that children who
develop dyslexia do not only have lower phonological awareness
compared to controls already before formal literacy instruction, but that
their phonological awareness also does not significantly improve with
instruction which is a hallmark feature of typical literacy learning
(Table 3).

Demographic and behavioural data were tested for normality of dis-
tributions using the Shapiro-Wilk test. To compare groups, we used the
non-parametric Wilcoxon-Mann-Whitney U test in case of non-normality,
the Fisher’s exact test for nominal data, and the Welch two-sample t-test
otherwise (all two-tailed).

For all 8 cortical ROIs (see Supplementary Table 1), means of CT, CF,
GI, SD were extracted in MNI space. For all 8 cortical ROIs, and for LGN,
MGB and the cerebellar ROI, we additionally extracted mean values of
regional homogeneity (ReHo), fractional amplitude of low frequency
fluctuations (fALFF), and structural T1-signal. Additionally, we quanti-
fied volumes of LGN and MGB masks for subsequent group analyses.
Mean functional connectivity was computed by extracting mean hae-
modynamic time-series for each ROI and calculating pair-wise correla-
tions between areas that are connected via target tracts (i.e., the 10
connections shown in Table 1 and Supplementary Table 1; AFNI
3dfim+). Fractional anisotropy (FA), mean diffusivity (MD), and
streamline density (SLD) were computed voxel-wise along the 10 tracts
identified by probabilistic tractography in SPM. ROI-wise or ROI-pair-
wise comparisons of the different mean brain measures were per-
formed using R-3.3.3 (https://www.r-project.org/) by running multiple
one-way analyses of covariance conducted at each time point (i.e.,
kindergarten and primary school age) separately. Analyses included the
covariates age, sex, handedness, and maternal education. Further, in-
formation about familial risk status was included in all statistical models
to ensure that identified effects are related to literacy outcome rather
than familial risk. Additionally, we included arithmetic ability as a co-
variate for all analyses in order to single out differences specific to lit-
eracy deficits, independent of individual mathematical ability. Finally, IQ
was also included as a covariate for all analysis to remove the effect of
general cognitive skills. We used IQ scores at time point 2 because IQ
measures were shown to be more reliable in school-age than in preschool
children (Bishop et al., 2003). To minimise the variance induced by these
covariates we adjusted the analyses not only for covariates revealing
significant group differences, but also for covariates revealing marginally
significant and non-significant group differences (Table 3).

To ensure homogeneity of regression slopes, possible interactions
between individual covariates and the categorical predictor variable
were assessed beforehand. Homogeneity of regression curves is given for
all comparisons despite a significant interaction between group and sex
for functional connectivity between left primary auditory cortex and left
planum temporale at time 1. Hence, separate analyses were run for male
and female participants. Within each comparison, results were family-
wise-error-corrected for the respective number of ROIs (see Supple-
mentary Table 1). For comparison of surface-based measures (CT, GI, SD,
CF), the critical a level was set to 0.0063 (corrected for all 8 cortical
ROIs). For resting-state measures fALFF and ReHo and the structural T1-
signal, the critical o level was set to 0.0046 (corrected for 8 cortical, 2
subcortical and 1 cerebellar ROI). For the functional and structural
connectivity analyses, the critical a value was set to 0.005 (i.e., ac-
counting for 10 connections/tracts). To additionally test for potential
effects not covered by our ROIs, we performed whole-brain analyses of
each brain measure.

To investigate whether the brain data can significantly improve the
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prediction of DD compared to behavioural data alone, we calculated
receiver operating characteristic curves (ROC). Specifically, we
computed binary logistic regression models to predict the relationship
between our independent variables and dyslexia status. These models
return conditional probabilities for belonging to the dyslexic group given
the values of the respective observed predictor variables for each input
sample. For each potential decision threshold separating the two groups,
the proportion of actually positive samples out of all samples that were
identified as being positive and the proportion of actually negative
samples out of all samples that were identified as being negative are
obtained. These correspond to the sensitivity and specificity pairs,
respectively, that make up the final ROC. Thus, the ROC and their cor-
responding areas under the curve (AUC) allow to evaluate the discrimi-
natory power of the respective model. Variance inflation factor computed
on all models indicated only weak multicollinearity between predictors
(range 1.00-3.41). Areas under the receiver operating characteristic
curve (AUC) of all models were compared using a two-tailed boot-
strapping approach.

3. Results

Individuals with DD had significantly lower phonological processing
skills compared to controls, both before literacy instruction at mean age
5y+7m (phonological short-term memory: N = 32, U = 179.5, p =
0.0473, d = 0.75, two-tailed; phonological awareness: N = 32, t (28) =
2.19, p = 0.0368, d = 0.78, two-tailed) and after literacy instruction at
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mean age 8y+6m (phonological awareness: N = 32, U= 236, p < 0.0001,
d = 2.06, two-tailed) (Table 3). Moreover, literacy skills were signifi-
cantly reduced in dyslexic individuals versus controls (N = 32, reading
fluency: U = 238, p < 0.0001, d = 2.14, two-tailed; spelling accuracy: N
=32, U =240, p < 0.0001, d = 2.23, two-tailed).

Group comparisons of the various cortical and subcortical measures
(Fig. 1) revealed significantly higher gyrification of the left primary
auditory cortex in dyslexic children compared to controls, persistent
across time points (before literacy: N = 32, F (1,24) = 9.64, p = 0.0048,
02 = 0.19; after literacy: N = 32, F (1,24) = 9.21, p = 0.0057, 2 = 0.22).

Additionally, functional connectivity between left primary auditory
cortex and left planum temporale was significantly lower in dyslexic
children before literacy acquisition (N = 30, F (1,24) = 14.73, p =
0.0009, n? = 0.32). This effect was driven by a significant difference in
boys (N =20, F(1,13) = 34.58, p = 0.0001, n2 = 0.45), but not girls (N =
10, F (1,3) = 0.05, p = 0.8388, 12 = 0.01).

In terms of structural connectivity, we found significantly higher
streamline density at a preliterate age for dyslexic children compared to
controls in the white matter fibre tract connecting the left planum tem-
porale with the left ventral premotor area (BA 6), i.e. the arcuate
fasciculus (N = 32, 70 voxels, F (1,24) = 19.80, p = 0.0040, n2 = 0.45).

No other region-of-interest and whole-brain control analysis revealed
any additional statistically significant effects for any neural indices.

Predictive sensitivity and specificity of the three significant neural
indices were compared against powerful behavioural predictors of lit-
eracy outcome known from the literature, namely phonological

Fig. 1. Overview of significant neural
differences between dyslexic and control
children. Horizontal lines within the bars
represent the group median. Vertical lines at
the top and the bottom of the bars depict the
standard deviation. Red diamonds denote
the mean of the distribution. Grey and black
dots represent individual data points.
Rotated kernel density plots on each side of
the bar show the probability density of the
data at different value. N = 32 for compari-
sons of structural measures, N = 30 for
comparisons of functional connectivity. As-
terisks indicate family-wise-error-corrected

differences significant at p < 0.05. Al =
primary auditory cortex; PT = planum tem-

porale, BA6 = Brodmann Area 6; AF =
arcuate fasciculus. In terms of structural
connectivity, we found significantly higher
streamline density at a preliterate age for
dyslexic children compared to controls in the
white matter fibre tract connecting the left
planum temporale with the left ventral pre-
motor area (BA 6), i.e. the arcuate fasciculus
(N = 32, 70 voxels, F (1,24) = 19.80, p =
0.0040, n2 = 0.45). All significant statistics
survived family-wise-error-correction for
multiple comparison at the respective critical
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a levels, i.e., a = 0.0063 for comparison of
surface-based measures (CT, GI, SD, CF); a =
0.0046 for comparisons of fALFF, ReHo, T1-
signal, tractwise mean MD, FA and SLD and
seed-target based functional connectivity.
Voxel-wise ~whole-brain analyses were
assessed at a significance level of a < 0.05
(family-wise-error-corrected). ~No  other
region-of-interest and none of the whole-
brain control analyses revealed any addi-
tional statistically significant effects for any
neural indices.
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awareness, and phonological short-term memory (Raschle et al., 2011;
Saygin et al., 2013). Further, we included rapid naming ability as a
measure prominently associated with reading outcome, especially for
transparent orthographies (de Jong and van der Leij, 2003). Data of 30
children with complete behavioural, structural and functional datasets
were used for model estimation. The area under the receiver operating
characteristic curve (AUC) of the neural model was 0.86 (standard error
(SE) = 0.07, 95% confidence interval (CI) = 0.72-1.00, d = 1.53). The
AUC of the behavioural model was 0.76 (SE = 0.09, 95% CI = 0.58-0.94,
d = 1.00), and the AUC of a combined model was 0.91 (SE = 0.05, 95%
CI = 0.81-1.00, d = 1.90). Statistical comparison of AUCs showed that
the combined model has significantly higher discrimination power than
the behavioural model (D = —2.00, p = 0.0464, two-tailed), while there
were no significant differences between AUCs of the neural model and
the behavioural model (D = —0.95, p = 0.3429, two-tailed) and the
combined model and the neural model (D = —0.91, p = 0.3644,
two-tailed) (Fig. 2).

4. Discussion

Here, we combined psychometric testing with functional and struc-
tural MRI to longitudinally assess children before they underwent liter-
acy instruction and again at the end of second grade when we determined
their literacy outcome. Our results provide converging evidence that
participants with DD differ from typically developing individuals in
terms of reduced phonological processing skills and increased gyr-
ification of the left auditory cortex. Additionally, we found altered
functional and structural connectivity within a left-hemispheric network
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Fig. 2. Receiver operating characteristic curves of predictive models.
Dashed/purple = model based on behavioural measurements, dotted-dashed/
orange = model based on neurobiological effects, solid/green = model based on
combined measures, AUC = area under receiver operating characteristic curve.
All measured were collected prior to literacy training. Included behavioural
measures (“behaviour”) were phonological awareness, phonological short-term
memory, and rapid naming. Brain measures (“brain”) were gyrification of left
auditory cortex, functional connectivity between left auditory cortex and pla-
num temporale, and streamline density of a cluster in the arcuate fasciculus. The
combination of behavioural and brain measures is labeled as “brain + behav-
iour”. N = 30 for all models. Asterisks indicate differences significant at p < 0.05
(two-tailed).
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including the auditory cortex, planum temporale, premotor cortex, and
arcuate fasciculus.

We were able to replicate the consistently reported finding that
phonological awareness most reliably distinguishes future dyslexic par-
ticipants from controls before literacy instruction, followed by phono-
logical short-term memory and rapid naming (Moll et al., 2014; Ziegler
et al., 2010). Accordingly, our sample accurately represents the behav-
ioural traits that are commonly observed in DD. Reports of older dyslexic
children and adults lacking phonological impairments (Bosse et al., 2007;
Peyrin et al., 2012) may be used to question the validity of phonological
accounts of dyslexia. However, such accounts do not necessarily rule out
that these individuals did show poor phonological skills early in life. In
fact, typical performance in phonological tasks may indicate successful
compensatory mechanisms that are in place during later stages of
development, mitigating the behavioural deficits typically observed.

Somewhat unexpected, our behavioural assessment revealed that the
groups did not significantly differ in terms of rapid naming, a measure
prominently associated with reading outcome especially for transparent
orthographies (de Jong and van der Leij, 2003). A possible reason for this
discrepancy may be that a more comprehensive analysis of this ability
includes rapid naming of letters in addition to colours of objects. How-
ever, it was not possible to perform a letter-based subtest in the current
study since children were not able to read yet.

On the behavioural basis of phonological processing difficulties, we
found neural signatures of dyslexia within a network of cortical areas that
are known to support speech processing and are crucial for literacy
learning. In particular, reduced functional connectivity between the
primary auditory cortex and left planum temporale relates to a large body
of literature highlighting the importance of these systems for spectro-
temporal segmentation of the continuous speech stream into discrete
sounds (Giraud and Poeppel, 2012; Lehongre et al., 2011). Thus, this
difference in functional coherence might reflect a local core deficit of
disrupted phonological processing. According to the rapid auditory
processing deficit hypothesis of dyslexia, it can be expected that this
deficit is most pronounced when processing speech sounds that are
characterized by rapidly successive acoustic changes, such as the brief
formant transitions (40 msec) that are the sole differentiating feature
between syllables such as /ba/and /da/ (Tallal, 2004). This hypothesis
needs to be tested in the future by making use of the high spatial and
temporal resolution of magnetoencephalography.

Interestingly, the difference in functional connectivity between the
auditory cortex and the planum temporale was only significant for male,
but not female participants. A putative explanation for this observation
based on rodent work might be that higher testosterone levels potentially
lead to more pronounced differences in cortical development (Rosen
et al., 1999), thus possibly impacting boys more severely than their fe-
male counterparts. Nevertheless, considering the substantially lower
number of dyslexic girls compared to boys (n = 5 vs. n = 11) in this study,
the result of this sex comparison needs to be interpreted with caution.
Yet, a greater susceptibility to brain developmental disruptions for males
might offer a first preliminary neural explanation for sex differences in
reading skills reported across languages and educational practices (Stoet
and Geary, 2013).

Further downstream, in a branch of the left arcuate fasciculus that
connects the planum temporale with the ventral premotor cortex, we
found significantly increased streamline density in DD versus controls.
This measure was derived via tractography, modelling prominent fibre
pathways via the number of streamlines passing a given voxel (Behrens
et al., 2003). Thus, streamline density may be interpreted as an index of
connectivity strength (Miiller-Axt et al., 2017). In contrast, previous
diffusion-weighted studies predominantly report reading-related differ-
ences within this tract in terms of fractional anisotropy. As fractional
anisotropy is a rather unspecific measure that may be sensitive to a range
of microstructural properties such as variance in fibre orientation or
axonal diameter (Riffert et al., 2014), it is difficult to reconcile the cur-
rent finding with reports of reduced fractional anisotropy in children at



U. Kuhl et al.

familial risk of developing dyslexia (Kraft et al., 2016; Langer et al., 2017;
Wang et al., 2017) and poor readers (Wang et al., 2017). Still, our finding
of increased connectivity strength of the left arcuate fasciculus as
assessed via streamline density is in line with a longstanding view that
has been recently corroborated by meta-analyses of fMRI studies in
dyslexic children. Namely, individuals with dyslexia hyperactivate the
ventral premotor cortex during speech processing, presumably because
they have to rely more strongly on articulation strategies to compensate
for faulty encoding of phonemes in the planum temporale (Richlan et al.,
2011; Shaywitz, 1998).

In the current study, we investigated the structure of white matter
tracts in terms of FA, MD, and SLD. Methodological advantages and
limitations inherent to the use of these measures for assessing white
matter structure are worth noting here. FA and MD are both based on the
diffusion tensor, representing the major diffusion direction in a voxel.
However, this model becomes unreliable for voxels containing multiple
fiber bundles oriented in different directions or complex configurations
(Behrens et al., 2007). Moreover, tensor-derived measures such as FA and
MD may be further influenced by partial volume effects, as well as the
degree of myelination, number and density of axonal projections crossing
through the voxel under consideration (Alexander et al., 2001). Differ-
ences in terms of FA or MD might be driven by a combination of these
aspects, impeding a precise interpretation of observed effects. SLD as
analyzed here was derived from probabilistic tractography based on a
multi-fiber model. While potentially producing some false positive con-
nections (Knosche et al., 2015), probabilistic multi-fiber tracking is more
sensitive to the distribution of connectivity included secondary and
non-dominant fiber directions than deterministic approaches (Behrens
etal., 2007). During each step of the tracking process itself, the respective
next propagation direction is drawn from the probabilistic fiber orien-
tation density function. Consequently, the likelihood of a streamline
running through a specified voxel decreases with the distance of that
voxel from the respective seed point, resulting in sparse and less reliable
values at the tractogram’s edges. Finally, while streamline density mea-
sures show better test-retest performance compared to tensor-derived
measures like FA (Buchanan et al., 2014), they are also modulated by
sources of noise affecting the quality diffusion-weighted imaging more
generally, such as the signal to noise ratio (Huang et al., 2004), subject
motion or physiological noise (Bihan et al., 2006).

With MRI it is difficult to identify neurobiological sources of the
structural auditory cortex alterations identified in our analysis. One
possible explanation may be that the observed differences in gyrification
capture faulty neural migration in the human temporal lobe (Giraud and
Ramus, 2013). Typically, neural migration is a process that is completed
before birth (Bystron et al., 2008), following a well-orchestrated cascade
of cellular regulatory processes giving rise to the highly regular
six-layered cortical architecture (Geschwind and Rakic, 2013). Impor-
tantly, ex vivo staining studies report neural migration anomalies such as
mislocated neurons and exuberant numbers of small folds (i.e., hetero-
topias and polymicrogyria, respectively) located mainly in left peri-
sylvian regions of dyslexic adults (Galaburda et al., 1985; Galaburda and
Kemper, 1979). Such anomalies could lead to disruptions of the laminar
cortical structure (Skeide et al., 2018a), potentially affecting further
developmental trajectories of cortical thickness and gyrification, in
addition to probable changes of local functional interactions in affected
regions as described above. It should be noted, however, that the
neuronal migration hypothesis of dyslexia needs additional experimental
support beyond small-scale candidate gene work in rodents and case and
pilot studies in humans (Guidi et al., 2018).

In line with a previous study that focused on cortical thickness (Clark
et al.,, 2014), we identified structural alterations of the left primary
auditory cortex as the only neural feature that persistently distinguished
dyslexic participants from controls, not only before, but also two years
after literacy instruction has begun. There can be many reasons for the
discontinuity of the functional and structural connectivity effects from
time point 1 to time point 2. For example, distinct maturational
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trajectories might lead to early differences that no longer reach signifi-
cance in the first school years (Yeatman et al., 2012).

Increased gyrification stood out as the only significantly different
surface-based measure, while cortical thickness, cortical folding, and
sulcus depth were similar between groups. The gyrification index
employed in this study is influenced by changes in terms of magnitude
and frequency of cortical folding (Liiders et al., 2006). Interestingly,
increased gyral frequency within the left Heschl’s gyrus has been previ-
ously described as an anatomical risk factor for phonological deficits
related to reading difficulty (Leonard et al., 2001; Leonard et al., 2006).
While gyrification is associated with reduced short-range axonal dis-
tance, typically assumed to increase local neural efficiency (White et al.,
2010), excessive gyrification may as well reflect anomalous neural
organisation. Specifically, the gyrification index might capture the
above-mentioned polymicrogyria that extend well beyond the millimetre
scale and are thus large enough to be detected with common in vivo MRI
resolution at 3 T (Galaburda et al., 2006).

DD is a deficit that can affect several sensory and cognitive domains
(Heim et al., 2008), which has led to an abundance of neural accounts of
its developmental origins (Table 1). Nevertheless, the current study
revealed differences between future dyslexic children and controls
within a confined network associated with speech sound processing. We
were unable to replicate previously reported effects beyond phonological
processing regions in the present sample (Table 1). It is clear that this
insight has to be taken with the care generally devoted to null effects and
calls for cautious interpretation. However, methodological discrepancies
do not account for these negative results. Most importantly, given that
the size of our sample was comparable or even superior to previous work
(i.e., N equal or larger), it is unlikely that lack of replication simply re-
flects lack of statistical power in our study — although the sample size is
still small.

Following accounts of auditory or visual sensory deficits in dyslexia
(Table 1), it is important to note that the current analysis did not reveal
differences between dyslexic participants and controls in subcortical re-
gions. It has to be acknowledged that functional analyses of subcortical
regions prove particularly challenging due to increased levels of physi-
ological noise originating from brainstem pulsation (Guimaraes et al.,
1998). However, the nuisance regression algorithm applied to our data
has been repeatedly shown to effectively remove false-negative activa-
tion across the whole brain including the thalamus and the brainstem,
thus maximising the sensitivity of cortico-subcortical functional con-
nectivity analyses (Behzadi et al., 2007; Ghisleni et al., 2015). Conse-
quently, given our employed methodology, the observed null results in
subcortical regions seem unlikely to be due to disruptions induced by
physiological noise.

A prospective classification model based on the three neural indices
identified in our experiments significantly predicted from the MRI data
whether preliterate kindergarten children would develop dyslexia later
in school. A similar behavioural model based on psychometric predictors
did not reach significance, but also did not perform significantly worse
than the neural model. Still, preliterate prediction of DD was significantly
improved when adding the brain measures to the behavioural model. The
top performing combined model capturing phonological deficits not only
at the behavioural, but also at the neural level, showed excellent
discriminatory power with an AUC of 0.91.

Previous longitudinal work on pre-literate children with familial risk
of DD suggests a differentiation between structural and functional brain
measures related to family risk versus actual reading outcomes. Specif-
ically, basic auditory processing as assessed with ERPs (Hakvoort et al.,
2015) and phoneme representations as assessed with multivariate fMRI
responses (Vandermosten et al., 2019) were found to relate to family risk
rather than later literacy performance. In contrast, the structure of the
arcuate fasciculus was found to be related to reading outcomes but not to
family risk (Vanderauwera et al., 2017). Disentangling the effects related
to family risk versus reading outcome, however, was not the focus of the
current study. Instead, the children in the dyslexic group were selected
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purely based on reading outcome, and compared to control children that
neither showed literacy deficits, nor exhibited a corresponding family
history. Therefore, familial risk status was used as a covariate in all sta-
tistical models to minimise the variance induced by this factor.

The sample size of the current study is limited due to the effortful
recruitment and time-consuming examination of a highly specific pop-
ulation of children. Hence, the results from this exploratory study await
confirmation in larger follow-up studies guided by a priori analysis, as is
the case for all other findings discussed here (Table 1). In addition, it
remains to be shown in future work which functional and structural
changes might occur later during development as a result of persistent
deficits and reduced reading experience. Another limitation is that,
despite the universal relevance of intact phonological processing for lit-
eracy learning, the present findings derived from a German sample might
be to some degree specific to orthographies with relatively regular
symbol-to-sound correspondences or alphabetic writing systems.
Therefore, the current results must await generalization to less trans-
parent and non-alphabetic writing systems in follow-up studies. Finally,
for transparent orthographies like German, it has been shown that iso-
lated reading and spelling disorders occur frequently (Fischbach et al.,
2013; Landerl and Moll, 2010). This phenomenon can be explained by
the fact that the German orthography is relatively transparent with
respect to reading (grapheme-to-phoneme mapping), but less transparent
with respect to spelling (phoneme-to-grapheme mapping). Accordingly, a
substantial proportion of German children with dyslexia reveal pro-
nounced spelling difficulties while their reading skills still fall within the
range of average performance (Wimmer and Mayringer, 2002). The
characteristics of our sample are in line with this notion. There is an
ongoing debate, however, on whether or not isolated disorders are based
on the same or distinct deficits. While our study did not permit an
in-depth analysis of potentially distinct neural profiles of isolated
compared to combined deficits, this issue deserves more careful attention
in future work.

In sum, our work adds to the understanding of the possible emergence
of DD by unifying brain functional, brain structural and behavioural di-
mensions of a speech processing deficit that precedes literacy acquisition.
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